
On the Hardness and Approximation of Euclidean DBSCAN

Junhao Gan, University of Queensland

Yufei Tao, Chinese University of Hong Kong

DBSCAN is a method proposed in 1996 for clustering multi-dimensional points, and has received extensive

applications. Its computational hardness is still unsolved to this date. The original KDD’96 paper claimed

an algorithm of O(n logn) “average run time complexity” (where n is the number of data points) without

a rigorous proof. In 2013, a genuine O(n logn)-time algorithm was found in 2D space under Euclidean

distance. The hardness of dimensionality d ≥ 3 has remained open ever since.

This article considers the problem of computing DBSCAN clusters from scratch (assuming no existing

indexes) under Euclidean distance. We prove that, for d ≥ 3, the problem requires Ω(n4/3) time to solve,

unless very significant breakthroughs—ones widely believed to be impossible—could be made in theoretical

computer science. Motivated by this, we propose a relaxed version of the problem called ρ-approximate

DBSCAN, which returns the same clusters as DBSCAN, unless the clusters are “unstable” (i.e., they change

once the input parameters are slightly perturbed). The ρ-approximate problem can be settled in O(n)
expected time regardless of the constant dimensionality d.

The article also enhances the previous result on the exact DBSCAN problem in 2D space. We show that,

if the n data points have been pre-sorted on each dimension (i.e., one sorted list per dimension), the problem

can be settled in O(n) worst-case time. As a corollary, when all the coordinates are integers, the 2D DBSCAN

problem can be solved in O(n log logn) time deterministically, improving the existing O(n logn) bound.

Categories and Subject Descriptors: H3.3 [Information search and retrieval]: Clustering

General Terms: Algorithms, Theory, Performance

Additional Key Words and Phrases: DBSCAN, Density-Based Clustering, Hopcroft Hard, Algorithms,

Computational Geometry

1. INTRODUCTION

Density-based clustering is one of the most fundamental topics in data mining. Given a
set P of n points in d-dimensional space R

d, the objective is to group the points of P into
subsets—called clusters—such that any two clusters are separated by “sparse regions”.
Figure 1 shows two classic examples taken from [Ester et al. 1996]: the left one
contains 4 snake-shaped clusters, while the right one contains 3 clusters together with
some noise. The main advantage of density-based clustering (over methods such as
k-means) is its capability of discovering clusters with arbitrary shapes (while k-means
typically returns ball-like clusters).

Density-based clustering can be achieved using a variety of approaches, which
differ mainly in their (i) definitions of “dense/sparse regions”, and (ii) criteria of how
dense regions should be connected to form clusters. In this article, we concentrate
on DBSCAN, which is an approach invented by [Ester et al. 1996], and received the
test-of-time award in KDD’14. DBSCAN characterizes “density/sparsity” by resorting
to two parameters:

— ǫ: a positive real value;
— MinPts: a small positive constant integer.

Let B(p, ǫ) be the d-dimensional ball centered at point p with radius ǫ, where the
distance metric is Euclidean distance. B(p, ǫ) is “dense” if it covers at least MinPts
points of P .

DBSCAN forms clusters based on the following rationale. If B(p, ǫ) is dense, all the
points in B(p, ǫ) should be added to the same cluster as p. This creates a “chained
effect”: whenever a new point p′ with a dense B(p′, ǫ) is added to the cluster of p, all the

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:2

Fig. 1. Examples of density-based clustering from [Ester et al. 1996]

points in B(p′, ǫ) should also join the same cluster. The cluster of p continues to grow
in this manner to the effect’s fullest extent.

1.1. Previous Description of DBSCAN’s Running Time

The original DBSCAN algorithm of [Ester et al. 1996] performs a region query for each
point p ∈ P , which retrieves B(p, ǫ). Regarding the running time, [Ester et al. 1996]
wrote:

“The height an R*-tree is O(log n) for a database of n points in the worst case
and a query with a “small” query region has to traverse only a limited number
of paths in the R*-tree. Since the Eps-Neighborhoods are expected to be small
compared to the size of the whole data space, the average run time complexity of
a single region query is O(log n). For each of the points of the database, we have
at most one region query. Thus, the average run time complexity of DBSCAN
is O(n log n).”

The underlined statement lacks scientific rigor:

— Consider a dataset where Ω(n) points coincide at the same location. No matter
how small is ǫ, for every such point p, B(p, ǫ) always covers Ω(n) points. Even just
reporting the points inside B(p, ǫ) for all such p already takes Θ(n2) time—this is
true regardless of how good is the underlying R*-tree or any other index deployed.

— The notion of “average run time complexity” in the statement does not seem to follow
any of the standard definitions in computer science (see, for example, Wikipedia1).
There was no clarification on the mathematical meaning of this notion in [Ester et al.
1996], and neither was there a proof on the claimed complexity. In fact, it would have
been a great result if an O(n log n) bound could indeed be proved under any of those
definitions.

The “O(n log n) average run time complexity” has often been re-stated with fuzzy or
even no description of the accompanying conditions. A popular textbook [Han et al.
2012], for example, comments in Chapter 10.4.1:

If a spatial index is used, the computational complexity of DBSCAN is
O(n log n), where n is the number of database objects. Otherwise, the complexity
is O(n2).

Similar statements have appeared in many papers: [Böhm et al. 2004] (Sec 3.1),
[Chaoji et al. 2008] (Sec 2), [Ester 2013] (Chapter 5, Sec 2), [Klusch et al. 2003] (Sec 2),
[Lu et al. 2011] (Sec 5.4), [Milenova and Campos 2002] (Sec 1), [Patwary et al. 2012]
(Sec 2), [Sheikholeslami et al. 2000] (Sec 3.3), [Wang et al. 1997] (Sec 2.2.3), [Wen
et al. 2002] (Sec 5.2), mentioning just 10 papers. Several works have even utilized the

1Https://en.wikipedia.org/wiki/Average-case complexity

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:3

O(n log n) bound as a building-brick lemma to derive new “results” incorrectly: see Sec
D.1 of [Li et al. 2010], Sec 3.2 of [Pei et al. 2006], and Sec 5.2 of [Roy and Bhattacharyya
2005]).

[Gunawan 2013] also showed that all of the subsequently improved versions of the
original DBSCAN algorithm either do not compute the precise DBSCAN result (e.g.,
see [Borah and Bhattacharyya 2004; Liu 2006; Tsai and Wu 2009]), or still suffer from
O(n2) running time [Mahran and Mahar 2008]. As a partial remedy, he developed a
new 2D algorithm which truly runs in O(n log n) time, without assuming any indexes.

1.2. Our Contributions

This article was motivated by two questions:

— For d ≥ 3, is it possible to design an algorithm that genuinely has O(n log n)
time complexity? To make things easier, is it possible to achieve time complexity
O(n logc n) even for some very large constant c?

— If the answer to the previous question is no, is it possible to achieve linear or
near-linear running time by sacrificing the quality of clusters slightly, while still
being able to give a strong guarantee on the quality?

We answer the above questions with the following contributions:

(1) We prove that the DBSCAN problem (computing the clusters from scratch, without
assuming an existing index) requires Ω(n4/3) time to solve in d ≥ 3, unless very
significant breakthroughs—ones widely believed to be impossible—can be made
in theoretical computer science. Note that n4/3 is arbitrarily larger than n logc n,
regardless of constant c.

(2) We introduce a new concept called ρ-approximate DBSCAN which comes with
strong assurances in both quality and efficiency. For quality, its clustering result
is guaranteed to be “sandwiched” between the results of DBSCAN obtained with
parameters (ǫ,MinPts) and (ǫ(1 + ρ),MinPts), respectively. For efficiency, we prove
that ρ-approximate DBSCAN can be solved in linear O(n) expected time, for any ǫ,
arbitrarily small constant ρ, and in any fixed dimensionality d.

(3) We give a new algorithm that solves the exact DBSCAN problem in 2D space using
O(n log n) time, but in a way substantially simpler than the solution of [Gunawan
2013]. The algorithm reveals an inherent geometric connection between (exact)
DBSCAN and Delaunay graphs. The connection is of independent interests.

(4) We prove that the 2D exact DBSCAN problem can actually be settled in O(n)
time, provided that the n data points have been sorted along each dimension.
In other words, the “hardest” component of the problem turns out to be sorting
the coordinates, whereas the clustering part is easy. Immediately, this implies
that 2D DBSCAN can be settled in o(n log n) time when the coordinates are
integers, by utilizing fast integer-sorting algorithms [Andersson et al. 1998; Han
and Thorup 2002]: (i) deterministically, we achieve O(n log log n) time—improving
the O(n log n) bound of [Gunawan 2013]; (ii) randomly, we achieve O(n

√
log log n)

time in expectation.

