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Output-Optimal Massively Parallel Algorithms
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Parallel join algorithms have received much attention in recent years due to the rapid development of mas-

sively parallel systems such as MapReduce and Spark. In the database theory community, most efforts have

been focused on studying worst-case optimal algorithms. However, the worst-case optimality of these join

algorithms relies on the hard instances having very large output sizes. In the case of a two-relation join, the

hard instance is just a Cartesian product, with an output size that is quadratic in the input size.

In practice, however, the output size is usually much smaller. One recent parallel join algorithm by Beame

et al. has achieved output-optimality (i.e., its cost is optimal in terms of both the input size and the output

size), but their algorithm only works for a 2-relation equi-join and has some imperfections. In this article, we

first improve their algorithm to true optimality. Then we design output-optimal algorithms for a large class

of similarity joins. Finally, we present a lower bound, which essentially eliminates the possibility of having

output-optimal algorithms for any join on more than two relations.
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1 INTRODUCTION

The similarity join problem is perhaps one of the most extensively studied problems in the data-
base and data mining literature. Numerous variants exist, depending on the metric space and the
distance function used. Let dist(·, ·) be a distance function. Given two point sets R1 and R2 and a
threshold r ≥ 0, the similarity join problem asks to find all pairs of points x ∈ R1,y ∈ R2, such that
dist(x ,y) ≤ r . In this article, we will be mostly interested in the �1, �2, and �∞ distances, although
some of our results (the one based on locality-sensitive hashing (LSH)) can be extended to other
distance functions as well.
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1.1 The Computation Model

Driven by the rapid development of massively parallel systems such as MapReduce [14], Spark [33],
and many other systems that adopt very similar architectures, there have also been resurrected
interests in the theoretical computer science community to study algorithms in such massively
parallel models. One popular model that has often been used to study join algorithms in particular
is the massively parallel computation (MPC) model [1–3, 7, 8, 22–24].

In the MPC model, data is initially partitioned arbitrarily across p servers that are connected
by a complete network. Computation proceeds in rounds. In each round, each server first sends
messages to other servers. After all messages have arrived at their destinations, the servers con-
duct some local computation in parallel and proceed to the next round. The complexity of the
algorithm is measured first by the number of rounds, then the load, denoted as L, which is the
maximum message size received by any server in any round. Initial efforts were mostly spent on
understanding what can be done in a single round of computation [2, 7, 8, 23, 24]; however, re-
cently, more interests have been given to multi-round (but still a constant) algorithms [1, 3, 22, 23],
as new main memory based systems, such as Spark, tend to have much lower overhead per round
than previous systems like Hadoop. Meanwhile, this puts more emphasis on minimizing the load,
to ensure that the local memory at each server is never exceeded.

Note that the MPC model is essentially Valiant’s bulk synchronous processing (BSP) model
[32] without restricting the outgoing messages. Theoretically, this further simplifies the model.
The practical justification is that the routing of outgoing messages overlaps with the computation
phase, making it negligible. Furthermore, the incoming message size also indirectly determines the
memory requirement and local computation time on each server in the following round, which is
why this measure is referred to as “load.”

Let N1 and N2 be the sizes of the two relations to be joined, and let IN = N1 + N2. In this article,
we will focus on the case when 1/p ≤ N1/N2 ≤ p. This is because when N1/N2 falls outside this
range, the trivial algorithm that broadcasts the smaller relation to all servers would be optimal, as
shown in Section 3.2.

1.2 Previous Join Algorithms in the MPC Model

All prior work on join algorithms in the MPC model has focused on equi-joins and has mostly
been concerned with the worst case. Notably, the hypercube algorithm [2] computes the equi-join

between two relations with load L = Õ (
√
N1N2/p).1 This load is optimal in the worst case, as the

output size can be as large asN1N2, when all tuples share the same join key and the join degenerates
into a Cartesian product. Since each server can only produce O (L2) join results in a round2 if the
load is limited to L, all thep servers can produce at mostO (pL2) join results in a constant number of

rounds. Thus, producingN1N2 results needs at least a load ofL = Ω(
√
N1N2/p). Note that this lower

bound argument is assuming tuple-based join algorithms—that is, the tuples are atomic elements
that must be processed and communicated in their entirety. They can be copied but cannot be
broken up or manipulated with bit tricks. To produce a join result, all tuples (or their copies) that
make up the join result must reside at the same server when the join result is output. However,
the server does not have to do any further processing with the result, such as sending it to another
server. The same model has also been used in other works [7, 8, 23].

1The Õ notation suppresses polylogarithmic factors.
2Technically, this is true under the condition L = Ω(IN/p ), but as will be proved in this article, this condition indeed holds

even just to decide whether the join result is empty.
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However, on most realistic datasets, the join size is nowhere near the worst case. Suppose that
the join size is OUT. Applying the same argument as earlier, one would hope to get a load of

Õ (
√

OUT/p). Such a bound would be output-optimal. Of course, this is not entirely possible, as

OUT can even be zero, so a more reasonable target would be L = Õ (
√

OUT/p + IN/p), where IN =
N1 + N2 is the total input size. This is exactly the goal of this work, although in some cases we

have not achieved this ideal input-dependent term Õ (IN/p) exactly. Note that we are still doing
worst-case analysis—that is, we do not make any assumptions on the input data and how it is
distributed on the p servers initially. We merely use OUT as an additional parameter to measure
the complexity of the algorithm.

There are some previous join algorithms that use both IN and OUT to measure the complex-
ity. Afrati et al. [1] gave an algorithm with load O (INw/

√
p + OUT/

√
p), where w is the width of

the join query, which is 1 for any acyclic query, including a 2-relation join. However, both terms
O (OUT/

√
p) orO (IN/

√
p) are far from optimal. Beame et al. [8] proposed a randomized algorithm

with optimal load Õ (
√

OUT/p + IN/p), but up to logarithmic factors, due to the use of random
hashing. They also assume that each server knows the data statistics in advance.

Note that equi-join is a special case of similarity joins with r = 0. There are previously no al-
gorithms in the MPC model for similarity joins with r > 0, except computing the full Cartesian

product of the two relations with load O (
√
N1N2/p), which is not output-optimal.

As a remark, there exists a general reduction [23] that converts MPC join algorithms into I/O-
efficient counterparts under the enumerate version [29] of the external memory model [4], where
each result tuple only needs to be seen in memory, as opposed to being reported in the disk. A nice
application of the reduction has been demonstrated for the triangle enumeration problem, where
an MPC algorithm [23] is shown to imply an EM algorithm matching the I/O lower bound of Pagh
and Silvestri [29] up to a logarithmic factor.

1.3 Our Results

We start with an improved algorithm for computing the equi-join between two relations—for in-
stance, a degenerated similarity join with r = 0. We improve upon the algorithm of Beame et al. [8]
in the following aspects. First, our algorithm does not assume any prior statistical information
about the data, such as the heavy join values and their frequencies. Second, the load of our al-

gorithm is exactly O (
√

OUT/p + IN/p) tuples, without any extra logarithmic factors. Third, our
algorithm is deterministic. The only price we pay is that the number of rounds increases from 1 to
O (1). This algorithm is described in Section 3.

Although the O (
√

OUT/p) term is optimal by the preceding tuple-based argument, prior work
did not show why the input-dependent term O (IN/p) is necessary. Note that if OUT is not a pa-
rameter, the worst-case input is always when the output size is maximized, i.e., a full Cartesian
product for 2-relation joins or the AGM bound [6] for multi-way joins). In this case, the preceding
simple tuple-based argument already leads to a lower bound higher than Ω(IN/p), so this is not an
issue. However, when the output size OUT becomes a parameter, these worst-case constructions
do not work anymore, and it is not clear why O (IN/p) load is necessary. Indeed, if OUT = 1, then
the preceding tuple-based argument yields a meaningless lower bound of Ω(1/p). To complete
the picture, we provide a lower bound showing that even if OUT = O (1), computing the equi-join
between two relations requires Ω(IN/p) load, by resorting to strong results from communication
complexity.

The main theoretical results in this article, however, are on similarity joins with r > 0. Specifi-
cally, we obtain the following results under various distance metrics:
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(1) For �1/�∞ distance in constant dimensions, we give a deterministic algorithm with load

O ���
√

OUT

p
+

IN

p
· logO (1) p���

—that is, the output-dependent term is optimal, whereas the input-dependent term is away
from optimality by a polylogarithmic factor, which depends on the dimensionality.

(2) For �2 distance in d dimensions, we give a randomized algorithm with load

O ���
√

OUT

p
+ IN/p

d
2d−1 + p

d
2d−1 logp��� .

Again, the term O (
√

OUT
p

) is output-optimal. The input-dependent term O (IN/p
d

2d−1 ) is

worse than the �1/�∞ case due to the non-orthogonal nature of the �2 metric, but it is
always better than O (IN/

√
p), which is the load for computing the full Cartesian product.

(3) In high dimensions, we provide an algorithm based on LSH with load

Õ ���
√

OUT

p1/(1+ρ )
+

√
OUT(cr )

p
+

IN

p1/(1+ρ )

��� ,
where OUT(cr ) is the output size if the distance threshold is enlarged to cr for some
constant c > 1, and 0 < ρ < 1 is the quality measure of the hash function used, which

depends only on c and the distance function. Similarly, the term O (IN/p1/(1+ρ ) ) is always
better than that for computing the Cartesian product, although output-optimality here is
not only with respect to OUT but also OUT(cr ), due to the approximation nature of LSH.

All the algorithms run in O (1) rounds, under the mild assumption IN > p1+ϵ , where ϵ > 0 is
any small constant. Note that the randomized output-optimal algorithm in Beame et al. [8] for
equi-joins has an implicit assumption that IN ≥ p2, as there are Θ(p) heavy join values, so each
server has load at least Ω(p) to store these values and their frequencies. We acknowledge that in
practice, IN ≥ p2 is a very reasonable assumption. Our desire to relax this to IN > p1+ϵ is more
from a theoretical point of view, namely achieving the minimum requirement for solving these

problem in O (1) rounds and optimal load. Indeed, Goodrich [16] has shown that if IN = p1+o (1) ,
then even computing the “or” of IN bits requires ω (1) rounds under load O (IN/p).

Finally, we turn to multi-way joins. The only known multi-way equi-join algorithm in the
MPC model that has a term related to OUT is the algorithm in Afrati et al. [1] mentioned in
Section 1.2. However, that term is O (OUT/

√
p), which is almost quadratically larger than the

output-optimal term O (
√

OUT/p) that we achieved earlier. We show that, unfortunately, such an
output-optimal term is not achievable for a simple multi-way equi-join, a 3-relation chain join
R1 (A,B) � R2 (B,C ) � R3 (C,D). More precisely, in Section 7, we show that if any tuple-based al-
gorithm computing this join has a load in the form of

L = O ���
IN

pα
+

√
OUT

p
��� ,

for some constant α , then we must have α ≤ 1/2, provided IN log2 IN = Ω(p3). However, the algo-

rithm in Beame et al. [23] can already compute any 3-relation chain join with Õ (IN/
√
p) load. This

means that it is meaningless to introduce the output-dependent term O (
√

OUT/p).
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The conference version of this article [19] is mostly concerned with theoretical optimality. In
this extended article, we also look at the practical side of the problem. One of the most serious
issues in implementing the theoretically optimal MPC algorithm in practice is the large, although
still constant, number of rounds. In the current distributed data processing systems, each round
incurs a substantial synchronization overhead, and the benefit of an asymptotic smaller load can be
easily offset by the large system overhead. To more precisely model the cost of each synchronous
round, we classify them into heavy rounds and light rounds (Section 8), where a round is light if its

load is Õ (p) and heavy otherwise. Since p � L in practice, it is desirable to minimize the number
of heavy rounds while being a bit more tolerant on the light rounds. Then, we design a practical
version of our equi-join algorithm and the 1D similarity join algorithm so that both run in a single

heavy round and a constant number of light rounds. We have implemented these algorithms in
Spark and conducted experiments comparing with other techniques. For equi-join, we have also
implemented the hash-based output-optimal algorithm of Beame et al. [8], which had not been
implemented before. In Section 9, the experimental results suggest that the output-optimal equi-
join algorithms can significantly outperform the vanilla join algorithm in Spark, which is based on
the simple hash join. We have also conducted experiments for similarity joins on high-dimensional
data. The experimental results show that our LSH-based algorithm yields the best performance
among a number of alternatives.

2 PRELIMINARIES

In this section, we first define the similarity join problem under different distance metrics, and
their reduction to various geometric containment problems, which will be focused upon in the
rest of the article. Then we introduce several primitive operations in the MPC model, which will
be used by our algorithms as building blocks.

