
Noname manuscript No.
(will be inserted by the editor)

Exact and Approximate Flexible Aggregate Similarity
Search

Feifei Li1, Ke Yi2, Yufei Tao3, Bin Yao4∗, Yang Li4, Dong Xie4, Min Wang5

1University of Utah, USA
2Hong Kong University of Science and Technology, Hong Kong, China
3Chinese University of Hong Kong, Hong Kong, China
4Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai
Jiao Tong University, Shanghai, China
5Visa Research, Visa Inc., USA
1lifeifei@cs.utah.edu, 2yike@cse.ust.hk,
3taoyf@cse.cuhk.edu.hk,5minwang@visa.com
4yaobin@cs.sjtu.edu.cn, rainfallen@sjtu.edu.cn, skyprophet@sjtu.edu.cn,
∗corresponding author.

the date of receipt and acceptance should be inserted later

Abstract Aggregate similarity search, also known as

aggregate nearest neighbor (Ann) query, finds many

useful applications in spatial and multimedia databases.

Given a group Q of M query objects, it retrieves from a
database the objects most similar to Q, where the simi-

larity is an aggregation (e.g., sum, max) of the distances

between each retrieved object p and all the objects in

Q. In this paper, we propose an added flexibility to

the query definition, where the similarity is an aggre-

gation over the distances between p and any subset of

φM objects in Q for some support 0 < φ ≤ 1. We call

this new definition flexible aggregate similarity search,

and accordingly refer to a query as a flexible aggre-
gate nearest neighbor (Fann) query. We present algo-

rithms for answering Fann queries exactly and approx-

imately. Our approximation algorithms are especially

appealing, which are simple, highly efficient, and work

well in both low and high dimensions. They also return

near-optimal answers with guaranteed constant-factor

approximations in any dimensions. Extensive experi-

ments on large real and synthetic datasets from 2 to 74

dimensions have demonstrated their superior efficiency

and high quality.

1 Introduction

Aggregate similarity search extends the classical simi-

larity search problem with a group Q of query objects,

and the goal is to retrieve from the underlying database

P the objects most similar to Q, where similarity is de-

Address(es) of author(s) should be given

fined by applying an aggregate function (usually sum or

max) over the set of distances between each retrieved

object and every query object [15, 16, 18–20, 25]. It is

also commonly known as the aggregate nearest neigh-

bor (Ann) or group nearest neighbor query. This gener-

alizes the classical nearest neighbor (NN) search, while

offering richer semantics with broader applications in

spatial and multimedia databases, as pointed out by

previous studies [15, 18–20, 25]. Due to its importance,

this problem has already been studied in the Euclidean

space [15, 18, 19], the road-network space [25], and the

general metric space [20]. However, a major limitation

of Ann search is that all objects in the query group
must be involved in defining the optimal answer. As a

result, any subset of points in the query group could

affect the quality and the usefulness of the query an-

swer. In other words, Ann requires that an object from

P must be similar to all objects in Q in order to qual-
ify as a good answer, which can be too restrictive in

practice.

We observe that in many applications, it is often

good enough, and in some cases even desired, to find

objects similar to a fraction of the objects in a query

group Q. For example, suppose that P is a collection

of candidate locations, and Q is a set of potential cus-
tomers. When trying to find a location to hold a mar-

keting campaign from P , instead of trying to meet all

customers where the meeting place should minimize the

total or maximum traveled distance of all customers, it

is often desired to find a place that is good for a certain

fraction, say 50%, of the customers. In this case, the

meeting place should be close (in terms of the total or

2 Feifei Li et al.

maximum traveled distance) to 50% of the customers,

regardless of which customers are in this 50% (i.e., meet

50% of potential customers). More precisely, a better

and more general approach is to allow the user to spec-

ify a support 0 < φ ≤ 1, and the goal is to find the

best object from the database that is the most similar
to any φ|Q| objects from Q. We call it flexible aggre-

gate similarity search, and accordingly, refer to a query
as a flexible aggregate nearest neighbor (Fann) query.

Clearly, the classic aggregate nearest neighbor query

Ann is a special instance of Fann when φ = 1.

Fann also finds applications in similarity search in

multimedia databases, which usually map objects to

points in high dimensional feature spaces. Given a set

Q of objects (e.g. images), the Ann will find a data
object that is similar to all query objects, which can

be too restrictive in many cases. Instead, Fann returns

an object of a certain support, namely being similar

to φ|Q| of the query objects. This allows the user to

be less careful (in other words, having more flexibil-

ity) when formulating his/her query group Q. When
returning the top-k objects (called the k-Fann problem

in Section 7.1), the diversity of the query answers also

increases: the k objects might be similar to k different

subsets of φ|Q| query objects each.

Henceforth, by default, we assume that each data/query

object is a multi-dimensional point, and that the dis-

tance of two points is measured by L2 norm (i.e., Eu-

clidean distance). Intuitively, the added flexibility of

Fann queries creates significant challenges in design-
ing efficient algorithms because a Fann query implic-

itly incorporates
(|Q|
φ|Q|

)

Ann queries, as each subset of

φ|Q| objects in Q can be the best subset that a data

object is similar to. In Section 4 we present two al-

gorithms based on standard techniques for answering

Fann queries exactly. As shown in the experiments,
these algorithms are rather expensive, especially in high

dimensions, where they can be as bad as linear scans.

Therefore, we investigate approximation algorithms

that greatly improve the efficiency while returning near-
optimal answers. These algorithms, presented in Sec-
tion 5 and 6 for the sum and max versions of the prob-

lem, respectively, have the following appealing features:

– Guaranteed approximation ratios:Our first algorithms

return answers with guaranteed approximation ra-
tios of 3 and 1 + 2

√
2, for the sum and max ver-

sions of the problem, respectively, regardless of the

dimensionality. Note that since Fann degenerates

into the Ann problem when φ = 1, our results also

imply a 3-approximation for the sum Ann problem,

for which only heuristics are known and they work

only in low dimensions [16, 18–20].

As a second step, we show that in 2d space (which

enjoys an especially important standing of all di-

mensionalities), one can extend our first algorithms

with an elegant new idea to improve the approxi-

mation ratio to 2 (for both sum and max). Finally,

in low dimensional spaces, we explain how to guar-

antee an approximation ratio of (1 + ε), where ε

can be an arbitrarily small constant, with further

extensions to the algorithms.

– Excellent query answer quality in practice: The ap-

proximation ratios hold even for the worst data.

In practice, extensive experiments on real and syn-

thetic datasets show that the actual approximation

ratios are much lower, usually below 1.3.

– Superior efficiency: The benefit of not returning the
exact answer is superior efficiency. In low dimen-

sions (d = 2), the algorithms answer a query Q with

|Q| = 300 on a dataset of 2 million records in just

about 1 millisecond; in high dimensions (d = 30), a

query on a dataset of a similar scale takes 0.01 to 0.1
second. Detailed experimental results are provided

in Section 8.

– Simplicity: Our algorithms are actually very simple.

Except the ones with approximation ratio (1 + ǫ)

which bear significant theoretical interest, they re-

duce the problem to a few instances of standard

nearest neighbor (NN) search, which is a well stud-

ied problem, and efficient solutions are known in

both low and high dimensions. The (1 + ǫ) approx-

imate algorithms, on the other hand, demand only

the extra functionality of range reporting, which is

also well studied in low dimensional space (recall

that the (1 + ǫ)-approximate algorithms are only
designed for low dimensionality).

Below we first formally define the Fann problem in

Section 2 and survey the related work in Section 3. Then

we present two exact algorithms aiming at low and high

dimensions respectively, in Section 4. We present ap-

proximation algorithms and analyze their theoretical
guarantees in Sections 5 and 6 for the sum and max ag-
gregate functions, respectively. We discuss several ex-
tensional issues in Section 7, present the experimental

results in Section 8, and finally conclude in Section 9.

2 Problem Formulation

We use P to denote the set of points in the database,

and Q as the set of query points, where |P | = N and

|Q| = M . Both P and Q are in a metric space with the

distance function d(p, q) defined for any two points. By
default, d(p, q) represents the Euclidean distance of p

and q; we will discuss how our methods can be adapted

Exact and Approximate Flexible Aggregate Similarity Search 3

to support other distance metrics in Section 7. Let g be

the aggregation function, either sum or max, and φ be
a support value in (0, 1]. We further define g(p, S), for

any point p and a group of points S, as:

g(p, S) = g(d(p, q1), . . . , d(p, q|S|)),

where qi ∈ S for i = 1, . . . , |S|, i.e., it is the aggre-

gate distance between p and all points in S aggregated
by g. The flexible aggregate similarity search (Fann)

problem is formally defined as follows.

Definition 1 (Fann query) Given P , Q, d, g and φ,

a Fann query returns:

(p∗, Q∗
φ) = argmin

p∈P,Qφ⊆Q
g(p,Qφ), where |Qφ| = ⌈φM⌉.

Let r∗ = g(p∗, Q∗
φ) denote the optimal aggregate

distance. For any β ≥ 1, we say that (p,Qφ) is a β-
approximate answer to the Fann query if Qφ ⊆ Q,

|Qφ| = ⌈φM⌉, and

r∗ ≤ g(p,Qφ) ≤ βr∗.

For convenience, we will ignore the ceiling and as-

sume that φM is an integer. A first observation is that,

for any point p, the Qφ that minimizes g(p,Qφ) consists

of the φM points in Q closest to p. Thus, if we define

Qp
φ as such a set of points, the definition of a Fann

query can be stated as finding

p∗ = argmin
p∈P

rp, where rp = g(p,Qp
φ); and Q∗

φ = Qp∗

φ .

(1)

Similar to previous studies for the Ann problem, in

most applications, P is large and disk-based, and Q is

small and memory resident. We assume d-dimensional
Euclidean space as the default metric space, and briefly

discuss general metric spaces in Section 7. We summa-

rize the main notations in Figure 1.

Symbol Description
B(c, r) the ball centered at c with radius r

d(p, q) distance between p and q

g sum or max
g(o, S) g(d(o, s1), . . . , d(o, s|S|)) for all si ∈ S

MEB(S) minimum enclosing ball of S
M,N size of Q and P respectively
nn(o, S) the nearest neighbor of o in S
Qp

φ
φM nearest neighbors of p in Q

(p∗, Q∗
φ
) the optimal answer to Fann on P,Q, φ

r∗ optimal aggregate similarity distance g(p∗, Q∗
φ
)

Fig. 1 List of notations.

3 Related Work

Research on aggregate similarity search was initialized

by Papadias et al. [18] and Li et al. [16], where sum

Ann queries have been examined in Euclidean spaces

of low dimensions. The state-of-the-art exact algorithm

appears in [19], which is an R-tree based MBM method.
It adopts the typical branch-and-bound methodology
using the R-tree and relies on the triangle inequality

as the main principle for pruning the search space. Of

course, the details will vary based on the aggregate

function used. As such, the MBM method is a good

heuristic algorithm that works well in low dimensions

(2 or 3 dimensions). Razente et al. [20] used the same

idea for other metric spaces with distance-based index-

ing structures, such as the M-tree [6]. The performance

of these algorithms degrades quickly as dimensionality

increases.

To get around the curse-of-dimensionality problem

of the MBMmethod, approximation methods have been

proposed, but only for max Ann queries in the Eu-

clidean space [15]. The basic idea is to find the center

of the minimum enclosing ball (MEB) of Q, and then

simply return the nearest neighbor of this center from

P . Li et al. [15] showed that this simple method gives a√
2-approximate answer to the max Ann query in any

dimensions, and its query cost is essentially the same as

one standard NN query. Alongside the MBM method,

Papadias et al. [19] also proposed a few heuristics for

approximating Ann queries, but with no provable ap-

proximation ratios.

All of the above works study the Ann problem.

However, in the Fann problem, we are looking for the

p∗ that minimizes its aggregate distance to any subset

of φM query points. If one were to adapt the existing

Ann solutions,
(

M
φM

)

subsets of the query points would

have to be considered, namely, an exponential blowup.

Thus, none of the above results can be used to solve the

Fann problem efficiently.

The standard NN search is also very relevant to

our study. In low dimensions, the R-tree provides ef-
ficient exact algorithms using either the depth-first [22]
or the best-first [11] search algorithms. They do not

provide theoretical guarantees on the worst-case query

cost, but are in general very efficient in answering exact

NN queries in low dimensions. On the other hand, the

BBD-tree [1] finds (1 + ǫ)-approximate nearest neigh-

bors in worst-case O((1/ǫd) logN) time where d is the
dimensionality.

