
Stream Sampling over Windows with Worst-Case Optimality and
`-Overlap Independence

Yufei Tao · Xiaocheng Hu · Miao Qiao

Accepted by VLDB Journal in March 2017

Abstract Sampling provides fundamental support to numer-
ous applications that cannot afford to materialize all the ob-
jects arriving at a rapid speed. Existing stream sampling
algorithms guarantee small space and query overhead, but all
require worst-case update time proportional to the number
of samples. This creates a performance issue when a large
sample set is required. In this paper, we propose a new sam-
pling algorithm that is optimal simultaneously in all the three
aspects: space, query time, and update time. In particular,
the algorithm handles an update in O(1) worst-case time
with a very small hidden constant. Our algorithm also en-
sures a strong independence guarantee: the sample sets of all
the queries are mutually independent as long as the overlap
between two query windows is small.

1 Introduction

Stream sampling has attracted considerable research atten-
tion [2,3,9–11,13,15,16], due to its usefulness in numerous
domains, e.g., statistical estimation [8], graph processing
[14], computational geometry [7], data mining [5], network
monitoring [12], privacy protection [4], to mention just a few.
Its importance is even more prominent today as the continu-

Y. Tao
University of Queensland
Australia
E-mail: taoyf@itee.uq.edu.au

X. Hu
Chinese University of Hong Kong
Hong Kong
E-mail: immoonancient@gmail.com

M. Qiao
Massey University
New Zealand
E-mail: m.qiao@massey.ac.nz

ously increasing update volume makes it a tough challenge
to enable real-time processing in many stream applications.

A stream is an unbounded sequence of elements e1, e2,
e3, ..., where ei (i ≥ 1) denotes the i-th element. Let n be
the number of elements received so far. Let r be a system
parameter that denotes the sample size. A sampling query
uses an integer w ≥ 1 to indicate a window that is the set of
w most recent elements, namely, {en−w+1, en−w+2, ..., en}.
It returns r independent elements, each of which is taken
uniformly at random from the window. An example is “take
10,000 random tweets from the 1 million most recent tweets”.

We permit a sampling query to supply an arbitrary win-
dow length w ∈ [1, n], namely, the sampling can be carried
out on any granularity of recency. As two extremes, a query
with w = 1 essentially extracts the newest element, whereas
a query with w = n samples from the entire stream since the
beginning of time.

There are three main challenges:

1. How to ensure query correctness using a structure whose
size is far less than n.

2. How to minimize the cost of (i) updating the structure
upon receiving a new element, and (ii) answering a query.

3. How to guarantee `-overlap independence: for any set
of queries where the windows of any two queries share
at most ` common elements, the query results must be
mutually independent.

The last challenge deserves some extra explanation. The
`-overlap independence property is vital to data analysis that
requires the results of multiple queries. This is common in
sliding-window continuous aggregation [1], of which we
show a general form:

2 Yufei Tao et al.

W

I

Fig. 1 Continuous aggregation

“execute the following after every I elements:

estimate the number of elements satisfying
a predicate P from theW most recent ele-
ments

display a running average, which is the mean of all the
estimates so far ”

where I andW are integer parameters, and P is an arbitrary
WHERE condition as in standard SQL. A stream system reg-
isters a large number of such requests, each of which has its
own I,W , and P . For each request, after every I elements,
the system

(i) performs a sampling query with a window lengthW;
(ii) estimates the number of qualifying elements from the

samples.

See Figure 1 for the windows of 4 queries. If the estimates
obtained from these queries are mutually independent, the
quality of the running average quickly improves thanks to the
central limit theorem. Ensuring the independence is precisely
the goal of `-overlap independence (in the above example,
` =W − I).

1.1 Motivation

The previous research has focused exclusively on a special
form of `-overlap independence with ` = 0, which we call
disjoint independence (in other words, independence is guar-
anteed only if the windows are tumbling, instead of sliding).
For ` = 0, the best known algorithm [11] usesO(r log(n/r))

space—which is asymptotically optimal—and answers a sam-
pling query in O(r log(n/r)) time. Given a new element,
the structure can be updated in O(1) amortized time but
O(r log(n/r)) worst-case time.

This work is motivated by several observations:

– The aforementioned structure is not suitable when the
sample size r is large (which is necessary to perform
estimates for selective predicates, as shown in the experi-
ments), rendering O(r log(n/r)) worst-case update time
excessively expensive.

– The lack of `-overlap independence with ` > 0 forces
a stream system to discard confidence intervals for the
type of queries in Figure 1: calculating such intervals any-
way is statistically incorrect without the independence
guarantee.

1.2 Our Contributions

In this paper, we address all the above issues:

– For disjoint independence, we present an algorithm with
optimal worst-case guarantees in all aspects:O(r log(n/r))

space, O(r) query time, and O(1) update time.
– For `-overlap independence, we present an algorithm

with the optimal worst-case guarantees again in all as-
pects: O(` + r log(n/r)) space, O(r) query time, and
O(1) update time. Note that the space consumption in-
creases linearly with `. We prove that this is compulsory,
namely, Ω(` + r log(n/r)) is a matching space lower
bound.

The proposed algorithms are suitable for inclusion in the
existing stream systems to provide the underneath sampling
support. The worst-caseO(1) update time is a desired feature
in update-intensive applications. Furthermore, the hidden
constant is extremely small: only 3 random numbers need to
be generated for every update.

The paper contains an extensive experimental evaluation
to confirm the efficiency and effectiveness of the proposed
solutions. For efficiency, we show that our algorithm has
ultra-stable performance in all settings. In particular, the
time to process every element is essentially undetectable. For
effectiveness, we present the first experiments in the literature
that demonstrate the usefulness of `-overlap independence
with ` > 0, and conversely, the harmfulness of having only
disjoint independence.

1.3 Paper Organization

Section 2 formally defines the problem studied. Section 3
presents preliminary results and reviews related work. Sec-
tion 4 discusses how to adapt existing solutions to tackle
our problem. Sections 5 and 6 describe the new algorithms
and prove their theoretical guarantees. Section 7 presents an
empirical evaluation. Section 8 concludes the paper with a
summary of findings.

2 Problem Definition

We now formulate our stream sampling problem. For the
reader’s convenience, some notations that already appeared
in Section 1 will be restated below. The data stream, as men-
tioned, is an unbounded sequence of elements e1, e2, e3,
We say that ei has sequence number i, and indicate so by
seq(ei) = i. Denote by n the number of elements already
received. Given integers x, y satisfying x ≤ y ≤ n, define a
window—denoted as win([x, y])—to be the set of elements
whose sequence numbers are in [x, y].

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 3

For a set S of elements, a with-replacement (WR) sample
set R with size r ≥ 1 has r elements, each of which is
independently taken uniformly at random from S. In other
words, R has |S|r possibilities, each occurring with the same
likelihood.

A sampling query q specifies an integer parameter w that
defines a window win([n−w + 1, n]), which we abbreviate
as win(q). It returns a WR sample set R of win(q) with size
r, where r is a system parameter identical for all queries. R
is a random variable with wr possibilities. Note that both w
and n are query dependent: the former is chosen freely by
the query, while the latter depends on the query’s issuance
time.

Let integer ` ≥ 0 be a system parameter, such that two
queries q1, q2 are said to be `-overlapping if their windows
share at most ` common elements, namely, |win(q1)∩win(q2)|
≤ `. For example, a query with win([5, 20]) is `-overlapping
with another query with win([16, 80]) for any ` ≥ 5. A set
Q of queries is `-overlapping if any two queries in Q are
`-overlapping.

The requirement of `-overlap independence imposes a
constraint that needs to hold on any `-overlapping set Q
of queries. Suppose, without loss of generality, that Q =

{q1, q2, ..., qg}. Let w1, w2, ..., wg be the parameters of these
queries, andR1,R2, ...,Rg be their sample sets returned by a
system. It is required that R1, ..., Rg must be mutually inde-
pendent. To phrase this mathematically, let us fix query qi for
an arbitrary i ∈ [1, g]. Recall that its sample set Ri ought to
have wri possibilities, each happening with probability 1/wri .
With `-overlap independence, this must still be true, even if
conditioned on the sample sets R1, ..., Ri−1, Ri+1, ..., Rg of
all the other queries:

Pr[Ri = any possibility | R1, ..., Ri−1, Ri+1, ..., Rg]

= 1/wri .