2.1 Similarity Joins

Similarity joins under r = 0 are equi-joins, where two points can be joined if and only if they are
equal. For r > 0, a similarity join is better interpreted geometrically. We model input tuples as
points in Rd , and let R1,R2 ⊂ Rd be two sets of points with |R1 | = N1, |R2 | = N2. For two points
x = (x1,x2, . . . ,xd ) ∈ R1,y = (y1,y2, . . . ,yd ) ∈ R2, their distance under the �k norm is

‖x − y‖k = ��
d∑

i=1

|xi − yi |k��
1/k

.

The most commonly used �k norms are the �1-norm, �2-norm, and �∞ norm. Note that for k = ∞,
‖x − y‖∞ = maxi=1,2, ...,d |xi − yi |.

2.1.1 Similarity Join Under �1/�∞ Distance. It is well known that the �1 metric in d dimensions
can be embedded into the �∞ metric in 2d−1 dimensions via the following transformation. Note
that for any point (x1,x2, . . . ,xd ) ∈ Rd , we have

d∑
i=1

|xi | = max
(z2, ...,zd )∈{−1,1}d−1

|x1 + z2x2 + · · · + zdxd |.

Thus two points (x1, . . . ,xd ) ∈ R1 and (y1, . . . ,yd ) ∈ R2 join under �1 distance if and only if

max
(z2, ...,zd )∈{−1,1}d−1

|(x1 + z2x2 + · · · + zdxd ) − (y1 + z2y2 + · · · + zdyd ) | ≤ r .

We map the point (x1,x2, . . . ,xd ) to a point in 2d−1 dimensions, where each dimension
has coordinate x1 + z2x2 · · · + zdxd corresponding to each (z2, . . . , zd ) ∈ {−1, 1}d−1. The similar

ACM Transactions on Database Systems, Vol. 44, No. 2, Article 6. Publication date: March 2019.



6:6 X. Hu et al.

transformation applies for point (y1,y2, . . . ,yd ). These two d-dimensional points join under �1
distance if and only if the corresponding two 2d−1-dimensional points join under �∞ distance.

Next, we reduce the similarity join under �∞ distance to the rectangles-containing-points problem:
given a set R1 of N1 points and a set R2 of N2 orthogonal rectangles, the goal is to return all
pairs (x ,y) ∈ R1 × R2 such that x ∈ y. The reduction is quite straightforward. We map the point
(y1,y2, . . . ,yd ) ∈ R2 to a d-dimensional rectangle defined by the Cartesian product of intervals
[yi − r ,yi + r ] for i = 1, 2, . . . ,d . The points in R1 remain unchanged. It should be obvious that
two points x ∈ R1 and y ∈ R2 join under �∞ distance if and only if x falls inside the rectangle
corresponding to y. Note that the reduction will only produce squares, but our solution to the
rectangle-containing-points can handle general orthogonal rectangles.

2.1.2 Similarity Join Under �2 Distance. We use the lifting transformation [13] to reduce the
similarity join under �2 distance to the halfspaces-containing-points problem in d + 1 dimensions.
More precisely, we map each point (x1, . . . ,xd ) ∈ R1 to a point in d + 1 dimensions as(

x1, . . . ,xd ,x
2
1 + · · · + x2

d

)
and map a point (y1, . . . ,yd ) ∈ R2 to a halfspace in d + 1 dimensions (yi ’s are the coefficients and
zi ’s are the variables) as

−2y1z1 − · · · − 2ydzd + zd+1 + y
2
1 + · · · + y2

d − r
2 ≥ 0.

Observe that (x1 − y2)2 + · · · + (xd − yd )2 ≤ r 2 can be rewritten as

x2
1 + y

2
1 + · · · + x2

d + y
2
d − 2x1y1 − · · · − 2xdyd − r 2 ≥ 0.

Thus, two points x ∈ R1 and y ∈ R2 join in the original d-dimensional space under �2 distance if
and only if the lifted x falls inside the halfspace corresponding to y in the (d + 1)-dimensional
space. Thus, it is sufficient to solve the halfspaces-containing-points problem: given a set of N1

points and a set of N2 halfspaces, report all the (point, halfspace) pairs such that the point is inside
the halfspace.

2.2 MPC Primitives

Assume that IN > p1+ϵ, where ϵ > 0 is any small constant. We introduce the following primitives
in the MPC model, all of which can be computed with load O (IN/p) in O (1) rounds.

2.2.1 Sorting. The sorting problem in the MPC model is defined as follows. Initially, IN elements
are distributed arbitrarily on p servers, which are labeled 1, 2, . . . ,p. The goal is to redistribute the
elements so that each server has IN/p elements in the end, whereas any element at server i is
smaller than or equal to any element at server j, for any i < j. By realizing that the MPC model is
the same as the BSP model, we can directly invoke Goodrich’s optimal BSP sorting algorithm [16].
His algorithm has load L = Θ(IN/p) and runs in O (logL IN) = O (logL (pL)) = O (logL p) rounds.
When IN > p1+ϵ , this is O (1) rounds.

2.2.2 Multi-Numbering. Suppose that each tuple carries a key, and that there are nk tuples for
key k . The goal of the multi-numbering problem is to, for each key k , assign consecutive numbers
1, 2, . . . ,nk to the nk tuples with key k , respectively.

We solve this problem by reducing it to the all prefix-sums problem: given an array of ele-
ments A[1], . . . ,A[IN], compute S[i] = A[1] ⊕ · · · ⊕ A[i] for all i = 1, . . . , IN, where ⊕ is any as-
sociative operator. Goodrich et al. [17] gave an algorithm in the BSP model for this problem that
uses O (IN/p) load and O (1) rounds.

To see how the multi-numbering problem reduces to the all prefix-sums problem, we first sort all
tuples by their keys; ties are broken arbitrarily. The i-th tuple in the sorted order will produce a pair
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(x ,y), which will act asA[i]. For each tuple that is the first of its key in the sorted order, we produce
the pair (0, 1); otherwise, we produce (1, 1). Note that we need another round of communication to
determine whether each tuple is the first of its key, in case that its predecessor resides on another
server. Then we define the operator ⊕ as (x1,y1) ⊕ (x2,y2) = (x1x2,y), where y = y1 + y2 if x2 = 1
and otherwise y = y2.

Consider any (x ,y) = A[i] ⊕ · · · ⊕ A[j]. Intuitively, x = 0 indicates thatA[i], . . . ,A[j] contain at
least one tuple that is the first of its key, whereas y counts the number of tuples in A[i], . . . ,A[j]
whose key is the same as that of A[j]. It is an easy exercise to check that ⊕ is associative, and after
solving the all prefix-sums problem, S[i] is exactly the number of tuples in front of the i-th tuple
that has the same key (including the i-th tuple itself), which solves the multi-numbering problem
as desired.

2.2.3 Sum-by-Key. Suppose that each tuple is associated with a key and a weight. The goal of
the sum-by-key problem is to compute, for each key, the total weight of all the tuples with the
same key.

This problem can be solved using essentially the same approach as for the multi-numbering
problem. First, sort all the N tuples by their keys. As earlier, each tuple will produce a pair (x ,y).
Now, x still indicates whether this tuple is the first of its key, but we just set y to be the weight
associated with the tuple. After we have solved the all prefix-sums problem on these pairs, the last
tuple of each key has the total weight for this key. Again, we need another round to identify the
last tuple of each key by checking each tuple’s successor.

After the preceding algorithm finishes, for each key, exactly one tuple knows the total weight
for the key (i.e., the last one in the sorted order). In some cases, we also need every tuple to know
the total weight for the tuple’s own key. To do so, we invoke the multi-numbering algorithm so
that the last tuple of each key also knows the number of tuples with that key. From this number, we
can compute exactly the range of servers that hold all the tuples with this key. Then we broadcast
the total weight to these servers.

2.2.4 Multi-Search. The multi-search problem is defined as follows. Let U be a universe with
a total order, and let S,Q ⊆ U be two subsets of elements from U . Let |S | = N1, |Q | = N2, and
IN = N1 + N2. The elements in S are called keys, and the elements in Q are called queries. The
problem asks us to, for each query q ∈ Q , find its predecessor in S (i.e., the largest key that is no
larger than q).

The multi-search algorithm given by Goodrich et al. [17] is randomized, with a small probability
exceedingO (IN/p) load. In fact, this problem can also be solved using all prefix-sums, which results
in a deterministic algorithm with load O (IN/p). We first sort all the keys and queries together; in
case of ties, we put the keys before the queries. Then for each key k , define its corresponding
A[i] as itself; for each query, define its A[i] = −∞; define ⊕ = max. Then each query has its S[i] =
maxj≤i A[j], which is the largest key among those smaller than the query itself (i.e., its predecessor
in the keys).

2.2.5 Cartesian Product. The Cartesian product of two sets of size N1 and N2, respectively, can
be reported using a degenerated version of the hypercube algorithm [2, 8], incurring a load of

O ((
√
N1N2/p + IN/p) logp) with probability 1 − 1/pΩ(1) . The extra log factors are due to the use

of hashing. We observe that if the elements in each set are numbered as 1, 2, 3, . . . , then we can
achieve deterministic and perfect load balancing.

Without loss of generality, assume that N1 ≤ N2. As in the standard hypercube algorithm, we
arrange the p servers into a d1 × d2 grid such that d1d2 = p. We first use multi-numbering to assign
consecutive numbers to all tuples in R1 and R2, respectively. If an element in R1 gets assigned a

ACM Transactions on Database Systems, Vol. 44, No. 2, Article 6. Publication date: March 2019.
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number x , then we send it to all servers in the (x mod d1)-th row of the grid; for an element in
R2, we send it to all servers in the (x mod d2)-th column of the grid. Each server then produces all

pairs of elements received. By setting d1 =

√
pN1

N2
,d2 =

√
pN2

N1
, the load is O (

√
N1N2/p + IN/p).

2.2.6 Server Allocation. In many of our algorithms, we decompose the problem into up to p
subproblems and allocate thep servers appropriately, with subproblem j havingp (j ) servers, where∑

j p (j ) ≤ p. Thus, each subproblem needs to know which servers have been allocated to it. This is

trivial if IN ≥ p2, as we can collect all the p (j )’s to one server, do a central allocation, and broadcast
the allocation results to all servers, as is done in Beame et al. [8]. When we only have IN ≥ p1+ϵ ,
some more work is needed to ensure O (IN/p) load.

More formally, in the server allocation problem, each tuple has a subproblem id j, which identifies
the subproblem it belongs to (the j’s do not have to be consecutive), and p (j ), which is the number
of servers allocated to subproblem j. The goal is to attach to each tuple a range [p1 (j ),p2 (j )] such
that the ranges of different subproblems are disjoint and maxj p2 (j ) ≤ p.

We again resort to all prefix-sums. First sort all tuples by their subproblem id. For each tuple,
define its corresponding A[i] = p (j ) if it is the first tuple of subproblem j and 0 otherwise. After
running all prefix-sums, for each tuple, we set its p2 (j ) = S[i], and p1 (j ) = S[i] − p (j ) + 1.

3 EQUI-JOIN

We start by revisiting the equi-join (natural join) problem between two relations, R1 (A,B) �
R2 (B,C ). Let N1 and N2 be the sizes of R1 and R2, respectively; set IN = N1 + N2.

Beame et al. [8] classified the join values into being heavy and light. For a join value v , let
Ri (v ) be the set of tuples in Ri with join value v . Then a join value v is heavy if |R1 (v ) | ≥ N1/p or
|R2 (v ) | ≥ N2/p, and light otherwise. Then they gave an algorithm with load

Θ̃ ���
√∑

heavy v |R1 (v ) | · |R2 (v ) |
p

+
IN

p
��� . (1)

We observe that this bound is asymptotically the same as Θ̃(
√

OUT/p + IN/p) , because

OUT =
∑

v

|R1 (v ) | · |R2 (v ) | =
∑

heavy v

|R1 (v ) | · |R2 (v ) | +
∑

light v

|R1 (v ) | · |R2 (v ) |,

so (1) is upper bounded by Õ (
√

OUT/p + IN/p). Meanwhile, it is also lower bounded by

Ω̃(
√

OUT/p + IN/p). First, it is clearly in Ω̃(IN/p). Second, it is also in Ω̃(
√

OUT/p − IN2/p2) since

∑
light v

|R1 (v ) | · |R2 (v ) | ≤ N1N2

p
≤ IN2

p
.

Thus, we have

(1) = Ω̃ ���
√

OUT − IN2/p

p
+

IN

p
��� = Ω̃ ���

√
OUT − IN2/p

p
+

IN2

p2

��� = Ω̃(
√

OUT/p).

