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In this lecture, we will discuss the single source shortest path (SSSP)
problem, which is a classic problem on graphs, and also a problem very
plenty of applications in practice.
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Weighted Graphs

Let G = (V ,E ) be a directed graph. Let w be a function that maps each
edge in E to a positive integer value. Specifically, for each e ∈ E , w(e)
is an integer at least 0, which we call the weight of e.

A directed weighted graph is defined as the pair (G ,w).

We use the notation (u, v) to denote an edge in G from node u to node
v . Here, node u is an in-neighbor of v .

Define IN(v) the set of all in-neighbors of v .
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The integer on each edge indicates its weight. For example, w(d , g) = 1,
w(g , f ) = 2, and w(c , e) = 10.

IN(d) = {c , e, h}.
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Shortest Path

Consider a path in G : (v1, v2), (v2, v3), ..., (v`, v`+1), for some integer
` ≥ 1. We define the length of the path as

∑̀
i=1

w(vi , vi+1).

Recall that we may also denote the path as v1 → v2 → ...→ v`+1.

A shortest path from u to v is a path that has the minimum length
among all the paths from u to v . Denote by spdist(u, v) the length of
the shortest path from u to v .

If v is unreachable from u, then spdist(u, v) =∞.
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Example
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The path c → e has length 10.

The path c → d → g → f → e has length 6.

The first path is a shortest path from c to e; spdist(c , e) = 6.
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Single Source Shortest Path (SSSP) with Positive Weights

Let (G ,w) with G = (V ,E ) be a directed weighted graph, where w
maps every edge of E to a positive value.

Given a vertex s in V , the goal of the SSSP problem is to find, for
every other vertex t ∈ V \ {s}, a shortest path from s to t, unless t is
unreachable from s.
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A Subsequence Property

Lemma: If v1 → v2 → ...→ v`+1 is a shortest path from v1 to v`+1, then
for every i , j satisfying 1 ≤ i < j ≤ `+ 1, vi → vi+1 → ...→ vj is a
shortest path from vi to vj .

Proof: Suppose that this is not true. Then, we can find a shorter path

to go from vi to vj . Using this path to replace the original path from vi
to vj yields a shorter path from v1 to v`+1, which contradicts the fact

that v1 → v2 → ...→ v`+1 is a shortest path.
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Since c → d → g → f → e is a shortest path, we know that any
subsequence of of this path is also a shortest path. For example,
c → d → g → f must be a shortest path from c to f .
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Lemma:

spdist(s, u) = min
v∈IN(u)

{spdist(s, v) + w(v , u)}

The proof is simple and left to you.
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Next, we will first explain Dijkstra’s algorithm for solving the
SSSP problem. As we will see, this algorithm essentially tells us a
good order to compute spdist(s, u) when all the edges have positive
weights.

Utilizing the subsequence property, our algorithm will output a
shortest path tree that encodes all the shortest paths from the
source vertex s.
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The Edge Relaxation Idea

For every vertex v ∈ V , we will – at all times – maintain a value dist(v)
that represents the length of the shortest path from s to v found so far.

At the end of the algorithm, we will ensure that every dist(v) equals the
shortest path distance from s to v .

A core operation in our algorithm is called edge relaxation:

Relaxing an edge (u, v) means:

- If dist(v) < dist(u) + w(u, v), do nothing;
- Otherwise, reduce dist(v) to dist(u) + w(u, v).
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Dijkstra’s Algorithm

1 Set parent(v) = nil for all vertices v ∈ V

2 Set dist(s) = 0, and dist(v) =∞ for all other vertices v ∈ V

3 Set S = V

4 Repeat the following until S is empty:

5.1 Remove from S the vertex u with the smallest dist(u).
/* next we relax all the outgoing edges of u */

5.2 Relax every outgoing edge (u, v) of u
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Example

Suppose that the source vertex is c .
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vertex v dist(v) parent(v)
a ∞ nil
b ∞ nil
c 0 nil
d ∞ nil
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

S = {a, b, c , d , e, f , g , h, i}.
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Example

Relax the out-going edges of c (because dist(c) is the smallest in S):
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vertex v dist(v) parent(v)
a ∞ nil
b ∞ nil
c 0 nil
d 2 c
e 10 c
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

S = {a, b, d , e, f , g , h, i}.
Note that c has been removed!
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Example

Relax the out-going edges of d (because dist(d) is the smallest in S):
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vertex v dist(v) parent(v)
a 8 d
b ∞ nil
c 0 nil
d 2 c
e 10 c
f ∞ nil
g 3 d
h ∞ nil
i ∞ nil

S = {a, b, e, f , g , h, i}.
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Example

Relax the out-going edges of g :
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vertex v dist(v) parent(v)
a 8 d
b ∞ nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {a, b, e, f , h, i}.
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Example

Relax the out-going edges of i :
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vertex v dist(v) parent(v)
a 8 d
b ∞ nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {a, b, e, f , h}.
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Example

Relax the out-going edges of f :
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vertex v dist(v) parent(v)
a 8 d
b ∞ nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {a, b, e, h}.
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Example

Relax the out-going edges of e:
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vertex v dist(v) parent(v)
a 8 d
b ∞ nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {a, b, h}.
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Example

Relax the out-going edges of a:
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vertex v dist(v) parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {b, h}.
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Example

Relax the out-going edges of b:
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vertex v dist(v) parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {h}.
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Example

Relax the out-going edges of h:
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vertex v dist(v) parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h ∞ nil
i 4 g

S = {}.
All the shortest path distances are now final.
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Constructing the Shortest Path Tree

For every vertex v , if u = parent(v) is not nil, then make v a child of u.

Example
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vertex v parent(v)
a d
b a
c nil
d c
e f
f g
g d
h nil
i g

shortest path tree
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Running Time

It will be left as an exercise for you to implement Dijkstra’s algorithm in
O((|V |+ |E |) · log |V |) time (solutions provided).
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Correctness

Theorem: When a node u is removed from S , the value dist(u)
equals precisely spdist(s, u).

We will prove the theorem by induction on the order of vertices removed.
The first vertex removed is just the source vertex s itself, on which the
statement of the theorem obviously holds because
dist(u) = spdist(s, u) = 0.
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Assuming that the theorem holds for all the vertices removed so far, we
will prove its correctness on the next vertex u to be removed from S .

Let π be a shortest path from s to u. We will prove the following claim:

Claim: When u is to be removed from S , all the vertices on π has
been removed.

The claim implies dist(u) = spdist(u) when u is removed from
S . To see why, let p be the node right before u on π. By
our inductive assumption, when p was removed from S , we had
dist(p) = spdist(p). Recall that after removing p, we needed to
relax all the outgoing edges of p, one of which was (p, u). After
relaxing the edge, we must have dist(u) = dist(p) + w(p, u) =
spdist(p) + w(p, u) = spdist(u).
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Proof of the claim: Suppose that the claim is not true. Define vbad as
the first vertex on π that is still in S , when u is to be removed from S .

Let vgood be the vertex right before vbad on π; note that vgood definitely
exists because vbad cannot be s.

By our inductive assumption, when vgood was removed from S , we had
dist(vgood) = spdist(vgood). Remember we needed to relax all the the
outgoing edges of vgood , one of which was (vgood , vbad). After relaxing
the edge, we must have

dist(vbad) = dist(vgood) + w(vgood , vbad)

= spdist(vgood) + w(vgood , vbad) = spdist(vbad).

Since dist(vbad) never increases during the algorithm, we must have
dist(vbad) < dist(u) when u is to be removed from S . But this
contradicts the fact that u has the smallest dist-value among all the
vertices in S .
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