
A Scalable Algorithm for Maximizing Range Sum
in Spatial Databases

Dong-Wan Choi1 Chin-Wan Chung1,2 Yufei Tao2,3

1Department of Computer Science, KAIST, Daejeon, Korea
2Division of Web Science and Technology, KAIST, Daejeon, Korea

3Department of Computer Science and Engineering,
Chinese University of Hong Kong, New Territories, Hong Kong

dongwan@islab.kaist.ac.kr chungcw@kaist.edu taoyf@cse.cuhk.edu.hk

ABSTRACT
This paper investigates the MaxRS problem in spatial databases.
Given a set O of weighted points and a rectangular region r
of a given size, the goal of the MaxRS problem is to find a lo-
cation of r such that the sum of the weights of all the points
covered by r is maximized. This problem is useful in many
location-based applications such as finding the best place
for a new franchise store with a limited delivery range and
finding the most attractive place for a tourist with a limited
reachable range. However, the problem has been studied
mainly in theory, particularly, in computational geometry.
The existing algorithms from the computational geometry
community are in-memory algorithms which do not guar-
antee the scalability. In this paper, we propose a scalable
external-memory algorithm (ExactMaxRS) for the MaxRS
problem, which is optimal in terms of the I/O complex-
ity. Furthermore, we propose an approximation algorithm
(ApproxMaxCRS) for the MaxCRS problem that is a circle
version of the MaxRS problem. We prove the correctness
and optimality of the ExactMaxRS algorithm along with
the approximation bound of the ApproxMaxCRS algorithm.
From extensive experimental results, we show that the Ex-
actMaxRS algorithm is two orders of magnitude faster than
methods adapted from existing algorithms, and the approxi-
mation bound in practice is much better than the theoretical
bound of the ApproxMaxCRS algorithm.

1. INTRODUCTION
In the era of mobile devices, location-based services are

being used in a variety of contexts such as emergency, nav-
igation, and tour planning. Essentially, these applications
require managing and processing a large amount of location
information, and technologies studied in spatial databases
are getting a great deal of attention for this purpose. Tradi-
tional researches in spatial databases, however, have mostly

focused on retrieving objects (e.g., range search, nearest
neighbor search, etc.), rather than finding the best location
to optimize a certain objective.

Recently, several location selection problems [9, 16, 18, 19,
20, 21, 22, 23] have been proposed. One type of these prob-
lems is to find a location for a new facility by applying the
well-known facility location problem in theory to database
problems such as optimal-location queries and bichromatic
reverse nearest neighbor queries. Another type of location
selection problems is to choose one of the predefined can-
didate locations based on a given ranking function such as
spatial preference queries.

In this paper, we solve the maximizing range sum (MaxRS)
problem in spatial databases. Given a set O of weighted
points (a.k.a. objects) and a rectangle r of a given size, the
goal of the MaxRS problem is to find a location of r which
maximizes the sum of the weights of all the objects covered
by r. Figure 1 shows an instance of the MaxRS problem
where the size of r is specified as d1 × d2. In this exam-
ple, if we assume that the weights of all the objects are
equally set to 1, the center point of the rectangle in solid
line is the solution, since it covers the largest number of ob-
jects which is 8. The figure also shows some other positions
for r, but it should be noted that there are infinitely many
such positions – r can be anywhere in the data space. The
MaxRS problem is different from existing location selection
problems mentioned earlier in that there are no predefined
candidate locations or other facilities to compete with. Fur-
thermore, this problem is also different from range aggregate
queries [17] in the sense that we do not have a known query
rectangle, but rather, must discover the best rectangle in
the data space.

d1

d2

Figure 1: An instance of the MaxRS problem

In practice, there can be many kinds of facilities that
should be associated with a region of a certain size. For

example, if we open, in an area with a grid shaped road net-
work, a new pizza franchise store that has a limited delivery
range, it is important to maximize the number of residents in
a rectangular area around the pizza store. This is the case
of finding a more profitable place to set up a new service
facility.

For an opposite case, the MaxRS problem can be applied
to find a more serviceable place for client users. Consider
a tourist who wants to find the most representative spot in
a city. In this case, the tourist will prefer to visit as many
attractions as possible around the spot, and at the same
time s/he usually does not want to go too far away from the
spot.

There has been little research for this natural problem in
the database community. In fact, this problem has been
mainly studied in the computational geometry community.
The first optimal in-memory algorithm for finding the posi-
tion of a fixed-size rectangle enclosing the maximum number
of points was proposed in [11]. Later, a solution to the prob-
lem of finding the position of a fixed-size circle enclosing the
maximum number of points was provided in [4].

Unfortunately, these in-memory algorithms are not scal-
able for processing a large number of geographic objects
in real applications such as residential buildings and mo-
bile customers, since they are developed based on the as-
sumption that the entire dataset can be loaded in the main
memory. A straightforward adaptation of these in-memory
algorithms into the external memory can be considerably
inefficient due to the occurrence of excessive I/O’s.

In this paper, we propose the first external-memory algo-
rithm, called ExactMaxRS, for the maximizing range sum
(MaxRS) problem. The basic processing scheme of Exact-
MaxRS follows the distribution-sweep paradigm [10], which
was introduced as an external version of the plane-sweep al-
gorithm. Basically, we divide the entire dataset into smaller
sets, and recursively process the smaller datasets until the
size of a dataset gets small enough to fit in memory. By
doing this, the ExactMaxRS algorithm gives an exact solu-
tion to the MaxRS problem. We derive the upper bound
of the I/O complexity of the algorithm. Indeed, this upper
bound is proved to be the lower bound under the comparison
model in external memory, which implies that our algorithm
is optimal.

Furthermore, we propose an approximation algorithm, called
ApproxMaxCRS, for the maximizing circular range sum (Max-
CRS) problem. This problem is the circle version of the
MaxRS problem, and is more useful than the rectangle ver-
sion, when a boundary with the same distance from a lo-
cation is required. In order to solve the MaxCRS problem,
we apply the ExactMaxRS algorithm to the set of Minimum
Bounding Rectangles (MBR) of the data circles. After ob-
taining a solution from the ExactMaxRS algorithm, we find
an approximate solution for the MaxCRS problem by choos-
ing one of the candidate points, which are generated from
the point returned from the ExactMaxRS algorithm. We
prove that ApproxMaxCRS gives a (1/4)-approximate solu-
tion in the worst case, and also show by experiments that
the approximation ratio is much better in practice.

Contributions. We summarize our main contributions as
follows:

• We propose the ExactMaxRS algorithm, the first external-
memory algorithm for the MaxRS problem. We also

prove both the correctness and optimality of the algo-
rithm.

• We propose the ApproxMaxCRS algorithm, an ap-
proximation algorithm for the MaxCRS problem. We
also prove the correctness as well as tightness of the
approximation bound with regard to this algorithm.

• We experimentally evaluate our algorithms using both
real and synthetic datasets. From the experimental re-
sults, we show that the ExactMaxRS algorithm is two
orders of magnitude faster than methods adapted from
existing algorithms, and the approximation bound of
the ApproxMaxCRS algorithm in practice is much bet-
ter than its theoretical bound.