(5) We perform an extensive experimental evaluation to explore the situations
in which the original DBSCAN is adequate, and the situations in which
ρ-approximate DBSCAN serves as a nice alternative. In a nutshell, when the
input data is “realistic” and it suffices to play with small ǫ, existing algorithms
may be used to find precise DBSCAN clusters efficiently. However, their cost
escalates rapidly with ǫ. The proposed ρ-approximate version is fast for a much
wider parameter range. The performance advantage of ρ-approximate DBSCAN is

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:4

most significant when the clusters have varying densities. In that case, a suitable
ǫ is decided by the sparsest cluster, and has to be large with respect to the densest
cluster, thus causing region queries in that cluster to be expensive (this will be
further explained in Section 6).

A short version of this article appeared in SIGMOD’15 [Gan and Tao 2015]. In
terms of technical contents, the current article extends that preliminary work with
Contributions 3 and 4. Furthermore, the article also features revamped experiments
that carry out a more complete study of the behavior of various algorithms.

1.3. Organization of the Article

Section 2 reviews the previous work related to ours. Section 3 provides theoretical
evidence on the computational hardness of DBSCAN, and presents a sub-quadratic
algorithm for solving the problem exactly. Section 4 proposes ρ-approximate DBSCAN,
elaborates on our algorithm, and establishes its quality and efficiency guarantees.
Section 5 presents new algorithms for solving the exact DBSCAN problem in 2D space.
Section 6 discusses several issues related to the practical performance of different
algorithms and implementations. Section 7 evaluates all the exact and approximation
algorithms with extensive experimentation. Finally, Section 8 concludes the article
with a summary of findings.

2. RELATED WORK

Section 2.1 reviews the DBSCAN definitions as set out by [Ester et al. 1996].
Section 2.2 describes the 2D algorithm in [Gunawan 2013] that solves the problem
genuinely in O(n log n) time. Section 2.3 points out several results from computational
geometry which will be needed to prove the intractability of DBSCAN later.

2.1. Definitions

As before, let P be a set of n points in d-dimensional space R
d. Given two points p, q ∈

R
d, we denote by dist(p, q) the Euclidean distance between p and q. Denote by B(p, r)

the ball centered at a point p ∈ R
d with radius r. Remember that DBSCAN takes two

parameters: ǫ and MinPts.

Definition 2.1. A point p ∈ P is a core point if B(p, ǫ) covers at least MinPts points
of P (including p itself).

If p is not a core point, it is said to be a non-core point. To illustrate, suppose that
P is the set of points in Figure 2, where MinPts = 4 and the two circles have radius ǫ.
Core points are shown in black, and non-core points in white.

Definition 2.2. A point q ∈ P is density-reachable from p ∈ P if there is a
sequence of points p1, p2, ..., pt ∈ P (for some integer t ≥ 2) such that:

— p1 = p and pt = q
— p1, p2, ..., pt−1 are core points
— pi+1 ∈ B(pi, ǫ) for each i ∈ [1, t− 1].

Note that points p and q do not need to be different. In Figure 2, for example, o1 is
density-reachable from itself; o10 is density-reachable from o1 and from o3 (through the
sequence o3, o2, o1, o10). On the other hand, o11 is not density-reachable from o10 (recall
that o10 is not a core point).

Definition 2.3. A cluster C is a non-empty subset of P such that:

— (Maximality) If a core point p ∈ C, then all the points density-reachable from p also
belong to C.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:5

o1

o2
o3

o4

o5

o18

o6

o7
o8

o9

o10

o11

o12

o13

o14
o15

o16
o17

ǫ

Fig. 2. An example dataset (the two circles have radius ǫ; MinPts = 4)

— (Connectivity) For any points p1, p2 ∈ C, there is a point p ∈ C such that both p1 and
p2 are density-reachable from p.

Definition 2.3 implies that each cluster contains at least a core point (i.e., p).
In Figure 2, {o1, o10} is not a cluster because it does not involve all the points
density-reachable from o1. On the other hand, {o1, o2, o3, ..., o10} is a cluster.

[Ester et al. 1996] gave a nice proof that P has a unique set of clusters, which gives
rise to:

PROBLEM 1. The DBSCAN problem is to find the unique set C of clusters of P .

Given the input P in Figure 2, the problem should output two clusters: C1 =
{o1, o2, ..., o10} and C2 = {o10, o11, ..., o17}.

Remark. A cluster can contain both core and non-core points. Any non-core point p in
a cluster is called a border point. Some points may not belong to any clusters at all;
they are called noise points. In Figure 2, o10 is a border point, while o18 is noise.

The clusters in C are not necessarily disjoint (e.g., o10 belongs to both C1 and C2 in
Figure 2). In general, if a point p appears in more than one cluster in C , then p must be
a border point (see Lemma 2 of [Ester et al. 1996]). In other words, a core point always
belongs to a unique cluster.

2.2. The 2D Algorithm with Genuine O(n logn) Time

Next, we explain in detail the algorithm of [Gunawan 2013], which solves the DBSCAN
problem in 2D space in O(n log n) time. The algorithm imposes an arbitrary grid T in

the data space R
2, where each cell of T is a (ǫ/

√
2) × (ǫ/

√
2) square. Without loss of

generality, we assume that no point of P falls on any boundary line of T (otherwise,
move T infinitesimally to make this assumption hold). Figure 3a shows a grid on the
data of Figure 2. Note that any two points in the same cell are at most distance ǫ apart.
A cell c of T is non-empty if it contains at least one point of P ; otherwise, c is empty.
Clearly, there can be at most n non-empty cells.

The algorithm then launches a labeling process to decide for each point p ∈ P
whether p is core or non-core. Denote by P (c) the set of points of P covered by c. A
cell c is a core cell if P (c) contains at least one core point. Denote by Score the set of
core cells in T . In Figure 3a where MinPts = 4, there are 6 core cells as shown in gray
(core points are in black, and non-core points in white).

Let G = (V,E) be a graph defined as follows:

— Each vertex in V corresponds to a distinct core cell in Score .

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:6

ǫ/
√
2

ǫ/
√
2

o10

.

..

c1

c2 c3

c4

c5

c6

.

o10

(a) Core cells (b) Graph G (c) ǫ-neighbor cells (in
are shown in gray gray) of the cell of o10

Fig. 3. DBSCAN with a grid (MinPts = 4)

— Given two different cells c1, c2 ∈ Score , E contains an edge between c1 and c2 if and
only if there exist core points p1 ∈ P (c1) and p2 ∈ P (c2) such that dist(p1, p2) ≤ ǫ.

Figure 3b shows the G for Figure 3a (note that there is no edge between cells c4 and
c6).

The algorithm then proceeds by finding all the connected components of G. Let k be
the number of connected components, Vi (1 ≤ i ≤ k) be the set of vertices in the i-th
connected component, and P (Vi) be the set of core points covered by the cells of Vi.
Then:

LEMMA 2.4 ([GUNAWAN 2013]). The number k is also the number of clusters in P .
Furthermore, P (Vi) (1 ≤ i ≤ k) is exactly the set of core points in the i-th cluster.

Figure 3b, k = 2, and V1 = {c1, c2, c3}, V2 = {c4, c5, c6}. It is easy to verify the
correctness of Lemma 2.4 on this example.

Labeling Process. Let c1 and c2 be two different cells in T . They are ǫ-neighbors of
each other if the minimum distance between them is less than ǫ. Figure 3c shows in
gray all the ǫ-neighbor cells of the cell covering o10. It is easy to see that each cell has
at most 21 ǫ-neighbors. If a non-empty cell c contains at least MinPts points, then all
those points must be core points.

Now consider a cell c with |P (c)| < MinPts. Each point p ∈ P (c) may or may not be a
core point. To find out, the algorithm simply calculates the distances between p and all
the points covered by each of the ǫ-neighbor cells of c. This allows us to know exactly
the size of |B(p, ǫ)|, and hence, whether p is core or non-core. For example, in Figure 3c,
for p = o10, we calculate the distance between o10 and all the points in the gray cells to
find out that o10 is a non-core point.

Computation of G. Fix a core cell c1. We will explain how to obtain the edges incident
on c1 in E. Let c2 be a core cell that is an ǫ-neighbor of c1. For each core point p ∈ P (c1),
we find the core point p′ ∈ c2 that is the nearest to p. If dist(p, p′) ≤ ǫ, an edge (c1, c2)
is added to G. On the other hand, if all such p ∈ P (c1) have been tried but still no edge
has been created, we conclude that E has no edge between c1, c2.

As a corollary of the above, each core cell c1 has O(1) incident edges in E (because it
has O(1) ǫ-neighbors). In other words, E has only a linear number O(n) of edges.