Therefore, their algorithm is output-optimal, but up to a logarithmic factor. Furthermore, their
analysis relies on the uniform hashing assumption (i.e., the hash function distributes each distinct
key to the servers uniformly and independently). It is not clear whether more realistic hash func-
tions, such as universal hashing, could still work. They also assume that each server knows the
entire set of heavy join values and their frequencies, namely all the |Ri (v ) |’s that are larger than
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Ni/p, for i = 1, 2. In the following, we describe a deterministic algorithm that achieves the result
in Theorem 3.1.

3.1 The Algorithm

Our algorithm can be seen as an MPC version of the classical sort-merge-join algorithm. The
high-level procedure is given in Algorithm 1. It decomposes the equi-join into a set of Cartesian
products, one for each distinct join value in the domain of B, and runs the hypercube algorithm
to compute each Cartesian product in parallel. To achieve output-optimality, it needs to compute
OUT first and allocate the appropriate number of servers to each subproblem. The details in each
step are described in the following.

ALGORITHM 1: Eqi-Join R1 (A,B) � R2 (B,C )

1 Collect data statistics and compute OUT;

2 pv ← max
{⌈
p · N1 (v )+N2 (v )

IN

⌉
,
⌈
p · N1 (v )N2 (v )

OUT

⌉}
for each v ∈ dom(B) that has tuples on at least 2

servers;

3 for each such v do in parallel

4 Compute R1 (v ) × R2 (v ) with pv servers;

Step (1): Computing OUT. Consider each distinct value v of the join attribute B. Let Ri (v ) =
σB=vRi , and let Ni (v ) = |Ri (v ) |. Note that OUT =

∑
v N1 (v )N2 (v ). We first use the sum-by-key

algorithm to compute all the Ni (v )’s (i.e., each tuple in Ri (v ) is considered to have key v and
weight 1). Recall that after the sum-by-key algorithm, for eachv , exactly one tuple in Ri (v ) knows
Ni (v ). We sort all such tuples by the key v . Then we add up all the N1 (v )N2 (v )’s, which can also
be done by sum-by-key (just that the key is the same for all tuples).

Step (2): ComputingR1 �� R2. Next, we compute the join (i.e., the Cartesian products R1 (v ) ×
R2 (v ) for all v). Sort all tuples in both R1 and R2 by the join attribute B. Consider each distinct
valuev in B. If all tuples in R1 (v ) ∪ R2 (v ) land on the same server, their join results can be emitted
directly, so we only need to deal with the case when they land on two or more servers. There are
at most p such v’s. For each such v , we allocate

pv = max

{⌈
p · N1 (v ) + N2 (v )

IN

⌉
,

⌈
p · N1 (v )N2 (v )

OUT

⌉}
(2)

servers and compute the Cartesian productR1 (v ) × R2 (v ). Note that we need a total ofO (p) servers;
scaling down the initial p can ensure that at most p servers are needed. Here, we also need the
server allocation primitive to allocate servers to these subproblems accordingly. Finally, to be
able to use the deterministic version of the hypercube algorithm, the tuples in each Ri (v ) need
to be assigned consecutive numbers, which can be achieved by running the multi-numbering
algorithm, treating each distinct join value v as a key. It can be easily verified that the load is

O (maxv {
√

N1 (v )N2 (v )
pv

+
N1 (v )

pv
+

N2 (v )
pv
}) = O (

√
OUT

p
+ IN

p
).

Theorem 3.1. There is a deterministic algorithm that computes the equi-join between two relations

in O (1) rounds with load O (
√

OUT
p
+ IN

p
). It does not assume any prior statistical information about

the data.
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3.2 A Matching Lower Bound

As argued in Section 1.2, the term O (
√

OUT/p) is optimal for any tuple-based algorithm. In the
following, we show an input-dependent lower bound of Ω(min{N1,N2, IN/p}) in terms of the num-
ber of bits even when OUT = O (1). Note that when 1/p ≤ N1/N2 ≤ p, this lower bound becomes
Ω(IN/p), matching the upper bound in Theorem 3.1 up to a logarithmic factor. When N1/N2 < 1/p
or N1/N2 > p, the lower bound becomes Ω(min{N1,N2}), which can be matched up to a logarith-
mic factor by the trivial algorithm that simply broadcasts the smaller relation to all servers.

Theorem 3.2. Any randomized algorithm that computes the equi-join between two relations in

O (1) rounds with a success probability more than 3/4 must incur a load of at least Ω(min{N1,N2,
IN
p
})

bits.

Proof. We use a reduction from the lopsided set disjointness problem studied in communication
complexity. Alice has ≤ n elements and Bob has ≤ m elements withm > n, both from a universe of
sizem, and the goal is to decide whether they have an element in common. It has been proved that
in any multi-round communication protocol, either Alice has to send Ω(n) bits to Bob or Bob has to
send Ω(m) bits to Alice [30]. This holds even for randomized algorithms with a success probability
larger than 3/4. We also note that in the hard instances used in Pǎtraşcu [30], the intersection size
of Alice’s and Bob’s sets is either 0 or 1.

The reduction works as follows. Assuming that N1 ≤ N2, we will show in the following an
Ω(min(N1, IN/p)) lower bound; symmetrically, if N2 ≤ N1, we can show an Ω(min(N2, IN/p))
lower bound. Combining the two cases proves the theorem. Given a hard instance of lopsided
set disjointness, we create R1 with N1 = n tuples, whose join values are the elements of Alice’s
set; create R2 with N2 =m tuples, whose join values are the elements of Bob’s set. Then solving
the join problem also determines whether the two sets intersect or not, whereas OUT can only be
1 or 0.

Recall that in the MPC model, the adversary can allocate the input arbitrarily. We allocate R1

and R2 to the p servers as follows.

If N2 ≤ p · N1, we allocate Alice’s set to
pN2

IN servers and Bob’s set to
pN1

IN servers. Then Alice’s
servers must send Ω(N1) bits to Bob’s servers, which incurs a total load (across all rounds) of
Ω(IN/p) bits per server, or Bob’s servers must send Ω(N2) bits to Alice’s servers, also incurring a
total load of Ω(IN/p) bits per server.

If N2 > p · N1, then we allocate Bob’s set to one server and Alice’s set to the other p − 1 servers.
Then Alice’s servers will send Ω(N1) bits to Bob’s server or receive Ω(N2) bits, so the load is
Ω(min(N1,N2/p)) = Ω(N1). �

4 SIMILARITY JOIN UNDER �1/�∞

Recall that in Section 2.1, we reduced similarity joins to various geometric containment problems.
In each geometric containment problem, we are given a set of points R1 and a set of ranges R2, and
the goal is to find all (point, range) pairs such that the point is contained in the range.

All our algorithms for solving different containment problems are based on the following basic
ideas. Each range is first decomposed into non-overlapping cells. We assign a join key for each cell,
as well as for each point, and then invoke the equi-join algorithm to find all the (point, cell) pairs
that share the same join key. We can easily assign join keys to ensure completeness (i.e., all (point,
cell) pairs where the point is contained in the cell are assigned the same join key), and hence must
be captured by the equi-join algorithm. In fact, a trivial method for completeness is just to assign
the same join key to all points and all cells. However, this is essentially computing the full Cartesian
product. To achieve output-optimality, we need to more carefully assign the join keys so that the
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Fig. 1. Partially covered and fully covered slabs.

equi-join algorithm does not report too many potential join results. For asymptotic optimality, the
equi-join algorithm should return at most a constant times more than the actual join results (i.e.,
O (OUT)) while guaranteeing completeness. The exact way in which the join keys are assigned
are different depending on the particular distance metric under consideration. The �1/�∞ metric
(rectangles-containing-points) will be discussed in Section 4 and �2 metric (halfspaces-containing-
points) in Section 5.

In addition, knowing the value of OUT is crucial, which will be used to allocate servers for
distinct join keys. Although for some problems OUT can be computed easily, for other problems
computing OUT exactly would be difficult. In these cases, we compute an estimate of OUT that is
accurate enough for asymptotic optimality.

In this section and the next, we will assume constant dimensions, which means that it is suffi-
cient to solve the various geometric containment problems in constant dimensions by the reduc-
tions in Section 2.1. We deal with the high-dimensional case in Section 6.

4.1 One Dimension

We start by considering the 1D case—that is, the intervals-containing-points problem. We are given
a set of N1 points and a set of N2 intervals. Set IN = N1 + N2. The goal is to report all (point,
interval) pairs such that the point is inside the interval. In the following, we describe how to solve

this problem in O (
√

OUT/p + IN/p) load.

Step (1): Computing OUT. As with the equi-join algorithm, we start by computing the value
of OUT. First, we sort all the points and number them consecutively in the sorted order. Then,
for each interval I = [x ,y], we find the predecessor points of x and y (multi-search). Taking the
difference of the numbers assigned to the two predecessors will give us the number of points inside
I . Finally, we add up all of these counts to get OUT (special case of sum-by-key).

Step (2): Sorting into slabs. Setting b =
√

OUT/p + IN/p, we will ensure that the load of the
remaining steps is O (b). We sort all the points and divide them into slabs of size b. There are at
most p slabs, which are labeled as 1, 2, 3, . . . , in sorted order. Consider each interval I in R2. All
the points inside I can be classified into two cases: (1) points that fall in a slab partially covered
by I and (2) points that fall in a slab fully covered by I . For example, in Figure 1, the join between
I1 and the points in the leftmost and the rightmost slab is considered under case (1), whereas the
join between I1 and the points in the two middle slabs is considered under case (2). Note that if an
interval falls inside a slab completely, its join with the points in that slab is also considered under
case (1), such as I2 in Figure 1.

Step (3): Partially covered slabs. In this step, we deal with the partially covered slabs. For each
interval endpoint, we find which slab it falls into (multi-search). Then, for each slab, we compute
the number of endpoints falling inside (sum-by-key). Consider each slab i . Suppose that it contains
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P (i ) endpoints. We allocate �p · P (i )
N2
� servers to compute the join between the b points in the slab

and the intervals with these P (i ) endpoints (note that we need O (p) servers). We simply evenly
allocate the P (i ) intervals to these servers (use multi-numbering to ensure balance) and broadcast
all the b points to them. The load is thus

O

(
b +

P (i )

pP (i )/N2

)
= O (b).

Step (4): Fully covered slabs. Let F (i ) be the number of intervals fully covering a slab i . We can
compute all the F (i )’s using the prefix-sums algorithm as follows. If an interval fully covers slabs
i, . . . , j, we generate two (key, value) pairs (i, 1) and (j + 1,−1). For each slab k , we generate a (key,
value) pair (k + 0.5, 0). Then we sort all these pairs by key and compute the prefix-sums on the
value. Consider the prefix-sum at key k + 0.5. Observe that an interval fully covering slabs i, . . . , j
contributes 1 to this prefix-sum if i ≤ k ≤ j and 0 otherwise: if i > k , the keys of the two pairs
generated by the interval are both after k + 0.5; if j < k , the values of the two pairs cancel out.
Therefore, the prefix-sum computed at key k + 0.5 is exactly F (i ).

Now, the full slabs can be dealt with using essentially the same algorithm. We allocate pi =

�p · bF (i )
OUT � servers to compute the join (full Cartesian product) of the b points in slab i and the F (i )

intervals fully covering the slab. Since
∑

i bF (i ) ≤ OUT, this requires at most O (p) servers. We
simply evenly allocate the F (i ) intervals to these servers and broadcast all the b points to them.
The load is thus

O

(
b +

F (i )

pbF (i )/OUT

)
= O

(
b +

OUT

pb

)
= O (b).

Theorem 4.1. There is a deterministic algorithm for the intervals-containing-points problem that

runs in O (1) rounds with O (
√

OUT
p
+ IN

p
) load.

4.2 Two and Higher Dimensions

Next, we consider the rectangle-containing-points problem in two dimensions. Here we are given
a set of N1 points in 2D and a set of N2 rectangles. Set IN = N1 + N2. The goal is to report all (point,
rectangle) pairs such that the point is inside the rectangle. The basic idea is to impose a canonical
decomposition on the x-axis to break down the problem into many instances of the 1D problem.
Although canonical decomposition is a well-known technique, applying it in the MPC model has
some technical challenges. For simplicity, we will assume that p is a power of 2, which does not
affect the asymptotic results.

Step (1): Sorting into atomic slabs and canonical slabs. We sort all thex-coordinates, including
those of the points, as well as the left and right x-coordinates of the rectangles. After the sorting,
each server has IN/p x-coordinates, which divides the whole x-axis into p slabs, which are labeled
as 1, 2, . . . ,p in increasing order along the x-axis. We call these slabs atomic slabs. We impose
a binary tree over these p atomic slabs in the standard fashion, where each node in the binary
tree corresponds to a canonical slab (thus, an atomic slab is also a canonical slab), as shown in
Figure 2. We decompose each rectangle into O (logp) disjoint pieces: a left piece and a right piece
that partially cover an atomic slab, and at mostO (logp) middle pieces, each spanning one canonical
slab as large as possible. For example, σ1 in Figure 2 is decomposed into four pieces: a left piece
that falls inside slab 1, a right piece that falls inside slab 7, and 3 middle pieces that span canonical
slabs 2, 3–4, and 5–6, respectively.