Organization. In Section 2, we formally define the prob-
lems studied in this paper, and explain our computation
model. In Section 3, related work is discussed. In Section 4,
we review the in-memory algorithms proposed in the com-
putational geometry community. In Sections 5 and 6, the
ExactMaxRS algorithm and ApproxMaxCRS algorithm are
derived, respectively. In Section 7, we show experimental
results. Conclusions are made and future work is discussed
in Section 8.

2. PROBLEM FORMULATION
Let us consider a set of spatial objects, denoted by O.

Each object o ∈ O is located at a point in the 2-dimensional
space, and has a non-negative weight w(o). We also use P
to denote the infinite set of points in the entire data space.

Let r(p) be a rectangular region of a given size centered
at a point p ∈ P , and Or(p) be the set of objects covered by
r(p). Then the maximizing range sum (MaxRS) problem is
formally defined as follows:

Definition 1 (MaxRS Problem). Given P , O, and
a rectangle of a given size, find a location p that maximizes:∑

o∈Or(p)

w(o).

Similarly, let c(p) be a circular region centered at p with
a given diameter, and Oc(p) be the set of objects covered
by c(p). Then we define the maximizing circular range sum
(MaxCRS) problem as follows:

Definition 2 (MaxCRS Problem). Given P , O, and
a circle of a given diameter, find a location p that maximizes:∑

o∈Oc(p)

w(o).

For simplicity, we discuss only the SUM function in this
paper, even though our algorithms can be applied to other
aggregates such as COUNT, SUM, and AVERAGE. With-
out loss of generality, objects on the boundary of the rect-
angle or the circle are excluded.

Since we focus on a massive number of objects that do
not fit in the main memory, the whole dataset O is assumed
to be stored in external memory such as a disk. Therefore,
we follow the standard external memory (EM) model [10] to
develop and analyze our algorithms. According to the EM
model, we use the following parameters:

N : the number of objects in the database (i.e., |O|)
M : the number of objects that can fit in the main memory
B : the number of objects per block

We comply with the assumption that N is much larger
than M and B, and the main memory has at least two blocks
(i.e., M ≥ 2B).

In the EM model, the time of an algorithm is measured
by the number of I/O’s rather than the number of basic
operations as in the random access memory (RAM) model.
Thus, when we say linear time in the EM model, it means
that the number of blocks transferred between the disk and
memory is bounded by O(N/B) instead of O(N). Our goal
is to minimize the total number of I/O’s in our algorithms.

3. RELATED WORK
We first review the range aggregate processing methods

in spatial databases. The range aggregate (RA) query was
proposed for the scenario where users are interested in sum-
marized information about objects in a given range rather
than individual objects. Thus, a RA query returns an ag-
gregation value over objects qualified for a given range. In
order to efficiently process RA queries, usually aggregate in-
dexes [5, 12, 13, 15, 17] are deployed as the underlying access
method. To calculate the aggregate value of a query region,
a common idea is to store a pre-calculated value for each
entry in the index, which usually indicates the aggregation
of the region specified by the entry. However, the MaxRS
problem cannot be efficiently solved using aggregate indexes,
because the key is to find out where the best rectangle is. A
naive solution to the MaxRS problem is to issue an infinite
number of RA queries, which is prohibitively expensive.

Recently, researches about the selection of optimal loca-
tions in spatial databases have been reported, and they are
the previous work most related to ours. Du et al. proposed
the optimal-location query [9], which returns a location in a
query region to maximize the influence that is defined to be
the total weight of the reverse nearest neighbors. They also
defined a different query semantics in their extension [22],
called min-dist optimal-location query. In both works, their
problems are stated under L1 distance. Similarly, the max-
imizing bichromatic nearest neighbor (MaxBRNN) problem
was studied by Wong et al. [18] and Zhou et al. [23]. This is
similar to the problem in [9] except that L2 distance, instead
of L1 distance, is considered, making the problem more dif-
ficult. Moreover, Xiao et al. [20] applied optimal-location
queries to road network environments.

However, all these works share the spirit of the classic fa-
cility location problem, where there are two kinds of objects
such as customers and service sites. The goal of these works
is essentially to find a location that is far from the competi-
tors and yet close to customers. This is different from the
MaxRS (MaxCRS) problem, since we aim at finding a loca-
tion with the maximum number of objects around, without
considering any competitors. We have seen the usefulness
of this configuration in Section 1.

There is another type of location selection problems, where
the goal is to find top-k spatial sites based on a given ranking
function such as the weight of the nearest neighbor. Xia et
al. proposed the top-t most influential site query [19]. Later,
the top-k spatial preference query was proposed in [16, 21],
which deals with a set of classified feature objects such as
hotels, restaurants, and markets by extending the previous

work. Even though some of these works consider the range
sum function as a ranking function, their goal is to choose
one of the candidate locations that are predefined. How-
ever, there are an infinite number of candidate locations in
the MaxRS (MaxCRS) problem, which implies that these al-
gorithms are not applicable to the problem we are focusing
on.

In the theoretical perspective, MaxRS and MaxCRS have
been studied in the past. Specifically, in the computational
geometry community, there were active researches for the
max-enclosing polygon problem. The purpose is to find a
position of a given polygon to enclose the maximum number
of points. This is almost the same as the MaxRS problem,
when a polygon is a rectangle. For the max-enclosing rect-
angle problem, Imai et al. proposed an optimal in-memory
algorithm [11] whose time complexity is O(n log n), where n
is the number of rectangles. Actually, they solved a prob-
lem of finding the maximum clique in the rectangle intersec-
tion graph based on the well-known plane-sweep algorithm,
which can be also used to solve the max-enclosing rectangle
problem by means of a simple transformation [14]. Inher-
ently, however, these in-memory algorithms do not consider
a scalable environment that we are focusing on.

In company with the above works, there were also works
to solve the max-enclosing circle problem, which is similar
to the MaxCRS problem. Chazelle et al. [4] were the first
to propose an O(n2) algorithm for this problem by finding
a maximum clique in a circle intersection graph. The max-
enclosing circle problem is actually known to be 3sum-hard
[3], namely, it is widely conjectured that no algorithm can
terminate in less than Ω(n2) time in the worst case. There-
fore, several approximation approaches were proposed to re-
duce the time complexity. Recently, Berg et al. proposed
a (1 − ε)-approximation algorithm [7] with time complex-
ity O(n log n + nε−3). They divide the entire dataset into
a grid, and then compute the local optimal solution for a
grid cell. After that the local solutions of cells are combined
using a dynamic-programming scheme. However, it is gen-
erally known that a standard implementation of dynamic
programming leads to poor I/O performance [6], which is
the reason why it is difficult for this algorithm to be scal-
able.

4. PRELIMINARIES
In this section, we explain more details about the solutions

proposed in the computational geometry community. Our
solution also shares some of the ideas behind those works.
In addition, we show that the existing solutions cannot be
easily adapted to our environment, where a massive size of
data is considered.

First, let us review the idea of transforming the max-
enclosing rectangle problem into the rectangle intersection
problem in [14]. The max-enclosing rectangle problem is the
same as the MaxRS problem except that it considers only
the count of the objects covered by a rectangle (equivalently,
each object has weight 1). The rectangle intersection prob-
lem is defined as “Given a set of rectangles, find an area
where the most rectangles intersect”. Even though these
two problems appear to be different at first glance, it has
been proved that the max-enclosing rectangle problem can
be mapped to the rectangle intersection problem [14].