It is well known that the R-tree, and in general any

space-partitioning scheme, gives poor performance be-

yond 6 dimensions [2, 4]. For exact NN search in high

dimensions, iDistance [12] is the state of the art, but can

4 Feifei Li et al.

still be quite expensive. As approximation can be often

tolerated in high dimensional NN search, more efficient

approximation algorithms have been designed. In par-

ticular, the techniques based on locality sensitive hash-

ing (LSH) [10] have been shown to be highly efficient

while returning near-optimal NN results. Currently, the

most practical LSH based solution is the LSB-tree [24],

which combines the LSH idea and space filling curves.
By doing so, it is able to return 4-approximate NNs
with high probability; on typical data sets, the approx-

imation ratio is often much lower (usually close to 1).

It also has a bounded query cost of O(
√

dN/B logB N)

IOs for an NN search, where B is the disk page size.

New contributions. The problem of flexible aggre-

gate similarity search was formalized in [17], and a

number of state-of-the-art results were also proposed

in the same work, for both the sum and max aggre-

gate functions. Specifically, they designed R-tree based

and TA-based (the threshold algorithm from [8]) ex-

act algorithms for answering Fann queries in low and

high dimensions respectively, which we will review in

details in Section 4. They also designed an (1 + 2
√
2)-

approximation algorithm, and an 3-approximation al-
gorithm for max Fann and sum Fann queries respec-

tively that work well in all dimensions. We denote these

approximation algorithms as Asum and Amax respec-

tively (including the efficiency-improved versions based

on a subset of random samples from Q), and review

them in details in Sections 5.1 and 6.

This work makes significant new contributions com-

pared to the earlier work [17]. The first new contribu-

tion is the design of an unified algorithmic framework

that gives an 2-approximation for both sum and max

Fann queries in 2d, which enjoys particular importance
since most practical applications in spatial databases

are indeed in a 2-dimension space. Not only our new de-

sign enjoys better approximation bound in theory (and

in practice), but also they are almost equally efficient

compared to Asum and Amax. We denote the new ap-

proximation methods as Asum2 and Amax2 and dis-
cuss them in Sections 5.2 and 6.2 respectively.

The next contribution of this work is the design of
an (1 + ε)-approximation algorithm for both sum and

max Fann queries, which is less practical but bears high
theoretical interest. This discussion appears in Sections

5.3 and 6.3 for sum and max case respectively. Note that

having an (1+ε)-approximation algorithm is extremely

useful in theory since this shows us how to nicely adjust

the tradeoff between efficiency and accuracy, and allows

us to reduce the approximation error to some arbitrarily

small values if we would like to. This is the same moti-

vation behind the design of the (1 + ε)-approximation

algorithm for the classic nearest neighbor queries [1].

Lastly, our work presents extensive new experimen-

tal results in Section 8 to empirically verify the effec-

tiveness and efficiency of all proposed methods using

large real data sets.

4 Exact Methods

A straightforward exact method for answering a Fann

query is to do a linear scan of all points in P and find the
optimal p∗ by its definition. More precisely, for every

point p ∈ P , we find the setQp
φ, namely, the φM nearest

neighbors of p in Q and calculate rp = g(p,Qp
φ). Then,

we find (p∗, Q∗
φ) with the smallest rp. We denote this

method as BFS (brute-force search).

Next, we present two improved exact methods. The

first method is based on the R-tree and can be seen
as a generalization of the techniques in [19]. As it is
based on the R-tree, it works only in low dimensions.

The second method is based on the TA algorithm [7,8]

and works for any dimensions.

4.1 The R-tree algorithm

For any node in the R-tree, we can calculate the mini-

mum possible distance from its MBR (minimum bound-

ing rectangle) b to every query point q in Q, denoted as
mindist(q, b) [11,22]. Let Qb

φ be the subset of φM points

from Q that have the φM smallest mindist values to b.

Clearly, for any p ∈ b, we have

rp ≥ g(mindist(q1, b), . . . ,mindist(qφM , b)), qi ∈ Qb
φ,

(2)

which yields a lower bound in the aggregate distance rp
for any point p inside b.

Let the MBR of the query group Q be bQ. Another

lower bound for rp, which is cheaper to compute, but

not as tight as (2), is as follows. For any MBR node

b in an R-tree, we find the minimum possible distance

between bQ and b, denoted as mindist(bQ, b). Then for
any p ∈ b, we have

rp ≥
{

φM ·mindist(bQ, b), if g = sum;

mindist(bQ, b), if g = max .
(3)

Based on (2) and (3), we can easily construct a

search algorithm for Fann queries using an R-tree built

on P . Specifically, when a leaf node of the R-tree is

accessed, for each point p stored in the leaf, we find

Qp
φ and compute the aggregate distance rp = g(p,Qp

φ).

Exact and Approximate Flexible Aggregate Similarity Search 5

When we encounter an internal R-tree node, we first

compute (3) and then (2) and check if it is higher than

the best candidate answer found so far. If so we skip

the entire subtree rooted at this internal node; other-

wise we add this node to a queue. The queue is sorted

in the ascending order of their lower bounds on the ag-

gregate distance, and we will visit the nodes from the

queue in order. We denote this algorithm as the R-tree
method.

We point out that when φ = 1, the Fann problem
reduces to the Ann problem, and this R-tree method

described above also degenerates into the MBMmethod

[19] for Ann.

4.2 The List algorithm

We conceptually build M lists, one for each query point

qi inQ. The list for qi ∈ Q sorts all points in P in the as-

cending order of their distances to qi. In particular, we

refer to the jth element in the ith list as a pair (pi,j , di,j)
where di,j = d(pi,j , qi), pi,j ∈ P for j = 1, . . . , N . By

doing so, for any point p ∈ P , we can view p as an

object with M attributes with its ith attribute taking

value d(p, qi), and all points in P are given in M lists,

sorted according to each of the M attributes, respec-
tively. The aggregated “score” of p, g(p,Qp

φ) is the sum

or max of the φM smallest attribute values of p, which
is monotone w.r.t. the M attributes. This is exactly the

setting where the TA algorithm [8] applies. This allows

us to design the List algorithm below.

Algorithm 1: List(P , Q, φ, g)

1 let ℓi = 1 and τi = di,ℓi for i = 1, . . . ,M ;
2 set τ = g(smallest φM values from τis);
3 set po =null and do = +∞;
4 while true do

5 let η = argmini∈[1,M] di,ℓi ;

6 set p′ = pη,ℓη and compute d′ = g(p′, Qp′

φ
);

7 if d′ < do then

8 set po = p′ and do = d′;

9 if ℓη < N then

10 set ℓη = ℓη + 1 and τη = dη,ℓη ;

11 else output (po, Q
po
φ
); return;

12 update τ if smallest φM values in τis have
changed;

13 if do < τ then

14 output (po, Q
po
φ
); return;

The basic idea of the List algorithm is to perform

sorted access to the M lists, while maintaining a lower

bound for the best possible aggregate distance for any

unseen point. We maintain one pointer per list (the

ℓi’s); initially they point to the first elements of the
lists. We set the ith threshold value τi to be the at-

tribute value of the point pointed by ℓi (line 1). In each

of the subsequent steps, we pick the list whose current

element has the smallest value, say the ηth list (line
5). We retrieve the ℓηth element from the ηth list (line

6). This element gives a point p′ and we compute its
aggregate distance by applying g over p′ and its φM

nearest neighbors from Q (line 6). We keep the best

candidate answer (the point and the achieved distance)

so far in po and do (lines 3, 7–8). Then we move the

ηth pointer (ℓη) down the list by one position, and up-
date the ηth threshold value τη accordingly (lines 9–11).

Clearly, for any unseen object from the ith list, its min-
imum possible ith attribute value will be at least τi,

which indicates that applying g over the current φM

smallest threshold values gives a lower bound on the

best possible aggregate distance of any unseen point.

Implementation. Note that we do not have to mate-

rialize the M lists in order to run the algorithm above.

The observation is that the jth element in the ith list,
(pi,j , di,j), is simply the jth nearest neighbor of qi from

P and the corresponding distance. Thus, lines 5 and 6

in Algorithm 1 can be easily done by finding the ℓith

nearest neighbor of qi from P (similarly for line 1 and

10), as long as we have an index that can return the
nearest neighbors for any given qi in the ascending or-

der of their distances to qi. This is the standard k-NN
problem and has been well studied.

In low dimensions, we can index P using an R-tree.
We do not have to find the ℓith nearest neighbor of

qi from scratch every time when we move down the

ith list. Rather, with some simple bookkeeping, the R-

tree’s nearest neighbor search can be carried out incre-
mentally, that is, to find the jth nearest neighbor of qi,
we can resume the search from the end of the search for

the (j−1)th nearest neighbor. In higher dimensions, we
can index P using the iDistance index [12] and also find

the jth nearest neighbor of qi incrementally. Alterna-

tively, we can index P using a LSB-tree [24] for faster

nearest neighbor retrieval. However, since the LSB-tree

only returns approximate NNs, using a LSB-tree over

P no longer guarantees that List will return an exact

answer. Nevertheless, we can easily prove the following

result (the proof is quite straightforward and omitted).

Proposition 1 Given a β-approximate kNN algorithm,

List gives a β-approximation for the Fann problem.

6 Feifei Li et al.

5 Approximation Algorithms for sum Fann

Our exact methods for the Fann problem outperform
the BFS approach, but they are still quite expensive,

especially on large datasets (as shown in our experi-

mental study). Furthermore, it is well known that in

high dimensions, even the standard NN search itself

will require a linear scan of the dataset in most cases

we are to find exact answers (see [24] and the refer-
ences therein). Thus, it is not surprising that the exact
methods become very expensive as dimensionality in-

creases. In most applications of similarity search, how-

ever, approximate answers are often good enough, and

past research has shown that allowing approximation

can bring significant improvement on the query effi-

ciency [1, 10, 24]. This motivates us to design approxi-

mation algorithms for the Fann problem with quality

and efficiency guarantees. In this section, we will do so

for sum Fann, while the next section is devoted to max

Fann.

5.1 A 3-approximate algorithm

Our first approximate method, denoted as Asum, is

given in Algorithm 2, which is very simple provided

that we have a method for standard NN search. In line

4, recall that Qpi

φ simply consists of the φM nearest

neighbors of pi in Q and rpi = sum(pi, Q
pi

φ). As Q is
small and fits in memory, finding Qpi

φ is easy and cheap.

That said, the algorithm just finds pi, the NN in P for

each of the M query point qi, and returns the one with

the smallest aggregate distance, in this case the sum of

the distances from pi to its φM closest points in Q.

Algorithm 2: Asum (P , Q, φ, sum)

1 set minr = +∞; α = −1;
2 for i = 1, . . . ,M do

3 let pi = nn(qi, P), where qi is the ith point in Q;
4 find Q

pi
φ

and rpi ;

5 if rpi < minr then

6 set α = i, and minr = rpi ;

7 return (pα, Q
pα
φ

);

We now prove a quality guarantee for the above al-

gorithm:

Theorem 1 Asum returns a 3-approximate answer to

the sum Fann query in any dimensions.

Proof Let (p∗, Q∗
φ) be an optimal answer to the query

group Q, and the optimal aggregate distance is

r∗ =
∑

x∈Q∗

φ

d(p∗, x).

Let q∗ = nn(p∗, Q∗
φ), and p′ = nn(q∗, P). Clearly, if

p′ = p∗, Asum will return the optimal answer p′ = p∗,
since Q∗

φ ⊆ Q and it iterates through all points in Q

and finds their nearest neighbors in P as the set of

candidate answers.