Assigning Border Points. Recall that each P (Vi) (1 ≤ i ≤ k) includes only the core
points in the i-th cluster of P . It is still necessary to assign each non-core point q (i.e.,

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:7

closest pair

(a) BCP (b) USEC (c) Hopcroft

Fig. 4. Three relevant geometric problems

border point) to the appropriate clusters. The principle of doing so is simple: if p is a
core point and dist(p, q) ≤ ǫ, then q should be added to the (unique) cluster of p. To find
all such core points p, [Gunawan 2013] adopted the following simple algorithm. Let c
be the cell where q lies. For each ǫ-neighbor cell c′ of c, simply calculate the distances
from q to all the core points in c′.

Running Time. [Gunawan 2013] showed that, other than the computation of G,
the rest of the algorithm runs in O(MinPts · n) = O(n) expected time or O(n log n)
worst-case time. The computation of G requires O(n) nearest neighbor queries, each of
which can be answered in O(log n) time after building a Voronoi diagram for each core
cell. Therefore, the overall execution time is bounded by O(n log n).

2.3. Some Geometric Results

Bichromatic Closest Pair (BCP). Let P1, P2 be two sets of points in R
d for some

constant d. Set m1 = |P1| and m2 = |P2|. The goal of the BCP problem is to find a pair
of points (p1, p2) ∈ P1 × P2 with the smallest distance, namely, dist(p1, p2) ≤ dist(p′1, p

′
2)

for any (p′1, p
′
2) ∈ P1 × P2. Figure 4 shows the closest pair for a set of black points and

a set of white points.

In 2D space, it is well-known that BCP can be solved in O(m1 logm1 + m2 logm2)
time. The problem is much more challenging for d ≥ 3, for which currently the best
result is due to [Agarwal et al. 1991]:

LEMMA 2.5 ([AGARWAL ET AL. 1991]). For any fixed dimensionality d ≥ 4, there
is an algorithm solving the BCP problem in

O
(

(m1m2)
1− 1

⌈d/2⌉+1
+δ′ +m1 logm2 +m2 logm1

)

expected time, where δ′ > 0 can be an arbitrarily small constant. For d = 3, the expected
running time can be improved to

O((m1m2 · logm1 · logm2)
2/3 +m1 log

2 m2 +m2 log
2 m1)).

Spherical Emptiness and Hopcroft. Let us now introduce the unit-spherical
emptiness checking (USEC) problem:

Let Spt be a set of points, and Sball be a set of balls with the same radius, all

in data space R
d, where the dimensionality d is a constant. The objective of

USEC is to determine whether there is a point of Spt that is covered by some
ball in Sball .

For example, in Figure 4b, the answer is yes.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:8

Set n = |Spt |+|Sball |. In 3D space, the USEC problem can be solved in O(n4/3·log4/3 n)
expected time [Agarwal et al. 1991]. Finding a 3D USEC algorithm with running time
o(n4/3) is a big open problem in computational geometry, and is widely believed to be
impossible; see [Erickson 1995].

Strong hardness results are known about USEC when the dimensionality d is higher,
owing to an established connection between the problem to the Hopcroft’s problem:

Let Spt be a set of points, and Sline be a set of lines, all in data space R
2 (note

that the dimensionality is always 2). The goal of the Hopcroft’s problem is to
determine whether there is a point in Spt that lies on some line of Sline .

For example, in Figure 4c, the answer is no.

The Hopcroft’s problem can be settled in time slightly higher than O(n4/3) time (see
[Matousek 1993] for the precise bound), where n = |Spt | + |Sline |. It is widely believed

[Erickson 1995] that Ω(n4/3) is a lower bound on how fast the problem can be solved. In
fact, this lower bound has already been proved on a broad class of algorithms [Erickson
1996].

It turns out that the Hopcroft’s problem is a key reason of difficulty for a large
number of other problems [Erickson 1995]. We say that a problem X is Hopcroft hard
if an algorithm solving X in o(n4/3) time implies an algorithm solving the Hopcroft’s

problem in o(n4/3) time. In other words, a lower bound Ω(n4/3) on the time of solving
the Hopcroft’s problem implies the same lower bound on X.

[Erickson 1996] proved the following relationship between USEC and the Hopcroft’s
problem:

LEMMA 2.6 ([ERICKSON 1996]). The USEC problem in any dimensionality d ≥ 5
is Hopcroft hard.

3. DBSCAN IN DIMENSIONALITY 3 AND ABOVE

This section paves the way towards approximate DBSCAN, which is the topic of the
next section. In Section 3.1, we establish the computational hardness of DBSCAN
in practice via a novel reduction from the USEC problem (see Section 2.3). For
practitioners that insist on applying this clustering method with the utmost accuracy,
in Section 3.2, we present a new exact DBSCAN algorithm that terminates in a
sub-quadratic time complexity.

3.1. Hardness of DBSCAN

We will prove:

THEOREM 3.1. The following statements are true about the DBSCAN problem:

— It is Hopcroft hard in any dimensionality d ≥ 5. Namely, the problem requires Ω(n4/3)
time to solve, unless the Hopcroft problem can be settled in o(n4/3) time.

— When d = 3 (and hence, d = 4), the problem requires Ω(n4/3) time to solve, unless the

USEC problem can be settled in o(n4/3) time.

As mentioned in Section 2.3, it is widely believed that neither the Hopcroft problem
nor the USEC problem can be solved in o(n4/3) time—any such algorithm would be a
celebrated breakthrough in theoretical computer science.

Proof of Theorem 3.1. We observe a subtle connection between USEC and DBSCAN:

LEMMA 3.2. For any dimensionality d, if we can solve the DBSCAN problem in
T (n) time, then we can solve the USEC problem in T (n) +O(n) time.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:9

PROOF. Recall that the USEC problem is defined by a set Spt of points and a set

Sball of balls with equal radii, both in R
d. Denote by A a DBSCAN algorithm in R

d that
runs in T (m) time on m points. Next, we describe an algorithm that deploys A as a
black box to solve the USEC problem in T (n) +O(n) time, where n = |Spt |+ |Sball |.

Our algorithm is simple:

(1) Obtain P , which is the union of Spt and the set of centers of the balls in Sball .
(2) Set ǫ to the identical radius of the balls in Sball .
(3) Run A to solve the DBSCAN problem on P with this ǫ and MinPts = 1.
(4) If any point in Spt and any center of Sball belong to the same cluster, then return

yes for the USEC problem (namely, a point in Spt is covered by some ball in Sball).
Otherwise, return no.

It is fundamental to implement the above algorithm in T (n) + O(n) time. Next, we
prove its correctness.

Case 1: We return yes. We will show that in this case there is indeed a point of Spt that

is covered by some ball in Sball .

Recall that a yes return means a point p ∈ Spt and the center q of some ball in
Sball have been placed in the same cluster, which we denote by C. By connectivity of
Definition 2.3, there exists a point z ∈ C such that both p and q are density-reachable
from z.

By setting MinPts = 1, we ensure that all the points in P are core points. In general,
if a core point p1 is density-reachable from p2 (which by definition must be a core
point), then p2 is also density-reachable from p1 (as can be verified by Definition 2.2).
This means that z is density-reachable from p, which—together with the fact that q is
density-reachable from z—shows that q is density-reachable from p.

It thus follows by Definition 2.2 that there is a sequence of points p1, p2, ..., pt ∈ P
such that (i) p1 = p, pt = q, and (ii) dist(pi, pi+1) ≤ ǫ for each i ∈ [1, t − 1]. Let k be the
smallest i ∈ [2, t] such that pi is the center of a ball in Sball . Note that k definitely exists
because pt is such a center. It thus follows that pk−1 is a point from Spt , and that pk−1

is covered by the ball in Sball centered at pk.

Case 2: We return no. We will show that in this case no point of Spt is covered by any
ball in Sball .

This is in fact very easy. Suppose on the contrary that a point p ∈ Spt is covered by
a ball of Sball centered at q. Thus, dist(p, q) ≤ ǫ, namely, q is density-reachable from p.
Then, by maximality of Definition 2.3, q must be in the cluster of p (recall that all the
points of P are core points). This contradicts the fact that we returned no.

Theorem 3.1 immediately follows from Lemmas 2.6 and 3.2.

3.2. A New Exact Algorithm for d ≥ 3

It is well-known that DBSCAN can be solved in O(n2) time (e.g., see [Tan et al. 2006])
in any constant dimensionality d. Next, we show that it is possible to always terminate
in o(n2) time regardless of the constant d. Our algorithm extends that of [Gunawan
2013] with two ideas:

— Use a d-dimensional grid T with an appropriate side length for its cells.
— Compute the edges of the graph G with a BCP algorithm (as opposed to nearest

neighbor search).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:10

Next, we explain the details. T is now a grid on R
d where each cell of T is a

d-dimensional hyper-square with side length ǫ/
√
d. As before, this ensures that any

two points in the same cell are within distance ǫ from each other.