We explain this by introducing a mapping example shown
in Figure 2. Suppose that the dataset has four objects

(black-filled) as shown in Figure 2(a). Given a rectangle
of size d1 × d2, an optimal point can be the center point
p of rectangle r (see Figure 2(a)). To transform the prob-
lem, we draw a rectangle of the same size centered at the
location of each object as shown in Figure 2(b). It is not
difficult to observe that the optimal point p in the max-
enclosing rectangle problem can be any point in the most
overlapped area (gray-filled) which is the outcome of the
rectangle intersection problem. Thus, once we have found
the most overlapped area in the transformed rectangle inter-
section problem, the optimal location of the max-enclosing
rectangle problem can trivially be obtained.

d1

d2

r
p

(a) Max-enclosing rect-
angle problem

(b) Rectangle intersec-
tion problem

Figure 2: An example of transformation

For the rectangle intersection problem, an in-memory al-
gorithm was proposed in [11], which is based on the well-
known plane-sweep algorithm. Basically, the algorithm re-
gards the edges of rectangles as intervals and maintains a
binary tree while sweeping a conceptual horizontal line from
bottom to top. When the line meets the bottom (top) edge
of a rectangle, a corresponding interval is inserted to (deleted
from) the binary tree, along with updating the counts of in-
tervals currently residing in the tree, where the count of
an interval indicates the number of intersecting rectangles
within the interval. An interval with the maximum count
during the whole sweeping process is returned as the final
result. The time complexity of this algorithm is O(n log n),
where n is the number of rectangles, since n insertions and
n deletions are performed during the sweep, and the cost of
each tree operation is O(log n). This is the best efficiency
possible in terms of the number of comparisons [11].

Unfortunately, this algorithm cannot be directly applied
to our environment that is focused on massive datasets, since
the plane-sweep algorithm is an in-memory algorithm based
on the RAM model. Furthermore, a straightforward adap-
tation of using the B-tree instead of the binary tree still
requires a large amount of I/O’s, in fact O(N logB N). Note
that the factor of N is very expensive in the sense that linear
cost is only O(N/B) in the EM model.

5. EXACT ALGORITHM FOR MAXIMIZ-
ING RANGE SUM

In this section, we propose an external-memory algorithm,
namely ExactMaxRS, that exactly solves the MaxRS prob-
lem in O((N/B) logM/B (N/B)) I/O’s. This is known [2,
11] to be the lower bound under the comparison model in
external memory.

5.1 Overview
Essentially, our solution is based upon the transformation

explained in Section 4. Specifically, to transform the MaxRS

problem, for each object o ∈ O, we construct a correspond-
ing rectangle ro which is centered at the location of o and
has a weight w(o). All these rectangles have the same size,
which is as specified in the original problem. We use R to
denote the set of these rectangles. Also, we define two no-
tions which are needed to define our transformed MaxRS
problem later:

Definition 3 (Location-weight). Let p be a location
in P , the infinite set of points in the entire data space. Its
location-weight with regard to R equals the sum of the weights
of all the rectangles in R that cover p.

Definition 4 (Max-region). The max-region ρ with
regard to R is a rectangle such that:

• every point in ρ has the same location-weight τ , and

• no point in the data space has a location-weight higher
than τ .

Intuitively, the max-region ρ with regard to R is an inter-
secting region with the maximum sum of the weights of the
overlapping rectangles. Then our transformed MaxRS prob-
lem can be defined as follows:

Definition 5 (Transformed MaxRS Problem).
Given R, find a max-region ρ with regard to R.

Apparently, once the above problem is solved, we can re-
turn an arbitrary point in ρ as the answer for the original
MaxRS problem.

At a high level, the ExactMaxRS algorithm follows the
divide-and-conquer strategy, where the entire datset is re-
cursively divided into mutually disjoint subsets, and then
the solutions that are locally obtained in the subsets are
combined. The overall process of the ExactMaxRS algo-
rithm is as follows:

1. Recursively divide the whole space vertically into m
sub-spaces, called slabs and denoted as γ1, , , γm, each
of which contains roughly the same number of rectan-
gles, until the rectangles belonging to each slab can fit
in the main memory.

2. Compute a solution structure for each slab, called slab-
file, which represents the local solution to the sub-
problem with regard to the slab.

3. Merge m slab-files to compute the slab-file for the
union of the m slabs until the only one slab-file re-
mains.

In this process, we need to consider the following: (1) How
to divide the space to guarantee the termination of recursion;
(2) how to organize slab-files, and what should be included
in a slab-file; (3) how to merge the slab-files without loss of
any necessary information for finding the final solution.

5.2 ExactMaxRS
Next we address each of the above considerations, and

explain in detail our ExactMaxRS algorithm.

5.2.1 Division Phase
Let us start with describing our method for dividing the

entire space. Basically, we recursively divide the space ver-
tically into m slabs along the x-dimension until the number

of rectangles in a slab can fit in the main memory. Since a
rectangle in R can be large, it is unavoidable that a rectangle
may need to be split into a set of smaller disjoint rectangles
as the recursion progresses, which is shown in Figure 3. As

γ 1 γ 2 γ 3

r

. . . .

Figure 3: An example of splitting a rectangle

a naive approach, we could just insert all the split rectangles
into the corresponding slabs at the next level of recursion.
In Figure 3, the three parts of rectangle r will be inserted
into slabs γ1, γ2, and γ3, respectively.

However, it is not hard to see that this approach does
not guarantee the termination of recursion, since rectangles
may span an entire slab, e.g., the middle part of r spans
slab γ2. In the extreme case, suppose that all rectangles
span a slab γ. Thus, no matter how many times we divide
γ into sub-slabs, the number of rectangles in each sub-slab
still remains the same, meaning that recursion will never
terminate infinitely.

Therefore, in order to gradually reduce the number of rect-
angles for each sub-problem, we do not pass spanning rect-
angles to the next level of recursion, e.g., the middle part of
r will not be inserted in the input of the sub-problem with
regard to γ2. Instead, the spanning rectangles are consid-
ered as another local solution for a separate, special, sub-
problem. Thus, in the merging phase, the spanning rectan-
gles are also merged along with the other slab-files. In this
way, it is guaranteed that recursion will terminate eventually
as proved in the following lemma:

Lemma 1. After O(logm(N/M)) recursion steps, the num-
ber of rectangles in each slab will fit in the main memory.

Proof. Since the spanning rectangles do not flow down
to the next recursion step, we can just partition the vertical
edges of rectangles. There are initially 2N vertical edges.
The number of edges in a sub-problem will be reduced by a
factor of m by dividing the set of edges into m smaller sets
each of which has roughly the same size. Each vertical edge
in a slab represents a split rectangle. It is obvious that there
exists an h such that 2N/mh ≤ M . The smallest such h is
thus O(logm(N/M)).

Determination of m. We set m = Θ(M/B), where M/B
is the number of blocks in the main memory.