Consider the case p′ 6= p∗. Given p′ = nn(q∗, P) we

have:

d(p′, q∗) ≤ d(p∗, q∗). (4)

Since rp′ = sum(p′, Qp′

φ), where Qp′

φ are the φM nearest

neighbors of p′ in Q. We have:

rp′ =
∑

x∈Qp′

φ

d(p′, x) ≤
∑

x∈Q∗

φ

d(p′, x). (5)

∑

x∈Q∗

φ

d(p′, x)

≤
∑

x∈Q∗

φ

(d(p′, p∗) + d(p∗, x)) (triangle inequality)

= φM · d(p′, p∗) +
∑

x∈Q∗

φ

d(p∗, x)

≤ φM · (d(p′, q∗) + d(q∗, p∗)) + r∗ (triangle inequality)

≤ 2φM · d(q∗, p∗) + r∗ (by (4))

≤ 2r∗ + r∗ = 3r∗. (by (7)) (6)

The last ‘≤’ holds because q∗ = nn(p∗, Q∗
φ), i.e., for any

x ∈ Q∗
φ, d(q

∗, p∗) ≤ d(x, p∗). Therefore:

φM · d(q∗, p∗) ≤
∑

x∈Q∗

φ

d(x, p∗) = r∗. (7)

By (5) and (6), we have rp′ ≤ 3r∗. Lines 2–6 in Algo-

rithm 2 guarantee that (p′, Qp′

φ) is one of the M candi-

dates to be considered, which completes the proof.�

When exact NN search is expensive, we can replace
the nn function in Algorithm 2 with approximate NN

search. We can show that this still delivers a good ap-

proximation.

Theorem 2 If the exact nn function in Asum is re-

placed with a β-approximate NN search, then the Asum

algorithm gives a (β + 2)-approximation to the sum

Fann query.

Proof Let p′ and q∗ be defined similarly as in the proof

of Theorem 1. However, we can no longer guarantee to

find p′ precisely. Instead, we are guaranteed a point p′′

that satisfies d(p′′, q∗) ≤ β ·d(p′, q∗). Going through the
proof of Theorem 1, inequality (4) becomes

d(p′′, q∗) ≤ β · d(p′, q∗) ≤ β · d(p∗, q∗), (8)

Exact and Approximate Flexible Aggregate Similarity Search 7

and the derivation in (6) becomes
∑

x∈Q∗

φ

d(p′′, x) ≤ φM · (d(p′′, q∗) + d(q∗, p∗)) + r∗

≤ φM · (β + 1)d(q∗, p∗) + r∗ (by (8))

≤ (β + 1)r∗ + r∗ = (β + 2)r∗. (by (7))

Thus, the returned answer will be a (β+2)-approximation.�

5.1.1 Reducing the cost of Asum

The main cost of algorithm Asum is the M NN queries
on the data set P , which are quite expensive when M

is large, as each NN query involves accessing a disk-

based NN index built on P . One idea to reduce this
cost is to only run lines 3–6 of the Asum algorithm on

a subset of points in Q. Interestingly enough, it turns

out that doing so simply on a randomly chosen subset

of Q suffices to (almost) preserve the approximation
ratio, as shown in the next theorem.

Theorem 3 For any 0 < ǫ, λ < 1, executing lines 3–
6 of the Asum algorithm only on a random subset of

f(φ, ǫ, λ) points of Q returns a (3+ ǫ)-approximate an-

swer to the sum Fann query in any dimensions with

probability at least 1− λ, where

f(φ, ǫ, λ) =
log λ

log(1− φǫ/3)
= O(log(1/λ)/φǫ). (9)

Proof Following the proof of Theorem 1, we note that

the approximation ratio is guaranteed as long as q∗ is

one of the points in Q that have gone through lines

3–6 of the algorithm. Of course it is difficult to know

which query point in Q is q∗ since that depends on
the optimal answer p∗, so the algorithm simply tries all

possible q ∈ Q.

Now since we execute lines 3–6 of the algorithm only

on a randomly chosen subset of Q, q∗ may not be one

of them. Nevertheless, if some other q′ has been chosen

that is among the ǫφM/3 closest points in Q∗
φ (thus

also in Q) to p∗, i.e., q′ ∈ Qp∗

ǫφ/3, the proof can still go

through except inequality (7), hence (6).

However, in this case given q′ ∈ Qp∗

ǫφ/3, we have:

(φM − ǫφM

3
)d(q′, p∗) ≤

∑

x∈Qp∗

φ −Qp∗

ǫφM/3

d(x, p∗)

≤
∑

x∈Qp∗

φ

d(x, p∗) =
∑

x∈Q∗

φ

d(x, p∗).

Thus, (7) becomes

φM · d(q′, p∗) ≤ 1

1− ǫ/3

∑

x∈Q∗

φ

d(x, p∗) =
1

1− ǫ/3
r∗,

where equality holds in the worst case when the (ǫφM/3−
1) closest points to p∗ in Q all have distance 0 to p∗,
q′ is exactly the (ǫφM/3)-th closest point, and the next

(1− ǫ/3)φM closest points are all at the same distance

to p∗ as q′. Then (6) becomes

2

1− ǫ/3
r∗ + r∗ ≤ 2(1 + ǫ/2)r∗ + r∗ = (3 + ǫ)r∗. (10)

Thus it suffices to ensure that at least one of the

ǫφM/3 closest points in Q to p∗ is chosen. In a ran-

dom subset of f(φ, ǫ, λ) points in Q, the probability

that none of these ǫφM/3 points is chosen is at most

(1 − ǫφ/3)f(φ,ǫ,λ). Setting f(φ, ǫ, λ) as (9) makes this
probability at most λ.�

Note that by this optimization the number of NN
searches we need to issue is independent of the size of

Q and dimensionality, which makes the result especially
appealing for a large Q and data in high dimensions.

5.1.2 A simpler algorithm for φ = 1

When φ = 1, the sum Fann problem reduces to the sum
Ann problem [18, 19]. A simple heuristic approximate

algorithm was proposed in [19], denoted as Asum1 (Al-

gorithm 3), which simply returns the nearest neighbor

of the geometric centroid of Q. However, no approx-

imation ratio was proved in [19]. We show that this

algorithm also gives a 3-approximation for sum Ann

and the bound is tight.

Algorithm 3: Asum1 (P , Q, sum)

1 let qm be the geometric centroid of Q;
2 return pm = nn(qm, P);

Theorem 4 The Asum1 algorithm finds a 3-approximation

for the sum Ann problem using only one nearest neigh-
bor search, and the bound is tight.

Proof The query cost is obvious. Next, we focus on the
approximation bound:

rpm =
∑

q∈Q

d(pm, q) ≤
∑

q∈Q

(d(p, qm) + d(qm, q))

≤
∑

q∈Q

(d(p∗, qm) + d(qm, q)) (since pm = nn(qm, P))

≤
∑

q∈Q

(d(p∗, q) + d(q, qm) + d(qm, q))

=
∑

q∈Q

d(p∗, q) + 2
∑

q∈Q

d(qm, q) ≤ 3r∗.

The last ‘≤’ holds because the geometric centroid qm
of Q has the property that it is the point q (among all

8 Feifei Li et al.

the points in the data space) minimizing the sum of the

Euclidean distances from q to the points of Q. Hence,
∑

q∈Q d(qm, q) ≤ ∑

q∈Q d(p∗, q) = r∗.
To see that this bound is tight, consider the exam-

ple in Figure 2, where P = {p1, p2} and Q = {q1, q2}.
Clearly, any point on the line segment q1q2 (inclusive)
is a geometric centroid for Q. Suppose q2 is returned as

qm, which means that pm = nn(q2, P) = p2. However,
rp2

= 3r − ǫ, and in this case p∗ = p1 and rp1
= r.

We can construct this example in any dimension and

make ǫ arbitrarily small, which shows that the bound

is tight.�

q1 q2 p2

r r − ǫ

p1
Fig. 2 Asum1’s approximation bound is tight.

5.2 A two-dimensional 2-approximate algorithm

We now show that the approximation ratio can be im-
proved to 2 with a slight extension to the Asum al-

gorithm. We will see that this extension works best in

2d space, and thus, lends itself nicely to applications

dealing with entities in a longitude-latitude world.

Let us first introduce a useful concept called sector

nearest neighbors due to [23]. Given a point q in two-

dimensional space, let ℓ1, ℓ2, and ℓ3 be lines such that
(i) all of them cross q, and (ii) each pair of lines makes

an angle of 60 degrees. See Figure 3a for an illustra-

tion. Note that the group of ℓ1, ℓ2, ℓ3 satisfying the two

conditions is not unique; and any group suffices for our

purposes. These lines cut the data space into 6 sectors

around q, each of which as shown in Figure 3a is an in-
finite cone-like area. The sector nearest neighbors of q

with respect to a set P of points are p1, ..., p6 such that

pi (1 ≤ i ≤ 6) has the smallest distance to q among all

the points of P in sector i. Note that pi does not exist

if P has no point in sector i (hence, q may have less
than 6 sector nearest neighbors).

Algorithm 4: Asum2 (P , Q, φ, sum)

1 set C = ∅;
2 for i = 1, . . . ,M do

3 add to C the sector nearest neighbors of qi with
respect to P ;

4 return (p,Qp
φ
) where p is the point in C with the

smallest rp;

Algorithm 4 presents our new algorithm namedAsum2.

We now prove:

q

ℓ1

ℓ2

ℓ3

sector 1

sector 2
sector 3

sector 4

sector 5
sector 6

(a) Sectors around a point

q∗

p∗p′

θ1

θ2
θ3

(b) Illustration of a prop-
erty in the proof of Theo-
rem 5

Fig. 3 Ideas behind Asum2

Theorem 5 Asum2 returns a 2-approximate answer

to any sum Fann query.

Proof Let (p∗, Q∗
φ) be an optimal answer to the query.

Let q∗ = nn(p∗, Q∗
φ). Let p′ be the point closest to q∗,

among all the points of P in the same sector of q∗ as

p∗. If p′ = p∗, then Algorithm Asum2 returns p∗; and
hence, we are done. Next, we consider p′ 6= p∗; see Fig-

ure 3b for an illustration of the relative positions of
q∗, p∗, and p′ in this scenario.

Let us focus on the triangle q∗p∗p′, and its angles

θ1, θ2, and θ3 as defined in Figure 3b. Since d(p′, q∗) ≤
d(p∗, q∗) by definition of p′, we know that θ3 ≥ θ2. On

the other hand, θ1 cannot exceed 60 degrees (which is

the angle between the two solid lines, by definition of
a sector). These facts, together with the property that
θ1 + θ2 + θ3 = 180 (degrees), imply θ3 ≥ 60. Hence,

θ3 ≥ θ1, indicating that d(p′, p∗) ≤ d(p∗, q∗).
We now complete the proof with the following ar-

gument:

rp′ =
∑

x∈Qp′

φ

d(p′, x) ≤
∑

x∈Q∗

φ

d(p′, x)

≤
∑

x∈Q∗

φ

(d(p′, p∗) + d(p∗, x))

= (φM) · d(p′, p∗) + rp∗

≤ (φM) · d(p∗, q∗) + rp∗

≤ rp∗ + rp∗ (by (7))

= 2rp∗ .�

Finding the sector nearest neighbors of a point q

can be done by running 6 constrained nearest neighbor
queries [9] concurrently, which can be efficiently sup-

ported using an R-tree on P . Note that the concurrent
execution of the 6 queries avoids accessing the same

node of the R-tree twice. Compared to the Asum algo-

rithm, the overhead of Asum2 comes from: (i) for each

query point q ∈ Q, Asum2 pays higher cost because

the 6 constrained nearest neighbor queries together are

Exact and Approximate Flexible Aggregate Similarity Search 9

more expensive than a single nearest neighbor query;

(ii) Asum2 needs to calculate the aggregate distance
of up to 6M points, as opposed only M in Asum. In

return, however, Asum2 guarantees that the quality of

its answer is never worse than that of Asum. This is

because the set C of candidate points considered by
Asum2 includes all the candidate points considered by

Asum (in Algorithm 2, the candidates are fetched at
Line 3)—noticing that the nearest neighbor of a point

q must be a nearest neighbor in a sector of q.

As mentioned before, Asum2 is best suited for 2d

space, but what happens in higher dimensional space?

The underlying idea of Asum2 can still be generalized,
except that a sector of q is no longer bounded by 2

lines, but instead, is bounded by d lines ℓ1, ..., ℓd (where
d is the dimensionality) such that each pair of these

lines forms an angle of 60 degrees. It can be shown

that we can cover the whole d-dimensional space by

using cd such sectors, for some constant c. To solve a

sum Fann query, all that remains is to find, for each
qi ∈ Q, the constrained nearest neighbor of qi in each

sector of qi. An argument similar to the proof of Theo-

rem 4 shows that at least one of these cdM constrained

nearest neighbors gives a 2-approximate answer. Un-

fortunately, this idea is mainly of theoretical interests

because it is non-trivial to solve a constrained nearest

neighbor of this sort even in 3d space.