The algorithm description in Section 2.2 carries over to any d ≥ 3 almost verbatim.
The only difference is the way we compute the edges of G. Given core cells c1 and c2
that are ǫ-neighbors of each other, we solve the BCP problem on the sets of core points
in c1 and c2, respectively. Let (p1, p2) be the pair returned. We add an edge (c1, c2) to G
if and only if dist(p1, p2) ≤ ǫ.

The adapted algorithm achieves the following efficiency guarantee:

THEOREM 3.3. For any fixed dimensionality d ≥ 4, there is an algorithm solving the

DBSCAN problem in O(n2− 2
⌈d/2⌉+1

+δ) expected time, where δ > 0 can be an arbitrarily

small constant. For d = 3, the running time can be improved to O((n log n)4/3) expected.

PROOF. It suffices to analyze the time used by our algorithm to generate the edges
of G. The other parts of the algorithm use O(n) expected time, following the analysis
of [Gunawan 2013].

Let us consider first d ≥ 4. First, fix the value of δ in Theorem 3.3. Define: λ =
1

⌈d/2⌉+1
− δ/2. Given a core cell c, we denote by mc the number of core points in c. Then,

by Lemma 2.5, the time we spend generating the edges of G is

∑

ǫ-neighbor
core cells c, c′

O
(

(mcmc′)
1−λ +mc logmc′ +mc′ logmc

)

. (1)

To bound the first term, we derive

∑

ǫ-neighbor core cells c, c′

O
(

(mcmc′)
1−λ
)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

(mcmc′)
1−λ
)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

(mcmc′)
1−λ
)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

mc′ ·m1−2λ
c

)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

mc ·m1−2λ
c′

)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

mc′ · n1−2λ
)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

mc · n1−2λ
)

= O
(

n1−2λ
∑

ǫ-neighbor core cells c, c′

mc

)

= O(n2−2λ)

where the last equality used the fact that c has only O(1) ǫ-neighbor cells as long as d
is a constant (and hence, mc can be added only O(1) times). The other terms in (1) are

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:11

easy to bound:
∑

ǫ-neighbor core cells c, c′

O (mc logmc′ +mc′ logmc)

=
∑

ǫ-neighbor core cells c, c′

O (mc log n+mc′ log n) = O(n log n).

In summary, we spend O(n2−2λ+n log n) = O(n2− 2
⌈d/2⌉+1

+δ) time generating the edges
of E. This proves the part of Theorem 3.3 for d ≥ 4. An analogous analysis based on
the d = 3 branch of Lemma 2.5 establishes the other part of Theorem 3.3.

It is worth pointing out that the running time of our 3D algorithm nearly matches
the lower bound in Theorem 3.1.

4. ρ-APPROXIMATE DBSCAN

The hardness result in Theorem 3.1 indicates the need of resorting to approximation
if one wants to achieve near-linear running time for d ≥ 3. In Section 4.1, we introduce
the concept of ρ-approximate DBSCAN designed to replace DBSCAN on large datasets.
In Section 4.2, we establish a strong quality guarantee of this new form of clustering. In
Sections 4.3 and 4.4, we propose an algorithm for solving the ρ-approximate DBSCAN
problem in time linear to the dataset size.

4.1. Definitions

As before, let P be the input set of n points in R
d to be clustered. We still take

parameters ǫ and MinPts, but in addition, also a third parameter ρ, which can be any
arbitrarily small positive constant, and controls the degree of approximation.

Next, we re-visit the basic definitions of DBSCAN in Section 2, and modify
some of them to their “ρ-approximate versions”. First, the notion of core/non-core
point remains the same as Definition 2.1. The concept of density-reachability in
Definition 2.2 is also inherited directly, but we will also need:

Definition 4.1. A point q ∈ P is ρ-approximate density-reachable from p ∈ P if
there is a sequence of points p1, p2, ..., pt ∈ P (for some integer t ≥ 2) such that:

— p1 = p and pt = q
— p1, p2, ..., pt−1 are core points
— pi+1 ∈ B(pi, ǫ(1 + ρ)) for each i ∈ [1, t− 1].

Note the difference between the above and Definition 2.2: in the third bullet, the radius
of the ball is increased to ǫ(1 + ρ). To illustrate, consider a small input set P as shown
in Figure 5. Set MinPts = 4. The inner and outer circles have radii ǫ and ǫ(1 + ρ),
respectively. Core and non-core points are in black and white, respectively. Point o5
is ρ-approximate density-reachable from o3 (via sequence: o3, o2, o1, o5). However, o5 is
not density-reachable from o3.

Definition 4.2. A ρ-approximate cluster C is a non-empty subset of P such that:

— (Maximality) If a core point p ∈ C, then all the points density-reachable from p also
belong to C.

— (ρ-Approximate Connectivity) For any points p1, p2 ∈ C, there exists a point p ∈ C
such that both p1 and p2 are ρ-approximate density-reachable from p.

Note the difference between the above and the original cluster formulation
(Definition 1): the connectivity requirement has been weakened into ρ-approximate

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:12

o1

o2
o3

o4o5
ǫ

ǫρ

Fig. 5. Density-reachability and ρ-approximate density-reachability (MinPts = 4)

connectivity. In Figure 5, both {o1, o2, o3, o4} and {o1, o2, o3, o4, o5} are ρ-approximate
clusters.

PROBLEM 2. The ρ-approximate DBSCAN problem is to find a set C of
ρ-approximate clusters of P such that every core point of P appears in exactly one
ρ-approximate cluster.

Unlike the original DBSCAN problem, the ρ-approximate version may not have a
unique result. In Figure 5, for example, it is legal to return either {o1, o2, o3, o4} or
{o1, o2, o3, o4, o5}. Nevertheless, any result of the ρ-approximate problem comes with
the quality guarantee to be proved next.

4.2. A Sandwich Theorem

Both DBSCAN and ρ-approximate DBSCAN are parameterized by ǫ and MinPts.
It would be perfect if they can always return exactly the same clustering results.
Of course, this is too good to be true. Nevertheless, in this subsection, we will
show that this is almost true: the result of ρ-approximate DBSCAN is guaranteed
to be somewhere between the (exact) DBSCAN results obtained by (ǫ,MinPts) and
by (ǫ(1 + ρ),MinPts)! It is well-known that the clusters of DBSCAN rarely differ
considerably when ǫ changes by just a small factor—in fact, if this really happens,
it suggests that the choice of ǫ is very bad, such that the exact clusters are not stable
anyway (we will come back to this issue later).

Let us define:

— C1 as the set of clusters of DBSCAN with parameters (ǫ,MinPts)
— C2 as the set of clusters of DBSCAN with parameters (ǫ(1 + ρ),MinPts).
— C as an arbitrary set of clusters that is a legal result of (ǫ, MinPts,

ρ)-approx-DBSCAN.

The next theorem formalizes the quality assurance mentioned earlier:

THEOREM 4.3 (SANDWICH QUALITY GUARANTEE). The following statements are
true:

(1) For any cluster C1 ∈ C1, there is a cluster C ∈ C such that C1 ⊆ C.
(2) For any cluster C ∈ C , there is a cluster C2 ∈ C2 such that C ⊆ C2.

PROOF. To prove Statement 1, let p be an arbitrary core point in C1. Then, C1 is
precisely the set of points in P density-reachable from p.2 In general, if a point q

2This should be folklore but here is a proof. By maximality of Definition 2.3, all the points density-reachable
from p are in C1. On the other hand, let q be any point in C1. By connectivity, p and q are both

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:13

ǫ1

ǫ3

ǫ2

(bad)

o

Fig. 6. Good and bad choices of ǫ

is density-reachable from p in (ǫ,MinPts)-exact-DBSCAN, q is also density-reachable
from p in (ǫ,MinPts, ρ)-approx-DBSCAN. By maximality of Definition 4.2, if C is the
cluster in C containing p, then all the points of C1 must be in C.

To prove Statement 2, consider an arbitrary core point p ∈ C (there must be one by
Definition 4.2). In (ǫ(1 + ρ),MinPts)-exact-DBSCAN, p must also be a core point. We
choose C2 to be the cluster of C2 where p belongs. Now, fix an arbitrary point q ∈ C.
In (ǫ,MinPts, ρ)-approx-DBSCAN, by ρ-approximate connectivity of Definition 4.2, we
know that p and q are both ρ-approximate reachable from a point z. This implies that
z is also ρ-approximate reachable from p. Hence, q is ρ-approximate reachable from
p. This means that q is density-reachable from p in (ǫ(1 + ρ),MinPts)-exact-DBSCAN,
indicating that q ∈ C2.

