
CSCI2100: Regular Exercise Set 13

Prepared by Yufei Tao

Problem 1. Let S be a set of integer pairs of the form (id , v). We will refer to the first field as
the id of the pair, and the second as the key of the pair. Design a data structure that supports the
following operations:

• Insert: add a new pair (id , v) to S (you can assume that S does not already have a pair with
the same id).

• Delete: given an integer t, delete the pair (id , v) from S where t = id , if such a pair exists.

• DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consume O(n) space, and support all operations in O(log n) time where n = |S|.

Solution. Maintain S in two binary search trees T1 and T2, where the pairs are indexed on ids in
T1, and on keys in T2. We support the three operations as follows:

• Insert: simply insert the new pair (id , v) into both T1 and T2.

• Delete: first find the pair with id t in T1, from which we know the key v of the pair. Now,
delete the pair (t, v) from both T1 and T2.

• DeleteMin: find the pair with the smallest key v from T2 (which can be found by continuously
descending into left child nodes). Now we have its id t as well. Remove (t, v) from T1 and T2.

Problem 2. Describe how to implement the Dijkstra’s algorithm on a graph G = (V,E) in
O((|V |+ |E|) · log |V |) time.

Solution. Recall that the algorithm maintains (i) a set S of vertices at all times, and (ii) an integer
value dist(v) for each vertex v ∈ S. Define P to be the set of (v, dist(v)) pairs (one for each v ∈ S).
We need the following operations on P :

• Insert: add a pair (v, dist(v)) to P .

• DecreaseKey: given a vertex v ∈ S and an integer x < dist(v), update the pair (v, dist(v)) to
(v, x) (and thereby, setting dist(v) = x in P ).

• DeleteMin: Remove from P the pair (v, dist(v)) with the smalelst dist(v).

We can store P in a data structure of Problem 2 which supports all operations in O(log |V |) time
(note: DecreaseKey can be implemented as a Delete followed by an Insert).

In addition to the above structure, we store all the dist(v) values in an array A of length |V |, so
that using the id of a vertex v, we can find its dist(v) in constant time.

Now we can implement the algorithm as follows. Initially, insert only (s, 0) into P , where s is
the source vertex. Also, in A, set all the values to ∞, except the cell of s which equals 0.

Then, we repeat the following until P is empty:

• Perform a DeleteMin to obtain a pair (v, dist(v)).
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• For every edge (v, u), compare dist(u) to dist(v) + w(u, v). If the latter is smaller, perform a
DecreaseKey on vertex u to set dist(u) = dist(v) +w(u, v), and update the cell of u in A with
this value as well.

Problem 5*. In the lecture, we proved the correctness of Dijkstra’s algorithm in the scenario
where all the edges have positive weights. Prove: the algorithm is still correct if we allow edges to
take non-negative weights (i.e., zero weights are allowed).

Solution. As in the proof in our lecture notes, we will prove that dist(v) must be spdist(v) when
v is to be removed from S. Again we will do so by induction on the order that the vertices are
removed. The base step, which corresponds to removing the source vertex s, is obviously correct.
Next, assuming correctness on all the vertices already removed, we will prove that the statement
holds on the next vertex v to be removed.

Let π be an arbitrary shortest path from s to v. Identify the last vertex u on π such that
spdist(u) = spdist(v). In other words, all the edges on π between u and v have weight 0. Let π′ be
the prefix of π that ends at u (i.e., π′ is a sequence of edges that is the same as π, except that π′

does not grow beyond u).

Claim 1: When v is to be removed from S, all the vertices on π′ except possibly u must
have been removed from S.

This claim can be established using the same argument as in our lecture notes (consider the
predecessor of u, which must have been removed, and then discuss what happens when the algorithm
relaxed the edge from that predecessor to u).

Now let us focus on the path π′′ that is the sequence of edges from u to v on π. Define u′ as the
first vertex on π′′ that has not been removed from S. Note that u′ is well defined because v itself
(which is the last vertex on π′′) is still in S at this moment.

Claim 2: When v is to be removed from S, dist(u′) = spdist(u′).

This claim again can be established using the same argument as in our lecture notes.

It now follows that dist(v) ≤ dist(u′) = spdist(u′) = spdist(v), where the first inequality used
the fact that the algorithm is about to remove v from S.
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