5.2.1 Improve the efficiency of Asum2

Similar to the sampling method we have designed to
reduce the cost of Asum in Section 5.1.1, a sampling

based approach can also be used here to dramatically
improve the efficiency of the Asum2 method, without

sacrificing much of its approximation accuracy. Specif-
ically, we have:

Theorem 6 For any 0 < ǫ, λ < 1, executing line 3

of the Asum2 algorithm only on a random subset of

f(φ, ǫ, λ) points of Q returns a (2+ ǫ)-approximate an-
swer to the sum Fann query in any dimensions with

probability at least 1 − λ, where f(φ, ǫ, λ) is set in the
same way as that in (9), i.e.,

f(φ, ǫ, λ) =
log λ

log(1− φǫ/3)
= O(log(1/λ)/φǫ).

Proof Following the proof of Theorem 5, we note that
the approximation ratio is guaranteed as long as q∗ is

one of the points in Q that have gone through line 3

of the algorithm. Hence, we can leverage the same in-

tuition as that followed by Theorem 3 to optimize this

with a randomly chosen subset of Q.

Now since we execute line 3 of the algorithm only

on a randomly chosen subset of Q, q∗ may not be one

of them. Nevertheless, if some other q′ has been chosen

that is among the ǫφM/3 closest points in Q∗
φ (thus

also in Q) to p∗, i.e., q′ ∈ Qp∗

ǫφ/3, the proof can still go

through except that now we have q′ instead of q∗ in

Figure 3(b). But still, p′ is the nearest neighbor of q′,
among all points of P in the same sector of q′ as p∗.
If p′ = p∗, then Asum2 returns p∗; and hence we are

done. When p′ 6= p∗, we still have d(p′, q′) ≤ d(p∗, q′)
by definition of p′, which implies that it is still the case

that θ3 ≥ θ2. Using the same argument as before, we

can show that d(p′, p∗) ≤ d(p∗, q′).
On the other hand, using the same argument from

the proof of Theorem 3, in this case given q′ ∈ Qp∗

ǫφ/3,

we still have equation (10), i.e.,

φM · d(q′, p∗) ≤ 1

1− ǫ/3

∑

x∈Q∗

φ

d(x, p∗) =
1

1− ǫ/3
r∗.

Combining the above observations, we have:

rp′ =
∑

x∈Qp′

φ

d(p′, x) ≤
∑

x∈Q∗

φ

d(p′, x)

≤
∑

x∈Q∗

φ

(d(p′, p∗) + d(p∗, x))

= (φM) · d(p′, p∗) + rp∗

≤ (φM) · d(p∗, q′) + rp∗

≤ 1

1− ǫ/3
r∗ + rp∗

≤ (2 + ǫ)r∗.

Thus it suffices to ensure that at least one of the

ǫφM/3 closest points in Q to p∗ is chosen. In a ran-

dom subset of f(φ, ǫ, λ) points in Q, the probability

that none of these ǫφM/3 points is chosen is at most
(1 − ǫφ/3)f(φ,ǫ,λ). Setting f(φ, ǫ, λ) as (9) makes this

probability at most λ.�

5.3 A (1 + ǫ)-approximate algorithm in low

dimensional space

The approximation algorithms we have proposed so far

are highly efficient—they performO(1) instances of near-

est neighbor search for each query point in Q. They,
however, are not suitable if one demands an approx-

imate answer whose quality is extremely close to the

optimal. In this section, we explain how to bring down

the approximation ratio to 1+ǫ, where ǫ can be any ar-

bitrarily small constant. Our algorithm is designed for

low dimensional space where the dimensionality d is a

small constant.

10 Feifei Li et al.

l

c

Fig. 4 An (l, c)-regular grid in 2d space

Let us review an operation called find-any. Given

an axis-parallel rectangle ρ, such an operation reports

whether the dataset P has any point in ρ; and if the
answer is yes, the operation also returns such a point (if

the answer is no, then no more output is required of the

operation). We will need a slightly more sophisticated
version of find-any, which we call grid-find-any(G,P).

Here, as before, P is a set of points. G is an (l, c)-regular

grid defined as follows: (i) the boundary of G is an axis-

parallel (hyper) square in the underlying d-dimensional
space with length l on each dimension, and (ii) G is par-

titioned into (l/c)d axis-parallel (hyper) squares—each

of which is called a cell—such that each cell has length

c on each dimension. See Figure 4 for a 2d example.

The operation grid-find-any(G,P) returns, for each cell
of G, an arbitrary point of P covered by the cell (if no

such a point exists, then no output is needed for the
cell). It is worth nothing that grid-find-any(G,P) is es-

sentially the union of several find-any operations, one

for each cell.

Now we are ready to present our (1+ǫ)-approximate

algorithm, called Asum3. First, we apply Asum to ob-

tain a point p that serves as a 3-approximate answer.

Let r = rp/(φM); recall that rp is the aggregate dis-

tance of p. Next, for each query qi ∈ Q, we perform an

operation grid-find-any(Gi, P), whereGi is the (2r, ǫr/(3√
d))-regular grid centered at qi. Collect into a set C all

the points returned by the M grid-find-any operations.
The points in C are the only candidates to be con-

sidered. We return the one p′ ∈ C with the smallest

rp′ . Algorithm 5 summarizes the above steps in pseudo

code.

Theorem 7 Asum3 returns a (1+ ǫ)-approximate an-

swer for any sum Fann query.

Proof Let (p∗, Qp∗

φ) be an optimal answer to the query.

Since (p,Qp
φ) is 3-approximate, we know that rp∗ ≤

rp ≤ 3rp∗ . Hence:

rp∗/(φM) ≤ r ≤ 3rp∗/(φM). (11)

Algorithm 5: Asum3 (P , Q, φ, sum)

1 (p,Qp
φ
) = the output of Asum (P,Q, φ, sum);

2 r = rp/(φM);
3 set C = ∅;
4 for i = 1, . . . ,M do

5 Gi = the (2r, ǫr/(3
√
d))-regular grid centered at qi;

6 add to C the points returned by
grid-find-any(Gi, P);

7 return (p′, Qp′

φ
) where p′ is the point in C with the

smallest rp′ ;

The fact rp∗/(φM) ≤ r implies that p∗ is within dis-

tance r from at least one query point in Qp∗

φ ; let us

denote this query point by q∗.
Let G∗ be the (2r, ǫr/(3

√
d))-regular grid centered

at q∗. Since d(p∗, q∗) ≤ r, we know that p∗ is covered by
G∗, and hence, falls in a certain cell in G∗. We denote

this cell by c.

Asum3 performs a grid-find-any(G∗, P) operation.

Let p̂ be the point this operation returns for cell c; note

that the operation must return a point for c because c
covers at least one point of P , namely, p∗. If p̂ = p∗,
then Asum3 returns an optimal answer; and we are
done. Next, we focus on the scenario where p̂ 6= p∗.
Since c is a (hyper) square with length ǫr/(3

√
d) on

each dimension, any two points in c can have distance

at most ǫr/3. It thus follows that

d(p̂, p∗) ≤ ǫr/3. (12)

We complete the proof with the following argument:

rp̂ =
∑

x∈Qp̂
φ

d(p̂, x) ≤
∑

x∈Qp∗

φ

d(p̂, x)

≤
∑

x∈Qp∗

φ

(d(p̂, p∗) + d(p∗, x))

= φM · d(p̂, p∗) + rp∗

≤ φM · ǫr/3 + rp∗ (by (12))

≤ ǫ · rp∗ + rp∗ (by (11))

= (1 + ǫ)rp∗ .�

Having established the quality guarantee of Asum3,
next we discuss the efficiency of Asum3. Recall that,

after invoking Asum, the algorithm performs M find-

any-grid operations. A crucial observation is that each

grid-find-any operation involves only a small number of

find-any operations. Specifically, each grid-find-any op-

eration works with a (2r, ǫr/(3
√
d))-regular grid, which

has (2r
ǫr/(3

√
d)
)d = (6

√
d

ǫ)d = O(1) cells (both ǫ and d

are constants). A grid-find-any operation is the union

of the same number of find-any operations.

As mentioned earlier, Asum3 aims at a low dimen-

sionality d, in which case a find-any operation can be

Exact and Approximate Flexible Aggregate Similarity Search 11

efficiently processed with an R-tree. Given a rectangle

ρ, a find-any can proceed as if it was doing range re-
porting with ρ on the R-tree, except that it terminates

as soon as the first point in ρ is found. Following this

idea, a grid-find-any operation can be implemented by

running all the O(1) corresponding find-any operations
concurrently, in order to avoid accessing the same node

of the R-tree more than once.

So in summary, Asum3 does M iterations of grid-

find-any operations. Each grid-find-any opertaion does

(6
√
d

ǫ)d number of find-any operation in parallel, where

each find-any operation does a range-search-like opera-

tion on an R-tree over P , using a d-dimension rectangle

ρ with length 2r
ǫr/(3

√
d)

in each extent, such that it termi-

nates and returns the first point found from the R-tree.

6 Approximation algorithms for max Fann

We next present our approximation algorithm for the

max Fann problem. Recall that here we aim at finding

the point p ∈ P that minimizes the maximum distance

from p to Qp
φ, where Qp

φ consists of the φM closest

points to p in Q.

6.1 A (1 + 2
√

2)-approximate algorithm

For a point q ∈ Q, we also use Qq
φ to denote the set

of the φM closest points to q in Q, including q itself.

We use MEB(S) to denote the minimum enclosing ball
of a set of points S, namely the smallest ball that fully

contains S. Our first algorithm, Amax, is presented in

Algorithm 6. This algorithm is actually almost identical

to Asum, except for each qi ∈ Q, we find the NN in P

for ci, the center of the minimum enclosing ball of Qqi
φ ,

instead of qi itself.

Algorithm 6: Amax (P , Q, φ, max)

1 set minr = +∞; α = −1;
2 for i = 1, . . . ,M do

3 find Q
qi
φ
, and its minimum enclosing ball

bi = MEB(Qqi
φ
);

4 let ci be the center of bi;
5 let pi = nn(ci, P), find Q

pi
φ

and calculate rpi ;

6 if rpi < minr then

7 set α = i, and minr = rpi ;

8 return (pα, Q
pα
φ

);

Even though the proof for its approximation bound

is rather involved, the algorithm AMAX itself is ac-

tually easy to understand, as shown in Algorithm 6.

Basically, it iterates through each qi ∈ Q, and finds the

center of ci of the minimum enclosing ball for qi and its
φM nearest neighbors in Q. It then finds an approxima-

tion candidate pi that’s the nearest neighbor of ci in P .

The final approximation answer is the pj that has the

minimum max distance to pj ’s φM nearest points in
Q, among all M candidates for j = 1, . . . ,M . The intu-

ition behind AMAX is that the minimum enclosing ball

around a query point and its φM nearest neighbors in

Q naturally forms a good candidate for lower bounding

the max distance from a point in space to φM points

in Q. So the nearest neighbor for the center of this ball

from P must be a good candidate for minimizing the
max distance to any φM points in Q.

Below we show that Amax returns a (1 + 2
√
2)-

approximate answer to the max Fann query, which is

slightly worse than our approximation ratio for the sum

Fann problem.

We need a few technical lemmas first in order to

prove this. Let B(c, r) be the ball centered at c with

radius r. If B(c, r) covers all points (geometrically) in
S, we say S ⊆ B(c, r). For a point o, a value γ, let So,γ

be any set of points such that

o ∈ So,γ and So,γ ⊆ B(o, 2γ). (13)

Lemma 1 For any So,γ , let B(s, rs) = MEB(So,γ),
then d(o, s) ≤ rs ≤ 2γ.