We want to design a data structure to answer all queries
correctly while ensuring `-overlap independence. The struc-
ture needs to consume small space at all times, and processes
every query and update efficiently. The special case of 0-
overlap independence (i.e., disjoint independence) has been
considered previously. Our objective is to support any value
of `. We will refer to the above problem as Arbitrary-Window
stream sampling with `-Overlap Independence (`-AWOI).

Our discussion will concentrate on n > 2r. The special
case of n ≤ 2r can be dealt with by simply keeping all the
(at most 2r) received elements in O(r) space, and answering
each query in a straightforward manner.

3 Preliminary

This section explains basic results on stream sampling, and
discusses the previous work most relevant to ours.

3.1 Sampling without Replacement (WoR)

Let S be a set of elements. A WoR sample set of S with size
r is a subset T ⊆ S that equals any of the

(|S|
r

)
size-r subsets

of S with the same probability. We follow the convention
that if r ≥ |S|, then T = S. It is known that a WoR sample
set can be efficiently converted to a WR sample set:

Lemma 1 ([11]) Given a size-r WoR sample set T of S, we
can obtain a size-r WR sample set R of S in O(r) time.

3.2 Merging of WR Samples

The following states that two WR sample sets can be merged
in a progressive manner:

Lemma 2 Let S1 and S2 be disjoint sets. Let R1 and R2

be a size-r WR sample set of S1 and S2, respectively. If the
sizes |S1| and |S2| are known, we can obtain from R1 and
R2 a size-r WR sample set R of S1 ∪ S2 in O(r) time. Even
better, the algorithm is progressive in the sense that the time
to generate k samples in R is O(k) for any k ∈ [1, r].

Proof Let n1 = |S1| and n2 = |S2|. We obtain R by repeat-
ing the following for each i ∈ [1, r]:

1. Generate a random integer x ∈ [1, n1 + n2].
2. If x ≤ n1, then add R1[i] (the i-th element of R1) to R;

otherwise, add R2[i] to R.

O(1) time is spent on every i. ut

3.3 Two-Window Sampling

Consider two consecutive windows B1 = win([α, β]) and
B2 = win([β + 1, γ]). Define n1 = |B1| = β − α+ 1 and
n2 = |B2| = γ − β.

Let V = win([γ−v+1, γ]) be a query window of length
v satisfying

n2 < v ≤ n1 + n2 (1)

v ≥ n1. (2)

Note that, by (1), V fully covers B2, but is covered by B1 ∪
B2; see Figure 2.

α

n1

β β + 1 γ

n2

v

B1 B2

Fig. 2 Two-window sampling

Suppose that we have prepared a size-r WR sample set
R1 ofB1, and a size-r WR sample setR2 ofB2. Each sample

4 Yufei Tao et al.

e is associated with its sequence number seq(e), so that we
can determine if e ∈ V by checking if seq(e) ∈ [γ−v+1, γ].
The goal of the two-window sampling problem [3] is to obtain
a size-r WR sample set R of V .

Lemma 3 ([3]) The two-window sampling problem can be
solved in O(r) time.

3.4 Fixed-w Stream Sampling

If we impose two restrictions on the sampling problem de-
fined in Section 2:

– All queries must have the same parameter w, which be-
comes another system parameter;

– ` = 0, namely, only disjoint independence is needed

then our problem degenerates into a special version that has
been well understood [2,3,16]. For w =∞ (i.e., each query
samples from the entire stream), the reservoir algorithm of
Vitter [16] gives an optimal structure of O(r) space that
answers a query in O(r) time, and handles an update in O(1)

time. Braverman et al. [3] showed that the same optimal
performance can also be achieved for any finite integer w.

3.5 Time-Based Stream Sampling (TSS)

In some scenarios, each stream element ei (i ≥ 1) is tagged
with its arrival time time(ei), such that i < j implies
time(ei) ≤ time(ej) (equality may hold). If tnow is the ar-
rival time of the last element, a time window timewin([x, y])

is the set of stream elements e with time(e) ∈ [x, y]. Accord-
ingly, a time-based sampling query returns a size-r WoR sam-
ple set from the query window timewin(q) = timewin([tnow
−λ, tnow]).

Such queries have been well studied [3,10,11] in the
scenario where (i) integers r and λ are fixed for all queries,
and (ii) the system must return mutually independent sample
sets for any set of queries with disjoint windows (i.e., disjoint
independence). Gemulla and Lehner [10] proved that the
space consumption of any solution must be Ω(r log(n/r)).
On the upper bound side, Braverman et al. [3] described a
structure that uses O(r log n) space, answers a query in O(r)

time, and handles an update inO(r log n) time. Hu et al. [11]
gave an improved structure that uses O(r log(n/r)) space,
answers a query in O(r) time, and handles an update in O(1)

amortized time. The worst-case update time of the structure
in [11] is O(r log(n/r)).

4 How to Adapt Known Techniques for `-AWOI

4.1 The Case of ` = 0

We will first reveal several inherent connections between TSS
(see Section 3) and the `-AWOI problem with ` = 0.

4.1.1 Connection 1: Upper Bound

Suppose that A1 is an arbitrary algorithm for TSS. We will
show that it is possible to solve the 0-AWOI problem by
using A1 as a black box.

Recall that the stream to 0-AWOI is a sequence of ele-
ments e1, e2, e3, ... which do not have explicit arrival time. In
order to utilizeA1, we manually set the arrival time time(ei)

to seq(ei) = i. Let us refer to the resulting “timestamped”
stream as the augmented stream.

We feed the augmented stream toA1, which is parameter-
ized for WoR queries demanding r+ 1 samples with λ set to
a gigantic integer far greater than the length of any realistic
stream (e.g., λ = 2100). Let J be the structure maintained
by A1 (the details of J are unknown to us).

Let q be a (0-AWOI) query with parameter w. Recall that
win(q) = {en−w+1, en−w+2, ..., en}. We answer the query
as follows:

1. Make a copy of J to J ′.
2. Update J ′ with A1 by informing it the “arrival” of a

dummy element e4 with time(e4) = n+ λ− w + 1.
3. Issue a TSS query to A1 on the updated J ′. Let T be the

set of r+1 WoR samples fetched. Obtain T ′ = T \{e4}.
As the samples in T are distinct, |T ′| is either r or r + 1

depending on whether e4 ∈ T .
4. We apply Lemma 1 to convert T ′ to a WR sample set R

of the same size. If |R| = r, we directly return R as the
result for q. Otherwise, we arbitrarily remove an element
from R, and return the remaining set.

5. Discard J ′. Note that J is never touched in the query
processing. The copying is needed because we cannot
afford to alter J with the dummy element.

The TSS query q′ issued toA1 has a window timewin(q′) =

timewin([n−w+1, n+λ−w+1]) on the augmented stream,
which by our construction contains precisely the same tuples
as win(q) = win([n−w+1, n]) on the original stream, plus
e4. The query correctness is ensured by kicking e4 out of
T (if it is there) at Line 3.

The reduction works with any TSS algorithm A1. To get
concrete performance bounds, let us set A1 to the state-of-
the-art algorithm in [11], which uses O(r log(n/r)) space,
answers a query in O(r) time, and processes an update
in O(r log(n/r)) time (see Section 3). Line 1 thus takes
O(r log(n/r)) time (i.e., same as the space of J). Line 2
also entails O(r log(n/r)) time because only a single up-
date is performed. Lines 3 and 4 require O(r) time, while

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 5

O(1) time for Line 5. The overall query time is therefore
O(r log(n/r)).

The reduction inherits the same update cost asA1, namely,
O(r log(n/r)). We will reduce this dramatically to O(1) us-
ing a new approach later.

4.1.2 Connection 2: Lower Bound

As mentioned earlier, Gemulla and Lehner [10] proved a
space lower bound Ω(r log(n/r)) for the WoR version of
the TSS problem. In Appendix 1, we adapt their argument
to establish the same lower bound for any algorithm solving
our problem under ` = 0.

4.2 The Case of ` > 0

For the TSS problem, to ensure disjoint independence, Braver-
man et al. [3] proposed using different structures to answer
queries with disjoint windows. Can we enforce `-overlap
independence for `-AWOI with ` > 0 by keeping several
independent structures? The answer is yes. To explain, let
us first assume that the length w of every query window
satisfies:

– w ≥ 2(`+ 1), and
– w is a multiple of `+1 (but this does not mean all queries

must have the same length—their lengths can be at dif-
ferent multiples of `+ 1).