5.2.2 Slab-files
The next important question is how to organize a slab-file.

What the question truly asks about is what structure should
be returned after conquering the sub-problem with regard
to a slab. Each slab-file should have enough information to
find the final solution after all the merging phases.

To get the intuition behind our solution (to be clarified
shortly), let us first consider an easy scenario where every

rectangle has weight 1, and is small enough to be totally
inside a slab, which is shown in Figure 4. Thus, no spanning
rectangle exists. In this case, all we have to do is to just

γ1 γ 2 γ m-1 γ m

ρm

Figure 4: An easy scenario to illustrate the intuition
of slab-files

maintain a max-region (black-filled in Figure 4) with regard
to rectangles in each slab. Recall that a max-region is the
most overlapped area with respect to the rectangles in the
corresponding slab (see Definition 4). Then, in the merging
phase, among m max-regions (i.e., one for each slab), we
can choose the best one as the final solution. In Figure 4,
for instance, the best one is ρm because it is the intersection
of 3 rectangles, whereas the number is 2 for the max regions
of the other slabs.

Extending the above idea, we further observe that the hor-
izontal boundaries of a max-region are laid on the horizontal
lines passing the bottom or top edge of a certain rectangle.
Let us use the term h-line to refer to a horizontal line pass-
ing a horizontal edge of an input rectangle. Therefore, for
each h-line in a slab, it suffices to maintain a segment that
could belong to the max-region of the slab. To formalize
this intuition, we define max-interval as follows:

Definition 6 (Max-interval). Let (1) `.y be the y-
coordinate of a h-line `, and `1 and `2 be the consecutive
h-lines such that `1.y < `2.y, (2) `∩γ be the part of a h-line
` in a slab γ, and (3) rγ be the rectangle formed by `1.y, `2.y,
and vertical boundaries of γ. A max-interval is a segment
t on `1 ∩ γ such that, the x-range of t is the x-range of the
rectangle rmax bounded by `1.y, `2.y, and vertical lines at xi

and xj, where each point in rmax has the maximum location-
weight among all points in rγ .

Figure 5 illustrates Definition 6.

γ

1

2

rmax

t

xi xj

Figure 5: An illustration of Definition 6

Our slab-file is a set of max-intervals defined only on h-
lines. Specifically, each max-interval is represented as a tu-
ple specified as follows:

t =< y, [x1, x2], sum >

where y is the y-coordinate of t (hence, also of the h-line
that defines it), and [x1, x2] is the x-range of t, and sum is
the location-weight of any point in t. In addition, all the

tuples in a slab-file should be sorted in ascending order of
y-coordinates.

Example 1. Figure 6 shows the slab-files that are gener-
ated from the example in Figure 2, assuming that m = 4 and
∀o ∈ O, w(o) = 1. Max-intervals are represented as solid
segments. For instance, the slab-file of slab γ1 consists of tu-
ples (in this order): < y2, [x1, x2], 1 >, < y4, [x1, x2], 2 >,
< y6, [x0, x2], 1 >, < y7, [−∞, x2], 0 >. The first tuple
< y2, [x1, x2], 1 > implies that, in slab γ1, on any hor-
izontal line with y-coordinate in (y2, y4), the max-interval
is always [x1, x2], and its sum is 1. Similarly, the second
tuple < y4, [x1, x2], 2 > indicates that, on any horizon-
tal line with y-coordinate in (y4, y6), [x1, x2] is always the
max-interval, and its sum is 2. Note that spanning rect-
angles have not been counted yet in these slab-files, since
(as mentioned earlier) they are not part of the input to the
sub-problems with regard to slabs γ1, ..., γ4.

x0 x1 x2

γ 1 γ 2 γ 3 γ 4

y0

y1

y2

y3

y4

y5

y6

y7

Figure 6: An example of slab-files

Lemma 2. Let K be the number of rectangles in a slab.
Then the number of tuples in the corresponding slab-file is
O(K).

Proof. The number of h-lines is at most double the num-
ber of rectangles. As a h-line defines only one max-interval
in each slab, the number of tuples in a slab-file is at most
2K, which is O(K).

5.2.3 Merging Phase
Now we tackle the last challenge: how to merge the slab-

files, which is also the main part of our algorithm.
The merging phase sweeps a horizontal line across the

slab-files and the file containing spanning rectangles. At
each h-line, we choose a max-interval with the greatest sum
among the max-intervals with regard to the m slabs, re-
spectively. Sometimes, max-intervals from adjacent slabs
are combined into a longer max-interval.

The details of merging, namely MergeSweep, are presented
in Algorithm 1. The input includes a set of spanning rectan-
gles and m slab-files. Also, each spanning rectangle contains
only the spanning part cropped out of the original rectan-
gle ro ∈ R, and has the same weight as ro (recall that the
weight of ro is set to w(o)). We use upSum[i] to denote
the total weight of spanning rectangles that span slab γi

and currently intersect the sweeping line; upSum[i] is ini-
tially set to 0 (Line 2). Also, we set tslab[i] to be the tu-
ple representing the max-interval of γi in the sweeping line.
Since we sweep the line from bottom to top, we initially set
tslab[i].y = −∞. In addition, the initial interval and sum
of tslab[i] are set to be the x-range of γi and 0, respectively
(Line 3). When the sweeping line encounters the bottom
of a spanning rectangle that spans γi, we add the weight of
the rectangle to upSum[i] (Lines 6 - 8); conversely, when
the sweeping line encounters the top of the spanning rectan-
gle, we subtract the weight of the rectangle (Lines 9 - 11).
When the sweeping line encounters several tuples (from dif-
ferent slab-files) having the same y-coordinate (Line 12), we
first update tslab[i]’s accordingly (Lines 13 - 16), and then
identify the tuples with the maximum sum among all the
tslab[i]’s (Line 17). Since there can be multiple tuples with
the same maximum sum at an h-line, we call a function
GetMaxInterval to generate a single tuple from those tuples
(Line 18). Specifically, given a set of tuples with the same
sum value, GetMaxInterval simply performs:

1. If the max-intervals of some of those tuples are con-
secutive, merge them into one tuple with an extended
max-interval.

2. Return an arbitrary one of the remaining tuples after
the above step.

Lastly, we insert the tuple generated from GetMaxInterval
into the slab-file to be returned (Line 20). This process will
continue until the sweeping line reaches the end of all the
slab files and the set of spanning rectangles.

Algorithm 1 MergeSweep

Input: m slab-files S1, ..., Sm for m slabs γ1, ..., γm, a set of
spanning rectangles R′

Output: a slab-file S for slab γ =
m⋃

i=1

γi. Initially S ← φ

1: for i = 0 to m do
2: upSum[i]← 0
3: tslab[i]←< −∞, the range of x-coordinates of γi, 0 >
4: end for
5: while sweeping the horizontal line ` from bottom to top

do
6: if ` meets the bottom of ro ∈ R′ then
7: upSum[j]← upSum[j] + w(o), ∀j s.t. ro spans γj

8: end if
9: if ` meets the top of ro ∈ R′ then

10: upSum[j]← upSum[j]− w(o), ∀j s.t. ro spans γj

11: end if
12: if ` meets a set of tuples T = {t | t.y = `.y} then
13: for all t ∈ T do
14: tslab[i]← t, s.t. t ∈ Si

15: tslab[i].sum← t.sum + upSum[i], s.t. t ∈ Si

16: end for
17: T ′ ← the set of tuples in tslab[1], ..., tslab[m] with

the largest sum values
18: tmax ← GetMaxInterval(T ′)
19: end if
20: S ← S ∪ {tmax}
21: end while
22: return S

Example 2. Figure 7 shows how the MergeSweep algo-
rithm works by using Example 1. For clarity, rectangles are
removed, and the sum value of each max-interval is given
above the segment representing the max-interval. Also, the
value of upSum for each slab is given as a number enclosed
in a bracket, e.g., upSum[2] = 1, between y2 and y6.