Proof Given So,γ ⊆ B(o, 2γ), rs ≤ 2γ is immediate by

the definition of the minimum enclosing ball. Next, o ∈
So,γ and B(s, rs) = MEB(So,γ) ensures that d(o, s) ≤
rs. �

Pick any point e inside B(o, 2γ). Extend the segment

oe (from the e side) and hit ∂B(o, 2γ), the boundary of
B(o, 2γ), at b. Consider the hyperplane π(o, e) passing

e and orthogonal to oe. Please see Figure 5 for an il-

lustration in two dimensions. In 2D, π(o, e) is a line,

whose intersection with B(o, 2γ) is a segment ac. In d

dimensions, the intersection of π(o, e) with B(o, 2γ) is
a ball in d − 1 dimensions; we let a be any point on

the boundary of this ball in this case. The hyperplane
π(o, e) divides B(o, 2γ) into two portions, and we de-

note the one containing b as a cap C(o, e, b). Next, let p

be any point on the segment oe, and consider the ball

B(p, d(p, a)). Extend oe and hit ∂B(p, d(p, a)) at j. Sim-

ilarly, let C(p, e, j) be the cap of B(p, d(p, a)) separated
out by π(p, e) = π(o, e). We have the following:

Lemma 2 For any e ∈ B(o, 2γ) and any p on the seg-

ment oe, C(o, e, b) ⊆ C(p, e, j).

Proof Since the two caps C(o, e, b) and C(p, e, j) share

the same base, which is the intersection of π(o, e) with

B(o, 2γ), we only need to show that b ∈ C(p, e, j). As p

12 Feifei Li et al.

o

a

b

c

p

e

2γ

j

π

Fig. 5 Lemma 2.

o

a

e hs

2γ

rs

S:

B(o, 2γ)

B(s, rs)

b
f

c

Fig. 6 e cannot be outside the
line interval os.

belongs to the segment oe, in △opa, d(o, p) + d(p, a) >

d(o, a) = d(o, b) = d(o, p) + d(p, b). Thus, d(p, j) =

d(p, a) > d(p, b). �

Lemma 3 For any point set So,γ satisfying (13), let

B(s, rs) = MEB(So,γ), and d(o, s) = z, then rs ≤
√

(2γ)2 − z2.

Proof Note that by Lemma 1, z ≤ 2γ, so
√

(2γ)2 − z2

is always a real number. Suppose for contradiction that

rs >
√

(2γ)2 − z2.

First, when this happens, we show that ∂B(s, rs)
and ∂B(o, 2γ) must intersect. Consider the line passing
through o and s. It intersects ∂B(s, rs) at two points,

say b and f , and let the one closer to o of the two be b

(see an illustration in Figure 6). Now,

d(o, f) = d(o, s) + d(s, f)

= z + rs

> z +
√

(2γ)2 − z2 (by the hypothesis)

≥
√

z2 + ((2γ)2 − z2) = 2γ,

which means that f is outside B(o, 2γ). Note that the

last inequality is due to the fact that for any x, y ≥ 0,

(x+ y)2 ≥ x2 + y2, hence x+ y ≥
√

x2 + y2.

Since B(s, rs) contains both o and f , one inside
B(o, 2γ) and one outside, and has a radius rs smaller

than 2γ (by Lemma 1), ∂B(s, rs) must intersect ∂B(o, 2γ).
The intersection in 2D is two points, and a (d − 2)-

sphere in d dimensions. Let a be any point on this

(d− 2)-sphere. Now consider the situation on the plane

defined by o, s, and a (Figure 6). On this plane, the
(d− 2)-sphere becomes two points a and c. Suppose ac

intersects bf at e. We first show that e must be inside

the line segment os. Suppose not, i.e., it is to the right

of s. In the right triangle △oae,

d(a, e)2 = d(o, a)2 − d(o, e)2

= (2γ)2 − (d(o, s) + d(s, e))2

= (2γ)2 − z2 − d(s, e)2 − 2zd(s, e). (14)

While in the right triangle △sae,

d(s, a)

o

a

e fs

2γ rs

S:
B(o, 2γ)

B(s, rs)

c

B(e, δ(e, a))
b

h
i

j

Fig. 7 Proof of Lemma 3

=
√

d(s, e)2 + d(a, e)2

=
√

d(s, e)2 + (2γ)2 − z2 − d(s, e)2 − 2zd(s, e) (by (14))

=
√

(2γ)2 − z2 − 2zd(s, e),

which contradicts with our assumption that d(s, a) =
rs >

√

(2γ)2 − z2. This means that e cannot lie outside

os.
Given this, we must end up at a case in Figure 7.

Clearly,

rs = d(s, a) > d(e, a), (15)

and since So,γ ⊆ B(o, 2γ) and So,γ ⊆ B(s, rs), we have:

So,γ ⊆ B(o, 2γ) ∩ B(s, rs). (16)

Now, consider B(o, 2γ) ∩ B(s, rs). It is formed by two

caps C(o, e, h) from B(o, 2γ) and C(s, e, b) from B(s, rs).
Consider the ball B(e, d(e, a)) and suppose its boundary

intersects with the line through b, f at i and j. The ball
B(e, d(e, a)) can be divided into two half-balls C(e, e, i)

and C(e, e, j), which are special caps where the separat-

ing hyperplane passes its center. By Lemma 2, we know

that C(o, e, h) ⊆ C(e, e, j) and C(s, e, b) ⊆ C(e, e, i).

Therefore,

B(o, 2γ) ∩ B(s, rs) ⊆ B(e, d(e, a)).

This means that there is a ball with radius d(e, a) < rs
that contains So,γ , which contradicts with the fact that

B(s, rs) is the MEB of So,γ .�

Lemma 4 For any point set So,γ satisfying (13), let

B(s, rs) = MEB(So,γ), and d(o, s) = z, then z + rs ≤
2
√
2γ.

Proof

z + rs ≤ z +
√

(2γ)2 − z2 (by Lemma 3)

≤
√

2(z2 + (2γ)2 − z2) = 2
√
2γ. (17)

Note that the second inequality is due to the fact that

for any x, y ≥ 0, x2 + y2 ≥ 2xy. Thus, (x + y)2 ≤
2(x2 + y2), and x+ y ≤

√

2(x2 + y2).�

Exact and Approximate Flexible Aggregate Similarity Search 13

We are now ready to present the main theorem.

Theorem 8 Amax gives a (1+2
√
2)-approximate an-

swer to the max Fann query in any dimensions, and it
is tight.

Proof Let (p∗, Q∗
φ) be the optimal answer to the max

Fann query with query group Q on P . Let r∗ be the

optimal aggregate distance, i.e.,

r∗ = max(p∗, Q∗
φ) = max

q∈Q∗

φ

d(p∗, q).

Let B(x, rx) = MEB(Q∗
φ). Since B(x, rx) is the min-

imum enclosing ball of Q∗
φ and Q∗

φ ⊆ B(p∗, r∗), we have

rx ≤ r∗. (18)

Consider any q ∈ Q∗
φ. Clearly q is contained in

B(x, rx). This indicates that the maximum distance of

q to any point in Q∗
φ is bounded by the diameter of

B(x, rx), i.e.,

max(q,Q∗
φ) ≤ 2rx. (19)

Note that Qq
φ found by line 3 of the algorithm Amax

consists of the φM nearest neighbors of q in Q (includ-

ing q itself), and Q∗
φ ⊆ Q. Thus,

max(q,Qq
φ) ≤ max(q,Q∗

φ) ≤ 2rx, (20)

If we view q as o and rx as γ, clearly So,γ = Qq
φ

satisfies (13). Line 3 in Amax also finds b = B(c, rq) =
MEB(Qq

φ), by Lemma 4, we have:

d(q, c) + rq ≤ 2
√
2rx. (21)

Now, p = nn(c, P), and Qp
φ and rp are found in line

5 of Amax. Recall that Qp
φ is the φM nearest neighbors

of p in Q and rp = max(p,Qp
φ). We have:

rp = max
y∈Qp

φ

d(p, y)

≤ max
y∈Qq

φ

d(p, y) (Qp
φ is the φM NNs of p in Q)

≤ max
y∈Qq

φ

(d(p, c) + d(c, y))

≤ max
y∈Qq

φ

(d(p∗, c) + d(c, y)) (p = nn(c, P))

= d(p∗, c) + rq (B(c, rq) = MEB(Qq
φ))

≤ d(p∗, q) + d(q, c) + rq

≤ r∗ + 2
√
2rx (due to q ∈ Q∗

φ and (21))

≤ (1 + 2
√
2)r∗. (by (18)) (22)

Finally, note that some q from Q∗
φ must have been

iterated through by the Amax algorithm. Thus, the

point p define above must have been checked as a can-

didate answer, which completes the proof. We show it

is tight in Appendix A.�

Remark. When φ = 1, the max Fann problem reduces

to the max Ann problem, which is also referred to as

the group enclosing query (Geq) in [15]. In this case,

since all the Qqi
φ ’s are the same, which is the entire Q,

the Amax algorithm degenerates to finding the nearest

neighbor of the center of MEB(Q). This is exactly the

algorithm proposed in [15] for the Geq problem. How-
ever, for this special case, a better approximation ratio

of
√
2 can be proved [15].

Computational issues. Computing the minimum en-

closing ball is well studied. For any point set S, MEB(S)
can be computed efficiently in linear time in any con-

stant dimensions [3]. In high dimensions, one can find

a (1 + ǫ)-approximation of the minimum enclosing ball

efficiently [13].

However, as we have pointed out in Section 5.1, ex-

act NN search is expensive in high dimensions, and we

can replace the exact NN search in line 5 of Amax

with a β-approximate NN search. When doing so, the
approximation ratio of Amax gets an extra β factor

correspondingly.

Theorem 9 Replacing the exact nn function in Amax

with a β-approximate NN search, Amax gives a ((1 +

2
√
2)β)-approximate answer to the max Fann query.

Proof Suppose the final answer returned now is (p′, Qp′

φ)

and the answer returned by Amax with an exact nn

method is (p,Qp
φ). Following the derivation in (22), we

have:

rp′ = max
y∈Qp′

φ

d(p′, y)

≤ max
y∈Qq

φ

d(p′, y)

≤ max
y∈Qq

φ

(d(p′, c) + d(c, y))

≤ max
y∈Qq

φ

(βd(p, c) + d(c, y)) (p′ is β-approx. of p)

≤ β max
y∈Qq

φ

(d(p, c) + d(c, y))

≤ β(1 + 2
√
2)r∗, (by the same derivation in (22))

which shows that p′ is a ((1 + 2
√
2)β)-approximate

answer.�

6.1.1 Reduce the cost of Amax

As in Section 5.1.1, we can reduce the cost of Amax by

executing lines 3–7 of the algorithm on a random subset

of points in Q, except that the analysis is simpler in this

case.

14 Feifei Li et al.

Theorem 10 For any 0 < λ < 1, executing lines 3–

7 of the Amax algorithm only on a random subset of
f(φ, λ) points of Q returns a (1 + 2

√
2)-approximate

answer to the max Fann query with probability at least

1− λ in any dimensions, where

f(φ, λ) =
log λ

log(1− φ)
= O(log(1/λ)/φ).

Proof We note that the proof of Theorem 8 only relies

on at least one of the points in Q∗
φ being considered by

the algorithm. If we run lines 3–7 on a random subset of

f(φ, λ) points, the probability that none of φM points

in Q∗
φ is considered is at most (1 − φ)f(φ,λ). Setting

f(φ, λ) as in the theorem makes this probability at most

λ.�

Again, the theorem shows that the number of NN searches

we need to issue is independent of |Q| and dimension-
ality.

6.2 A two-dimensional 2-approximate algorithm

Next, we show that the idea presented in Section 5.2

(which resorts to sector nearest neighbors) can also be

applied to obtain a 2-approximate algorithm, named

Amax2, for max Fann queries in 2d space.

Algorithm 7: Amax2 (P , Q, φ, max)

1 Same as Asum2 (but note the change in the aggregate
function).

Theorem 11 Amax2 returns a 2-approximate answer

to any max Fann query.

Proof Let p∗ be an optimal answer to the query, and

q∗ be the query point in Qp∗

φ that is the farthest to p∗.
Let p′ be the point closest to q∗, among all the points

of P that are in the same sector of q∗ as p∗. By the
same argument as in Theorem 5, we have d(p′, p∗) ≤
d(p∗, q∗).

Thus, we complete the proof with:

rp′ = max
x∈Qp′

φ

d(p′, x) ≤ max
x∈Qp∗

φ

d(p′, x)

≤ max
x∈Qp∗

φ

(d(p′, p∗) + d(p∗, x))

≤ d(p′, p∗) + rp∗

≤ d(p∗, q∗) + rp∗

= 2rp∗ .�

6.2.1 Improve the efficiency of Amax2

Similar to Asum2, Amax2 needs to perform 6M sector

nearest neighbors. A sampling based approach, similar

to that in Section 6.1.1 for Amax, can be adapted to

dramatically reduce its cost, while maintaining its high

approximation quality.