In this case, we can maintain ` + 1 independent structures,
each of which solves the problem of Section 2 under disjoint
independence (e.g., the solution in Section 4.1 will do). A
query with win([n−w+ 1, n]) can be processed as follows:

1. Compute i = (n− w + 1) mod (`+ 1).
2. Answer the query using the (i+ 1)-th structure.

`-overlap independence follows from the next two facts on
any `-overlapping queries q1 and q2:

– If win(q1)∩win(q2) 6= ∅, the two queries are always
answered by different structures, and hence, have inde-
pendent sample sets.

– Otherwise, the two queries have independent sample sets
either because they are answered by different structures,
or if answered by the same structure, because the struc-
ture ensures disjoint independence.

The query time remains as O(r log(n/r)).
The drawback of this approach is that, the introduction of

`+1 structures blows up the space cost and update overhead
by a factor of ` + 1: both reaching a prohibitive quadratic
term O(r` log(n/r)) in the worst case.

It is possible to extend the above method to queries with
arbitrary lengths, but at the tradeoff of pushing the space even
higher. We will not elaborate further down this line because
the next section will present a much better approach that
reduces the space to O(r log(n/r) + `).

5 Improved `-Overlap Independence

In this section, we present a new reduction from `-overlap
independence to disjoint independence, which avoids the
drawback encountered in Section 4.2.

LetA2 be an algorithm that optimally solves the 0-AWOI
problem. That is, A2 uses O(r log(n/r)) space, answers a
query in O(r) time, and handles an update in O(1) time—
such A2 does not exist yet, but we will propose one in Sec-
tion 6. Next, we show how to deploy A2 as a black box to
settle `-AWOI for any ` > 0.

5.1 Algorithm

We keep the ` most recent elements in a buffer P , which is a
first-in-first-out queue because the arrival of a new element
forces the oldest element out of P . The stream traffic leav-
ing P is fed directly to A2. In other words, A2 sees only
a sub-stream, which includes all but the ` newest elements.
This completes the description of our structure. As A2 needs
O(r log(n/r)) space, the overall space is O(`+ r log(n/r)).
It is easy to implement an update in O(1) time, by using an
array of size ` to manage P .

This simple structure is already powerful enough to an-
swer any query q. Let w be the parameter of q. If w ≤ `,
win(q) contains the w newest elements in the buffer P , mak-
ing it straightforward to take r WR samples from win(q) in
O(r) time.

In the more interesting case where w > `, define w′ =
w − `. Note that win(q) includes the entire P , and also the
newest w′ elements in the sub-stream fed toA2. Hence, each
sample for q has probability w′/w to come from the sub-
stream, and 1 − w′/w from P . We take a coin with head
probability 1−w′/w, toss it r times, and observe the number
x of times that it comes up heads. Then:

1. Sample WR x elements from P in O(x) time, which
constitute a set X .

2. Issue a sampling query on A2 with parameter w′. From
the returned sample set, sample WR r − x elements,
which constitute a set Y . The step takes O(r) time.

The final sample set R is simply the union of X and Y . The
total query time is O(r).

5.2 Correctness

Let Q = {q1, q2, ..., qg} be an arbitrary `-overlapping set
of queries. As explained, each query result is the union of
two sets X,Y (Y can be empty). Denote by Xi, Yi the corre-
sponding X,Y of qi (i ∈ [1, g]).

Proposition 1 Both statements are true:

6 Yufei Tao et al.

– For each i ∈ [1, g], Xi is independent of any joint vari-
able made of any subset of {X1, Y1, ..., Xi−1, Yi−1,

Xi+1, Yi+1, ..., Xg, Yg}.
– For each i ∈ [1, g], Y1, Y2, ..., Yi are mutually indepen-

dent, when conditioned on X1, X2, ..., Xi.

Proof The first statement is obvious because Xi is deter-
mined by random choices that do not affect any variable in
the subset.

To prove the second, for each qj ∈ Q where 1 ≤ j ≤
i, define q′j as the query we issue to A2 (q′j may be nil).
{q1, ..., qi} is `-overlapping because it is a subset of Q. This
implies that {q′1, q′2, ..., q′i} is 0-overlapping. By the disjoint
independence guarantee ofA2, the results of q′1, q

′
2, ..., q

′
i are

mutually independent. Then, the statement follows from the
fact that Yj depends only on the result of q′j , and random
choices exclusively made for its computation. ut

We are now ready to prove:

Lemma 4 Our reduction in Section 5 guarantees `-overlap
independence.

Proof The lemma can be established with basic probability
theory, but the derivation is lengthy and tedious. We present
a neater proof with an information theoretic argument by
resorting to entropy and mutual information.

Let Q = {q1, q2, ..., qg}, Xi (1 ∈ [1, g]), and Yi be de-
fined as explained earlier. Define Ri = Xi ∪ Yi. It suffices
to prove:

H(R1, R2, ..., Rg) =

g∑
i=1

H(Ri) (3)

where H(.) denotes entropy. By the chain rule on entropy,
we know:

H(R1, R2, ..., Rg) =

g∑
i=1

H(Ri | R1, R2, ..., Ri−1).

We will show that

H(Ri | R1, R2, ..., Ri−1) = H(Ri) (4)

which will establish (3), and complete the proof. This is
equivalent to showing that Ri is independent of the joint
variable (R1, ..., Ri−1). To prove this, we look at their mutual
information I(.):

I(Ri;R1, ..., Ri−1)

= I(Xi, Yi;X1, Y1, ..., Xi−1, Yi−1)

= I(Xi, Yi;X1) + I(Xi, Yi;Y1, X2, Y2..., Xi−1, Yi−1 | X1)

(by chain rule on mutual information)

= I(Xi, Yi;Y1, X2, Y2, ..., Xi−1, Yi−1 | X1)

(by Proposition 1) (5)

= I(Xi, Yi;Y1, Y2, X3, Y3, ..., Xi−1, Yi−1 | X1, X2)

= ...

= I(Xi, Yi;Y1, Y2..., Yi−1 | X1, X2, ..., Xi−1)

= I(Xi;Y1, Y2..., Yi−1 | X1, X2, ..., Xi−1)

+I(Yi;Y1, Y2..., Yi−1 | X1, X2, ..., Xi)

= 0 (by Proposition 1)

which validates (4). ut

5.3 Lower Bound

We already showed (in Appendix 1) that Ω(r log(n/r)) is a
space lower bound. In fact, Ω(`) is also a space lower bound
because any algorithm must store the ` newest elements. To
see this, imagine, before the next element comes, repeatedly
issuing queries with the same w = `. The set of such queries
is `-overlapping. Hence, their sample sets must be mutually
independent. This, in turn, implies that by issuing enough
queries and a union of their results, we must end up seeing
all the ` newest elements, none of which can therefore be
discarded. We thus have obtained a space lower bound of
Ω(`+ r log(n/r)).

6 An Optimal Structure

This section will establish the main result of our paper:

Theorem 1 For the `-AWOI problem, there is a structure
of O(`+ r log(n/r)) space that can be maintained in O(1)
time per update, and answers a query in O(r) time. All com-
plexities hold in the worst case.

By the reduction of Section 5, it suffices to consider the
problem only for ` = 0. Therefore, we will concentrate on
that special instance in the rest of the section and prove:

Theorem 2 For the 0-AWOI problem, there is a structure of
O(r log(n/r)) space that can be maintained in O(1) time
per update, and answers a query in O(r) time. All complexi-
ties hold in the worst case.

6.1 Structure

We view the stream from h(n) levels, where

h(n) = b1 + log2(n/r)c.
At the i-th level where 1 ≤ i ≤ h(n), we partition the se-
quence numbers 1, 2, ..., n into intervals1 of the same length
2i−1r. The set of elements in each interval is called a bucket.

1 Such intervals are sometime termed “dyadic intervals”, and are also
used by the algorithms in [3,10].

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 7

In other words, the first bucket at level i is win([1, 2i−1r]),
the second win([2i−1r + 1, 2ir]), and so on. Figure 3 illus-
trates the buckets at 5 levels.

A bucket win([x, y]) is said to be z-complete for any
integer z satisfying y ≤ z. There are bz/(2i−1r)c z-complete
buckets at level i. We refer to the window

win
([⌊ z

2i−1r

⌋
· 2i−1r + 1, z

])
as the z-residue at level i (it contains the elements that (i)
have sequence numbers at most z, but (ii) are not covered by
z-complete buckets). The z-residue is empty if z is a multiple
of 2i−1r.

Our structure has an anchor number Zanc that is always
a positive multiple of r. It separates the stream into two parts:

– Head: the set of elements with sequence number from 1
to Zanc .

– Tail: the set of elements with sequence number from
Zanc + 1 to n.

We store information about these two parts differently, as
explained below.