When the sweeping line ` is located at y0, two max-intervals
from γ3 and γ4 are merged into a larger max-interval. On the
other hand, when ` is located at y1, the max-interval from γ4

is chosen, since its sum value 2 is the maximum among the 2
max-intervals at y1. In addition, it is important to note that
sum values of the max-intervals at y4 and y5 are increased
by the value of upSum[2] = 1. Figure 7(b) shows the result-
ing max-intervals at the end of merging slab-files. We can
find that the max-region of the entire data space is between
max-intervals at y4 and y5, because the max-interval at y4

has the highest sum value 3.

11

2

1

0

1

0

1

1

2

1

0

2
1

0

(1)

(0)

(1)

(0)

(0)(0)

y0

y1

y2
y3

y4

y5

y6

y7

γ 1 γ 2 γ 3 γ 4

(a) Four slab-files before merge

1

2

1

1

0

3

2

y0

y1

y2
y3

y4

y5

y6

y7

(b) A slab-file after merge

Figure 7: An example to illustrate MergeSweep al-
gorithm

We can derive the following lemma:

Lemma 3. Let K be the number of rectangles in slab γ
in a certain recursion. Given m slab-files S1, ..., Sm of slabs
γ1, ..., γm, s.t., γ = ∪m

i=1γi, and a set of spanning rectangles
R′, MergeSweep algorithm returns the slab-file S of γ in
O(K/B) I/O’s.

Proof. Since we set m = Θ(M/B), a block of memory
can be allocated as the input buffer for each slab-file as well
as the file containing spanning rectangles. Also, we use an-
other block of memory for the output buffer. By doing this,
we can read a tuple of slab-files or a spanning rectangle, or
write a tuple to the merged slab-file in O(1/B) I/O’s amor-
tized.

The number of I/O’s performed by MergeSweep is propor-
tional to the total number of tuples of all slab-files plus the
number of spanning rectangles, i.e., O((|R′|+

∑m
i=1 |Si|)/B).

Let Ki be the number of rectangles in γi. Then |Si| = O(Ki)
by Lemma 2. Also, Ki = Θ(K/m), since the 2K ver-
tical edges of the K rectangles are divided into m slabs
evenly. Therefore,

∑m
i=1 |Si| = O(K), which leads O((|R′|+∑m

i=1 |Si|)/B) = O(K/B), since |R′| ≤ K.

5.2.4 Overall Algorithm
The overall recursive algorithm ExactMaxRS is presented

in Algorithm 2. We can obtain the final slab-file with regard
to a set R of rectangles by calling ExactMaxRS(R, γ, m),
where the x-range of γ is (−∞,∞). Note that when the
input set of rectangles can fit in the main memory, we invoke
PlaneSweep(R) (Line 9), which is an in-memory algorithm
that does not cause any I/O’s.

Algorithm 2 ExactMaxRS

Input: a set of rectangles R, a slab γ, the number of sub-
slabs m

Output: a slab-file S for γ

1: if |R| > M then
2: Partition γ into γ1,...,γm, which have roughly the

same number of rectangles.
3: Divide R into R1,...,Rm, R′, where Ri is the set of

non-spanning rectangles whose left (or right) vertical
edges are in γi and R′ is the set of spanning rectangles.

4: for i = 1 to m do
5: Si ← ExactMaxRS(Ri, γi, m)
6: end for
7: S ← MergeSweep(S1,...,Sm, R′)
8: else
9: S ← PlaneSweep(R)

10: end if
11: return S

From returned S, we can find the max-region by compar-
ing sum values of tuples trivially. After finding the max-
region, an optimal point for the MaxRS problem can be any
point in the max-region, as mentioned in Section 5.1.

The correctness of Algorithm 2 is proved by the following
lemma and theorem:

Lemma 4. Let I∗ be a max-interval at a h-line with regard
to the entire space and I∗1 ,...,I∗µ be consecutive pieces of I∗

for a recursion, each of which belongs to slab γi, where 1 ≤
i ≤ µ. Then I∗i is also the max-interval at the h-line with
regard to slab γi.

Proof. Let sum(I) be the sum value of interval I. To
prove the lemma by contradiction, suppose that there exists
I∗i that is not a max-interval in γi. Thus, there exists I ′ in
γi such that sum(I ′) > sum(I∗i) on the same h-line. For
any upper level of recursion, if no rectangle spans γi, then
sum(I ′) and sum(I∗i) themselves are already the sum values

with regard to the entire space. On the contrary, if there
exist rectangles that span γi at some upper level of recursion,
then the sum values of I ′ and I∗i with regard to the entire
space will be sum(I ′)+Wspan and sum(I∗i)+Wspan, where
Wspan is the total sum of the weights of all the rectangles
spanning γi in all the upper level of recursion. In both cases
above, sum(I ′) > sum(I∗i) with regard to the entire space,
which contradicts that I∗ is the max-interval with regard to
the entire space.

Theorem 1. The slab-file returned from the ExactMaxRS
algorithm is correct with regard to a given dataset.

Proof. Let ρ∗ be the max-region with regard to a given
dataset, and similarly I∗ be the best max-interval that is in
fact the bottom edge of ρ∗. Then we want to prove that the
algorithm eventually returns a slab-file which contains I∗.

Also, by Lemma 4, we can claim that for any level of
recursion, a component interval I∗i of I∗ will also be the
max-interval for its h-line within slab γi. By Algorithm 1,
for each h-line, the best one among the max-intervals at
each h-line is selected (perhaps also extended). Therefore,
eventually I∗ will be selected as a max-interval with regard
to the entire space.

Moreover, we can prove the I/O-efficiency of the Exact-
MaxRS algorithm as in the following theorem:

Theorem 2. The ExactMaxRS algorithm solves the MaxRS
problem in O((N/B) logM/B (N/B)) I/O’s, which is optimal
in the EM model among all comparison-based algorithms.

Proof. The dataset needs to be sorted by x-coordinates
before it is fed into Algorithm 2. The sorting can be done in
O((N/B) logM/B (N/B)) I/O’s using the textbook-algorithm
external sort.

Given a dataset with cardinality N sorted by x-coordinates,
the decomposition of the dataset along the x-dimension can
be performed in linear time, i.e., O(N/B). Also, by Lemma
3, the total I/O cost of the merging process at each recursion
level is also O(N/B), since there can be at most 2N rectan-
gles in the input of any recursion. By the proof of Lemma 1,
there are O(logM/B (N/B)) levels of recursion. Hence, the
total I/O cost is O((N/B) logM/B (N/B)).