Theorem 12 For any 0 < λ < 1, executing the Amax2

algorithm only on a random subset of f(φ, λ) points of

Q returns a 2-approximate answer to the max Fann

query with probability at least 1− λ in any dimensions,

where

f(φ, λ) =
log λ

log(1− φ)
= O(log(1/λ)/φ).

Proof Following the proof of Theorem 11, we note that
the approximation ratio is guaranteed as long as q∗ is

one of the points in Q that have gone through the al-

gorithm. Hence, instead of trying all possible q ∈ Q, we

can leverage the same intuition as followed by Theorem

3 for the SUM case.

We execute the algorithm only on a randomly cho-

sen subset of Q, of course q∗ may not be one of them.

Nevertheless, if some other q′ has been chosen that is

among points in Q∗
φ (thus also in Q), i.e., q′ is one of

the φM closest points to p∗ from Q, the proof can still

go through except that now we have q′ instead of q∗ in

Figure 3(b). Following the same argument as that in the
proof of Theorem 6, we still have d(p′, p∗) ≤ d(p∗, q′).

On the other hand, note that since q∗ in this case

is the furthest point to p∗ among the closest φM points

to p∗ from Q (which is Qp∗

φ), as long as q′ ∈ Q∗
φ = Qp∗

φ ,

we always have d(q′, p∗) ≤ d(q∗, p∗).

Combining the above observations, following the same

step from the proof of Theorem 11, we have, if q′ ∈ Q∗
φ:

rp′ = max
x∈Qp′

φ

d(p′, x) ≤ max
x∈Qp∗

φ

d(p′, x)

≤ max
x∈Qp∗

φ

(d(p′, p∗) + d(p∗, x))

≤ d(p′, p∗) + rp∗

≤ d(p∗, q′) + rp∗

≤ d(p∗, q∗) + rp∗ = 2rp∗ .

That said, we only need at least one of the points

in Q∗
φ being considered by the algorithm Amax2. If we

run Amax2 on a random subset of f(φ, λ) points, the

probability that none of φM points in Q∗
φ is considered

is at most (1−φ)f(φ,λ). Setting f(φ, λ) as in the theorem

makes this probability at most λ.�

Exact and Approximate Flexible Aggregate Similarity Search 15

6.3 A (1 + ǫ)-approximate algorithm in

low-dimensional spaces

In this section, we give an algorithm that guarantees

(1 + ǫ)-approximate answers for any constant ǫ when

the dimensionality d is a small constant. This algo-

rithm, called Amax3, is an adaptation of Asum3, and

also makes use of the grid-find-any operation defined in

Section 5.3.

Algorithm 8: Amax3 (P , Q, φ, max)

1 (p,Qp
φ
) = the output of Amax (P,Q, φ,max);

2 r = rp;
3 set C = ∅;
4 for i = 1, . . . ,M do

5 Gi = the (2r, ǫr/((1 + 2
√
2)

√
d))-regular grid

centered at qi;
6 add to C the points returned by

grid-find-any(Gi, P);

7 return (p′, Qp′

φ
) where p′ is the point in C with the

smallest rp′ ;

Theorem 13 Amax3 returns a (1 + ǫ)-approximate

answer for any max Fann query.

Proof Let (p∗, Qp∗

φ) be an optimal answer to the query.

Since (p,Qp
φ) is (1 + 2

√
2)-approximate, we know that

rp∗ ≤ rp ≤ (1 + 2
√
2)rp∗ . The fact r = rp ≥ rp∗ implies

that p∗ is within distance r from at least one query
point in Qp∗

φ ; let us denote this query point by q∗.

Let G∗ be the (2r, ǫr/((1 + 2
√
2)
√
d))-regular grid

centered at q∗. Since d(p∗, q∗) ≤ r, we know that p∗ is

covered by G∗, and hence, falls in a certain cell in G∗.
We denote this cell by c.

Amax3 performs a grid-find-any(G∗, P) operation.

Let p̂ be the point this operation returns for cell c. If

p̂ = p∗, then Asum3 returns an optimal answer; and we
are done. Next, we focus on the scenario where p̂ 6= p∗.
Since c is a (hyper) square with length ǫr/((1+2

√
2)
√
d)

on each dimension, we know:

d(p̂, p∗) ≤ ǫr/(1 + 2
√
2). (23)

We complete the proof with the following argument:

rp̂ = max
x∈Qp̂

φ

d(p̂, x) ≤ max
x∈Qp∗

φ

d(p̂, x)

≤ max
x∈Qp∗

φ

(d(p̂, p∗) + d(p∗, x))

= d(p̂, p∗) + rp∗

≤ ǫr/(1 + 2
√
2) + rp∗ (by (23))

≤ ǫ · rp∗ + rp∗

= (1 + ǫ)rp∗ .�

As in Asum3, every grid-find-any operation per-

formed by Amax3 has O(1) cells, and can have all the
corresponding find-any operations executed on an R-

tree concurrently.

More specifically, Amax3 does M iterations of grid-

find-any operations. Each grid-find-any opertaion does

((2+4
√
2)

√
d

ǫ)d number of find-any operation in parallel,

where each find-any operation does a range-search-like

operation on an R-tree over P , using a d-dimension rect-
angle ρ with length 2r

ǫr/((1+2
√
2)

√
d)

in each extent, such

that it terminates and returns the first point found from

the R-tree.

7 Extensions

This section contains a collection of useful extensions

to the proposed algorithms.

7.1 The k-Fann problem

Given a query group Q and an aggregate function g (=

sum or max), a top-k Fann query returns the k points

p ∈ P with the smallest aggregate distances rp. We

explain how to process such queries next.

Exact methods. In the R-tree method, the calcula-
tion of the pruning condition is intact, and the only

difference is that a node should be compared against

the kth best candidate answer found so far to decide

whether it should be pruned or not.

To adapt the List algorithm, we calculate the thresh-
old for the best possible aggregate similarity distance of

any unseen object in the same way as before, but com-
paring this threshold value to the kth best candidate

answer found so far to decide whether the algorithm
should terminate or continue.

Approximation methods. All our approximation al-

gorithms can be extended to return k answers, such
that the i-th (1 ≤ i ≤ k) one approximates the i-th best

answer with the same approximation ratios we have al-

ready proved for k = 1.

For the Asum algorithm, Line 3 of Algorithm 2

finds, for each q ∈ Q, its top-k nearest neighbors from
P . For each such point p, we carry out Line 4 to find

its Qp
φ and rp. Among the kM such candidate points

generated after iterating through all points in Q, we

return the k candidates with the k smallest rp values.

The optimization in Section 5.1.1 can still be applied.

Similarly, inAsum1, after finding the geometric cen-

troid of the query group, we find its top k nearest neigh-

bors from P and return them as the answer. In Asum2,

Line 3 of Algorithm 4 now should add to C the k sector

16 Feifei Li et al.

nearest neighbors of qi; that is, for each sector of qi,

add to C the k points closest to qi among all the points
of P falling in the sector. The output then consists of

the k points in C with the best aggregate distances.

To adaptAsum3, at Line 1 of Algorithm 5 we invoke

(the top-k version of the) Asum to obtain k answers.
Let p1, ..., pk be the k points in these answers. For each

pi, execute through Lines 2-7 to obtain an approximate

answer by setting p = pi.

Regarding Amax, at Line 5 of Algorithm 6, after

obtaining B(c, r) = MEB(Qq
φ) for each point q in Q, we

find the k nearest neighbors of c in P . For each such

point p, we find Qp
φ and rp. Among the kM such candi-

date points generated after iterating through all points

in Q, we return the k candidates with the k smallest

rp values. The optimization in Section 6.1.1 can still be
applied.

Finally, Amax2 and Amax3 can be modified in the

same manner as Asum2 and Asum3, respectively.

7.2 Other metric spaces

Our presentation so far considers that the distance be-

tween two points is their Euclidean distance. Next, we

discuss how to support other distance metrics.

The R-tree method in principle works in any metric

space, but we will need to replace the R-tree by a met-

ric space indexing structure, such as the M-tree [6]. The

List algorithm clearly works for any metric space, since

it only relies on the basic NN search algorithm. For a

similar reason, the Asum algorithm works for any met-

ric space as well; and its approximation ratio remains
the same.

AlgorithmsAsum1,Asum2,Asum3,Amax,Amax2,

and Amax3 are tailored for Euclidean distance, i.e.,

Lp norm with p = 2. However, it is well-known that,
given two points p, q, their Lp distances under different

p ∈ [1,∞) are all within a factor that depends only on
d, and hence, is a constant when d = O(1) (e.g., in 2d

space, the Lp distances of all p ∈ [1,∞) are within twice

the L∞ distance). This means that Asum1, Asum2,

Amax, and Amax2 all guarantee constant approxima-

tion factors for every such Lp norm when d = O(1) (for
this purpose, we can simply return the answers under

L2 norm regardless of p). This also means that, again
when d = O(1), Asum3 and Amax3 can be used to ob-

tain (1 + ǫ)-approximate answers for any Lp norm (for

this purpose, return the answers under L2 norm after

adjusting ǫ within a constant factor). In all the above

cases, the approximation ratio is adjusted by a constant

factor depending on d, which is
√
d for p ∈ [1,∞) that

can be treated as a constant if we assume d = O(1).

8 Experiments

We implemented all algorithms in C++, and executed

our experiments on a machine with an Intel Xeon 3.07
GHz CPU and 24GB memory. For all index structures

and data files, the page size is set to 4KB. For all of our

approximation algorithms, we used the optimized ver-

sions with 1/φ sampled query points from Q as guided

by Theorems 3, 6, 10, and 12. The sample sizes indi-

cated in Theorems 3, 6, 10, and 12 were necessary for
the upper bound analysis, which are loose. In practice,
we observed that simply taking a random sample of size

1/φ is sufficient for all algorithms.

Datasets. In 2 dimensions, we obtained the Texas (TX)

points of interest and road-network dataset from the

Open Street map project, where each point is repre-
sented by its longitude and latitude. The TX dataset

has 14 million points. We also generated synthetic datasets

for 2 to 6 dimensions. To capture the clustering na-

ture of real-world data, we generated random cluster

(RC) datasets where clusters of different sizes and ra-

dius have been generated with random center locations

in the space.

In high dimensions (d ≥ 10), we used the Color
dataset [5] consisting of 68, 040 points in 32 dimensions,

the MNIST dataset [14] with 60, 000 points in 50 di-

mensions, and the Cortina dataset [21] with 1, 088, 864

points in 74 dimensions.

Query groups. For the Fann problem, the cost of the

query depends on several critical factors, including the

location of the center (either the geometric median or

the center of the minimum enclosing ball) of Q, the cov-

ering range of Q (i.e., the space enclosed by MEB(Q)),

how points are distributed within the covering range,

the size of Q and the value of φ. Thus, we generated
queries as follows. For a certain query group size M , we

set A = 5% as the default volume of its covering range
in terms of the percentage of the entire data space.

Next a random location in the data space is selected as

the center of the query group. Then M random points

within a ball of volume A, centered at this center loca-

tion are generated. Two types of distributions were used
to generate query points: uniform distribution (uu) and

random cluster (rc). The relative performance of all al-
gorithms were similar for these two distributions, so
we only report the results using the rc query distribu-

tion. For each test, 40 random queries were generated.
The efficiency (running time and the number of IOs) is
very stable so we just report the average; the quality

(approximation ratio) has some variation, so we report

both the average as well as the 5%–95% interval.

Exact and Approximate Flexible Aggregate Similarity Search 17

8.1 Low dimensions

Setup. For the low-dimensional experiments, we used

the following default values: M = 200, N = 2, 000, 000,

φ = 0.5 and d = 2. We then varied each of them while

keeping the others fixed at their default values. Specif-

ically, we conducted 4 sets of experiments, where we

respectively varied M from 100 to 500, N from 1 to 5

million, φ from 0.1 to 1 and d from 2 to 6. For the first
three sets of experiments, we used the 2-dimensional

real dataset TX where we picked N points randomly

out of its 14 millions points. For the last set of exper-

iments varying d, the synthetic RC datasets were used

instead. In low dimensions, Asum and Amax utilize an

R-tree which indexes P to answer NN queries.

Quality of approximation. The approximation ra-

tios of Asum, Asum2, Amax and Amax2 for the 4
sets of experiments are shown in Figure 8 and Figure 9.