6.1.1 Head Component

For each level i ∈ [1, h(Zanc)], we refer to the last two Zanc-
complete buckets (if they exist) as the canonical buckets.
Figure 3 illustrates such buckets with bold segments. Our
structure keeps for each canonical bucket:

– If at level 1, all the elements therein;
– Otherwise, a size-rWR sample set of the elements therein.

The structure also stores a size-r WR sample set of the Zanc-
residue at each level i.

6.1.2 Tail

Our structure simply keeps all the elements in the tail, whose
length will be represented as ltail . We enforce the following
invariant at all times:

ltail ≤ 2r · h(Zanc). (6)

6.1.3 Space

For each level i ≤ h(Zanc), we store at most 3r elements.
Therefore, the total space consumption is

O(r · h(Zanc) + ltail) = O(r log(n/r)).

r

Zanc

tail

n

2r

4r

8r

16r

level 1

level 2

level 3

level 4

level 5

Zanc-residue

Fig. 3 Illustration of our structure (thick solid lines represent canonical
buckets)

6.2 Query

Let q be a query with parameter w. If w ≤ ltail , win(q)
is a subset of the tail, where all the elements are directly
retained, making it straightforward to take r WR samples
from win(q).

Next, we consider w > ltail . Define:

v = w − ltail .

The case where v ≤ r is also trivial because, once again, all
the elements in win(q) are available: they are in the tail and
the most recent level-1 bucket at Z.

The subsequent discussion focuses on v > r. We chop
win(q) = [n − w + 1, n] into two disjoint windows: V1 =

win([n−w+ 1, Zanc]) and V2 = win([Zanc + 1, n]). Note
that V2 is exactly the tail. We will first obtain a sample set
R∗ on V1, and then merge it with samples from the tail to
produce the final sample set.

6.2.1 Computing R∗

This can be achieved by two-window sampling. Let i be the
maximum integer satisfying

2i−1r < v.

By definition, 2ir ≥ v.
Denote by b1, b2 the two level-i canonical buckets (with

b2 as the more recent one), and ρ the level-i Zanc-residue.
Thus, |b1| = |b2| = 2i−1r and |ρ| < 2i−1r. LetRb1 , Rb2 , Rρ
be the WR sample sets in our structure for b1, b2, ρ, respec-
tively. In the special case where i = 1, Rb1 can be directly
produced from b1 in O(r) time on the fly (because b1 is
stored entirely), and similarly for Rb2 .

2i−1r < v indicates that ρ does not cover V1, whereas
v ≤ 2ir indicates that V1 must be covered by b1 ∪ b2 ∪ ρ.
We formulate a two-window instance by distinguishing two
possibilities:

– Case 1: V1 is covered by b2 ∪ ρ. See Figure 4a. Set B1 =

b2 andB2 = ρ; accordingly, setR1 = Rb2 andR2 = Rρ.

8 Yufei Tao et al.

B1

b1 b2 ρ

V1

B2 B1

b1 b2 ρ

V1

B2

(a) Case 1 (b) Case 2
Fig. 4 Answering a query

– Case 2: V1 is not covered by b2 ∪ ρ. See Figure 4b. Set
B1 = b1 and B2 = b2 ∪ ρ. Accordingly, set R1 = Rb1 ,
and obtain R2 by applying Lemma 2 to merge Rb2 and
Rρ.

B1, B2, R1, R2 and V1 define a two-window sampling
instance, noticing that n1 = |B1|, n2 = |B2|, and v satisfy
(1) and (2). Solving it with Lemma 3 gives R∗. The time
required is O(r).

6.2.2 The Final Samples

First, generate a size-r WR sample set R∗∗ of the tail in O(r)

time. Then, apply Lemma 2 to merge R∗ and R∗∗ into R,
which is returned as the final query result.

6.3 The Update Framework

Recall that the anchor number Zanc needs to satisfy (6) at
all times. An incoming element is directly appended to the
tail, increasing ltail by 1. This pushes up the left hand side
of (6) by 1. Eventually, (6) will be invalidated such that the
structure must be replaced by a new one.

To achieve O(1) worst-case update time, we must start
building the new structure well before the invalidation of (6).
We achieve the purpose by doing the construction progres-
sively, namely, dividing it into pieces of work, where each
piece takes only O(1) time. At most one piece is performed
upon receiving a new element.

Specifically, we commence the construction of the next
structure when—defined as the triggering moment—the ltail
of the current structure satisfies

ltail = r · h(Zanc) + 1. (7)

The construction must have finished when ltail reaches 2r ·
h(Zanc). Therefore, the number of work pieces is set to
2r · h(Zanc)− r · h(Zanc) = r · h(Zanc).

The rest of the section is devoted to implementing the
above strategy and proving its correctness, in particular, why
it ensures disjoint independence.

6.4 Building the New Structure

At the triggering moment of the current structure, we choose
the new structure’s anchor time Znew

anc as:

Znew
anc = Zanc + r · h(Zanc).

Notice that, at this moment, n equals Zanc + ltail = Zanc +

r · h(Zanc) + 1. In other words, Znew
anc = n − 1 currently,

namely, the new structure contains the last stream element in
its tail. The rest of the tail is trivial to build: every time a new
element arrives, append it in constant time.

Next, we will focus on explaining how to build the head
component of the new structure.

6.4.1 An O(r · h(Zanc))-Time Algorithm for the Head

The head component concerns only the elements with se-
quence number from 1 to Znew

anc —that have already arrived.
By the description in Section 6.1, it suffices to obtain a WR
sample set for (i) each canonical bucket, and (ii) the Znew

anc -
residue at each level. We will achieve the purpose using only
the information from the current structure.

WR Sample Sets of Canonical Buckets. The definition be-
low will be useful:

Definition 1 (Materializable Bucket) A bucket w([x, y])
at level i ∈ [1, h(Znew)] is materializable if Zanc < y ≤
Znew
anc .

In other words, a materializable bucket is Znew
anc -complete but

notZanc-complete. Figure 5b illustrates all the materializable
buckets using double lines.

Lemma 5 For i ≥ 2, a level-i materializable bucket b is
always the union of two level-(i− 1) buckets b1, b2 satisfying
one of the following:

– both b1, b2 are materializable, or
– one of them is a canonical bucket of the current structure,

and the other is materializable.

Proof Suppose that b2 is more recent than b1. From the fact
that b (being materializable) is Znew

anc -complete but not Zanc-
complete, it is easy to verify that b2 must also be Znew

anc -
complete but not Zanc-complete. Hence, b2 is materializable.
The lemma then follows from the observation that, at any
level, a materializable bucket must be preceded by another
materializable bucket or a canonical bucket of the current
structure. ut

The lemma suggests that the materializable buckets de-
fine a binary materialization tree as follows. The root of the
tree is the materializable bucket at the highest level2. Re-
cursively, if a node is a materializable bucket b of level at
least 2, its child nodes are the two buckets b1, b2 as stated in
Lemma 5. Figure 5b illustrates the tree by using edges to link
up a parent bucket with its children. The root of the tree is
the materializable bucket at level 4, whereas a leaf is either

2 There cannot be two materializable buckets sharing the same high-
est level; otherwise, there would be a materializable bucket at an even
higher level.

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 9

r

Zanc

2r

4r

8r

16r

level 1

level 2

level 3

level 4

level 5

Znew
anc

r · h(Zanc) elements
(in the tail of the current structure)

r

Zanc

2r

4r

8r

16r

level 1

level 2

level 3

level 4

level 5

Znew
anc

an edge in the

.

materialization tree

(a) At the beginning of the construction (b) Materializable buckets and materialization tree

r

2r

4r

8r

16r

level 1

level 2

level 3

level 4

level 5

Znew
anc

(c) Canonical buckets and residue of the new structure
Fig. 5 Illustration of the new structure’s construction

a level-1 materializable bucket, or a canonical bucket of the
current structure.

Lemma 6 The materialization tree contains at most 2h(Zanc)

leaves and at most 2h(Zanc) internal nodes.

Proof There are r · h(Zanc)/r = h(Zanc) materializable
buckets at level 1, all of which can be leaves in the materi-
alization tree. On the other hand, each of the h(Zanc) levels
can contribute at most 1 leaf (which must be the most recent
canonical bucket at this level in the current structure) to the
tree. Hence, the materialization tree has at most 2h(Zanc)

leaves, and therefore, at most 2h(Zanc)− 1 internal nodes.
ut

Lemma 7 We can compute a size-r WR sample set of every
materializable bucket by applying Lemma 2 at most 2h(Zanc)

times in total.