The optimality of this I/O complexity follows directly
from the results of [2] and [11].

6. APPROXIMATION ALGORITHM FOR
MAXIMIZING CIRCULAR RANGE SUM

In this section, we propose an approximation algorithm,
namely ApproxMaxCRS, for solving the MaxCRS problem
(Definition 2). Our algorithm finds an (1/4)-approximate
solution in O((N/B) logM/B (N/B)) I/O’s. We achieve the
purpose by a novel reduction that converts the MaxCRS
problem to the MaxRS problem.

6.1 ApproxMaxCRS
Recall (from Definition 2) that the goal of the MaxCRS

problem is to find a circle with a designated diameter that
maximizes the total weight of the points covered. Denote by
d the diameter. Following the idea explained in Section 4,
first we transform the MaxCRS problem into the following
problem: Let C be a set of circles each of which is centered
at a distinct object o ∈ O, has a diameter as specified in

the MaxCRS problem, and carries a weight w(o). We want
to find a location p in the data space to maximize the total
weight of the circles in C covering p. Figure 8(a) shows an
instance of the transformed MaxCRS problem, where there
are four circles in C, each of which is centered at an object
o ∈ O in the original MaxCRS problem. An optimal answer
can be any point in the gray area.

We will use the ExactMaxRS algorithm developed in the
previous section as a tool to compute a good approximate
answer for the MaxCRS problem. For this purpose, we con-
vert each circle of C to its Minimum Bounding Rectangle
(MBR). Obviously, the MBR is a d × d square. Let R be
the set of resulting MBRs. Now, apply ExactMaxRS on R,
which outputs the max-region with regard to R. Under-
standably, the max-region (black area in Figure 8(b)) re-
turned from the ExactMaxRS algorithm may contain loca-
tions that are suboptimal for the original MaxCRS problem
(in Figure 8(b), only points in the gray area are optimal).
Moreover, in the worst case, the max-region may not even
intersect with any circle at all as shown in Figure 8(c).

p

(a) The transformed
MaxCRS problem

(b) MBRs of
circles

(c) Worst case

Figure 8: Converting MaxCRS to MaxRS

Therefore, in order to guarantee the approximation bound,
it is insufficient to just return a point in the max region. In-
stead, our ApproxMaxCRS algorithm returns the best point
among the center of the max-region and four shifted points.
The algorithm is presented in Algorithm 3.

Algorithm 3 ApproxMaxCRS

Input: a set of circles C, a slab γ whose range of the x-
coordinate is (−∞,∞), the number of slabs m

Output: a point p̂

1: Construct a set R of MBRs from C
2: ρ← ExactMaxRS(R, γ, m)
3: p0 ← the center point of ρ
4: for i = 1 to 4 do
5: pi ← GetShiftedPoint(p0, i)
6: end for
7: p̂ ← the point p among p0, ..., p4 that maximizes the

total weight of the circles covering p
8: return p̂

After obtaining the center point p0 of the max-region ρ
returned from ExactMaxRS function (Lines 2 - 3), we find
four shifted points pi, where 1 ≤ i ≤ 4, from p0 as shown
in Figure 9 (Lines 4 - 6). We use σ to denote the shifting
distance which determines how far a shifted point should be
away from the center point. To guarantee the approximation
bound as proved in Section 6.2, σ can be set to any value
such that (

√
2 − 1) d

2
< σ < d

2
. Finally, we return the best

point p̂ among p0, ..., p4 (Lines 7 - 8).

p0

p1

p2p3

p4

σ

Figure 9: The illustration of shifting points

Symbol Description
d the diameter of circles (a given parameter

of the MaxCRS problem)
p0 the centroid of the max-region returned by

ExactMaxRS
pi (i ∈ [1, 4]) a shifted point described in Algorithm 3
ci (i ∈ [0, 4]) the circle with diameter d centering at

point pi

r0 the MBR of c0

O(s) the set of objects covered by s, where s is
a circle or an MBR

W (s) the total weight of the objects in O(s)

Table 1: List of notations

Note that Algorithm 3 does not change the I/O complex-
ity of the ExactMaxRS algorithm, since only linear I/O’s
are required in the entire process other than running the
ExactMaxRS algorithm. Note that Line 7 of Algorithm 3
requires only a single scan of C.

6.2 Approximation Bound
Now, we prove that the ApproxMaxCRS algorithm re-

turns a (1/4)-approximate answer to the optimal solution,
and also prove that this approximation ratio is tight with re-
gard to this algorithm. To prove the approximation bound,
we use the fact that a point p covered by the set of circles
(or MBRs) in the transformed MaxCRS problem is truly
the point such that the circle (or MBR) centered at p cov-
ers the corresponding set of objects in the original MaxCRS
problem. The main notations used in this section are sum-
marized in Table 1.

Lemma 5. For each i ∈ [0, 4], let ci be the circle centered
at point pi, r0 be the MBR of c0, and O(s) be the set of
objects covered by s, where s is a circle or an MBR. Then
O(r0) ⊆ O(c1) ∪O(c2) ∪O(c3) ∪O(c4).

Proof. As shown in Figure 10, all the objects covered
by r0 are also covered by c1, c2, c3, or c4, since (

√
2− 1) d

2
<

σ < d
2
.

c0

c4

c3

c1

c2

r0

(a) σ = (
√

2− 1) d
2

c0

c4

c3

c1

c2

r0

(b) σ = d
2

Figure 10: Lemma 5

Let W (s) be the total weight of the objects covered by s,
where s is a circle or an MBR. Then, we have:

Lemma 6. W (r0) ≤ 4 max
0≤i≤4

W (ci).

Proof.

W (r0) ≤
∑

1≤i≤4

W (ci) (by Lemma 5)

≤ 4 max
0≤i≤4

W (ci)

Theorem 3. The ApproxMaxCRS algorithm returns a
(1/4)-approximate answer to the MaxCRS problem.

Proof. Recall that p̂ is the point returned from Algo-
rithm 3 as the approximate answer to the MaxCRS prob-
lem. Let point p∗ be an optimal answer for the MaxCRS
problem. Denote by r̂ and r∗ the MBRs centered at point
p̂ and p∗, respectively. Likewise, denote by ĉ and c∗ be the
circles centered at point p̂ and p∗, respectively. The goal is
to prove W (c∗) ≤ 4W (ĉ).

We achieve this purpose with the following derivation:

W (c∗) ≤W (r∗) ≤W (r0) ≤ 4 max
0≤i≤4

W (ci) = 4W (ĉ)

The first inequality is because r∗ is the MBR of c∗. The
second inequality is because p0 is the optimal solution for
the MaxRS problem on R. The last equality is because
ApproxMaxCRS returns the best point among p0, ..., p4.

Theorem 4. The 1/4 approximation ratio is tight for the
ApproxMaxCRS algorithm.

Proof. We prove this by giving a worst case example.
Consider an instance of the transformed MaxCRS problem
in Figure 11 where each circle has weight 1. In this case,
we may end up finding a max-region centered at p0 using
the ExactMaxRS algorithm (notice that both p0 and p∗ are
covered by 4 MBRs). In this case, we will choose one of
p1, ..., p4 as an approximate solution. Since each of p1, ..., p4

is covered by only 1 circle, our answer is (1/4)-approximate,
because the optimal answer p∗ is covered by 4 circles.

p1

p2p3

p4

p*

p0

Figure 11: Theorem 4

7. EMPIRICAL STUDY
In this section, we evaluate the performance of our algo-

rithms with extensive experiments.