Here is an alternative, more intuitive, interpretation of Theorem 4.3:

— Statement 1 says that if two points belong to the same cluster of DBSCAN with
parameters (ǫ,MinPts), they are definitely in the same cluster of ρ-approximate
DBSCAN with the same parameters.

— On the other hand, a cluster of ρ-approximate DBSCAN parameterized by
(ǫ,MinPts) may also contain two points p1, p2 that are in different clusters of
DBSCAN with the same parameters. However, this is not bad because Statement
2 says that as soon as the parameter ǫ increases to ǫ(1 + ρ), p1 and p2 will fall into
the same cluster of DBSCAN!

Figure 6 illustrates the effects of approximation. How many clusters are there?
Interestingly, the answer is it depends. As pointed out in the classic OPTICS paper
[Ankerst et al. 1999], different ǫ values allow us to view the dataset from various
granularities, leading to different clustering results. In Figure 6, given ǫ1 (and some
MinPts say 2), DBSCAN outputs 3 clusters. Given ǫ2, on the other hand, DBSCAN
outputs 2 clusters, which makes sense because at this distance, the two clusters on the
right merge into one.

Now let us consider approximation. The dashed circles illustrate the radii obtained
with ρ-approximation. For both ǫ1 and ǫ2, ρ-approximate DBSCAN will return exactly
the same clusters, because these distances are robustly chosen by being insensitive
to small perturbation. For ǫ3, however, ρ-approximate DBSCAN may return only one
cluster (i.e., all points in the same cluster), whereas exact DBSCAN will return only
two (i.e., the same two clusters as ǫ2). By looking at the figure closely, one can realize
that this happens because the dashed circle of radius (1 + ρ)ǫ3) “happens” to pass a

density-reachable from a point z. As p is a core point, we know that z is also density-reachable from p.
Hence, q is density-reachable from p.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:14

point—namely point o—which falls outside the solid circle of radius ǫ3. Intuitively, ǫ3
is a poor parameter choice because it is too close to the distance between two clusters
such that a small change to it will cause the clustering results to be altered.

Next we present a useful corollary of the sandwich theorem:

COROLLARY 4.4. Let C1,C2, and C be as defined in Theorem 4.3. If a cluster C
appears in both C1 and C2, then C must also be a cluster in C .

PROOF. Suppose, on the contrary, that C does not contain C. By Theorem 4.3, (i) C

must contain a cluster C ′ such that C ⊆ C ′, and (ii) C2 must contain a cluster C ′′ such
that C ′ ⊆ C ′′. This means C ⊆ C ′′. On the other hand, as C ∈ C2, it follows that, in C2,
every core point in C belongs also to C ′′. This is impossible because a core point can
belong to only one cluster.

The corollary states that, even if some exact DBSCAN clusters have changed when ǫ
increases by a factor of 1+ρ (i.e., ǫ is not robust), our ρ-approximation still captures all
those clusters that do not change. For example, imagine that the points in Figure 6 are
part of a larger dataset such that the clusters on the rest of the points are unaffected
as ǫ3 increases to ǫ3(1 + ρ). By Corollary 4.4, all those clusters are safely captured by
ρ-approximate DBSCAN under ǫ3.

4.3. Approximate Range Counting

Let us now take a break from DBSCAN, and turn our attention to a different problem,
whose solution is vital to our ρ-approximate DBSCAN algorithm.

Let P still be a set of n points in R
d where d is a constant. Given any point q ∈ R

d,
a distance threshold ǫ > 0 and an arbitrarily small constant ρ > 0, an approximate
range count query returns an integer that is guaranteed to be between |B(q, ǫ)∩P | and
|B(q, ǫ(1 + ρ))∩P |. For example, in Figure 5, given q = o1, a query may return either 4
or 5.

[Arya and Mount 2000] developed a structure of O(n) space that can be built in
O(n log n) time, and answers any such query in O(log n) time. Next, we design an
alternative structure with better performance in our context:

LEMMA 4.5. For any fixed ǫ and ρ, there is a structure of O(n) space that can be
built in O(n) expected time, and answers any approximate range count query in O(1)
expected time.

Structure. Our structure is a simple quadtree-like hierarchical grid partitioning of
R

d. First, impose a regular grid on R
d where each cell is a d-dimensional hyper-square

with side length ǫ/
√
d. For each non-empty cell c of the grid (i.e., c covers at least 1

point of P), divide it into 2d cells of the same size. For each resulting non-empty cell c′,
divide it recursively in the same manner, until the side length of c′ is at most ǫρ/

√
d.

We use H to refer to the hierarchy thus obtained. We keep only the non-empty cells
of H, and for each such cell c, record cnt(c) which is the number of points in P covered

by c. We will refer to a cell of H with side length ǫ/(2i
√
d) as a level-i cell. Clearly, H

has only h = max{1, 1 + ⌈log2(1/ρ)⌉} = O(1) levels. If a level-(i + 1) cell c′ is inside a
level-i cell c, we say that c′ is a child of c, and c a parent of c′. A cell with no children is
called a leaf cell.

Figure 7 illustrates the part of the first three levels of H for the dataset on the left.
Note that empty cells are not stored.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:15

root(18)

NW(2) NE(8) SW(8)

SE(2) NE(3) SW(5) NE(4) SW(4)

...

level 0

level 1

B(q, ǫ)

B(q, ǫ(1 + ρ))

number of points in this level-0 cella level-0 cell

Fig. 7. Approximate range counting

Query. Given an approximate range count query with parameters q, ǫ, ρ, we compute
its answer ans as follows. Initially, ans = 0. In general, given a non-empty level-i cell
c, we distinguish three cases:

— If c is disjoint with B(q, ǫ), ignore it.
— If c is fully covered by B(q, ǫ(1 + ρ)), add cnt(c) to ans.
— When neither of the above holds, check if c is a leaf cell in H. If not, process the child

cells of c in the same manner. Otherwise (i.e., c is a leaf), add cnt(c) to ans only if c
intersects B(q, ǫ).

The algorithm starts from the level-0 non-empty cells that intersect with B(q, ǫ).

To illustrate, consider the query shown in Figure 7. The two gray cells correspond
to nodes SW(5) and NE(4) at level 2. The subtree of neither of them is visited, but the
reasons are different. For SW(5), its cell is disjoint with B(q, ǫ), so we ignore it (even
though it intersects B(q, ǫ(1 + ρ))). For NE(4), its cell completely falls in B(q, ǫ(1 + ρ)),
so we add its count 4 to the result (even though it is not covered by B(q, ǫ)).

Correctness. The above algorithm has two guarantees. First, if a point p ∈ P is inside
B(q, ǫ), it is definitely counted in ans. Second, if p is outside B(q, ǫ(1 + ρ)), then it
is definitely not counted in ans. These guarantees are easy to verify, utilizing the fact
that if a leaf cell c intersects B(p, ǫ), then c must fall completely in B(p, ǫ(1+ρ)) because
any two points in a leaf cell are within distance ǫρ. It thus follows that the ans returned
is a legal answer.

Time Analysis. Remember that the hierarchy H has O(1) levels. Since there are O(n)
non-empty cells at each level, the total space is O(n). With hashing, it is easy to build
the structure level by level in O(n) expected time.

To analyze the running time of our query algorithm, observe that each cell c visited
by our algorithm must satisfy one of the following conditions: (i) c is a level-0 cell, or
(ii) the parent of c intersects the boundary of B(q, ǫ). For type-(i), the O(1) level-0 cells
intersecting B(q, ǫ) can be found in O(1) expected time using the coordinates of q. For
type-(ii), it suffices to bound the number of cells intersecting the boundary of B(q, ǫ)
because each such cell has 2d = O(1) child nodes.

In general, a d-dimensional grid of cells with side length l has O(1 + (θl)
d−1) cells

intersecting the boundary of a sphere with radius θ [Arya and Mount 2000]. Combining

this and the fact that a level-i cell has side length ǫ/(2i
√
d), we know that the total

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:16

number of cells (of all levels) intersecting the boundary of B(q, ǫ) is bounded by:

h−1
∑

i=0

O

(

1 +

(

ǫ

ǫ/(2i
√
d)

)d−1
)

= O
(

(2h)d−1
)

= O
(

1 + (1/ρ)d−1
)

which is a constant for any fixed ρ. This concludes the proof of Lemma 4.5.

4.4. Solving ρ-Approximate DBSCAN

We are now ready to solve the ρ-approximate DBSCAN problem by proving:

THEOREM 4.6. There is a ρ-approximate DBSCAN algorithm that terminates in
O(n) expected time, regardless of the value of ǫ, the constant approximation ratio ρ, and
the fixed dimensionality d.