Proof Let bucket b be an internal node in the materialization
tree with child nodes b1, b2. Having prepared the WR sample
sets of b1, b2, we can merge those sets to obtain a WR sample
set of b using Lemma 2.

This implies that we can produce the sample sets of all
the materializable buckets by carrying out the merging in a
bottom up manner. Lemma 7 then follows from the two facts
below:

– The WR samples of every leaf bucket in the material-
ization tree either are directly available from the current
structure (this is the case if the bucket is at level 2 or
above, and hence, a canonical bucket of the current struc-
ture) or can be obtained in O(1) time per sample (this is
the case if the bucket is at level 1, and hence, has all its
elements explicitly captured).

– There are at most 2h(Zanc) internal nodes according to
Lemma 6.

ut

The simple observation below clarifies the relevance of
materializable buckets to the canonical buckets of the new
structure:

Proposition 2 Every canonical bucket of the new structure
is either a canonical bucket of the current structure, or a
materializable bucket.

It then follows that the size-r WR sample sets of all the
canonical buckets in the new structure can be obtained by
at most 2h(Zanc) applications of Lemma 2, namely, one
application for each internal node in the materialization tree.
Therefore, all those applications take up O(r ·h(Zanc)) time
in total.

WR Sample Sets for the Znew
anc -Residue. A similar bottom-

up merging idea can also be applied to create the WR sample
set of the Znew

anc -residue at each level i ∈ [2, h(Znew)]. Let s
be the length of the residue3. If s = 0, there is no residue at
level i. Otherwise, s ≥ r because the residue must include
at least one level-1 bucket. On the other hand, recall that
s < 2i−1r by definition of residue. Thus, it is possible to
define i∗ ∈ [1, i − 1] as the maximum integer satisfying
2i

∗−1 ≤ s/r.

Lemma 8 The Znew
anc -residue at level i is the union of (i) the

most recent level-i∗ canonical bucket of the new structure,
and (ii) the Znew

anc -residue at level i∗.

Proof Let ρ = win([j + 1, Znew
anc]) be the Znew

anc -residue at
level i, where j is the largest multiple of 2i−1r not exceeding
Znew
anc . Since j is a multiple of 2i−1r, it is also a multiple

of 2i
∗−1r. Therefore, there is a level-i∗ bucket b starting at

3 The value of s can be calculated in O(1) time as the difference
between Znew

anc and the largest multiple of 2i−1r at most Znew
anc .

10 Yufei Tao et al.

Algorithm 1: CONSTRUCTING THE HEAD

COMPONENT OF THE NEW STRUCTURE (NON-
PROGRESSIVELY)
/* first compute the WR sample sets of the

materializable buckets at level ≥ 2 */
1 for each materializable bucket b at level ≥ 2 in bottom-up order

do
2 b1, b2 ← the children of b in the materialization tree;
3 apply Lemma 2 to produce a WR sample set of b by

merging the WR sample sets of b1, b2;

/* The WR sample sets of all the canonical
buckets in the new structure are now
ready; we proceed to compute the WR
sample set of the Znew

anc -residue at each
level ≥ 2 */

4 for i = 2 to h(Znew
anc) do

5 ρ← the Znew
anc -residue at level i;

6 i∗ ← maximum integer j satisfying 2j−1 ≤ s/r, where s
is the length of the level-i residue;

7 b∗ ← most recent level-i∗ canonical bucket of the new
structure;

8 ρ∗ ← the Znew
anc -residue at level i∗;

9 apply Lemma 2 to produce a WR sample set of ρ by
merging the WR sample sets of b∗ and ρ∗;

j + 1. Bucket b must be the most recent canonical bucket of
the new structure at level i∗. Otherwise, level i∗ has another
bucket b′ that is Znew

anc -complete, and is more recent than b.
This implies that ρ must fully contain a canonical bucket of
the new structure at level i∗ + 1, violating the definition of
i∗. The lemma then follows from the fact that the portion of
ρ outside b is precisely the level-i∗ Znew

anc -residue. ut

To illustrate the lemma, let us examine Figure 5c (where
the Znew

anc -residue residue of each level is indicated using
dash-dot lines). Consider the Znew

anc -residue at level, for in-
stance, i = 3, which has length s = 3r (the residue contains
3 level-1 buckets), making i∗ = 2. Lemma 8 states that the
Znew
anc -residue at level i = 3 is the union of a level-2 canoni-

cal bucket of the new structure and the Znew
anc -residue at level

2. This is indeed the case as we can see in Figure 5c. Note
that the figure also shows all the canonical buckets (in solid
lines) in the new structure.

Corollary 1 We can compute a size-r WR sample set of
the Znew

anc -residue at all levels i ∈ [2, h(Znew)] by apply-
ing Lemma 2 at most h(Zanc) times in total.

Proof Lemma 8 suggests that we can do so by applying
Lemma 2 in ascending order of i. ut

By Corollary 1, all the residue’s WR sample sets in the
new structure can be created in O(r · h(Zanc)) time. Algo-
rithm 1 summarizes the above discussion.

Algorithm 2: CONSTRUCTING THE NEW STRUC-
TURE (PROGRESSIVELY)

Input: e: the incoming element
1 append e to the tail of the new structure;
2 perform one piece of work in Algorithm 1; specifically, generate

3 samples in the progressive execution of the algorithm in
Lemma 2;

6.4.2 Making the Algorithm Progressive

It is clear from Lemma 7 and Corollary 1 that, our construc-
tion algorithm essentially invokes Lemma 2 at most 3h(Zanc)

times. Recall that one application of Lemma 2 produces r
samples. Hence, all the at most 3h(Zanc) applications gen-
erate no more than 3r · h(Zanc) samples. The progressive
nature of Lemma 2 allows us to precisely control the pro-
gression of the whole generation by simply counting how
many samples are churned out. We do so by dividing the
construction algorithm into r · h(Zanc) disjoint pieces (as
demanded in Section 6.3), each of which yields exactly 3

samples.
The progressive version of our construction algorithm

is described in Algorithm 2. Given a new element e, we
first append e to the tail of the new structure (as mentioned
before), and then carry out a single piece of work as just
defined.

The construction finishes after r · h(Zanc) elements, all
of which have entered the tail of the new structure, which
therefore has a length lnewtail = r · h(Zanc). Since Znew

anc is
strictly greater than Zanc , it follows that lnewtail ≤ r ·h(Znew

anc).
In other words, the new structure has not yet reached its
triggering moment (see Inequality 7).

Remark. As mentioned, when n < 2r, we retain all the
incoming elements. When n = 2r, the elements kept so far
can be regarded as a structure satisfying our definition in Sec-
tion 6.1 with anchor number Zanc = r and a tail of length
ltail = n − Zanc = r. Then, this structure reaches its trig-
gering moment at receiving the next incoming element, and
kicks off the progressive construction of the next structure.

6.5 Proof of Disjoint Independence

This subsection is dedicated to proving that our algorithm
guarantees disjoint independence. This will complete the
whole proof of Theorem 2.

It suffices to consider r = 1 because the algorithm essen-
tially runs r independent threads in parallel, each of which
produces one sample for a query.

As explained in Section 6.2, we obtain the sample set R
of a query q by merging R∗ and R∗∗. When r = 1, the effect
of merging is simple:R equals eitherR∗ orR∗∗. IfR = R∗∗,
then R depends on random numbers generated exclusively

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 11

for q, in which case independence is obvious. The subsequent
discussion considers only queries for which R = R∗; call
such queries non-trivial.

Let Q = {q1, q2, ..., qg} be a 0-overlapping set of non-
trivial queries. Suppose that win(qi) = win([xi, yi]), for
i ∈ [1, g]. Without loss of generality, assume that [x1, y1],
[x2, y2], ..., [xn, yn] are in ascending order. LetR1, R2, ..., Rg
be their results returned by our algorithm. To prove that these
results are mutually independent, by chain rule on entropy,
we only need to prove that, for every j ∈ [2, g], Rj is inde-
pendent of the joint variable (R1, R2, ..., Rj−1).

Our update algorithm creates a series of anchor num-
bers. For each i ∈ [1, j], denote by Zi the largest anchor
number Z satisfying Z ≤ yi. Note that qi being non-trivial
implies xi ≤ Zi. It thus follows that Zi ∈ [xi, yi], which in
turn indicates that Z1, Z2, ..., Zj must be distinct (because
[x1, y1], ..., [xj , yj] are disjoint), namely:

Z1 < Z2 < ... < Zj−1 < xj ≤ Zj ≤ yj . (8)

Lemma 9 Rj is a function of, i.e., uniquely determined by

– the random numbers generated by our update algorithm
for n ≥ Zj−1 + 1, and

– the random numbers generated exclusively for qj by our
query algorithm.