All the join results between a point and a left/right piece can be found easily. Each server holds
O (IN/p) x-coordinates, which correspond to at mostO (IN/p) points and at mostO (IN/p) left/right
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Fig. 2. Rectangles-joining-points. In this example, the atomic slabs are {1, 2, 3, 4, 5, 6, 7, 8} and the canonical

slabs are {1, 2, 3, 4, 5, 6, 7, 8, 1 − 2, 3 − 4, 5 − 6, 7 − 8, 1 − 4, 5 − 8, 1 − 8}.

pieces whose left/right x-coordinates are stored at this server. Thus, all of these join results can be
found locally after the sorting.

Step (2): Middle pieces—Reduction to the 1D case. We are left with finding the join results
between a point and a middle piece of a rectangle. Note that a middle piece of a rectangle is not
just a canonical slab on the x-axis, but an implicit rectangle induced by this canonical slab and
the y-projection of the original rectangle. The idea is to “collect,” for each canonical slab s , all the
middle pieces that span s , as well as all the points that fall inside s . Because the x-coordinates of
all these points must fall in the x-projection of these middle pieces (which is just the canonical
slab), the problem will reduce to the 1D problem, where we need to find all the (point, middle
piece) pairs where the y-coordinate of the point falls inside the y-projection of the middle piece.
Then we can invoke the 1D algorithm to solve all of these 1D instances in parallel. This is exactly
the classical technique of using a canonical decomposition to reduce a 2D problem to many 1D
instances. However, in the MPC model, we face the following difficulties (which are trivial in a
centralized model): (1) how to collect the inputs of each 1D problem? and (2) how to allocate the
p servers to these 1D instances so as to ensure a balanced load? We address each in turn.

Step (2.1): Collecting inputs for each canonical slab. In the MPC model, it is not possible to
actually collect all the inputs of a canonical slab to one server because there are too many (e.g., the
largest canonical slab has all the points as its inputs). By “collect,” we mean that for each canonical
slab s , we will attach its id to all its inputs so that when a number of servers are allocated later to
solve the 1D problem associated with s , its inputs can be sent to these servers, by just looking at
the canonical slab id’s attached to the points and middle pieces.

For each point, it is easy to figure out theO (logp) canonical slabs it falls into, by simply looking
at the atomic slab it belongs to. For each interval, we first find the two atomic slabs containing its
two endpoints. Note that these two pieces of information are held by two different servers, so we
need to bring them together by another sorting step (say, sorting by the id of the interval). Then
from the two atomic slabs, we have enough information to break the interval intoO (logp) middle
pieces, each corresponding to a canonical slab.

Step (2.2): Computing IN(s ) and OUT(s ). Suppose that canonical slab s has N1 (s ) points and
N2 (s ) middle pieces. Its input size is thus IN(s ) = N1 (s ) + N2 (s ). Define OUT(s ) as the output size
of the 1D instance on s . The allocation of servers will depend on IN(s ) and OUT(s ). As each point
belongs toO (logp) canonical slabs and each interval hasO (logp) middle pieces, the total input size
of all instances is

∑
s IN(s ) = O (IN · logp). Since each rectangle is broken up into disjoint middle

pieces, we have
∑

s OUT(s ) ≤ OUT.
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All the IN(s )’s can be computed by sum-by-key, using the canonical slab as the key. To count the
OUT(s )’s, we invoke an instance of step (1) of the 1D algorithm for each canonical slab s . However,
the load of step (1) of the 1D algorithm depends on its input size. Thus, to ensure a uniform load,

we allocate ps = �p · IN(s )
IN log p

� servers for canonical slab s (this usesO (p) servers in total), with each

server having load O (IN(s )/ps ) = O ( IN
p

logp).

Step (2.3): Solving 1D instances. Finally, we allocate servers to theO (p) canonical slabs to solve
the 1D problem associated to each. Since the load of the 1D algorithm depends on both the input
and output size, we need to take both into account when allocating the servers. More precisely,
we allocate

ps =

⌈
p · OUT(s )

OUT
+ p · IN(s )

IN logp

⌉
servers for a canonical slab s and invoke steps (2) and (3) of the 1D algorithm for all the canonical
slabs in parallel. Plugging in the result of Theorem 4.1 yields the following result.

Theorem 4.2. There is a deterministic algorithm for the rectangles-containing-points problem in

2D that runs in O (1) rounds with O (
√

OUT
p
+ IN

p
logp) load.

The algorithm can be extended to higher dimensions using the same idea presented earlier.
More precisely, we can reduce a d-dimensional problem to many (d − 1)-dimensional instances.
The algorithm is the same as the preceding 2D algorithm. We build a canonical decomposition on
the first dimension, break up each rectangle into a left piece, a right piece, and O (logp) middle
pieces. The join results on the left/right pieces can be found easily withO (IN/p) load, whereas we
invoke O (p) instances of the (d − 1)-dimensional algorithm to find the join results of the middle
pieces. Since the total input size of the (d − 1)-dimensional instances isO (IN logp) while the total
output size remains the same, we incur an extraO (logp) factor in the input-dependent term every
time the dimensionality is reduced by one. Therefore, we obtain the following.

Theorem 4.3. There is a deterministic algorithm for the rectangles-containing-points problem in

d dimensions that runs in O (1) rounds with O (
√

OUT
p
+ IN

p
logd−1 p) load.

5 SIMILARITY JOIN UNDER �2

As mentioned in Section 2.1, we will study the halfspaces-containing-points problem that general-
izes similarity joins under �2 distance. Compared to the �1/�∞ case, a key challenge in this problem
is that there is no easy way to compute OUT, due to the non-orthogonal nature of the problem.
Knowing the value of OUT is crucial in the previous algorithms, which is used to determine the
right slab size, which in turn decides the load.

Our way to get around this problem is based on the observation that the load is determined
by the output-dependent term only when OUT is sufficiently large. But in this case, a constant-
factor approximation of OUT suffices to guarantee the optimal load asymptotically, and random
sampling can be used to estimate OUT. Random sampling will not be effective when OUT is small
(it is known that to decide whether OUT = 1 or 0 by sampling requires us to essentially sample
the whole dataset), but in that case, the input-dependent term will dominate the load, and we do
not need to know the value of OUT anyway.

ACM Transactions on Database Systems, Vol. 44, No. 2, Article 6. Publication date: March 2019.



Output-Optimal Massively Parallel Algorithms for Similarity Joins 6:15

5.1 Useful Tools From Computational Geometry

5.1.1 Sampling With Threshold Approximation. We first mention the θ -thresholded approxima-

tion. A θ -thresholded approximation of x is an estimate x̂ such that (1) if x ≥ θ , then x
2 < x̂ < 2x ;

(2) if x < θ , then x̂ < 2θ . It captures our need of sampling when the output size is large enough.
The following result first relates thresholded approximations with random sampling.

Theorem 5.1 ([18, 25]). For any q > 1, let S be a random sample with replacement from a set P of

n points with |S | = O (q log(q/δ )). Then with probability at least 1 − δ , n · |Δ∩S |
|S | is a n

q
-thresholded

approximation of |Δ ∩ P | for every simplex3 Δ.

5.1.2 Partition Tree. We make use of the b-partial partition tree of Chan [11]. A b-partial parti-
tion tree on a set of points is a treeT with constant fanout, where each leaf stores at most b points,
and each point is stored in exactly one leaf. Each node v ∈ T (both internal nodes and leaf nodes)
stores a simplex Δ(v ), which encloses all the points stored at the leaves below v . For any v , the
simplexes of its children do not overlap. In particular, this implies that all the leaf simplexes are
disjoint. Chan [11] presented an algorithm to construct ab-partial partition tree with the following
properties in Theorem 5.2. Their construction of a partition tree is a recursive process of cutting
the space into disjoint simplexes.

Theorem 5.2 ([11]). Given n points in Rd and a parameter b < n/ logω (1) n, we can build a

b-partial partition tree with O (n/b) nodes each as a simplex such that any hyperplane intersects

O ((n/b)1−1/d ) simplexes of the tree.

In Chan’s construction, all the leaf simplexes are disjoint and their union is the whole space.
It only guarantees that each leaf simplex contains at most b points but offers no lower bound,
whereas we will need each leaf to have Θ(b) points. This can be easily achieved, however.
Suppose that Chan’s b-partial partition tree has at most c · n/b leaves for some constant c . A leaf
simplex is big if it contains at least b/2c points; otherwise, it is small. Observe that there must
be at least n/2b big leaf simplexes; otherwise, all the leaves together would contain less than
n/2b · b + cn/b · b/2c = n points. Then, we merge each big simplex with an equal number of small
simplexes, and denote this union of simplexes as a cell so that each cell has Θ(b) points (Figure 3).
Note that the small simplexes can be allocated to the big simplexes arbitrarily, and each cell is

not necessarily connected. Since each cell consists of one big simplex and at most cn/b
n/2b

= 2c small

simplexes, which is a constant, we say that such a cell has constant description size. Note that on
any cell with constant description size, any standard geometric operation (e.g., testing if a point
falls inside the cell or if a hyperplane intersects the cell) takes O (1) time. The following corollary
summarizes the properties we need from this modified b-partial partition tree. In particular, we
will not need the internal nodes of the tree.

Corollary 5.3. Givenn points inRd and a parameterb < n/ logω (1) n, we can findO (n/b) disjoint

cells such that (1) each cell has constant description size, (2) each cell contains Θ(b) points, and (3)

any hyperplane intersects O ((n/b)1−1/d ) cells.

5.2 The Algorithm

Let q be a parameter such that 1 < q < p, where p is the number of servers. The value of q will be
determined later.

3Simplex generalizes the notion of triangle in 2D space (e.g., in 3D space, a simplex is a tetrahedron). Although the precise

definition of a d-dimensional simplex is somewhat technical, for the following discussion, the reader can simply regard it

as a polytope with a constant number of sides.
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Fig. 3. The triangles are the leaf simplexes of the original partition tree, where each simplex contains at

most four points but can contain as few as one point. Suppose thatsimplexes with at least three points are

big simplexes and other simplexes are small simplexes. We merge each big simplex with an equal number of

smaller simplexes, as shown by the dashed regions.

Step (1): Constructing a partition tree. We ask all servers to randomly sample Θ(q logp) points
in total and send all the sampled points to one server. The server builds the modified Θ(logp)-
partial partition tree on the sampled points. By Theorem 5.1 and Corollary 5.3, we obtain O (q)
disjoint cells of constant description size. Note that the set of cells is a subdivision of the whole

space, so it contains all points in R1. With probability 1 − 1/pΩ(1) , every cell contains O (N1/q)

points of the original dataset. Any hyperplane always intersectsO (q1− 1
d ) cells due to the property

of the partition tree. We broadcast these cells to all servers. This step incurs a load of O (q logp).
Similar to the intervals-containing-points algorithm, we consider the following two cases for all

points inside a halfspace: (1) those in cells partially covered by the halfspace and (2) those in cells
fully covered by the halfspace.

Step (2): Partially covered cells. For each halfspace, we find all the cells Δ intersected by its

bounding halfplane. Note that there are O (q1− 1
d ) such cells by Corollary 5.3. Note that this can be

done locally, as we have broadcast all cells to all servers. Then for each cell Δ, we compute the
number of halfspaces whose bounding halfplane intersects Δ, denoted as P (Δ). This is a sum-by-

key problem on a total of
∑

Δ P (Δ) = O (N2 · q1− 1
d ) key-value pairs, and thus the load is

O

(
N2

p
· q1− 1

d

)
. (3)

For each cell Δ, we allocate pΔ = �p · P (Δ)∑
Δ P (Δ) � servers to compute the join between the Θ( N1

q
)

points in the cell and these P (Δ) halfspaces partially covering Δ. The total number of servers
needed is O (p). Invoking the hypercube algorithm to compute their Cartesian product incurs a
load of

O
����
√√

N1

q
· P (Δ)

pΔ
+

N1

q
+ P (Δ)

pΔ

���� = O
��
√

N1N2

pq
1
d

+
N1

q
+
N2q

1− 1
d

p
�� . (4)

Choosing q = p
d

2d−1 balances the terms in (3) and (4), and the load becomes O ( IN
q

) = O ( IN
pd/(2d−1) ).