Algorithm. Our ρ-approximate algorithm differs from the exact algorithm we
proposed in Section 3.2 only in the definition and computation of the graph G. We
re-define G = (V,E) as follows:

— As before, each vertex in V is a core cell of the grid T (remember that the algorithm
of Section 3.2 imposes a grid T on R

d, where a cell is a core cell if it covers at least
one core point).

— Given two different core cells c1, c2, whether E has an edge between c1 and c2 obeys
the rules below:
— yes, if there exist core points p1, p2 in c1, c2, respectively, such that dist(p1, p2) ≤ ǫ.
— no, if no core point in c1 is within distance ǫ(1 + ρ) from any core point in c2.
— don’t care, in all the other cases.

To compute G, our algorithm starts by building, for each core cell c in T , a structure
of Lemma 4.5 on the set of core points in c. To generate the edges of a core cell c1,
we examine each ǫ-neighbor cell c2 of c1 in turn. For every core point p in c1, do an
approximate range count query on the set of core points in c2. If the query returns a
non-zero answer, add an edge (c1, c2) to G. If all such p have been tried but still no edge
has been added, we decide that there should be no edge between c1 and c2.

Correctness. Let C be an arbitrary cluster returned by our algorithm. We will show
that C satisfies Definition 4.2.

Maximality. Let p be an arbitrary core point in C, and q be any point of P
density-reachable from p. We will show that q ∈ C. Let us start by considering that
q is a core point. By Definition 2.2, there is a sequence of core points p1, p2, ..., pt (for
some integer t ≥ 2) such that p1 = p, pt = q, and dist(pi+1, pi) ≤ ǫ for each i ∈ [1, t− 1].
Denote by ci the cell of T covering pi. By the way G is defined, there must be an edge
between ci and ci+1, for each i ∈ [1, t − 1]. It thus follows that c1 and ct must be in the
same connected component of G; therefore, p and q must be in the same cluster. The
correctness of the other scenario where q is a non-core point is trivially guaranteed by
the way that non-core points are assigned to clusters.

ρ-Approximate Connectivity. Let p be an arbitrary core point in C. For any point q ∈ C,

we will show that q is ρ-approximate density-reachable from p. Again, we consider first
that q is a core point. Let cp and cq be the cells of T covering p and q, respectively. Since
cp and cq are in the same connected component of G, there is a path c1, c2, ..., ct in G
(for some integer t ≥ 2) such that c1 = cp and ct = cq. Recall that any two points in
the same cell are within distance ǫ. Combining this fact with how the edges of G are

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:17

defined, we know that there is a sequence of core points p1, p2, ..., pt′ (for some integer
t′ ≥ 2) such that p1 = p, pt′ = q, and dist(pi+1, pi) ≤ ǫ(1 + ρ) for each i ∈ [1, t′ − 1].
Therefore, q is ρ-approximate density-reachable from p. The correctness of the other
scenario where q is a non-core point is again trivial.

Time Analysis. It takes O(n) expected time to construct the structure of Lemma 4.5
for all cells. The time of computing G is proportional to the number of approximate
range count queries issued. For each core point of a cell c1, we issue O(1) queries in
total (one for each ǫ-neighbor cell of c2). Hence, the total number of queries is O(n).
The rest of the ρ-approximate algorithm runs in O(n) expected time, following the
same analysis in [Gunawan 2013]. This completes the proof of Theorem 4.6. It is worth
mentioning that, intuitively, the efficiency improvement of our approximate algorithm
(over the exact algorithm in Section 3.2) owes to the fact that we settle for an imprecise
solution to the BCP problem by using Lemma 4.5.

Remark. It should be noted that the hidden constant in O(n) is at the order of
(1/ρ)d−1; see the proof of Lemma 4.5. As this is exponential to the dimensionality
d, our techniques are suitable only when d is low. Our experiments considered
dimensionalities up to 7.

5. NEW 2D EXACT ALGORITHMS

This section gives two new algorithms for solving the (exact) DBSCAN problem in R
2.

These algorithms are based on different ideas, and are interesting in their own ways.
The first one (Section 5.1) is conceptually simple, and establishes a close connection
between DBSCAN and Delaunay graphs. The second one (Section 5.2) manages to
identify coordinate sorting as the most expensive component in DBSCAN computation.

5.1. DBSCAN from a Delaunay Graph

Recall from Section 2.2 that Gunawan’s algorithm runs in three steps:

(1) Label each point of the input set P as either core or non-core.
(2) Partition the set Pcore of core points into clusters.
(3) Assign each non-core point to the appropriate cluster(s).

Step 2 is the performance bottleneck. Next, we describe a new method to accomplish
this step.

Algorithm for Step 2. The Delaunay graph of Pcore can be regarded as the dual of the
Voronoi diagram of Pcore . The latter is a subdivision of the data space R

2 into |Pcore |
convex polygons, each of which corresponds to a distinct p ∈ Pcore , and is called the
Voronoi cell of p, containing every location in R

2 that finds p as its Euclidean nearest
neighbor in Pcore . The Delaunay graph of Pcore is a graph Gdln = (Vdln , Edln) defined
as follows:

— Vdln = Pcore , that is, every core point is a vertex of Gdln .
— Edln contains an edge between two core points p1, p2 if and only if their Voronoi cells

are adjacent (i.e., sharing a common boundary segment).

Gdln , in general, always has only a linear number of edges, i.e., |Edln | = O(|Pcore |).
Figure 8a demonstrates the Voronoi diagram defined by the set of black points

shown. The shaded polygon is the Voronoi cell of o1; the Voronoi cells of o1 and o2
are adjacent. The corresponding Delaunay graph is given in Figure 8b.

Provided that Gdln is already available, we perform Step 2 using a simple strategy:

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:18

o1

o2
p
ǫ

(a) Voronoi diagram (b) Delaunay graph (c) Remainder graph after
edge removal

Fig. 8. Illustration of our Step-2 Algorithm in Section 5.1

(2. 1) Remove all the edges (p1, p2) in Edln such that dist(p1, p2) > ǫ. Let us refer to the
resulting graph as the remainder graph.

(2. 2) Compute the connected components of the remainder graph.
(2. 3) Put the core points in each connected component into a separate cluster.

Continuing the example in Figure 8b, Figure 8c illustrates the remainder graph after
the edge removal in Step 2.1 (the radius of the circle centered at point p indicates
the value of ǫ). There are two connected components in the remainder graph; the core
points in each connected component constitute a cluster.

In general, the Delaunay graph of x 2D points can be computed in O(x log x) time
[de Berg et al. 2008]. Clearly, Steps 2.1-2.3 require only O(|Pcore |) = O(n) time.
Therefore, our Step 2 algorithm finishes in O(n log n) time overall.

Correctness of the Algorithm. It remains to explain why the above simple strategy
correctly clusters the core points. Remember that a core point p ought to be placed in
the same cluster as another core point q if and only if there is a sequence of core points
p1, p2, ..., pt (for some t ≥ 2) such that:

— p1 = p and pt = q
— dist(pi, pi+1) ≤ ǫ for each i ∈ [1, t− 1].

We now prove:

LEMMA 5.1. Two core points p, q belong to the same cluster if and only if our Step-2
algorithm declares so.

PROOF. The If Direction. This direction is straightforward. Our algorithm declares

p, q to be in the same cluster only if they appear in the same connected component of
the remainder graph obtained at Step 2.1. This, in turn, suggests that the connected
component has a path starting from p and ending at q satisfying the aforementioned
requirement.

The Only-If Direction. Let p, q be a pair of core points that should be placed in the same

cluster. Next, we will prove that our Step-2 algorithm definitely puts them in the same
connected component of the remainder graph.

We will first establish this fact by assuming dist(p, q) ≤ ǫ. Consider the line segment
pq. Since Voronoi cells are convex polygons, in moving on segment pq from p to q, we

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:19

p
q

(p1)
(p7)

p2

p3

p4
p5

p6

p̃1 p̃2 p̃3 p̃4 p̃5

p̃6

Fig. 9. Correctness proof of our Step-2 algorithm

must be traveling through the Voronoi cells of a sequence of distinct core points—let
them be p1, p2, ..., pt for some t ≥ 2, where p1 = p and pt = q. Our goal is to show that
dist(pi, pi+1) ≤ ǫ for all i ∈ [1, t − 1]. This will indicate that the remainder graph must
contain an edge between each pair of (pi, pi+1) for all i ∈ [1, t − 1], implying that all of
p1 = p, p2, ..., pt = q must be in the same connected component at Step 2.3.