Proof Consider any bucket b = win([x, y]) at level 2 or
above, for which our structure stores a singleton WR sample
set Rb (when r = 1). Let Z be any positive integer. Define
Rb(Z) to be the set of information below:

– Whether Rb[1] (the only sample in Rb) has a sequence
number at least Z + 1;

– If yes to the above, the element of Rb[1].

Note that Rb(Z) does not care about the concrete element of
Rb[1] if its sequence number is at most Z. Also, if Z+1 > y,
then apparently Rb(Z) is empty.

The proof of the following lemma can be found in Ap-
pendix 2.

Lemma 10 Rb(Z) is a function of the random numbers gen-
erated by our update algorithm for n ≥ Z + 1.

The sample setRj of qj is answered by two-window sam-
pling (Lemma 3), which operates on two windows B1 and
B2, with (singleton) sample sets RB1 and RB2 , respectively.
Rj is completely determined by RB1

(Zj−1) and RB2
, and a

random number generated for qj . Next, we claim that both
RB1(Zj−1) and RB2 are functions of the random numbers
stated in Lemma 9.

The claim is true about RB2
because B2 is completely

within win(qj), where all the elements are strictly after n =

Zj−1; see (8). B1 is always a bucket. If B1 is at level 1,
its elements are entirely retained; the claim is true because

RB1(Zj−1) depends solely on a random number generated
for qj . If B1 is at a higher level, the claim is true due to
Lemma 10. ut

Lemma 9, together with (8), shows thatRj is independent
of (R1, R2, ..., Rj−1), thus completing the proof of disjoint
independence.

7 Experiments

This section is organized in two parts with a focus on ef-
ficiency and effectiveness, respectively. Specifically, Sec-
tion 7.1 will first evaluate the space, query, and update cost
of the proposed algorithms, and then, Section 7.2 will demon-
strate the usefulness of `-overlap independence in statistical
estimation. In both scenarios, we will use the current state of
the art for benchmarking. All experiments were performed on
a machine equipped with a 3GHz dual-core CPU and 16GB
memory. The operating system was Linux (Ubuntu 14.04).

7.1 Efficiency of Stream Sampling

In each experiment, a stream was a sequence of 109 elements,
the i-th (1 ≤ i ≤ 109) of which arrived at timestamp i. Each
element was stored in a word of 32 bits. The element contents
are irrelevant; in other words, all the results below are valid
regardless of the bits within the elements.

A query workload consisted of 100 queries that were
evenly dispersed throughout the history. Specifically, the i-
th query (1 ≤ i ≤ 100) was issued right after n = 107 · i
elements had been received. Each query specified a parameter
w, which was generated uniformly at random from r to the
current value of n.

We compared the following methods:

– OPTIMAL: Our algorithm as in Theorem 2 for disjoint
independence ` = 0, or in Theorem 1 for general `-
overlap independence with ` > 0.

– EXPOHIS: This method integrates the best time-based
sampling algorithm [11] and the approach in Section 4.1,
representing the state of the art for disjoint independence.
It consumes O(r log(n/r)) space, answers a query in
O(r log(n/r)) time, and handles an update inO(r log(n/r))

time. The name follows from the fact that the method
leverages an exponential histogram [6] as its underlying
structure.

– EXPOHIS+: It extends EXPOHIS with the approach in
Section 4.2 to support `-overlap independence of ` > 0. It
usesO(r` log(n/r)) space, answers a query inO(r log(n/r))

time, and handles an update in O(r` log(n/r)) time.

We inspected the influence of three parameters r, `, and n
on the space, query, and update performance of each method.

12 Yufei Tao et al.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

number of elements n (billion)

update time (millisec)

ExpoHis

update time of OPTIMAL: < 0.05 millisecond throughout the stream
(a) r = 1 million

1

10

100

1k

10k

 0 0.2 0.4 0.6 0.8 1

number of elements n (billion)

update time (millisec)

ExpoHis

update time of OPTIMAL: < 0.05 millisecond throughout the stream
(b) r = 10 million

Fig. 6 Update time on individual elements (disjoint independence)

Optimal ExpoHis

0.01

0.1

1

10

100

1k

10k

0.1 0.5 1 5 10

sample size r (million)

max update time (millisec)

 0

 1

 2

 3

 4

 5

 6

0.1 0.5 1 5 10

sample size r (million)

query time (sec)

Fig. 7 Maximum update time vs.
r (disjoint independence)

Fig. 8 Query time vs. r (dis-
joint independence)

The value of r was varied from 105 to 107, that of ` from
0 to 107, and n from 1 to 109. Recall that a solution to
the disjoint independence problem is the basis of a method
settling `-overlap independence with ` > 0. Hence, we will
first study the former in Section 7.1.1, and then the latter in
Section 7.1.2.

7.1.1 Disjoint Independence

The competing methods in this subsection are OPTIMAL

and EXPOHIS. Figures 6a and 6b give their cost in process-
ing each stream element, for r = 106 and 107, respectively.
These results reveal the characteristic behavior of EXPOHIS,
namely, “spiky” update overhead. While the method handles
most elements efficiently, it must undergo expensive “over-
hauls” periodically. By comparing the two figures, one can
see that, as r grows, although overhauls are less frequent,
their cost (a.k.a. the height of a spike) becomes substantially
higher. In practice, every spike has the effect of stalling the
stream, thus forcing delays in all the higher-level applications.

This is undesirable in a stream system, echoing the motivation
of this work. OPTIMAL, in contrast, exhibited ultra-stable
performance: its update cost was nearly unmeasurable on
every element—less than 50 microseconds (10−6).

We repeated the above on multiple values of r, and mea-
sured the maximum per-element update time of the two meth-
ods in each experiment. The results are presented in Figure 7.
As expected, the worst update cost of EXPOHIS increased
rapidly with r, whereas that of OPTIMAL was not affected
by r.

Figure 8 plots, as a function of r, each method’s average
per-query time in answering all the queries in a workload
issued on a stream. Recall that EXPOHIS has an extra multi-
plicative logarithmic factor in its query complexity compared
to OPTIMAL, which explains the large gap between the two
curves in the figure.

Setting r to 1 million, Figure 9 shows how the space
consumption of each method changed as the stream elements
arrived. The overall trend for both methods is identical, and
matches precisely their space complexityO(r log(n/r)). The
“oscillating behavior” of EXPOHIS is a typical phenomenon
of exponential histograms. Figure 10 plots the maximum
space usage of the two methods as a function of r, confirming
a consistent 15% saving for OPTIMAL.

Remark. It should be mentioned that there are only insignif-
icant differences in the average per-update cost between OP-
TIMAL and EXPOHIS: less than 0.1 microseconds for both
methods. This is not surprising because (i) they both achieve
O(1) update time after amortization, and (ii) most elements
require very simple processing that involves only writing a
memory cell and generating a single random number. The

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

number of elements n (billion)

space (GBytes)

Optimal
ExpoHis

Fig. 9 Space growth with n (r = 1 million, disjoint independence)

Optimal ExpoHis

 0

 1

 2

 3

 4

 5

0.1 0.5 1 5 10

sample size r (million)

space (GBytes)

Fig. 10 Maximum space vs. r (disjoint independence)

“spikes” of EXPOHIS account for a small percentage of the
overall running time. Thus, our algorithms make sense only
in applications where (i) the sample size is massive, and
(ii) one would like to avoid periodic stalling of the stream
completely for real time processing.

As another remark, it was difficult to measure precisely
the time of every update for our algorithms because it was
too low. We suspect that it should be at the order of 0.1 mi-
croseconds. But since there were 109 updates, it was almost
impossible to avoid a system-level context switch happening
in one of these updates. In other words, essentially we ended
up measuring the context-switch time. This explains why we
claimed only “less than 50 microseconds”, which we believe
is a much weaker claim than our real performance guarantee.

7.1.2 `-Overlap Independence

We separate the subsequent experiments of very small ` and
from those of arbitrarily large `, because as will be clear
EXPOHIS+ is applicable only to the former, while OPTI-
MAL is the only practical solution to the latter. Focus will be
placed on update and space cost, because the query time of
each method is the same as that of its disjoint-independence
counterpart.

` ≤ 18. Recall that EXPOHIS+ has quadratic update and
space overhead: both O(r` log(n/r))—which should limit
its usage only to low values of `. The next few experiments
aim to verify this intuition.