Step (3): Fully covered cells. In the intervals-containing-points algorithm, fully covered intervals
are dealt with in a way similar to the partially covered intervals, as we can compute OUT exactly
and set the right slab size. In this case, we may have used a cell size (i.e., N1/q) that is too small in
relation to OUT. This would result in too many replicated halfspaces to be distributed, exceeding

ACM Transactions on Database Systems, Vol. 44, No. 2, Article 6. Publication date: March 2019.



Output-Optimal Massively Parallel Algorithms for Similarity Joins 6:17

the load target. Our strategy is thus to first estimate the join size for the fully covered cells (which
is easier than computing OUT) and then rectify the mistake by restarting the whole algorithm
with the right cell size, if needed.

Step (3.1): Join size estimation. For each cell Δ, let F (Δ) be the number of halfspaces fully cov-
ering it, and let K =

∑
� F (�). Since every point inside Δ joins with every halfspace fully covering

Δ, K · N1/q is (a constant-factor approximation of) the remaining output size, and we will be able
to estimate K easily.

We first compute an ( N2

q
)-thresholded approximation of F (Δ) for each Δ, denoted as F̂ (Δ). This

can be done by sampling O (q logp) halfspaces and collecting them on one server. For each cell
Δ, we count the number of sampled halfspaces fully covering it and scale up appropriately. Con-

sider any particular Δ. By the Chernoff inequality, with probability at least 1 − 1/pO (1) , we get an

( N2

q
)-thresholded approximation of F (Δ). Then applying a union bound on theO (q) cells, we get an

( N2

q
)-thresholded approximation for every F (Δ) with probability at least 1 − q/pO (1) = 1 − 1/pO (1) ,

as long as the hidden constant in the O (q logp) sample size is sufficiently large. We use these ap-

proximate F (Δ)’s to compute K̂ (i.e., K̂ =
∑

Δ F̂ (Δ)), which is then an N2-thresholded approxima-
tion of the true value of K .

Step (3.2): If ̂K <
IN·p

q . As K̂ is an N2-thresholded approximation ofK , K̂ <
IN·p

q
would imply that

K = O (
IN·p

q
) for q = o(p). In this case, we just break up each halfspace that fully covers k cells into

k small pieces, which results in a total of K pieces. Now every piece covers exactly one cell and
thus joins with all the points in that cell. The problem now reduces to an equi-join on two relations
of size N1 and K . Invoking the hypercube algorithm, the load is

O ���
√

OUT

p
+
K + N1

p
��� = O

���
√

OUT

p
+

IN

q
��� .

Step (3.3): If ̂K >
IN·p

q . In this case, we cannot afford to reduce the problem to an equi-join, as

the halfspaces cover too many cells. This means we have used a cell size too small, and we need to

restart the whole algorithm with a new q′. Note that if K̂ >
IN·p

q
, then K̂ must be a constant-factor

approximation of K . Let �OUT = K̂ · IN
q

, and �OUT is also a constant-factor approximation of the

remaining output size, and thus �OUT = O (OUT). We set q′ = IN/
√�OUT

p
where q′ < q.

In the re-execution of the algorithm, we further merge every O (q/q′) cells into a bigger cell
containing Θ(N1/q

′) points. Now, each newly merged cell has non-constant description complex-
ity, but since there are only a total of O (q) cells, the entire mapping from these cells to the newly
merged cells can be broadcast to all servers. Each server can still identify, for each of its points,
which newly merged cell contains it. With the new q′, step (1) has load O (q′ logp) = O (q logp),

and step (2) has load O ( IN
q′ ) = O (

√
OUT

p
). In the step (3.1), let F ′(Δ) be the number of halfspaces

covering a newly merged cell Δ, and let K ′ =
∑

Δ F ′(Δ). Observe that each newly merged cell con-
sists of Θ(q/q′) old cells. This means that we have K ′ = O (Kq′/q), as any halfspace fully covering
one newly merged cell must cover Θ(q/q′) old cells (but not vice versa). We argue that in the

re-execution, K̂ ′ = O (
IN·p
q′ ) always holds by the following fact:

K̂ ′ = O (K ′ + IN) (K̂ ′ is a N2-thresholded approximation of K ′)

= O

(
K · q

′

q
+ IN

)
= O

(
IN · pq
(q′)2

· q
′

q
+ IN

)
= O

(
IN · p
q′

)
.
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Then it always reaches step (3.2), with load complexity O (
√

OUT
p
+ IN

q′ ) = O (
√

OUT
p

). Therefore,

the re-execution, if it takes place, must have load O (
√

OUT
p

). Combining with the load of the first

execution, we obtain the following result.

Theorem 5.4. There is a randomized algorithm that solves the halfspaces-containing-points prob-

lem in O (1) rounds and load

O ���
√

OUT

p
+ IN/p

d
2d−1 + p

d
2d−1 logp��� .

The algorithm succeeds with probability at least 1 − 1/pO (1) .

6 SIMILARITY JOIN IN HIGH DIMENSIONS

So far, we have assumed that the dimensionality d is a constant. The load for both the �1/�∞
algorithm and the �2 algorithm hides constant factors that depend on d exponentially in the

big-Oh notation. For the �2 algorithm, even for constant d , the term O (IN/p
d

2d−1 ) approaches
O (IN/

√
p) as d grows, which is the load for computing the full Cartesian product.

In this section, we present an algorithm for high-dimensional similarity joins based on LSH,
where d is not considered a constant. The nice thing about the LSH-based algorithm is that its
load is independent of d (we still measure the load in terms of tuples; if measured in words, then
there will be an extra factor of d). The downside is that its output-dependent term will not depend
on OUT exactly; instead, it will depend on OUT(cr ), which is the output size when the distance
threshold of the similarity join is made c times larger, for some constant c > 1.

6.1 Locality Sensitive Hashing

LSH is known to be an approximate solution for nearest neighbor search, as it may return a neigh-
bor whose distance is c times larger than the true nearest neighbor. In the case of similarity joins,
all answers returned are truly within a distance of r (since this can be easily verified), but its cost
will depend on OUT(cr ) instead of OUT. It is also an approximate solution in the sense that it ap-
proximates the optimal cost. The same notion of approximation has also been used for LSH-based
similarity joins in the external memory model [28].

Let dist(·, ·) be a distance function. For c > 1,p1 > p2, recall that a familyH of hash functions is
(r , cr ,p1,p2)-sensitive, if for any uniformly chosen hash function h ∈ H , and any two tuples x ,y,
we have (1) Pr[h(x ) = h(y)] ≥ p1 if dist(x ,y) ≤ r ; and (2) Pr[h(x ) = h(y)] ≤ p2 if dist(x ,y) ≥ cr . In
addition, we requireH to be monotone—that is, for a randomly chosen h ∈ H , Pr[h(x ) = h(y)] is
a non-increasing function of dist(x ,y). This requirement is not in the standard definition of LSH,
but the LSH constructions for most metric spaces satisfy this property, include Hamming [20],
�1 [12], �2 [5, 12], Jaccard [9], and so forth. Meanwhile, all of these LHS hash functions can be
represented efficiently in O (d ) space. Since in this section each tuple is a point with d coordinates
and we measure the load in terms of tuples, we can consider each LSH function to have size the
same as O (1) tuples.

The quality of a hash function family is measured by ρ =
log p1

log p2
< 1, which is bounded by a con-

stant that depends only on c , but not the dimensionality, and ρ ≈ 1/c for many common distance
functions [5, 12, 20]. In a standard hash family H , p1 and p2 are both constants, but by concate-
nating multiple hash functions independently chosen from H , we can make p1 and p2 arbitrarily

small, whereas ρ =
log p1

log p2
is kept fixed, or equivalently, p2 = p

1/ρ
1 .
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6.2 The Algorithm

In the description of our algorithm that follows, we leave p1,p2 unspecified, which will be later
determined in the analysis. The algorithm proceeds in the following three steps:

(1) Choose q = 3 · 1/p1 · ln IN hash functions h1, . . . ,hq ∈ H randomly and independently,
and broadcast them to all servers.

(2) For each tuple x , make q copies, and attach the pair (i,hi (x )) to each of these copies, for
i = 1, . . . ,q.

(3) Perform an equi-join on all the copies of tuples, treating the pair (i,hi (x )) as the join value
(i.e., two tuples x ,y join ifhi (x ) = hi (y) for some i). For two joined tuples x ,y, output them
if dist(x ,y) ≤ r .

Theorem 6.1. Assume that there is a monotone (r , cr ,p1,p2)-sensitive LSH family with ρ =
log p1

log p2
.

Then there is a randomized similarity join algorithm that runs inO (1) rounds and with expected load

Õ ���
√

OUT

p1/(1+ρ )
+

√
OUT(cr )

p
+

IN

p1/(1+ρ )

��� .
The algorithm reports all join results with probability at least 1 − 1/IN.

Proof. Correctness of the algorithm follows from standard LSH analysis: for any two tuples x ,y
with dist(x ,y) ≤ r , the probability that they join on one hi is at least p1. Across q independently
chosen hash functions, the probability that they do not collide on any one of hash function is
at most (1 − p1)3·1/p1 ·ln IN ≤ e−3·ln IN ≤ 1/IN3. As there are at most IN2 pairs of tuples with their
distance smaller than r , the probability that any one of them is not reported is at most 1/IN by the
union bound. Then we have probability of at least 1 − 1/IN to report all join results.

In the following, we analyze the load. Step (1) has load Õ (1/p1), and step (2) is local computation.
Thus, we only need to analyze step (3).

The total number of tuples generated in step (2) is Õ (IN/p1), which is the input size to the
equi-join, denoted as INLSH . The output size, denoted as OUTLSH , has its expectation bounded by

E[OUTLSH ] = Õ
(
OUT/p1 + OUT(cr ) + IN2/p

1−1/ρ
1

)
.

The first term is for all pairs (x ,y) such that dist(x ,y) ≤ r . They could join on every hi . The second
term is for (x ,y)’s such that r < dist(x ,y) ≤ cr . There are OUT(cr ) such pairs, and each pair has
probability at most p1 to join on each hi , so each pair joins exactly once in expectation. The last
term is for all (x ,y)’s such that dist(x ,y) > cr . There are IN2 such pairs, and each pair joins with

probability at most p2 on each hi , so they contribute the term IN2p2/p1 = IN2/p
1−ρ
1 in expectation.

Plugging these into Theorem 3.1, and using Jensen’s inequality E[
√
X ] ≤

√
E[X ], the expected

load can be bounded by (the Õ of)

E

⎡⎢⎢⎢⎢⎢⎣
√

OUTLSH

p
+

INLSH

p

⎤⎥⎥⎥⎥⎥⎦ ≤
√
E [OUTLSH ]
√
p

+
INLSH

p
≤

√
OUT/p1 + OUT(cr ) + IN2/p

1−1/ρ
1√

p
+

IN

pp1

≤

√
OUT

pp1
+

√
OUT(cr )

p
+ IN

√
1

pp
1−1/ρ
1

+
IN

pp1
.

Setting p1 = 1/p
ρ

1+ρ balances the last two terms, and we obtain the claimed bound in the
theorem. �
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Fig. 4. An instance of a 3-relation chain join.

Remark 1. Note that since 0 < ρ < 1, the input-dependent term is always better than performing

a full Cartesian product. The output-termO (
√

OUT(cr )
p

) is also the best we can achieve for any LSH-

based algorithm, by the following intuitive argument: due to its approximation nature, LSH cannot
tell whether the distance between two tuples is smaller than r or slightly above r . A worst-case
scenario is all the OUT(cr ) pairs of tuples have distance slightly above r but none of them actually
joins. Unfortunately, since the hash functions cannot distinguish the two cases, any LSH-based
algorithm will have to check all the OUT(cr ) pairs to make sure that it does not miss any true

join results. Finally, the term O (
√

OUT
p1/(1+ρ ) ) is also worse than the bound O (

√
OUT

p
) we achieved in

earlier sections. This is perhaps the best one can hope for as well, if O (1) rounds are required: to
capture all joining pairs, 1/p1 repetitions are necessary, and two very close tuples may join in all
these repetitions, introducing the extra 1/p1 factor in the output size. If we want to perform all
of them in parallel, there seems to be no way to eliminate the redundancy beforehand. Of course,
this is just an intuitive argument, not a formal proof.

7 A LOWER BOUND ON 3-RELATION CHAIN JOIN

In this section, we consider the possibility of designing output-optimal algorithms for multi-way
joins. We present a negative result, showing that this is not possible for the 3-relation equi-join
R1 (A,B) � R2 (B,C ) � R3 (C,D). This means that one cannot hope to achieve output-optimality
for arbitrary multi-way joins. Precisely characterizing the class of joins for which output-optimal
algorithms exist seems an interesting and challenging direction of future work.