We now prove dist(pi, pi+1) ≤ ǫ for an arbitrary i ∈ [1, t − 1]. Let p̃i (for i ∈ [1, t − 1])
be the intersection between pq and the common boundary of the Voronoi cells of pi and
pi+1. Figure 9 illustrates the definition with an example where t = 7. We will apply
triangle inequality a number of times to arrive at our target conclusion. Let us start
with:

dist(pi, pi+1) ≤ dist(pi, p̃i) + dist(pi+1, p̃i). (2)

Regarding dist(pi, p̃i), we have:

dist(pi, p̃i) ≤ dist(pi, p̃i−1) + dist(p̃i−1, p̃i)

= dist(pi−1, p̃i−1) + dist(p̃i−1, p̃i)

(note: dist(pi−1, p̃i−1) = dist(pi, p̃i−1) as p̃i−1 is on the

perpendicular bisector of segment pipi−1)

≤ dist(pi−1, p̃i−2) + dist(p̃i−2, p̃i−1) + dist(p̃i−1, p̃i)

(triangle inequality)

= dist(pi−1, p̃i−2) + dist(p̃i−2, p̃i)

...

≤ dist(p2, p̃1) + dist(p̃1, p̃i)

= dist(p1, p̃1) + dist(p̃1, p̃i)

= dist(p1, p̃i). (3)

Following a symmetric derivation, we have:

dist(pi+1, p̃i) ≤ dist(p̃i, pt). (4)

The combination of (2)-(4) gives:

dist(pi, pi+1) ≤ dist(p1, p̃i) + dist(p̃i, pt)

= dist(p1, pt) ≤ ǫ

as claimed.

We now get rid of the assumption that dist(p, q) ≤ ǫ. This is fairly easy. By the given
fact that p and q should be placed in the same cluster, we know that there is a path
p1 = p, p2, p3, ..., pt = q (where t ≥ 2) such that dist(pi, pi+1) ≤ ǫ for each i ∈ [1, t− 1]. By
our earlier argument, each pair of (pi, pi+1) must be in the same connected component

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:20

of our remainder graph. Consequently, all of p1, p2, ..., pt are in the same connected
component. This completes the proof.

Remark. The concepts of Voronoi Diagram and Delaunay graph can both be extended
to arbitrary dimensionality d ≥ 3. Our Step-2 algorithm also works for any d ≥ 3. While
this may be interesting from a geometric point of view, it is not from an algorithmic
perspective. Even at d = 3, a Delaunay graph on n points can have Ω(n2) edges,
necessitating Ω(n2) time for its computation. In contrast, in Section 3.2, we already
showed that the exact DBSCAN problem can be solved in o(n2) time for any constant
dimensionality d.

5.2. Separation of Sorting from DBSCAN

We say that the 2D input set P is bi-dimensionally sorted if the points therein are
given in two sorted lists:

— Px, where the points are sorted by x-dimension;
— Py, where the points are sorted by y-dimension.

This subsection will establish the last main result of this article:

THEOREM 5.2. If P has been bi-dimensionally sorted, the exact DBSCAN problem
(in 2D space) can be solved in O(n) worst-case time.

The theorem reveals that coordinate sorting is actually the “hardest” part of the 2D
DBSCAN problem! This means that we can even beat the Ω(n log n) time bound for
this problem in scenarios where sorting can be done fast. The corollaries below state
two such scenarios:

COROLLARY 5.3. If each dimension has an integer domain of size at most nc for an
arbitrary positive constant c, the 2D DBSCAN problem can be solved in O(n) worst-case
time (even if P is not bi-dimensionally sorted).

PROOF. [Kirkpatrick and Reisch 1984] showed that n integers drawn from a domain
of size nc (regardless of the constant c ≥ 1) can be sorted in O(n) time, by generalizing
the idea of radix sort. Using their algorithm, P can be made bi-dimensionally sorted in
O(n) time. Then, the corollary follows from Theorem 5.2.

The above corollary is important because, in real applications, (i) coordinates are
always discrete (after digitalization), and (ii) when n is large (e.g., 106), the domain
size of each dimension rarely exceeds n2. The 2D DBSCAN problem can be settled in
linear time in all such applications.

COROLLARY 5.4. If each dimension has an integer domain, the 2D DBSCAN
problem can be solved in O(n log log n) worst-case time or O(n

√
log log n) expected time

(even if P is not bi-dimensionally sorted).

PROOF. [Andersson et al. 1998] gave a deterministic algorithm to sort n integers in
O(n log log n) worst-case time. [Han and Thorup 2002] gave a randomized algorithm to
do so in O(n

√
log log n) expected time. Plugging these results into Theorem 5.2 yields

the corollary.

Next, we provide the details of our algorithm for Theorem 5.2. The general
framework is still the 3-step process as shown in Section 5.1, but we will develop new
methods to implement Steps 1 and 2 in linear time, utilizing the property that P is
bi-dimensionally sorted. Step 3 is carried out in the same manner as in the Gunawan’s
algorithm (Section 2.2), which demands only O(n) time.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:21

5.2.1. Step 1. Recall that, for this step, Gunawan’s algorithm places an arbitrary grid

T (where each cell is a square with side length ǫ/
√
2) in R

2, and then proceeds as
follows:

(1. 1) For each non-empty cell c of T , compute the set P (c) of points in P that are covered
by c.

(1. 2) For each non-empty cell c of T , identify all of its non-empty ǫ-neighbor cells c′ (i.e.,
the minimum distance between c and c′ is less than ǫ).

(1. 3) Perform a labeling process to determine whether each point in P is a core or
non-core point.

Our approach differs from Gunawan’s in Steps 1.1 and 1.2 (his solution to Step 1.3
takes only O(n) time, and is thus sufficient for our purposes). Before continuing, note
that Steps 1.1 and 1.2 can be done easily with hashing using O(n) expected time, but
our goal is to attain the same time complexity in the worst case.

Step 1.1. We say that a column of T (a column contains all the cells of T sharing the
same projection on the x-dimension) is non-empty if it has at least one non-empty cell.
We label the leftmost non-empty column as 1, and the 2nd leftmost non-empty column
as 2, and so on. By scanning Px once in ascending order of x-coordinate, we determine,
for each point p ∈ P , the label of the non-empty column that contains p; the time
required is O(n).

Suppose that there are ncol non-empty columns. Next, for each i ∈ [1, ncol], we
generate a sorted list Py[i] that arranges, in ascending of y-coordinate, the points of
P covered by (non-empty) column i. In other words, we aim to “distribute” Py into
ncol sorted lists, one for each non-empty column. This can be done in O(n) time as
follows. First, initialize all the ncol lists to be empty. Then, scan Py in ascending order
of y-coordinate; for each point p seen, append it to Py[i] where i is the label of the
column containing p. The point ordering in Py ensures that each Py[i] thus created is
sorted on y-dimension.

Finally, for each i ∈ [1, ncol], we generate the target set P (c) for every non-empty cell
c in column i, by simply scanning Py[i] once in order to divide it into sub-sequences,
each of which includes all the points in a distinct cell (sorted by y-coordinate). The
overall cost of Step 1.1 is therefore O(n). As a side product, for every i ∈ [1, ncol], we
have also obtained a list Li of all the non-empty cells in column i, sorted in bottom-up
order.

Step 1.2. We do so by processing each non-empty column in turn. First, observe that
if a cell is in column i ∈ [1, ncol], all of its ǫ-neighbor cells must appear in columns
i − 2, i − 1, i, i + 1, and i + 2 (see Figure 3c). Motivated by this, for each j ∈ {i − 2, i −
1, i, i + 1, i + 2}∩[1, ncol], we scan synchronously the cells of Li and Lj in bottom-up
order (if two cells are at the same row, break the tie by scanning first the one from Li).
When a cell c ∈ Li is encountered, we pinpoint the last cell c0 ∈ Lj that was scanned.
Define:

— c−1 as the cell in Lj immediately before c0;
— c1 as the cell in Lj immediately after c0;
— c2 as the cell in Lj immediately after c1;
— c3 as the cell in Lj immediately after c2;

The 5 cells3 c−1, c0, ..., c3 are the only ones that can be ǫ-neighbors of c in Lj . Checking
which of them are indeed ǫ-neighbors of c takes O(1) time. Hence, the synchronous

3If c0 = ∅ (namely, no cell in Lj has been scanned), set c1, c2, c3 to the lowest 3 cells in Lj .

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:22

ℓ

Fig. 10. USEC with line separation

scan of Li and Lj costs O(|Li|+ |Lj |) time. The total cost of Step 1.2 is, therefore, O(n),
noticing that each Li (i ∈ [1, ncol]) will be scanned at most 5 times.

Remark. By slightly extending the above algorithm, for each non-empty cell c, we can
store the points of P (c) in two sorted lists:

— Px(c), where the points of P (c) are sorted on x-dimension;
— Py(c), where the points are sorted on y-dimension.