Setting r = 1 million and ` = 18, Figures 11 and 12
give, for both OPTIMAL and EXPOHIS+, the per-element
update time and space consumption as the stream progressed.

EXPOHIS+, which put together `+ 1 = 19 instances of EX-
POHIS (as explained in Section 4.2), saw both types of over-
head surge to 19 times that of EXPOHIS. The consequence
is severe: EXPOHIS+ required up to nearly 10 seconds to
perform a single update, and occupied almost all the 16GB
of memory on our machine. OPTIMAL, on the other hand,
exhibited exactly the same update and space efficiency as
disjoint independence.

Again setting r to 1 million, Figure 13 (14, resp.) makes
explicit the growth of the maximum per-element update time
(space usage, resp.) of the two methods as ` changed from 0 to
18. Evidently, EXPOHIS+ scaled poorly with this parameter;
it simply failed for ` ≥ 19 on our machine.

Gigantic `. Next, we considered scenarios completely be-
yond the functionality of EXPOHIS+: `-overlap indepen-
dence with huge `. OPTIMAL, hence, became the only sur-
viving method.

We repeated the experiments of Figures 13 and 14, but
this time varying ` all the way to 10 million. The results are
given in Figures 15 and 16. OPTIMAL, once again, demon-
strated excellent performance in all situations. In particular,
its update cost on every element was still below 50 microsec-
onds, i.e., no increase at all. Its space consumption remained
almost flat for all values of `. This is not surprising: recall
that the space complexity of OPTIMAL isO(r log(n/r)+`)—
the ` term is well dominated by the term r log(n/r), even
for ` = 107. The property is crucial for applications such as
continuous aggregation as evaluated in the next subsection.

7.2 Usefulness of `-Overlap Independence

We will demonstrate the effectiveness of `-overlap indepen-
dence in the continuous aggregate scenario mentioned in
the introduction. Specifically, a continuous query specifies a
predicate P , a window lengthW , and a re-evaluation inter-
val I. It estimates (using samples) the number of elements
satisfying P in the window that includes theW most recent
elements, and repeats this after the window has slid down by
I elements (i.e., one estimate every I elements). It displays
the running average of all the estimates so far. Intuitively,
as long as the data distribution inside the window remains
roughly the same, the accuracy of the running average should

14 Yufei Tao et al.

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

number of elements n (billion)

update time (millisec)

ExpoHis
+

update time of OPTIMAL: < 0.05 millisecond throughout the stream

Fig. 11 Update time on individual elements (r = 1 million, 18-overlap independence)

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

number of elements n (billion)

space (GBytes)

Optimal
ExpoHis

+

Fig. 12 Space growth with n (r = 1 million, 18-overlap independence)

Optimal ExpoHis+

0.01

0.1

1

10

100

1k

10k

100k

 0 3 6 9 12 15 18

l

max update time (millisec)

 0

 5

 10

 15

 0 3 6 9 12 15 18

l

space (GBytes)

Fig. 13 Maximum update time
vs. small ` (r = 1 million, `-
overlap independence)

Fig. 14 Maximum space vs.
small ` (r = 1 million, `-overlap
independence)

improve over time. We will show that this is true only if the
system guarantees `-overlap independence with ` =W − I
(c.f. Figure 1).

Once P is determined, the stream can be regarded as a bit
sequence, namely, 1 (or 0, resp.) if the corresponding element
satisfies (or does not satisfy, resp.) P . When viewed this way,
the continuous query essentially estimates the number of 1’s
in the current window. It does so by extracting r WR samples
from the underlying system, counting the number x of 1
samples, and calculating the estimate as est = x · (W/r).

In each subsequent experiment, the input stream is a
sequence of 0’s and 1’s, with the property that there is roughly
the same number of 1’s in any window with the same length,
as long as the length is large. Such a stream was generated as
follows. Among the first F (where F is a parameter) elements
in the stream, we set an arbitrary element to 1, while the rest
to 0. Suppose that the element was the i-th (for some i ≤ F).
Then, we set to 1 all the elements with sequence numbers
i+j ·F , for any integer j ≥ 1, and to 0 all the other elements.
In this way, any window of lengthW � F covers roughly

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 1 2.5 5 7.5 10

l (million)

max update time (millisec)

Optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2.5 5 7.5 10

l (million)

space (GBytes)

Optimal

Fig. 15 Maximum update time
vs. huge ` (r = 1 million, `-
overlap independence)

Fig. 16 Maximum space vs.
huge ` (r = 1 million, `-overlap
independence)

W/F 1’s. As we will see, this provides ground truth for
assessing the estimation errors of continuous queries.

We compared:

– Disjoint: The underlying system, which provides the
stream sampling functionality, guarantees only disjoint
independence for continuous queries. The (by far) most
popular algorithm achieving the purpose is an algorithm
due to Braverman et al. (see Section 2.1 of [3]). Note
that the algorithm was designed for fixed-length sliding
windows, such that a separate instance of the algorithm is
needed for each specific length. This increases its space
consumption and update overhead as many times as the
number of lengths to be supported. Nevertheless, since
our objective in this subsection is effectiveness (as op-
posed to efficiency, as in Section 7.1), we favored [3]
by pretending that its space and update cost was not an
issue.

– `-Overlap: The underlying system guarantees `-overlap
independence, using our algorithm of Theorem 1.

In all the following experiments, the number r of sam-
ples was set to a million, and the value of ` was set to 10

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 15

million. The continuous query was issued after the stream
had received 109 elements. Parameter I was varied in a range
from 10 (i.e., one estimate every 10 elements) to 105. The
value ofW was set accordingly to I + `.

7.2.1 Results

Recall that the estimate obtained from one window is est =
x · (W/r), where x is the number of 1-samples. It is rudi-
mentary to verify that this is an unbiased estimate of the
true number of 1’s in the window with a standard deviation
of (W/F)

√
F/r, given that F � 1. This formula will be

helpful in comprehending the key phenomenon that we will
reveal shortly: when the predicate P is selective, performing
the estimate using only one window is not reliable, making it
crucial to improve the accuracy by leveraging multiple inde-
pendent estimates to compute an average. The importance of
`-overlap independence lies exactly in its ability to guarantee
the required independence.

Let us start with a tough challenge: F = 106, correspond-
ing to the case where the query counts the number of “outlier
elements” that come up in the stream once every 1 million
arrivals. Plugging in r = 106, the above formula indicates
a standard deviation ofW/F , namely, 100% standard error
with respect to the ground truthW/F ! Fortunately, `-overlap
independence rescues this by bringing down the error quickly
through averaging independent estimates. Figure 17a illus-
trates this for I = 103 using a representative continuous
query that issued 100 estimates consecutively. The y-axis
shows the running averages of `-independent and disjoint,
as a function of the stream length (for I = 103, the period
of 100 estimates covers the arrival of nearly 105 elements).
Moreover, for `-independent, we indicate its confidence in-
terval starting from the 30th estimate based on the central
limit theorem4. The ground truth here is W/F ≈ 10. As
expected, `-overlap yielded an increasingly accurate running
average, which after 100 estimates was very close to the
ground truth. In contrast, disjoint was not able to improve
itself at all, and still gave a gigantic error at the end. Note
that no confidence intervals can be calculated for disjoint in
a statistically correct manner due to the lack of confidence in
its estimates.

Next, we made the job a lot easier, by decreasing F sub-
stantially to 104, i.e., the predicate is 100 times less selective
than before. The standard deviation formula now evaluates
to 1

10 (W/F), i.e., 10% error. We repeated the experiment
of Figure 17a. The results are shown in Figure 17b (here
the ground truth isW/F ≈ 1000). Both `-overlap and dis-
joint were much more accurate in their first estimates. Even

4 Salkind noted in the book entitled Statistics for People Who (Think
They) Hate Statistics that most researchers suggest that the number of
repeats should be no less than 30 before the theorem can be applied.

so, `-overlap was able to improve its accuracy even further,
whereas disjoint made no improvement at all.

The next evaluation demonstrates that the above is not a
phenomenon on isolated queries, but indeed holds in general.
After fixing the values of F and I, we repeated the previous
experiment for 30 continuous queries. This produced, for
each query, a sequence of 100 estimates, for each of which
we calculated its absolute relative error on the ground truth5.
Then, for each i ∈ [1, 100], we measured the mean of the
i-th absolute relative errors of all 30 queries. Figures 18a-
18f present the 100 means of `-overlap and disjoint as a
function of the stream length, for various combinations of
F and I. In all cases, the precision of `-overlap improved
dramatically after only a few number of queries, whereas
similar improvement was absent from disjoint. Note that
disjoint exhibited fluctuation when I = 105. To explain, first
note that the larger I is, the “more independent” the samples
of disjoint tend to be. The value of I = 105, intuitively, put
disjoint in a “mixture” state where each window’s sample set
contains some samples that were independent from the other
windows, but also other samples that were not. Its behavior
exhibited in Figures 18c and 18f was the consequence of
such a state.