Dataset Cardinality
UX 19,499
NE 123,593

Table 2: The cardinalities of real datasets

Parameter Default value
Cardinality (|O|) 250,000

Block size 4KB
Buffer size 256KB (real dataset),

1024KB (synthetic dataset)
Space size 1M × 1M

Rectangle size (d1 × d2) 1K × 1K
Circle diameter (d) 1K

Table 3: The default values of parameters

7.1 Environment Setting
We use both real and synthetic datasets in the experi-

ments. We first generate synthetic datasets under uniform
distribution and Gaussian distribution. We set the cardi-
nalities of dataset (i.e., |O|) to be from 100,000 to 500,000
(default 250,000). The range of each coordinate is set to be
[0, 4|O|] (default [0, 1000000]).

We also use two real datasets, North East (NE) dataset
and United States of America and Mexico (UX) dataset,
downloaded from the R-tree Portal [1]. The cardinalities
of datasets are presented in Table 2. For both datasets, we
normalize the range of coordinates to [0, 1000000].

Since no method is directly applicable to the MaxRS prob-
lem in spatial databases, we should externalize the in-memory
algorithm [11, 14] for max-rectangle enclosing problem to
be compared with our ExactMaxRS algorithm. In fact, the
externalization of this in-memory algorithm is already pro-
posed by Du et al. [9], which is originally invented for pro-
cessing their optimal-location queries. They present two al-
gorithms based on plane-sweep, called Naive Plane Sweep
and aSB-Tree, which are also applicable to the MaxRS prob-
lem, even though their main algorithm based on a prepro-
cessed structure, called the Vol-Tree, cannot be used in the
MaxRS problem.

As a performance metric, we use the number of I/O’s,
precisely the number of transferred blocks during the entire
process. We do not consider CPU time, since it is dominated
by I/O cost.

We fix the block size to 4KB, and set the buffer size to
256KB for real datasets and 1024KB for synthetic datasets
by default. This is because the cardinalities of the real
datasets are relatively small (recall that we consider a mas-
sive dataset which cannot be fully loaded into the main
memory). Also, for the MaxRS problem, we set the rect-
angle size to 1000×1000 by default. Similarly, for the Max-
CRS problem, we set the circle diameter to 1000 by default.
All the default values of parameters are presented in Table
3.

We implement all the algorithms in Java, and conduct all
the experiments on a PC equipped with Intel Core i7 CPU
3.4GHz and 16GB memory.

7.2 Experimental Results
In this section, we present our experimental results. First,

we examine the performance of alternative algorithms in
terms of I/O cost by varying the parameters. Note that the
I/O cost is in log scale in all the relevant graphs. We finally

show the quality of approximation of our ApproxMaxCRS
algorithm in Section 7.2.5.

7.2.1 Effect of the Dataset Cardinalities
Figure 12 shows the experimental results for varying the

total number of objects in the dataset. Both of the results
of Gaussian distribution and uniform distribution shows our
ExactMaxRS is much more efficient than the algorithms
based on plane-sweep. Especially, even if the dataset gets
larger, the ExactMaxRS algorithm achieves performance sim-
ilar to that on the smaller dataset, which effectively shows
that our algorithm is scalable to datasets of a massive size.

0.0001

0.01

1

100

10000

1000000

10 20 30 40 50

I/
O

 c
o
st

 (
x1

0
4
)

The number of objects (x104)

Naïve aSB-Tree ExactMaxRA

(a) Gaussian distribution

0.0001

0.01

1

100

10000

1000000

10 20 30 40 50

I/
O

 c
o
st

 (
x1

0
4
)

The number of objects (x104)

Naïve aSB-Tree ExactMaxRA

(b) Uniform distribution

Figure 12: Effect of the dataset cardinalities

7.2.2 Effect of the Buffer Size
Figure 13 shows the experimental results for varying the

buffer size. Even though all the algorithms exhibit better
performance as the buffer size increases, the ExactMaxRS
algorithm is more sensitive to the size of buffer than the
others. This is because our algorithm uses the buffer more
effectively. As proved in Theorem 2, the I/O complexity
of ExactMaxRS is O((N/B) logM/B (N/B)), which means
the larger M , the smaller the factor logM/B (N/B). Nev-
ertheless, once the buffer size is larger than a certain size,
the ExactMaxRS algorithm also shows behavior similar to
the others, since the entire I/O cost will be dominated by
O(N/B), i.e., linear pcost.

0.0001

0.01

1

100

10000

1000000

0 512 1024 1536 2048

I/
O

 c
o

st
 (
x1

0
4
)

Buffer size (KB)

Naïve aSB-Tree ExactMaxRA

(a) Gaussian distribution

0.0001

0.01

1

100

10000

1000000

0 512 1024 1536 2048

I/
O

 c
o
st

 (
x1

0
4
)

Buffer size (KB)

Naïve aSB-Tree ExactMaxRA

(b) Uniform distribution

Figure 13: Effect of the buffer size

7.2.3 Effect of the Range Size
Figure 14 shows the experimental results for varying the

range parameters. Without loss of generality, we use the
same value for each dimension, i.e., each rectangle is a square.
It is observed that the ExactMaxRS algorithm is less influ-
enced by the size of range than the other algorithms. This
is because as the size of range increases, the probability that

rectangles overlap also increases in the algorithms based on
plane-sweep, which means that the number of interval inser-
tions will also increase. Meanwhile, the ExactMaxRS algo-
rithm is not much affected by the overlapping probability.

0.0001

0.01

1

100

10000

1000000

0 2000 4000 6000 8000 10000

I/
O

 c
o
st

 (
x1

0
4
)

The range size

Naïve aSB-Tree ExactMaxRA

(a) Gaussian distribution

0.0001

0.01

1

100

10000

1000000

0 2000 4000 6000 8000 10000
I/

O
 c

o
st

 (
x1

0
4
)

The range size

Naïve aSB-Tree ExactMaxRA

(b) Uniform distribution

Figure 14: Effect of the range size

7.2.4 Results of Real Datasets
We conduct the same kind of experiments on real datasets

except varying cardinalities. As shown in Table 2, dataset
UX is not only much smaller, but also sparser than NE, since
the domains of the data space are the same, i.e., 1M × 1M .
In fact, we can regard UX as a macro view of NE.

Overall trends of the graphs are similar to the results in
synthetic datasets, as shown in Figures 15 and 16. Note
that in Figure 15(a), when the buffer size gets larger than
512KB, the naive plane sweep algorithm shows the best per-
formance. This is because UX is small enough to be loaded
into a buffer of size 512KB, which causes only one linear
scan. However, we can see that the aSB-Tree cannot be
loaded into a buffer of the same size, since the aSB-Tree re-
quires more space due to the other information in the tree
structure such as pointers of child nodes.

In this paper, since we focus on massive datasets that
should be stored in external memory, we can claim that
our ExactMaxRS algorithm is much more efficient than the
others for large datasets such as NE.