Clearly, in all these cases, all methods achieved excel-
lent approximation quality for the sum and max Fann

problems, respectively. The average approximation ra-

tio is between 1.1 to 1.3 in all these experiments. More

importantly, all algorithms behave quite stably, with

the 95% percentile at 1.5 for most scenarios. Figures
8(a),8(b), 9(a), and 9(b) show that their approxima-

tion qualities are not affected by the size of the query
group or the dataset. Figure 8(c) and 9(c) indicate that
a larger φ value leads to better approximation quality.

Note that when φ = 1, we used the Asum1 algorithm

for the sum Fann, and the special-case algorithm from

the group enclosing query [15] for the max Fann. This

is due to the fact that when φM is small, the probabil-

ity that our 1/φ sampled points do not cover at least
one point from Q∗

φ is higher. In all cases, it is clear that

Asum2 has achieved better approximation quality than

the approximation returned by Asum, whereas in the

case of max, the approximation quality of Amax and

Amax2 are similar in most cases (but keep in mind that

Amax2 does have a tighter theoretical bound, which is
still of great interest).

Finally, we study the impact of dimensionality on

the Asum and Amax methods (note that Asum2 and

Amax2 work well in 2d and it becomes difficult to find
sector nearest neighbors in higher dimensions). Figure

8(d) and 9(d) show that Asum and Amax approxima-
tion qualities actually improve slightly as d increases.

This supports our theoretical analysis that the approx-

imation ratios of Asum and Amax do not depend on

dimensionality. The slight improvement of the approxi-

mation ratio may be attributed to the fact that the op-

timal distance, r∗, increases faster as d increases than

the distance returned by the algorithm.

1 2 3 4 5

10
1

10
2

10
3

10
4

10
5

M:X10
2

IO

BFS R−treeSUM ASUM ASUM2

ListSUM

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

M:X10
2

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeSUM ASUM ASUM2

ListSUM

(b) running time.

Fig. 10 Methods for sum Fann in low dimensions: vary M .

1 2 3 4 5

10
1

10
2

10
3

10
4

10
5

M:X10
2

IO

BFS R−treeMAX AMAX AMAX2

ListMAX

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

M:X10
2

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeMAX AMAX AMAX2

ListMAX

(b) running time.

Fig. 11 Methods for max Fann in low dimensions: vary M .

Efficiency. We next focus on the efficiency of different

algorithms. Since some algorithms incur both consid-

erable disk IOs and CPU costs, we reported both the

number of IOs and the end-to-end running time. For the

exact methods in low dimensions, we observe that the

List algorithm is strictly worse than the R-tree method,

as shown in Figures 10 and 11 for SUM and MAX re-

spectively. Hence, in subsequent evaluations, we report

the R-tree method as the representative of our exact

methods in the other figures.

Figure 10 and 11 show the results when we vary
M . Clearly, the R-tree method outperforms the BFS

method by 2-3 orders of magnitude in terms of IOs

and running time, for the sum and max Fann prob-

lems respectively. The List algorithm only runs effi-
ciently when M is small, in terms of both IOs and

running time and becomes much worse than the R-tree
method when M increases. Our approximation algo-

rithms, Asum, Amax, Asum2 and Amax2, are more

efficient. They further outperform the R-tree method

by 0.5 order of magnitude in terms IOs and 2–3 or-

ders of magnitude in terms of the running time. This

is because for each MBR node, the R-tree method has

to compute its mindist to every query point from Q.
Both Asum2 and Amax2 methods are able to answer

a query Q with 300 query points over 2 million points

in P in just about 0.1 second and 10 IOs. Both Asum

and Amax methods have even better performance, 1

millisecond and 10 IOs! This well justifies the use of

approximation instead of exactly solving the problem.

The performance curves of Asum and Amax are almost

18 Feifei Li et al.

1 2 3 4 5
1

1.2

1.4

1.6

1.8

M:X10
2

r p
/r

*

ASUM ASUM2

(a) vary M .

1 2 3 4 5
1

1.2

1.4

1.6

N:X10
6

r p
/r

*

ASUM ASUM2

(b) vary N .

0 0.1 0.3 0.5 0.7 0.9 1
1

1.2

1.4

1.6

1.8

φ

r p
/r

*

ASUM ASUM2

(c) vary φ.

2 3 4 5 6
1

1.1

1.2

1.3

1.4

d

r p
/r

*

ASUM

(d) vary d.

Fig. 8 Approximation quality of Asum and Asum2 methods in low dimensions.

1 2 3 4 5
1

1.2

1.4

1.6

1.8

M:X10
2

r p
/r

*

AMAX AMAX2

(a) vary M .

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

N:X10
6

r p
/r

*

AMAX AMAX2

(b) vary N .

0 0.1 0.3 0.5 0.7 0.9 1
1

1.2

1.4

1.6

1.8

φ

r p
/r

*

AMAX AMAX2

(c) vary φ.

2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5

d

r p
/r

*

AMAX

(d) vary d.

Fig. 9 Approximation quality of Amax, and Amax2 methods in low dimensions.

identical. This is not surprising, as both of them issue

1/φ NN queries, which is the main cost of these two
algorithms (computing MEBs for a group of points in

Amax in low dimensions is very cheap).

The running time of Asum2 and Amax2 are rela-

tively higher compared to those of Asum and Amax.

That is because, both algorithms need to run the 6
constrained NN queries in parallel, which is IO effi-
cient but incurs more (cpu-bound) geometry compu-

tations. However, even though Asum2 and Amax2 are

more expensive compared to Asum and Amax, they

do have strictly better approximation quality in the-
ory, and in many cases too in practice. Note that the

approximation bounds forAsum andAmax are tight as
well (e.g., in Appendix A for Amax and Theorem 4 for

Asum), which means that there are cases where Asum2

and Amax2 will have noticeably better approximation

bounds than Asum and Amax respectively.

Also note that both Asum2 and Amax2 have much

better IOs than the exact R-tree based methods. In

terms of running time, they both outperform the R-

tree methods (note that the y-axis is in log-scale), even

though the performance improvement is not as dra-

matic as the gaps achieved by Asum and Amax. How-
ever, since they both have much better IOs than the R-

tree methods (by at least one order of magnitude), this
indicates that they have better scalability with smaller
memory and/or bigger data size.

We next study the effect of dataset size. Figure 12

and 13 show a similar trend, where Asum and Amax

1 2 3 4 5

10
1

10
2

10
3

10
4

N:X10
6

IO

BFS R−treeSUM ASUM ASUM2

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

N:X10
6

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeSUM ASUM ASUM2

(b) running time.

Fig. 12 Methods for sum Fann in low dimensions: vary N .

1 2 3 4 5

10
1

10
2

10
3

10
4

N:X10
6

IO

BFS R−treeMAX AMAX AMAX2

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

N:X10
6

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeMAX AMAX AMAX2

(b) running time.

Fig. 13 Methods for max Fann in low dimensions: vary N .

have outperformed the R-tree and BFS methods by or-

ders of magnitude. The results show that Asum and
Amax have excellent scalability w.r.t. the dataset size.

For example, they still only require around 10 IOs and

1 millisecond per query for 200 query points on 5 mil-

lion P points. The Asum2 and Amax2 have the similar

performance as the Asum and Amax in terms of IO,

but issue a higher running time, for the similar reason

as that explained before.

Exact and Approximate Flexible Aggregate Similarity Search 19

0.1 0.3 0.5 0.7 0.9 1

10
1

10
2

10
3

10
4

φ

IO

BFS R−treeSUM ASUM ASUM2

(a) IO.

0.1 0.3 0.5 0.7 0.9 1
10

−4

10
−2

10
0

10
2

φ
ru

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

BFS R−treeSUM ASUM ASUM2

(b) running time.

Fig. 14 Methods for sum Fann in low dimensions: vary φ.

0.1 0.3 0.5 0.7 0.9 1

10
1

10
2

10
3

10
4

φ

IO

BFS R−treeMAX AMAX AMAX2

(a) IO.

0.1 0.3 0.5 0.7 0.9 1
10

−4

10
−2

10
0

10
2

φ

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeMAX AMAX AMAX2

(b) running time.

Fig. 15 Methods for max Fann in low dimensions: vary φ.

2 3 4 5 6
10

1

10
2

10
3

10
4

d

IO

BFS R−treeSUM ASUM

(a) IO.

2 3 4 5 6
10

−4

10
−2

10
0

10
2

d

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeSUM ASUM

(b) running time.

Fig. 16 Methods for sum Fann in low dimensions: vary d.

Our next experiment investigates the effect of φ.

Since Asum and Amax both issue 1/φ NN queries on

an R-tree indexing the P points, when φ is small, their
query costs would be higher. This trend was observed

in Figures 14 and 15. In particular, Figures 14(a) and
15(a) show that Asum and Amax have similar IO cost

as the R-tree method when φ = 0.1, but has much

lower IO costs for larger φ. On the other hand, Asum2

and Amax2 issue 6/φ NN queries, and have the similar

trend. In terms of the running time, Asum and Amax

are both still much lower than all other methods for all

φ values as shown in Figures 14(b) and 15(b). Except

when φ is really small, both Asum2 and Amax2 have

outperformed the R-tree based exact methods.

Next experiment studies the effect of dimensionality,

where we tested all algorithms on the RC datasets from

2 to 6 dimensions as shown in Figures 16 and 17. Not

surprisingly, the costs for all algorithms increase as d

gets higher, as all of them rely on the underlying R-

tree (except BFS), which gets less effective in higher

2 3 4 5 6
10

1

10
2

10
3

10
4

d

IO

BFS R−treeMAX AMAX

(a) IO.

2 3 4 5 6
10

−4

10
−2

10
0

10
2

d

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS R−treeMAX AMAX

(b) running time.

Fig. 17 Methods for max Fann in low dimensions: vary d.

8 16 32 64 128 256 512
1

1.1

1.2

M

r p
/r

*

List−LsbSum
ASUM

(a) vary M .

8 16 32 64 128 256 512
1

1.1

1.2

M

r p
/r

*

List−LsbMax

AMAX

(b) vary M .

1 2 3 4 5
1

1.1

1.2

1.3

N:X10
5

r p
/r

*

ASUM
AMAX

(c) vary N .

0.1 0.3 0.5 0.7 0.9 1
1

1.1

1.2

1.3

φ

r p
/r

*

ASUM
AMAX

(d) vary φ.

10 20 30 40 50
1

1.1

1.2

1.3

d

r p
/r

*

ASUM
AMAX

(e) vary d.

Fig. 18 Approximation quality of Asum and Amax in high
dimensions.

dimensions. Nevertheless, Asum and Amax are clearly
the winner in all dimensions.

8.2 High dimensions

Setup. R-tree does not scale to high dimensions (d >
10), so we used BFS and List as the exact methods. For

List, we also changed the underlying NN index from

the R-tree to iDistance [12], the state of the art for

exact NN search in high dimensions. For Asum and
Amax, we changed the underlying NN index to the

LSB-tree [24], the state of the art for answering approx-
imate NN queries in high dimensions. We also tested

20 Feifei Li et al.

4 8 16 32 64 128 256 512
10

2

10
3

10
4

M

IO

BFS List−iDistSUM List−LsbSUM

ASUM

(a) IO.

4 8 16 32 64 128 256 512
10

−4

10
−2

10
0

10
2

M
ru

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

BFS List−iDistSUM List−LsbSUM

ASUM

(b) running time.

Fig. 19 Methods for sum Fann in high dimensions: vary M .

4 8 16 32 64 128 256 512
10

2

10
3

10
4

10
5

M

IO

BFS List−iDistMAX List−LsbMAX

AMAX

(a) IO.

4 8 16 32 64 128 256 512
10

−4

10
−2

10
0

10
2

M

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS List−iDistMAX List−LsbMAX

AMAX

(b) running time.

Fig. 20 Methods for max Fann in high dimensions: vary M .

another natural approximate solution by plugging the

LSB-tree into the List method.

The main dataset we used is the Cortina dataset,
from which we extracted smaller ones for various exper-

iments. To get a dataset of N points in d dimensions,
we randomly sample N points from Cortina and take

the first d coordinates for every such point. The default

values for all parameters are M = 200, N = 200, 000,

φ = 0.5 and d = 30. Similar to the low-dimensional ex-

periments, we performed 4 sets of experiments, varying
one of these 4 parameters respectively while keeping the

rest fixed at their default values. Specifically, we varied

M from 8 to 512, N from 100, 000 to 500, 000, φ from

0.1 to 1 and d from 10 to 50. Finally, we also tested on

the three datasets, MNIST, Color and Cortina in their

entirety in their original dimensions.