8 Conclusions and Future Work

Stream sampling is important to applications that require
processing an unbounded sequence of elements. The existing
solutions are inadequate because they (i) incur excessive time
processing an incoming element, and (ii) can ensure only
weak independence on the sample sets returned to different
queries. In this paper, we give a new algorithm that is worst-
case optimal in three aspects: space, query time, and update
time. Furthermore, it ensures `-overlap independence, which
is the strongest independence guarantee in the literature so
far. Besides being a solid theoretical technique, the algorithm
has excellent practical efficiency as well, by processing each
element in microseconds. It can therefore serve as a robust
and reliable data feeder at the bottom level of modern stream
systems.

From a high level, our update algorithm is a method of
de-amortization, namely, how to turn an algorithm that is fast
on average into an algorithm with asymptotically the same
worst case performance. Our techniques, in summary, are
based on two key ideas. First, introduce a buffer at the tail
that has the same space complexity as the main structure.
Second, we break the periodic construction algorithm into
pieces, each of which generates a single random number,
and takes O(1) time. This idea circumvents the pitfall of

5 If the ground true is act , then the absolute relative error is |est −
act |/act .

16 Yufei Tao et al.

`-overlap Disjoint

 5

 10

 15

 20

 25

 0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

number of elements past 10
9

running average estimate

(a) F = 106, one estimate every I = 103 elements, 100 estimates in total (true answer: 10)

 800

 900

 1000

 1100

 1200

 0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

number of elements past 10
9

running average estimate

(b) F = 104, one estimate every I = 103 elements, 100 estimates in total (true answer: 1000)
Fig. 17 Running average estimates and confidence intervals (where appropriate)

`-overlap Disjoint

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1k

number of elements past 10
9

average relative error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20k 40k 60k 80k 100k

number of elements past 10
9

average relative error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2m 4m 6m 8m 10m

number of elements past 10
9

average relative error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200 400 600 800 1k

number of elements past 10
9

average relative error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20k 40k 60k 80k 100k

number of elements past 10
9

average relative error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2m 4m 6m 8m 10m

number of elements past 10
9

average relative error

(a) F=106, I=10 (b) F=106, I=103 (c) F=106, I=105 (d) F=104, I=10 (e) F=104, I=103 (f) F=104, I=105

Fig. 18 Absolute Relative error of the running average estimates

suspending and resuming the algorithm in a “forced” manner
at the operating system’s level.

In this paper, we have strived to simplify the algorithmic
procedure. We leave it as an open problem whether the pro-
cedure can be made substantially simpler. For this purpose,
we suspect that one may need to depart from the two ideas
aforementioned—a direction that appears elusive to us at this
stage.

We have concentrated on producing samples whose ran-
domness is theoretically sound. Another reasonable direction
would be to study whether we could trade theoretical ran-
domness for implementation convenience. For instance, a
reviewer of this paper mentioned the following idea to lever-
age EXPOHIS for approximate (disjoint-independence) sam-
pling. Create two threads of the algorithm: one responsible
for answering sampling queries, while the other thread re-
sponsible for building a new structure (using the algorithm of
EXPOHIS). The query thread operates on a slightly outdated
structure that ignores some recent elements. As soon as the
maintenance thread finishes, the query thread replaces its old
structure with the new one. Then, the maintenance thread
starts to work on the incoming elements to construct the next
structure (there are the elements invisible to the query thread).

The query thread would provide fast response time, because
the operating system automatically interleaves between the
two threads. We suspect that in practice this method could be
feasible and would turn out high-quality samples, although
they are not provably random.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments, suggestions for improving the paper,
the very interesting interaction. The review process was one
of the best that we have ever experienced.

References

1. A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB J.,
15(2):121–142, 2006.

2. B. Babcock, M. Datar, and R. Motwani. Sampling from a moving
window over streaming data. In SODA, pages 633–634, 2002.

3. V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling
from sliding windows. JCSS, 78(1):260–272, 2012.

4. K. Chaudhuri and N. Mishra. When random sampling preserves
privacy. In CRYPTO, pages 198–213, 2006.

Stream Sampling over Windows with Worst-Case Optimality and `-Overlap Independence 17

5. Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Catch the moment:
maintaining closed frequent itemsets over a data stream sliding
window. Knowl. Inf. Syst., 10(3):265–294, 2006.

6. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM J. of Comp., 31(6):1794–
1813, 2002.

7. G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic
data streams and applications. Int. J. Comput. Geometry Appl.,
18(1/2):3–28, 2008.

8. W. A. Fuller. Sampling Statistics. Wiley, 2009.
9. R. Gemulla and W. Lehner. Deferred maintenance of disk-based

random samples. In EDBT, pages 423–441, 2006.
10. R. Gemulla and W. Lehner. Sampling time-based sliding windows

in bounded space. In SIGMOD, pages 379–392, 2008.
11. X. Hu, M. Qiao, and Y. Tao. External memory stream sampling.

In PODS, pages 229–239, 2015.
12. A. Lall, V. Sekar, M. Ogihara, J. J. Xu, and H. Zhang. Data

streaming algorithms for estimating entropy of network traffic. In
SIGMETRICS, pages 145–156, 2006.

13. S. Nath and P. B. Gibbons. Online maintenance of very large
random samples on flash storage. VLDB J., 19(1):67–90, 2010.

14. A. Pavan, K. Tangwongsan, S. Tirthapura, and K. Wu. Counting
and sampling triangles from a graph stream. PVLDB, 6(14):1870–
1881, 2013.

15. A. Pol, C. M. Jermaine, and S. Arumugam. Maintaining very large
random samples using the geometric file. VLDB J., 17(5):997–1018,
2008.

16. J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, 1985.

Appendix 1: Space Lower Bound for Our Problem of
Section 2 under Disjoint Independence

We will need the following mathematical fact:

Lemma 11 Let x, y be any positive real values satisfying x ≥ y and
x ≥ 1. Then 1− (1− 1/x)y = Ω(y/x).

Proof It is fundamental to verify that, for any real value z, 1+ z ≤ ez ,
and for any real value z ∈ [0, 1], e−z ≤ 1− (1− 1/e)z. Therefore:

1− (1− 1/x)y ≥ 1− e−y/x

≥ 1−
(
1−

(
1−

1

e

) y
x

)
=
(
1−

1

e

) y
x
.

ut

LetA3 be an algorithm solving our problem under ` = 0. Suppose
that n ≥ r stream elements have been received. Consider the i-th
element ei where i ∈ [1, n− r]. Define a random variable Ei to be 1
if ei is retained by A3 at this moment, or 0 otherwise. Motivated by
Gemulla and Lehner, we look at the query with parameterw = n−i+1.
As each WR sample of the query picks ei with probability 1/w, ei is
picked by at least one of its r samples with probability 1− (1−1/w)r .
It thus follows that

Pr[Ei = 1] ≥ 1−
(
1−

1

n− i+ 1

)r

(by Lemma 11) = Ω

(
r

n− i

)
.

Hence, the expected space used byA3 is at least
n−r∑
i=1

E[Ei] =
n−r∑
i=1

Ω

(
r

n− i

)
= Ω(r log(n/r)).

The worst-case space ofA3 cannot be smaller, and thus, must also be
Ω(r log(n/r)).

Appendix 2: Proof of Lemma 10

The lemma is trivial if Z + 1 > y; next, we assume Z + 1 ≤ y.
Consider first i = 2. Let b1, b2 be the level-1 buckets covered by b.

All the elements in b1, b2 are directly retained. The lemma holds on b
because Lemma 2 obtainsRb[1] with a single random number generated
after the entire b2 has been received, i.e., at or after n = y ≥ Z + 1.

Consider i = j ≥ 3. Redefine b1, b2 as the level-(i− 1) buckets
covered by b, whose size-1 sample sets are Rb1

, Rb2
, respectively.

Inductively assume that the lemma holds on Rb1
(Z) and Rb2

(Z).
Lemma 2 generates a random number, at or after n = y, to decide
whether Rb[1] equals Rb1

[1] or Rb2
[1]. Hence, given the number,

Rb(Z) is fully determined by Rb1
(Z) and Rb2

(Z).