The first question is how an output-optimal term would look like for a 3-relation join. Applying
the tuple-based argument in Section 1.2, each server can potentially produce O (L3) join results in
a single round, and hence O (pL3) results over all p servers in a constant number of round. Thus,
an O ((OUT/p)1/3) term is definitely output-optimal.

However, consider the instance shown in Figure 4, where we use vertices to represent attribute
values and edges for tuples. On such an instance, the 3-relation join degenerates into the Cartesian
product of R1 and R3. Each server can produce at mostO (L2) pairs of tuples in one round, one from

R1 and one from R3, so we must haveO (pL2) = Ω(OUT), or L = Ω(
√

OUT/p). This means that the

best possible output-dependent term is stillO (
√

OUT/p). In the following, we show that this is not
possible either, assuming any meaningful input-dependent term.

Theorem 7.1. For any tuple-based algorithm computing a 3-relation chain join, if its load is in the

form of

L = O ���
IN

pα
+

√
OUT

p
��� ,

for some constant α , then we must have α ≤ 1/2, provided IN/ log2 IN > cp3 for some sufficiently

large constant c .
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Fig. 5. A randomly constructed hard instance.

Note that there is an algorithm for the 3-relation chain join with load Õ (IN/
√
p) [23], without

any output-dependent term. This means that it is meaningless to introduce the output-dependent

term O (
√

OUT/p).

Proof. Suppose that there is an algorithm with a claimed load L in the form stated previously.
We will construct a hard instance on which we must have α ≤ 1/2. Our construction is probabilis-
tic, and we will show that with high probability, the constructed instance satisfies our needs.

The construction is illustrated in Figure 5. Let N = IN
3 . More precisely, attribute A and D each

have N distinct values. Each distinct value of A appears in one tuple in R1, and each distinct value
of D appears in one tuple in R3. Attributes B and C each have N√

L
distinct values. Each distinct

value of B appears in
√
L tuples in R1, and each distinct value in C appears in

√
L tuples in R3.

Each distinct value of B and each distinct value ofC have a probability of L
N

to form a tuple in R2.
Note that R1 and R3 are deterministic and always have N tuples, whereas R2 is probabilistic with
N tuples in expectation, so the expected input size is IN. The output size is expected to be NL.
By the Chernoff inequality, the probability that the input size or output size deviates from their
expectations by more than a constant fraction is exp(−Ω(N )).

We allow all servers to access R2 for free and only charge the algorithm for receiving tuples
from R1 and R3. Furthermore, we allow a server in each round to retrieve L tuples from each of R1

and R3, for a total of 2L tuples, which actually exceeds the load constraint by a factor of 2. More
precisely, we bound the maximum number of join results a server can produce in a round, if it
only receives L tuples from R1 and L tuples from R3. Then we multiply this number by p, which
must be larger than OUT. Note that this is purely a counting argument; if the same join result is
produced at two or more servers, it is counted multiple times.

First, we argue that a server should load R1 and R3 in whole groups to maximize its output size.
Here, a group in R1 (respectively, R2) means all tuples sharing the same value on B (respectively,C).

Suppose that two groups in R1, say, д1 and д2, are not loaded in full by a server: x1 <
√
L tuples

of д1 and x2 <
√
L tuples of д2 have been loaded. Suppose that they respectively join with y1 and

y2 tuples in R3 that are loaded by the server. Note that they will produce x1y1 + x2y2 join results.
Without loss of generality, assume that y1 ≥ y2. Now consider the alternative where the server
loads x1 + 1 tuples of д1 and x2 − 1 tuples of д2. Then this would produce (x1 + 1)y1 + (x2 − 1)y2 =

x1y1 + x2y2 + y1 − y2 ≥ x1y1 + x2y2 tuples. This means that by moving one tuple from д2 to д1, the
server can only get more join results (at least not less). We can move tuples from one group to
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another as long as there are two non-full groups. Eventually, we arrive at a configuration where
all groups of R1 are loaded by the server in full, without decreasing the output size. Next, we apply
the same transformation to the groups of R3 to make all its groups full as well.

The preceding argument implies that we can assume each server in each round loads
√
L full

groups from R1 and
√
L full groups from R3, with 2L tuples in total. In the following, we show that

on a random instance constructed as earlier, with high probability, not many pairs of groups can

join, no matter which subset of 2
√
L groups are loaded. Consider any subset of

√
L groups from

R1 and any subset of
√
L groups from R3. There are L possible pairs of groups, and each pair has

probability L
N

to join, so we expect to see L2

N
pairs to join. By Chernoff bound, the probability that

more than 2 L2

N
pairs join is at most exp(−Ω( L2

N
)). There are O (( N√

L
)2
√

L ) different choices of
√
L

groups from R1 and
√
L groups from R3. Thus, the probability that one of them yields more than

2 L2

N
joining groups is at most

O ���
(
N
√
L

)2
√

L��� · exp

(
−Ω

(
L2

N

))
= exp

(
−Ω

(
L2

N

)
+O

(√
L · logN

))
.

This probability is exponentially small if

L2

N
> c1

√
L · logN ,

for some sufficiently large constant c1. Rearranging, we get

N logN <
1

c1
· L

3
2 .

By Theorem 3.2, we always have L = Ω(N /p), so this is true as long as

N logN <
1

c2
·
(
N

p

) 3
2

,

for some sufficiently large constant c2, or N / log2 N > c3 · p3 for some sufficiently large constant
c3.

By a union bound, we conclude that with high probability, a randomly constructed instance has
IN = Θ(N ), OUT = Θ(NL), and on this instance, no matter which groups are chosen, no more than
2L2

N
pairs of groups can join. Since each pair of joining groups produces L results, the p servers in

total produce O (
L3p

N
) results in a constant number of rounds. Thus, we have

L3p

N
= Ω(NL);

in other words,

L = Ω

(
N
√
p

)
.

Suppose that an algorithm has a load in the form as stated in the theorem, then with OUT =
Θ(NL), we have

N

pα
+

√
NL

p
= Ω

(
N
√
p

)
.
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If α > 1/2, we must have √
NL

p
= Ω

(
N
√
p

)
,

or L = Ω(N ), which is an even higher lower bound. Thus, we must have α ≤ 1/2. �

8 PRACTICAL SIMILARITY JOIN ALGORITHMS

The algorithms designed in previous sections have achieved output-optimality in theory, but at
the expense of using a large, although still constant, number of rounds. In large-scale distributed
systems, each round incurs a substantial synchronization overhead, and the benefit of an asymp-
totic smaller load can be easily offset by the large system overhead. In this section, we describe
a practical version of the equi-join algorithm from Section 3 and the one-dimensional similarity
join algorithm from Section 4.1. Specifically, the practical versions of the algorithms need just

one heavy round and a constant number of light rounds, where a round is light if its load is Õ (p)
and heavy otherwise. Theoretically speaking, however, a light round might be even heavier than
a heavy round if p > L, where L is the optimal load of the algorithm. Thus, the practical version of
the algorithm is theoretically optimal only when p < L, but this is always the case in practice. In
fact, in most massively parallel systems in practice, p is usually on the order of hundreds, whereas
L is at least 106, and thus the benefit of using multiple light rounds to avoid a heavy round will be
obvious. Indeed, in our experiments, we observe that the total time spent in all the light rounds
accounts for less than 10% of the wall-clock time. This means the heavy round dominates the cost,
and it is important to restrict the algorithms to using only one heavy round.

8.1 Primitive Operations

We first show how to implement the primitive operations from Section 2.2 in O (1) light rounds
and at most one heavy round.

Sorting. The theoretically optimal BSP sorting algorithm by Goodrich is very complicated and not
practical. In practice, a sampling-based algorithm, such as TeraSort [27, 31], is often used instead,
which operates in the following two steps:

(1) Take a random sample of O (p logp) elements, and collect them to a master server. The
master server sorts this sample, takes the p − 1 splitters, denoted as s1, . . . , sp−1, that split
this sample evenly into p partitions, and broadcasts these splitters to all the servers. This
step can be implemented in two light rounds.

(2) Upon receiving the p − 1 splitters, each server scans its own elements. For each element
x , the server finds the two consecutive splitters si and si+1 (define s0 = −∞, sp = ∞) such
that si ≤ x < si+1 and sends x to server i . This step requires one heavy round. After all the
shuffling, each server locally sorts all elements that it has received.

This sorting algorithm will be used in our sort-merge-join–based equi-join algorithm. Thus,
strictly speaking, the practical version of our algorithm is still randomized. However, as shown
in Tao et al. [31], the number of elements received by any server is at most O (IN/p) with high

probability 1 − 1/pΩ(1) , where the exponent depends on the hidden constant in the sample size. In
our implementation, we choose a sample size of 10p logp, which makes this probability very close
to 1.

All prefix-sums. Instead of the full BSP algorithm for all prefix-sums [17], we use the following
simple variant, which can be done in two light rounds. Recall that in the all prefix-sums problem,
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a large array A is stored on p servers in a consecutive manner, and the goal is to compute S[j] =
A[1] ⊕ · · · ⊕ A[j] for every j, where ⊕ is an associative operator:

(1) Each server i computes the partial sum on its local sub-array, denoted B[i], and sends it
to a master server.

(2) The master server computes the prefix-sums on the partial sums elements received—that
is, C[i] = B[1] ⊕ · · · ⊕ B[i − 1] and sends it to server i , for i = 2, . . . ,p. Define C[1] = 0.
Then server i computes the prefix-sums for its local sub-array sequentially starting from
C[i].

Multi-Numbering. The multi-numbering problem was solved in Section 2.2.2 by sorting all el-
ements and then running all prefix-sums, requiring one heavy round and O (1) light rounds. We
observe that if the number of distinct keys isO (p), then we do not have to sort all tuples, thus avoid-
ing the heavy round. To do so, we first ask each server i to compute a partial-count N (i,v ), which
is the number of elements with keyv at server i . Then we sort these partial-counts byv . Since there
are only O (p2) partial-counts, the load in the “heavy round” of TeraSort is only O (p2/p) = O (p),
making it a light round. Then we run the all prefix-sums algorithm on these O (p2) partial-counts,
using the same definition of ⊕ as in Section 2.2.2. This will give us, for each distinct v , the prefix-
sums C (i,v ) = N (1,v ) + · · · + N (1, i − 1), i = 2, . . . ,p. Finally, we send the C (i,v )’s to server i for
allv , which then assigns consecutive numbers to all tuples with keyv , starting fromC (i,v ) (define
C (1,v ) = 0).

Therefore, when the number of distinct keys is O (p), multi-numbering can be solved with O (1)
light rounds and no heavy round.

Sum-by-Key. Similar to multi-numbering, the sum-by-key problem can be also solved with O (1)
light rounds and no heavy round when the number of distinct keys isO (p). We first ask each server
i to compute the partial-sum S (i,v ) of all elements with key v , for each distinct key v . Then we
sort these O (p2) partial-sums by v and run all prefix-sums using the same definition of ⊕ as in
Section 2.2.2.

8.2 A Practical Equi-Join Algorithm

The practical equi-join algorithm for computing R1 (A,B) � R2 (B,C ) is described in the following.
It follows the TeraSort framework but replaces certain steps appropriately. As in Section 3, define
Ri (v ) = σB=vRi and Ni (v ) = |Ri (v ) |:

(1) The first step is the same as in TeraSort—that is, we take a sample of O (p logp) tuples
from R1 ∪ R2 and collect them to one server. The server sorts the sample on attribute B,
breaking ties using other attributes of the tuples (we assume that no two tuples are the
same on all attributes). The server then finds the p − 1 splitters, denoted s1, . . . , sp−1, from
the sample and broadcasts them to all servers. This step requires two light rounds. Let
C = πB {s1, . . . , sp−1} be the set of distinct B values of the splitters.

(2) Upon receiving the p − 1 splitters, each server scans its own tuples. For each tuple t , the
server finds the two consecutive splitters, say si , and si+1, such that si ≤ x < si+1. Ties are
broken using the same tie breaker as in step (1). If x .B = si .B or x .B = si+1.B, x is said to
be a crossing tuple and non-crossing otherwise. One simplification we have made is not to
compute OUT exactly, which would require a heavy round. Instead, we only compute the
join size on the crossing tuples—that is, we compute INc =

∑
v ∈C N1 (v ) + N2 (v ), OUTc =∑

v ∈C N1 (v )N2 (v ) and use INc , OUTc in place of IN, OUT, respectively, in formula (2) for
allocating the servers. Note that OUTc can be computed in O (1) light rounds by running
the sum-by-key algorithm with the ≤ p − 1 distinct values in C as keys. We then run the
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multi-numbering algorithm to assign consecutive numbers to the tuples for each distinct
value v ∈ C, which also takes O (1) light rounds as described earlier.