Quality of approximation. We first study the ap-

proximation quality of Asum and Amax, as well as

List with the LSB-tree. Results from Figure 18 show

that they retain their high quality approximations in

high dimensions. The average approximation ratio for

all of them is around 1.1, and its 95% percentile is be-

low 1.3 in all cases. This backs up our analysis that the

approximation quality is not affected by dimensionality,

and at the same time demonstrates that the approxi-

mation ratio could be much better in practice than the

worst-case bounds of 3 and 1+2
√
2. Note that for List,

we only obtained its approximation ratios for the small

M ’s, as it is too slow for M = 200 (to be seen later).

Efficiency. Figures 19 and 20 show the efficiency of all

methods when varying M . It is clear that in all cases,

1 2 3 4 5
10

1

10
2

10
3

10
4

N:X10
5

IO

BFS ASUM AMAX

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

N:X10
5

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS ASUM AMAX

(b) running time.

Fig. 21 High dimensions: vary N .

Asum and Amax maintain their superiority over other

methods by 2–4 orders of magnitude in terms of both

IOs and running time. In 30 dimensions, for 256 points

in a query group over 200, 000 data points, Asum takes
only 0.01 second per query; Amax is more expensive,

due to the higher computation cost of the MEBs in high

dimensions, but it still only takes about 0.1–0.2 second

per query. Their performance is also very stable even

whenM increases. In particular, the IO cost remains al-
most constant. This is because they incur IO costs only

when performing NN queries on P , while they always
issue 1/φ NN queries irrespective of M .

When M is small, the two List methods outperform

BFS. However, as M increases, they start to deteriorate

rapidly and eventually become as bad as or even worse
than BFS. This is because List has to do at least M

NN searches at the very beginning, followed by poten-
tially more kNN searches. These NN and kNN searches

become very expensive in high dimensions. Using the
LSB-tree instead of iDistance does help a lot in terms
of efficiency, but it no longer returns exact answers,

and its approximation quality is not significantly bet-
ter than Asum and Amax. Since the two List methods

are highly expensive for our default query group size

M = 200, we excluded them in the rest of the experi-

ments.

We next study the efficiency of the methods by vary-

ing the size of the dataset. The results are shown in

Figure 21. We observe that Asum and Amax have ex-

cellent scalability w.r.t. the size of the dataset, with

only slight increases in their IO and running times as

N gets larger.

Figure 22 shows the experimental results when we

vary φ. Similar to the results in low dimensions, smaller

φ values lead to higher costs for both Asum and Amax,

due to the 1/φ sample size. Nevertheless, they are still

much more efficient than BFS.

We also tested their performances in different di-

mensions as shown in Figure 23. Again, Asum and

Amax scale very well with dimensionality, which is pri-

marily attributed to the LSB-tree being able to handle

high-dimensional data very well, and the dominating

Exact and Approximate Flexible Aggregate Similarity Search 21

0.1 0.3 0.5 0.7 0.9 1
10

1

10
2

10
3

10
4

φ

IO

BFS ASUM AMAX

(a) IO.

0.1 0.3 0.5 0.7 0.9 1
10

−4

10
−2

10
0

10
2

φ
ru

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

BFS ASUM AMAX

(b) running time.

Fig. 22 High dimensions: vary φ.

10 20 30 40 50
10

1

10
2

10
3

10
4

d

IO

BFS ASUM AMAX

(a) IO.

10 20 30 40 50
10

−4

10
−2

10
0

10
2

d

ru
n

n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

BFS ASUM AMAX

(b) running time.

Fig. 23 High dimensions: vary d.

1

1.2

1.4

1.6

1.8

r p
/r

*

MNIST Color Cortina

ASUM
AMAX

(a) approximation ratio.

10
0

10
1

10
2

10
3

10
4

10
5

IO

MNIST Color Cortina

BFS

ASUM

AMAX

(b) IO.

Fig. 24 All datasets in high dimensions.

cost is that of the 1/φ NN queries. While with almost
identical IO cost, the running time of Amax is longer

due to the higher cost of computing MEBs in high di-

mensions.

Lastly, we tested BFS, Asum and Amax on the

three real datasets in high dimensions using all avail-

able points in their original dimensions, respectively.

The results are shown in Figure 24. Similar to the pre-

vious experiments, Asum and Amax have an 2–3 or-
ders of magnitude of improvement in terms of efficiency,

while returning query answers of high quality. We note
that the approximation ratios are higher on the MNIST
dataset than the other two, due to some special prop-
erties of the dataset, but they are still much lower than

the guaranteed approximation ratios.

8.3 Remarks on the sample size from Q

If we use W to denote the sample size of the sampled

set from Q in our optimized versions of Asum, Asum 2,

Amax, and Amax 2. As guided by Theorems 3, 6, 10,

and 12 respectively, formally W depends only on 1/φ

multiplied by a small constant of some sort. Clearly,
using a smaller W value is only going to lead to worse

approximation quality, yet even in this case when W =

1/φ, the approximation quality of all these algorithms

are still excellent, as shown in Figures 8 and 9 in low
dimensions, and in Figure 18 in high dimensions.

The impact to efficiency is actually fairly easy to

understand. Each algorithm only depends linearly on

W , since the framework of each of these algorithms is
to iterate through each point in the sampled subset of

Q and carry out the same procedure in each iteration

(note that the procedure in each iteration is of course

different for different algorithms, but is the same across

different iterations for the same algorithm). The num-

ber of iterations only depends on the sample size which

is W .

That said, this effect can be seen in Figures 14 and

15 in low dimensions, and Figure 22 in high dimensions,
when we vary φ. Effectively when W = 1/φ, this can

also be interpreted as the impact to efficiency as if we
fixed a φ value but varied the sample size W that de-

pends on a linear factor multiplied by 1/φ.

Being able to run only a small number of iterations

that linearly depend on 1/φ is indeed a major strength

of our algorithms. For example, in the default set up
when φ = 0.5, this means that our algorithms only

need to run 2 iterations of a simple procedure in an
approximation, e.g., 2 NN queries from P for Asum.

9 Conclusion

Flexible aggregate similarity search (Fann) extends the

aggregate similarity search (Ann) with added flexibil-

ity that are useful in many applications. In this pa-
per, we presented a comprehensive study on the Fann

problem, by designing exact and approximation meth-

ods that work well in low to high dimensions. Our ap-

proximation methods are especially appealing, which

come with constant approximation ratios in theory and

perform extremely well in practice, in terms of both

approximation quality and query efficiency, as evident
from our extensive experimental study. Future work in-
clude extending our investigation on Fann problem for

probabilistic data and query groups.

10 Acknowledgment

Feifei Li was supported in part by NSF grants 1053979

and 1251019, and a Google Faculty Award. Ke Yi was

supported by HKRGC grants GRF-621413, GRF-16211614,

and GRF-16200415, and by a Microsoft grant MRA14EG05.

22 Feifei Li et al.

Yufei Tao was supported in part by GRF grants 4168/13

and 142072/14 from HKRGC. Bin Yao was supported

by the National Basic Research Program (973 Program,

No.2015CB352403), the NSFC (No. 61202025), and the

EU FP7 CLIMBER project (No. PIRSES-GA-2012-318939).

Feifei Li and Bin Yao were also supported by NSFC

grant 61428204.

References

1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R.,
Wu, A.Y.: An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. Journal of ACM
45(6), 891–923 (1998)

2. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.:
A cost model for nearest neighbor search in high-
dimensional data space. In: PODS (1997)

3. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational geometry: algorithms and applications.
Springer (1997)

4. Böhm, C.: A cost model for query processing in high di-
mensional data spaces. ACM Transaction on Database
Systems 25(2), 129–178 (2000)

5. Chakrabarti, K., Porkaew, K., Mehro-
tra, S.: The Color Data Set (2006).
Http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.data.html

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient
access method for similarity search in metric spaces. In:
VLDB (1997)

7. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity
search and classification via rank aggregation. In: SIG-
MOD (2003)

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation al-
gorithms for middleware. In: PODS (2001)

9. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., El Abbadi,
A.: Constrained nearest neighbor queries. In: SSTD, pp.
257–278 (2001)

10. Gionis, A., Indyk, P., Motwani, R.: Similarity search in
high dimensions via hashing. In: VLDB (1999)

11. Hjaltason, G.R., Samet, H.: Distance browsing in spatial
databases. ACM Trans. Database Syst. 24(2) (1999)

12. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.:
iDistance: An adaptive B+-tree based indexing method
for nearest neighbor search. ACM Trans. Database Syst.
30(2), 364–397 (2005)

13. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Approxi-
mate minimum enclosing balls in high dimensions using
core-sets. ACM Journal of Experimental Algorithmics 8

(2003)
14. LeCun, Y., Cortes, C.: The MNIST Data Set (1998).

Http://yann.lecun.com/exdb/mnist
15. Li, F., Yao, B., Kumar, P.: Group enclosing queries. IEEE

TKDE (2010)
16. Li, H., Lu, H., Huang, B., Huang, Z.: Two ellipse-based

pruning methods for group nearest neighbor queries. In:
GIS (2005)

17. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible ag-
gregate similarity search. In: SIGMOD, pp. 1009–1020
(2011)

18. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group
nearest neighbor queries. In: ICDE (2004)

19. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggre-
gate nearest neighbor queries in spatial databases. ACM
TODS 30(2), 529–576 (2005)

20. Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Falout-
sos, C., Traina Jr., C.: A novel optimization approach to
efficiently process aggregate similarity queries in metric
access methods. In: CIKM (2008)

21. Rose, K., Manjunath, B.S.: The
CORTINA Data Set (2004).
Http://www.scl.ece.ucsb.edu/datasets/index.htm

22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neigh-
bor queries. In: SIGMOD (1995)

23. Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest
neighbor queries for dynamic databases. In: ACM SIG-
MOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 44–53 (2000)

24. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and effi-
ciency in high dimensional nearest neighbor search. In:
SIGMOD (2009)

25. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate near-
est neighbor queries in road networks. IEEE TKDE
17(6), 820–833 (2005)

A Tightness of Amax

Here we show that the (1+2
√
2) approximation ratio of Amax

is tight, by giving a concrete example. Consider the case in
Figure 25 where ǫ is an arbitrarily small positive.

B(p∗, r∗)

p1

r∗r∗

2r∗ − ǫ2r∗ − ǫ

r∗ − ǫr∗ − ǫ
p3p2

√
2r∗

√
2r∗

√
2r∗

√
2r∗

q4

q3

q1, q2 q5, q6

q7

q8

M = 8, φ = 0.5

c2c1
√
2r∗

√
2r∗

Fig. 25 Amax’s approximation bound is tight.

In this case, M = 8, φ = 0.5, hence φM = 4 and φM−1 =
3. Consider q1, its 3-nearest neighbors in Q are {q2, q3, q4},
hence Qq1

φ
= {q1, q2, q3, q4}. Note that MEB({q1, q2, q3, q4})

= B(c1,
√
2r∗), and nn(c1, P) = p2. Now, p2’s 4-nearest neigh-

bors in Q are {q4, q3, q2, q1}. Hence, Qp2

φ
= {q4, q3, q2, q1},

rp2 = max(p2, {q4, q3, q2, q1}) = (1 + 2
√
2)r∗ − ǫ.

It’s easy to verify that the results from q2, q3 and q4 are
the same as q1, since Qq2

φ
, Qq3

φ
and Qq4

φ
are the same as Qq1

φ
=

{q1, q2, q3, q4}. Furthermore, q5, q6, q7 and q8 are symmetric
to q1, q2, q3 and q4, and p3 is symmetric to p2. Thus they yield
(p3, Q

p3

φ
) as the answer, and rp3 = max(p3, {q5, q6, q7, q8}) =

(1 + 2
√
2)r∗ − ǫ.

As a result, Amax will return either (p2, Q
p2

φ
) or (p3, Q

p3

φ
)

as the answer, with r2 = r3 = (1 + 2
√
2)r∗ − ǫ. But in this

case p∗ = p1, Q∗
φ
= {q1, q2, q3, q4}, and max(p∗, Q∗

φ
) = r∗.