0.0001

0.01

1

100

10000

0 128 256 384 512

I/
O

 c
o
st

 (
x1

0
4
)

Buffer size (KB)

Naïve aSB-Tree ExactMaxRA

(a) UX

0.0001

0.01

1

100

10000

0 128 256 384 512

I/
O

 c
o
st

 (
x1

0
4
)

Buffer size (KB)

Naïve aSB-Tree ExactMaxRA

(b) NE

Figure 15: Effect of the buffer size on real datasets

7.2.5 The Quality of Approximation
Finally, we evaluate the quality of approximation obtained

from the ApproxMaxCRS algorithm in Figure 17. Since
the quality can be different when the diameter d changes,
we examine the quality by varying d on both synthetic and
real datasets. Optimal answers are obtained by implement-
ing a theoretical algorithm [8] that has time complexity
O(n2 log n) (and therefore, is not practical). We observe

0.0001

0.01

1

100

10000

0 2000 4000 6000 8000 10000

I/
O

 c
o
st

 (
x1

0
4
)

The range size

Naïve aSB-Tree ExactMaxRA

(a) UX

0.0001

0.01

1

100

10000

1000000

0 2000 4000 6000 8000 10000

I/
O

 c
o
st

 (
x1

0
4
)

The range size

Naïve aSB-Tree ExactMaxRA

(b) NE

Figure 16: Effect of the range size on real datasets

that when the diameter gets larger, the quality of approx-
imation becomes higher and more stable, since more ob-
jects are included in the given range. Even though theoret-
ically our ApproxMaxCRS algorithm guarantees the (1/4)-
approximation bound, the average approximation ratio is
much larger than 1/4 in practice, which is close to 0.9.

0

0.25

0.5

0.75

1

0 2000 4000 6000 8000 10000

R
a

ti
o

 (
W

(Ĉ
)/

W
(C

*
))

The diameter

Uniform Gaussian UX NE

Figure 17: Approximation quality

8. CONCLUSIONS AND FUTURE WORK
In this paper, we solve the MaxRS problem in spatial

databases. This problem is useful in many scenarios such
as finding the most profitable service place and finding the
most serviceable place, where a certain size of range should
be associated with the place. For the MaxRS problem, we
propose the first external-memory algorithm, ExactMaxRS,
with a proof that the ExactMaxRS algorithm correctly solves
the MaxRS problem in optimal I/O’s. Furthermore, we
propose an approximation algorithm, ApproxMaxCRS, for
the MaxCRS problem that is a circle version of the MaxRS
problem. We also prove that the ApproxMaxCRS algorithm
gives a (1/4)-approximate solution to the exact solution for
the MaxCRS problem. Through extensive experiments on
both synthetic and real datasets, we demonstrate that the
proposed algorithms are also efficient in practice.

Now we are considering several directions for our future
works. First, it will be naturally feasible to extend our al-
gorithm to deal with MaxkRS problem or MinRS problem.
Second, focusing on the MaxCRS problem, we are planning
to improve the algorithm to give a tighter bound. Finally,
although our ExactMaxRS algorithm is proved optimal in
terms of I/O cost, so far we do not use any preprocessed
structure. Therefore, our next direction can be to reduce
the searching cost by using a newly invented index.

9. ACKNOWLEDGMENTS
This work was supported in part by WCU (World Class

University) program under the National Research Founda-
tion of Korea funded by the Ministry of Education, Science
and Technology of Korea (No. R31-30007), and in part by
the National Research Foundation of Korea grant funded by
the Korean government (MEST) (No. 2012-0000182).

Yufei Tao was supported in part by project GRF 4165/11
from HKRGC.

10. REFERENCES
[1] The R-tree portal. http://www.rtreeportal.org, 2003.

[2] L. Arge, M. Knudsen, and K. Larsen. A general lower
bound on the I/O-complexity of comparison-based
algorithms. In Proceedings of Algorithms and Data
Structures (WADS), pages 83–94, 1993.

[3] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 886–894, 2005.

[4] B. M. Chazelle and D. Lee. On a circle placement
problem. Computing, 36(1):1–16, 1986.

[5] H.-J. Cho and C.-W. Chung. Indexing range sum
queries in spatio-temporal databases. Information &
Software Technology, 49(4):324–331, 2007.

[6] R. A. Chowdhury and V. Ramachandran.
Cache-oblivious dynamic programming. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 591–600, 2006.

[7] M. de Berg, S. Cabello, and S. Har-Peled. Covering
many or few points with unit disks. Theory Comput.
Syst., 45(3):446–469, 2009.

[8] Z. Drezner. Note—on a modified one-center model.
Management Science, 27(7):848–851, 1981.

[9] Y. Du, D. Zhang, and T. Xia. The optimal-location
query. In International Symposium of Advances in
Spatial and Temporal Databases (SSTD), pages
163–180, 2005.

[10] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry
(preliminary version). In Proceedings of Annual
Symposium on Foundations of Computer Science
(FOCS), pages 714–723, 1993.

[11] H. Imai and T. Asano. Finding the connected
components and a maximum clique of an intersection
graph of rectangles in the plane. Journal of
Algorithms, 4(4):310–323, 1983.

[12] M. Jürgens and H.-J. Lenz. The RA*-tree: An
improved r-tree with materialized data for supporting
range queries on olap-data. In DEXA Workshop,
pages 186–191, 1998.

[13] I. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree
structure. In SIGMOD Conference, pages 401–412,
2001.

[14] S. C. Nandy and B. B. Bhattacharya. A unified
algorithm for finding maximum and minimum object
enclosing rectangles and cuboids. Computers and
Mathematics with Applications, 29(8):45–61, 1995.

[15] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient
olap operations in spatial data warehouses. In
International Symposium of Advances in Spatial and
Temporal Databases (SSTD), pages 443–459, 2001.

[16] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørv̊ag. Efficient processing of top-k spatial
preference queries. PVLDB, 4(2):93–104, 2010.

[17] C. Sheng and Y. Tao. New results on two-dimensional
orthogonal range aggregation in external memory. In
Proceedings of ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems
(PODS), pages 129–139, 2011.

[18] R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu,
and L. Liu. Efficient method for maximizing
bichromatic reverse nearest neighbor. PVLDB,
2(1):1126–1137, 2009.

[19] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On
computing top-t most influential spatial sites. In
Proceedings of International Conference on Very Large
Data Bases (VLDB), pages 946–957, 2005.

[20] X. Xiao, B. Yao, and F. Li. Optimal location queries
in road network databases. In Proceedings of
International Conference on Data Engineering
(ICDE), pages 804–815, 2011.

[21] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k
spatial preference queries. In Proceedings of
International Conference on Data Engineering
(ICDE), pages 1076–1085, 2007.

[22] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive
computation of the min-dist optimal-location query. In
Proceedings of International Conference on Very Large
Data Bases (VLDB), pages 643–654, 2006.

[23] Z. Zhou, W. Wu, X. Li, M.-L. Lee, and W. Hsu.
Maxfirst for MaxBRkNN. In Proceedings of
International Conference on Data Engineering
(ICDE), pages 828–839, 2011.