(3) With high probability, the number of non-crossing tuples between each pair of consecutive
splitters si , si+1 is O (IN/p), so we send these tuples to server i , which will compute their
join results. For each v ∈ C, we allocate

pv = max

{⌈
p · N1 (v ) + N2 (v )

INc

⌉
,

⌈
p · N1 (v )N2 (v )

OUTc

⌉}
servers and invoke the deterministic Cartesian product algorithm. Note that all crossing
tuples for each distinct value c ∈ C have been numbered as well. Thus, all the Cartesian
products and the join of non-crossing tuples can be computed in parallel in one heavy
round.

Theorem 8.1. The preceding equi-join algorithm runs in O (1) light rounds and one heavy round,

where each light round has a load of O (p logp), whereas the heavy round has load O ( IN
p
+

√
OUT

p
).

These bounds hold with probability at least 1 − 1/pO (1) .

Proof. The O (p logp) load in the light rounds is due to the first step of collecting the sample
to the master server; all other light rounds actually have load only O (p). For the heavy round,

each server receives O ( IN
p

) non-crossing tuples and O ( INc

p
+

√
OUTc

p
) = O ( IN

p
+

√
OUT

p
) crossing

tuples. �

8.3 A Practical Intervals-Containing-Points Algorithm

Recall that in the intervals-containing-points problem, we are given N1 points and N2 intervals,
and the goal is to report all the (point, interval) pairs such that the interval contains the point.
Note that the �1/�∞ similarity join problem reduces to the special case of this problem where all
intervals have length 2r :

(1) The first step is the same as that in the equi-join algorithm—that is, we take a sample
of O (p logp) points and collect them to one server. This server finds p − 1 splitters as
{s1, s2, . . . , sp−1} (define s0 = −∞, sp = ∞) and broadcasts them to all servers. Each consec-
utive pair of splitters defines a slab. Note that there are p slabs labeled as 1, 2, . . . ,p (i.e.,
(si−1, si ) defines slab i). With high probability, the number of points falling into each slab
is O (IN/p). Same as before, this step requires two light rounds.

(2) Upon receiving the p − 1 splitters, each server scans its own data. Similarly, we do not
compute OUT exactly. Instead, we compute the join size of points and intervals fully cov-
ering slabs—that is, OUTf =

∑
i P (i ) · F (i ),where P (i ) is the number of points in slab i and

F (i ) is the number of intervals fully covering slab i . For each point, as well as each end-
point of intervals, the servers find which slab it falls into (i.e., a pair of consecutive splitters
si , si+1 for x such that si ≤ x < si+1). We first run the sum-by-key algorithm to compute
all P (i )’s, where each point x with si−1 ≤ x < si is considered to have key i and weight 1.
An interval [x ,y] with si−1 ≤ x < si and sj ≤ y ≤ sj+1 fully covers slabs i, i + 1, . . . , j. We
ask each server to compute p partial-counts in term of (i, j ) for i = 1, 2, . . . ,p, indicating
that there are j intervals fully covering slab j in its local data. There would be p2 such pairs
in total. Then we just run the sum-by-key algorithm to compute all F (i )’s—that is, each
pair (i, j ) is considered to have key i and weight j. All P (i )’s and F (i )’s will be sent to the
master server to compute OUTf . Note that this step only requires O (1) light rounds.
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(3) When OUTf is larger than IN2/p, we need to merge slabs into larger ones such that each

slab has size b ′ = max{ IN
p
,
√

OUTf

p
}. If this happens, the master server just broadcasts new

splitters to all servers and redefines all slabs. For each slab s , we count the number of in-
tervals partially and fully covering it, denoted as F (s ) andG (s ), respectively. All F (s )’s and
G (s )’s can be computed similarly in O (1) light rounds using the sum-by-key algorithm.
Note that

∑
s F (s ) ≤ 2 · IN and

∑
s b
′G (s ) ≤ OUTf . We then run the multi-numbering al-

gorithm to assign consecutive numbers to the intervals covering s for each slab s , which
also takes O (1) light rounds as described earlier.

(4) For each slab s , we allocateps = � F (s )+G (s )
b′ � servers and invoke the deterministic Cartesian

product algorithm. Note that all intervals covering s for each slab s have been numbered as
well. All the Cartesian products can be computed in parallel in one heavy round. This step

only uses O (p) servers since
∑

s � F (s )+G (s )
b′ � ≤ p +

∑
s

F (s )
b′ +

∑
s

G (s )
b′ ≤ p + 2·IN

b′ +
OUTf

b′2 ≤
4p.

Theorem 8.2. The preceding intervals-containing-points algorithm runs in O (1) light rounds and

one heavy round, where each light round has a load of O (p logp), whereas the heavy round has load

O ( IN
p
+

√
OUT

p
). These bounds hold with probability at least 1 − 1/pO (1) .

Proof. TheO (p logp) load in the light rounds is due to the first step of collecting the sample to
the master server; all other light rounds actually have load only O (p). For the heavy round, each

server receives O (b ′) = O ( IN
p
+

√
OUTf

p
) = O ( IN

p
+

√
OUT

p
) points and intervals. �

Unfortunately, we do not know if the rectangles-containing-points algorithm can be made to run
in one heavy round and O (1) light rounds. Furthermore, the logarithmic factor will cause a quick
degradation of the algorithm in higher dimensions. Similarly, the �2 similarity join algorithm is
unlikely to be competitive in practice, due to its complexity and the large hidden constants. Thus,
these results are mostly of theoretical interest only.

8.4 Implementation Details

We have implemented the algorithms in Spark [33]. The main abstraction Spark provides is a re-
silient distributed dataset (RDD) that enables efficient data reuse in a broad range of applications. In
Spark, each RDD is partitioned into a number of partitions. An operation on an RDD is performed
by launching multiple tasks that each run on a partition in parallel across a cluster of computing
nodes. Thus, each partition/task can be naturally modeled as a “server” in the MPC model. In our
implementation, the two input relations R1 and R2 are stored as two RDDs, respectively. Note that
the number of partitions/tasks, also called the level of parallelism, does not have to be equal to
the number of physical processors in the system; in fact, the official Spark documentation recom-
mends setting the level of parallelism to be two to three times the number of CPU cores in the
cluster to allow the system to perform some dynamic load balancing at runtime. Thus, we set p to
be three times the number of CPU cores in the cluster for steps (1) and (2) in both algorithms from
Sections 8.2 and 8.3. Since the pv servers allocated to each join key v ∈ C in step (3) of the equi-
join case, and the ps servers allocated to each slab s in step (4) of the intervals-containing-points
case, should be arranged in a grid with dimensions specified as in Section 2.2.5, which have to
be integers, some rounding has to be done, and the total number of allocated servers might range
from one to two times of value p. In this way, each of p servers participates in one or two Cartesian
product computations.

ACM Transactions on Database Systems, Vol. 44, No. 2, Article 6. Publication date: March 2019.



Output-Optimal Massively Parallel Algorithms for Similarity Joins 6:27

The vanilla join operator provided by Spark performs a simple hash join. More precisely, all
tuples with join value v are sent to server v mod p, which then computes the join of all tuples
received. This requires a complicated and expensive shuffle operation that involves construction
of hash tables, data serialization, and network I/O. We have implemented four algorithms: (1) the
practical equi-join algorithm from Section 8.2 and the hash-based equi-join algorithm of Beame
et al. [8], (2) the practical one-dimensional similarity join algorithm from Section 8.3, and (3) the
LSH-based similarity join algorithm from Section 6.2. We did not implement our algorithms from
scratch but leverage on Spark’s own join operator.

In the practical equi-join algorithm, the idea is to “repackage” the join keys in a way such that
the vanilla hash join will work just as how our algorithm would perform the join. More precisely,
when our algorithm wants to send a tuple with join value v to server i , we turn it into a tuple
with key pv + i . In the case of crossing tuples, which need to be sent to multiple servers, we use
Spark’s flatMapmethod to generate multiple tuples with different repackaged keys. It can be easily
verified that the results from the vanilla hash join on the repackaged keys are exactly the same as
those from the original join. Through this trick, we can implement our algorithm completely in
the user space without modifying any existing code of Spark. The benefit of this approach is that
our algorithm can automatically enjoy the improvements of any future updates to Spark’s shuffle
operation. Meanwhile, we point out that if one were to implement the algorithm inside the Spark
core, we could have some (very) small savings by avoiding generating the intermediate repackaged
tuples. The multi-numbering and sum-by-key algorithms described earlier use a constant number
of light rounds, and the load in each round is O (p). Because p is at most a few hundred in our
experimental setting, we simply collect all the O (p2) partial-counts or partial-sums to the driver
node, which then computes the prefix-sums and broadcasts them back to all workers using Spark’s
broadcast variables.

The hash-based equi-join algorithm has been implemented as a counterpart of the practical equi-
join algorithm, with the following differences. First, instead of using crossing and non-crossing
tuples, this algorithm uses information about the heavy hitters in the join values, where a join
value is heavy if it appears more than IN/p times. The heavy hitters can be found by first finding
the “local” heavy hitters on each server (i.e., those that appear more than IN/p2 times on one server)
and then collecting the local heavy hitters to the driver node, which then finds the global heavy
hitters. Second, instead of computing the destination server i from the splitters, this algorithm
uses a random hash function h to assign light hitter v to server h(v ). Similarly, we generate a
repackaged tuple with join key pv + h(v ). Third, instead of assigning tuples for a heavy hitter
deterministically to a row or a column in the grid, this algorithm uses a hash function on the A
and C attributes of the two relations. Similarly, we use flatMap to generate multiple repackaged
tuples for each such tuple.

The implementation of practical one-dimensional similarity join algorithm follows the same
approach. The difference from the equi-join algorithms is that we need to assign join keys for
points as well as intervals before invoking the Cartesian product algorithm. In our algorithm, the
one-dimensional space is decomposed into a set of disjoint slabs in sorted order, whose ids are
used as the join keys. Each slab induces one instance of Cartesian product. Note that each point
participates in one Cartesian product, whereas each interval may participate in multiple Cartesian
products. Implied by the algorithm from Section 2.2.5, servers allocated for each slab are arranged
into one row such that points are broadcasted to the servers and interval are evenly distributed
across the servers. Similarly, we use flatMap to generate multiple repackaged tuples for each point
and interval. Note that for each pair of (point, interval) found by the Cartesian product, we report
it if the point is indeed inside the interval.
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Incorporating the LSH technique to the preceding equi-join algorithms, we are able to imple-
ment the LSH-based similarity join algorithm. The construction of the LSH family follows that in
Gionis et al. [15], each hash function consists of multiple candidate hash keys, where each hash
key is a set of bits of the input tuple, randomly sampled from the unary representation of the co-
ordinates (real numbers are scaled up and rounded to integers). Given a similarity threshold, we
first apply the LSH function to each tuple and use flatMap to generate multiple pairs for each
candidate hash key. Then we use the hash key as the join key to perform a self-join by calling the
equi-join algorithm as implemented earlier. For each pair of tuples in the join results, we compute
their actual distance and report the result if it is indeed smaller than the similarity threshold. Thus,
the algorithm will not return false positives but may miss a small number of true join results.

9 EXPERIMENTS

9.1 Experimental Setup

All experiments have been performed on a Microsoft Azure HDInsight cluster running Spark 2.1.
By default, the cluster is set up with six worker nodes each having eight CPU cores, whereas we
vary the number of worker nodes from one to six in studying the scalability of algorithms. Each
worker node has 56GB of RAM, which is sufficient to keep all the data (raw and intermediate) so
that even if all tuples are sent to one task, no data has to be swapped out to disk. Note that this
is actually the ideal setting for the vanilla hash join algorithm, which may incur unbalanced loads
when the data is highly skewed. If the worker nodes have smaller RAM, unbalanced loads can
make the vanilla hash join algorithm even worse due to garbage collection and disk I/Os.

We have evaluated three equi-join algorithms: the vanilla hash join algorithm provided by Spark,
later referred to as Spark join; the hash-based output-optimal join algorithm of Beame et al. [8],
referred to as hash join; and our sort-based output-optimal join algorithm, referred to as sort join.

For similarity join in one dimension, we evaluated three algorithms: the deterministic Cartesian
product algorithm in Section 2.2.5, referred to as full join; the LSH-based similarity join algorithm,
referred to as LSH join; and our intervals-containing-points algorithm, referred to as interval join. In
higher dimensions, we evaluated the full join and the LSH join using different equi-join algorithms,
referred to as LSH-Spark join, LSH-Hash join, and LSH-Sort join.

As described earlier, we set p to be three times the number of CPU cores, namely 144 for our
cluster with 48 cores, when evaluating all algorithms.

9.2 Datasets

We used both synthetic data and real data to test the performance of these algorithms.
For equi-join algorithms, we generated two RDDs of (key, value) pairs and performed their

equi-join on the key. The values are randomly generated strings of length 8. The keys are gener-
ated according to some distribution. We tested two distributions. The first is the zipf distribution,
where the frequency of the i-th distinct key is proportional to i−α . The parameter α ≥ 1 controls
the skewness of the distribution: larger α means larger skew. The second distribution is simply
uniform, but we vary the number of distinct keys.

For similarity join in one dimension, we generated two RDDs of point sets, one floating-point
number for each point. The numbers are uniformally randomly generated from [0, 1]. In fact, we
also tested the Gaussian distribution, and the results are similar. In high dimensions, we use the
same COREL dataset as in Gionis et al. [15], which is a set of 15,000 64-dimensional points. Each
point corresponds to the histogram of one distinct color image taken from the COREL library. Note
that we use the same LSH family, so all three equi-join algorithms have the same input size and
give exactly the same results but only differ in running time.
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Fig. 6. Running times with different α . Fig. 7. Running times with different input size.

Fig. 8. Running times with different numbers of CPU cores on the zipf distribution.

9.3 Experimental Results

Results of equi-join on the zipf distribution. We have performed two sets of experiments, in
which we vary α and data size, respectively. In the first set of experiments, the number of tuples
in each relation is fixed at 100,000 and α increases from 1.0 to 2.5. From the results shown in
Figure 6, we see an increasing gap in the running time between the Spark join and the two output-
optimal algorithms. This is because the vanilla hash join algorithm used in Spark is bottlenecked
by the heaviest key, as all tuples of the same key must be sent to the same server. As α increases,
the skewness increases. When the data size is fixed, increasing α will increase the frequency of
the heaviest key. However, the two output-optimal algorithms will allocate servers appropriately
according to the frequencies, so they can much better balance the heavy keys with the light keys.
Similarly, when we fix α and increase IN, the results in Figure 7 show a similar trend. This can
also be explained by the same reason that increasing IN while keeping α fixed also increases the
frequency of the heaviest key. We also tested the scalability of these algorithms by varying the
number of worker nodes, and hence the total number of CPU cores in the cluster, and the result
is shown in Figure 8. Both the two output-optimal algorithms will benefit from more CPU cores,
whereas the Spark join almost stays the same, as all tuples of the heaviest key must be handled by
the same CPU core, which is the bottleneck no matter how many workers are available.
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Fig. 9. Running time distribution of tasks on the zipf distribution.

However, the difference between the two output-optimal algorithms is small, with sort join
slightly better. Although, theoretically speaking, the randomized hash join algorithm of Beame
et al. [23] is sub-optimal by a logarithmic factor, the actual difference is much smaller. There are
two explanations for this phenomenon. First, the analysis in Beame et al. [23] is assuming the worst
input. On the zipf distribution, the maximum load is determined by the hypercube algorithm on
the heavy hitters. Since each grid of servers only has a small number of rows and columns while
a large number of tuples are hashed to the rows and columns, a random allocation can already
achieve good balance. Indeed, from the classical balls-in-bins analysis, we know that if sufficiently
many balls are thrown into a small number of bins, then with high probability the bin sizes are
within a constant factor of each other.

The second reason is more system related. To see how the two algorithms allocate work to the
servers, we took a closer look at the running time distribution of the tasks, which is shown in
Figure 9. We see that the sort join algorithm indeed yields a more concentrated distribution (i.e.,
more balanced tasks) than the hash join algorithm. Recall that we used a parallelism of 144 and the
144 tasks are dynamically allocated to the 48 CPU cores at runtime by Spark’s scheduler, which
uses sophisticated heuristics based on data locality for making scheduling decisions. This has the
effect of “smoothing” things out since multiple small tasks can be allocated to the same CPU core.
However, this dynamic load balancing incurs extra cost for data migration and increased overhead
for the scheduler.

Since both the hash join algorithm and the sort join algorithm are randomized, we have also ex-
amined their stability over multiple repetitions. We repeated both algorithms multiple times with
α = 1.1 and IN = 1,000,000. For the sort join algorithm, a different sample is drawn each time.
For the hash join algorithm, we use a different hash function h(x ) = ax + b, where a and b are
chosen randomly each time. Figure 10 shows the results of the running times of the algorithms
on 80 repetitions. We see that both algorithms are quite stable. Note that due to system pertur-
bation, even a completely deterministic algorithm will have some small variations from time to
time.

Results of equi-join on uniform distribution. We note that the uniform distribution actually
presents the best-case scenario for the vanilla Spark join, as the load is naturally balanced. Mean-
while, unless the number of distinct keys is much less than p, no key is heavy and the hypercube
algorithm will not be needed. Therefore, the hash join algorithm essentially reduces to the vanilla
Spark join. This can be observed from the results shown in Figures 11 and 12, where we vary the
number of distinct keys and the input size, respectively. Since the hash join algorithm still needs to
first collect data statistics, then it just realizes that all keys are light hitters. After that, it performs
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Fig. 10. Stability of the two output-optimal algorithms on the zipf distribution.

Fig. 11. Running time with different numbers of

keys.

Fig. 12. Running time with different input size.

exactly the same shuffle operation as Spark join, so we always see a small gap, proportional to IN,
between the two algorithms.

The comparison between the hash join and the sort join algorithm is more interesting. Note that
the sort join algorithm achieves almost perfect load balance on the uniform distribution. Suppose
that there are n distinct keys, each with frequency IN/n. Then the number of non-crossing keys
between every two consecutive splitters is almost always n/p − 1, as long as the splitters do not
“drift away” by more than a distance of IN/n. There are exactly p − 1 crossing keys. But since
each key’s frequency is not high enough, the “grid” allocated to each crossing key degenerates to
a 1 × 1 grid. Therefore, it is almost always the case that exactly n/p distinct keys are assigned to
each server.

However, the behavior of the hash join algorithm is characterized by the classical balls-in-bins
problem [26], where we thrown balls intop bins randomly and study the number of balls landing in
the largest bin. It is known that (1) if n = Θ(p), then with high probability the largest bin receives
Θ(logp/ log logp) balls, and (2) when n = Ω(p logp), then with high probability the largest bin
receives Θ(n/p) balls. Thus, when n is large, we expect the hash join algorithm to perform well,
whereas for small n, it can be sub-optimal by an Θ(logp/ log logp) factor. This is can be verified in
Figure 12. When there are 144 distinct keys, each server in the sort join algorithm is allocated with
exactly 1 key, wherease the largest server in the hash join gets approximately 3 keys. With the
number of distinct keys increasing (e.g., 600 keys), the advantage of sort join will disappear since
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Fig. 13. Running time distribution of tasks in the last stage on the uniform distribution.

Fig. 14. Stability of two output-optimal algorithms on uniform distribution.

the hash join would achieve almost balanced load, whereas sort join always has extra overhead
for server allocation. This can be further verified in Figure 13, where we plot the running time
distribution of the 144 tasks of the two algorithms. Comparing Figures 13 and 9, we see that on the
uniform dataset with 144 distinct keys, the tasks’ running times are more unbalanced for the hash
join algorithm, whereas the sort join algorithm produces tasks of almost equal running times.

As before, we also tested the stability of the two algorithms over repeated runs using different
samples and random hash functions, using a uniform data set with 144 distinct keys. The results
are shown in Figure 14. Compared to the results in Figure 10 on the zipf distribution, we see that
the sort join algorithm is still very stable across different runs, but the hash join algorithm is much
less stable. This is because on the zipf distribution, the largest load is determined by the heavy
hitters, and a random allocation can deal with this case well because the hash function is applied
on the other attributes of the tuples. However, on the uniform distribution, we hash on the join key
and the maximum load is determined by the server receiving the most distinct join keys, which
tends to be much less stable.

The scalability results of all algorithms are shown in Figure 15. As expected, all algorithms will
benefit from more worker nodes because on the uniform distribution, load is always balanced.

Results of similarity joins in one dimension. We have performed two sets of experiments in
which we vary the similarity threshold and the data size, respectively. In the first set of experi-
ments, the number of points in each set is fixed at 100,000 and r varies from 0.1 to 0.5, with the
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Fig. 15. Running times with different numbers of CPU cores on the uniform distribution.

Fig. 16. Running times with different thresholds. Fig. 17. Running times with different input sizes.

results shown in Figure 16. In the second set of experiments, we fix the similarity threshold at 0.01
and increase IN, and the results are shown in Figure 17.

From both sets of experiments, we see that, as expected, the full join has highest cost, whereas
the interval join algorithm has the lowest cost. In both figures, the cost of the interval join grows,
as its load has both an input-dependent term and an output-dependent term. Note that increasing
r will increase the output size. The cost of the full join algorithm is not affected by r , as it always
enumerates all the IN2 pairs of tuples.

For the LSH join, we fixed the approximation ratio at 2 but varies l , the number of hash keys
per hash function from 1 to 4. Note that when fixing l , the input size of the equi-join is also fixed,
thus the running time is not affected by r . But a larger r implies larger output size, the ratio of true
results that can be recalled would be decreased, as shown in Table 1. Note that a larger l implies
larger input size of the equi-join and thus larger running times. Meanwhile, a larger l increases
the accuracy of the hash functions, resulting in a higher recall rate, as shown in Table 2. We see
that the LSH join is outperformed by interval join, despite being an approximation algorithm.
Essentially, LSH join is designed for the high-dimensional case. For one-dimensional similarity
joins, a specialized algorithm like interval join is much more competitive.

Results of similarity joins in high dimensions. In the last set of experiments, we perform self-
similarity joins on the COREL dataset using Hamming distance. Given a distance threshold r , we
first construct an (r , 10r , 0.9, 0.1)-sensitive hash family such that any pair of points with distance
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Table 1. k = 10, c = 2, l = 1

r 0.01 0.1 0.2 0.3 0.4
p1 0.9043 0.3487 0.1074 0.0282 0.0060
p2 0.8171 0.1074 0.0060 0.0001 1e-7
ρ 0.4975 0.4722 0.4368 0.3893 0.3174

Recall 0.9496 0. 5863 0.3344 0.2548 0.2067

Table 2. k = 10, c = 2, r = 0.01

l 1 2 3 4
p1 0.9043 0.9909 0.9991 0.9999
p2 0.8171 0.9665 0.9939 0.9989
ρ 0.4975 0.2699 0.1424 0.0746

Recall 0.9496 0.9949 0.9968 0.9999

Fig. 18. Running time with different thresholds.

smaller than r has probability at least 0.9 to be hashed to the same bucket, whereas any pair of
points with distance greater than 10r has probability no more than 0.1 to collide. In this set of
experiments, we fix the number of candidate hash keys as 2 and vary the number bits per hash
keys. The larger r is, the less bits the hash keys will have, and more points will be hashed to the
same bucket. The join size will also increase as well.

Figure 18 shows the running times of the three algorithms over different similarity thresholds.
The overall trend is similar to that on the zipf distribution (Figure 6), which is as expected, as the
COREL dataset has an uneven distribution. After hashed into buckets by an LSH function, the
distribution of the buckets is also highly skewed.

A small difference between Figures 18 and 6 is that when r is very small, the running times of
all algorithms also increase. This in fact is due to the length of the join keys being large for small
r , which makes the tuples larger, although the amount of work in terms of tuple count should still
decrease.

10 CONCLUDING REMARKS

In this article, we have studied various similarity joins in the MPC model. The main difference
between this and prior work is that we consider OUT, the output size of the join, as an additional
parameter in characterizing the complexity of the algorithms. We first proposed a deterministic
equi-join algorithm that improves the hypercube algorithm by a polylogarithmic factor and re-
moves the assumption on knowing data statistics. Then we designed output-optimal algorithms
for similarity joins under �1/�2/�∞ distances in constant dimensions. We also gave an approxima-
tion algorithm based on LSH for the high-dimensional case. Finally, we gave practical versions of
some of these algorithms and performed an experimental evaluation.

This article is mainly concerned with 2-relation joins, but we also made an initial step towards
multi-way joins by presenting a lower bound regarding output-optimality for the 3-relation chain
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join. However, it remains an open problem to more precisely characterize the class of multi-way
joins that can be solved with output-optimal MPC algorithms.

More broadly, using OUT as a parameter to measure the complexity falls under the realm of
parameterized complexity or beyond-worst-case analysis in general. This type of analyses often
yields more insights for problems where worst-case scenarios are rare in practice, such as joins.
Although OUT is considered the most natural additional parameter to introduce, other possibilities
exist, such as assuming that the data follows certain parameterized distributions, or the degree (i.e.,
maximum number of tuples a tuple can join) is bounded [10, 21], and so forth.
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