To achieve this purpose, first observe that, at the end of Step 1.1, the sub-sequence
obtained for each non-empty cell c is precisely Py(c). This allows us to know, for each
point p ∈ P , the id of the non-empty cell covering it. After this, the Px(c) of all
non-empty cells c can be obtained with just another scan of Px: for each point p seen in
Px, append it to Px(c), where c is the cell containing p. The point ordering in Px ensures
that each Px(c) is sorted by x-coordinate, as desired. The additional time required is
still O(n).

5.2.2. Step 2. For this step, Gunawan’s algorithm generates a graph G = (V,E) where
each core cell in T corresponds to a distinct vertex in V . Between core cells (a.k.a.,
vertices) c1 and c2, an edge exists in E if and only if there is a core point p1 in c1 and a
core point p2 in c2 such that dist(p1, p2) ≤ ǫ. Once G is available, Step 2 is accomplished
in O(n) time by computing the connected components of G. The performance bottleneck
lies in the creation of G, to which Gunawan’s solution takes O(n log n) time. We develop
a new algorithm below that fulfills the purpose in O(n) time.

USEC with Line Separation. Let us introduce a special variant of the USEC
problem defined in Section 2.3, which stands at the core of our O(n)-time algorithm.
Recall that in the 2D USEC problem, we are given a set Sball of discs with the same
radius ǫ, and a set Spt of points, all in the data space R

2. The objective is to determine
whether any point in Spt is covered by any disc in Sball . In our special variant, there
are two extra constraints:

— There is a horizontal line ℓ such that (i) all the centers of the discs in Sball are on or
below ℓ, and (ii) all the points in Spt are on or above ℓ.

— The centers of the discs in Sball have been sorted by x-dimension, and so are the
points in Spt .

Figure 10 illustrates an instance of the above USEC with line separation problem
(where crosses indicate disc centers). The answer to this instance is yes (i.e., a point
falls in a disc).

LEMMA 5.5. The USEC with line separation problem can be settled in linear time,
namely, with cost O(|Spt |+ |Sball |).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:23

ℓ

c1

c2

.

ℓ

c1

c2

(a) Case 1 (b) Case 2

Fig. 11. Deciding the existence of an edge by USEC with line separation

An algorithm for achieving the above lemma is implied in [Bose et al. 2007].
However, the description in [Bose et al. 2007] is rather brief, and does not provide the
full details. In the appendix, we reconstruct their algorithm, and prove its correctness
(such a proof was missing in [Bose et al. 2007]). Nonetheless, we believe that credits on
the lemma should be attributed to [Bose et al. 2007]. The reader may also see [de Berg
et al. 2015] for another account of the algorithm.

Generating G in O(n) Time. We now return to our endeavor of finding an O(n)
time algorithm to generate G. The vertices of G, which are precisely the core cells, can
obviously be collected in O(n) time (there are at most n core cells). It remains to discuss
the creation of the edges in G.

Now, focus on any two core cells c1 and c2 that are ǫ-neighbors of each other. Our
mission is to determine whether there should be an edge between them. It turns
out that this requires solving at most two instances of USEC with line separation.
Following our earlier terminology, let P (c1) be the set of points of P that fall in c1.
Recall that we have already obtained two sorted lists of P (c1), that is, Px(c1) and
Py(c1) that are sorted by x- and y-dimension, respectively. Define P (c2), Px(c2), and
Py(c2) similarly for c2. Depending on the relative positions of c1 and c2, we proceed
differently in the following two cases (which essentially have represented all possible
cases by symmetry):

— Case 1: c2 is in the same column as c1, and is above c1, as in Figure 11a. Imagine
placing a disc centered at each point in P (c1). All these discs constitute Sball . Set Spt

directly to P (c2). Together with the horizontal line ℓ shown, this defines an instance
of USEC with line separation. There is an edge between c1, c2 if and only if the
instance has a yes answer.

— Case 2: c2 is to the northeast of c1, as in Figure 11b. Define Sball and Spt in the same
manner as before. They define an instance of USEC with line separation based on ℓ.
There is an edge between c1, c2 if and only if the instance has a yes answer.

It is immediately clear from Lemma 5.5 that we can make the correct decision about
the edge existence between c1, c2 using O(|P (c1)| + |P (c2)|) time. Therefore, the total
cost of generating all the edges in G is bounded by:

∑

core cell c1





∑

ǫ-neighbor c2 of c1

O(|P (c1)|+ |P (c2)|)



 =
∑

core cell c1

O(|P (c1)|) = O(n)

where the first equality used the fact that each core cell has O(1) ǫ-neighbors, and
hence, can participate in only O(1) instances of USEC with line separation.

6. DISCUSSION ON PRACTICAL EFFICIENCY

Besides our theoretical findings, we have developed a software prototype based on the
proposed algorithms. Our implementation has evolved beyond that of [Gan and Tao

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:24

2015] by incorporating new heuristics (note also that [Gan and Tao 2015] focused on
d ≥ 3). Next, we will explain the most crucial heuristics adopted which apply to all
of our algorithms (since they are based on the same grid-based framework). Then, we
will discuss when the original DBSCAN algorithm of [Ester et al. 1996] is or is not
expected to work well in practice. Finally, a qualitative comparison of the precise and
ρ-approximate DBSCAN algorithms will be presented.

Heuristics. The three most effective heuristics in our implementation can be
summarized as follows:

— Recall that our ρ-approximate algorithm imposes a grid T on R
d. We manage all

the non-empty cells in a (main memory) R-tree which is constructed by bulkloading.
This R-tree allows us to efficiently find, for any cell c, all its ǫ-neighbor non-empty
cells c′. Recall that such an operation is useful in a number of scenarios: (i) in the
labeling process when a point p falls in a cell covering less than MinPts points, (ii) in
deciding the edges of c in G, and (iii) assigning a non-core point in c to appropriate
clusters.

— For every non-empty cell c, we store all its ǫ-neighbor non-empty cells in a list, after
they have been computed for the first time. As each list has length O(1), the total
space of all the lists is O(n) (recall that at most n non-empty cells exist). The lists
allow us to avoid re-computing ǫ-neighbor non-empty cells of c.

— Theoretically speaking, we achieve O(n) expected time by first generating the edges
of G and then computing its connected components (CC). In reality, it is faster not
to produce the edges, but instead, maintain the CCs using a union-find structure
[Tarjan 1979].

Specifically, whenever an edge between non-empty cells c and c′ is found, we perform
a “union” operation using c and c′ on the structure. After all the edges have been
processed like this, the final CCs can be easily determined by issuing a “find”
operation on every non-empty cell. In theory, this approach entails O(n · α(n)) time,
where α(n) is the inverse of the Ackermann which is extremely slow growing such
that α(n) is very small for all practical n.

An advantage of this approach is that, it avoids a large amount of edge detection
that was needed in [Gan and Tao 2015]. Before, such detection was performed for
each pair of non-empty cells c and c′ that were ǫ-neighbors of each other. Now, we
can safely skip the detection if these cells are already found to be in the same CC.

Characteristics of the KDD’96 Algorithm. As mentioned in Section 1.1, the
running time of the algorithm in [Ester et al. 1996] is determined by the total cost
of n region queries, each of which retrieves B(p, ǫ) for each p ∈ P . Our hardness result
in Theorem 3.1 implies that, even if each B(p, ǫ) returns just p itself, the cost of all n
queries must still sum up to Ω(n4/3) for a hard dataset.

As reasonably argued by [Ester et al. 1996], on practical data, the cost of a region
query B(p, ǫ) depends on how many points are in B(p, ǫ). The KDD’96 algorithm may
have acceptable efficiency when ǫ is small such that the total number of points returned
by all the region queries is near linear.

Such a value of ǫ, however, may not exist when the clusters have varying densities.
Consider the example in Figure 12 where there are three clusters. Suppose that
MinPts = 4. To discover the sparsest cluster on the left, ǫ needs to be at least the
radius of the circles illustrated. For each point p from the right (i.e., the densest)
cluster, however, the B(p, ǫ) under such an ǫ covers a big fraction of the cluster. On

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:25

Fig. 12. A small ǫ for the left cluster is large for the other two clusters

this dataset, therefore, the algorithm of [Ester et al. 1996] either does not discover all
three clusters, or must do so with expensive cost.

A Comparison. The preceding discussion suggests that the relative superiority
between the KDD’96 algorithm and our proposed ρ-approximate algorithm depends
primarily on two factors: (i) whether the cluster densities are similar or varying, and
(ii) whether the value of ǫ is small or large. For a dataset with varying-density clusters,
our algorithm is expected to perform better because, as explained, a good ǫ that finds all
clusters must be relatively large for the dense clusters, forcing the KDD’96 algorithm
to entail high cost on those clusters.

For a dataset with similar-density clusters, the KDD’96 algorithm can be faster when
ǫ is sufficiently small. In fact, our empirical experience indicates a pattern: when the
ρ-approximate algorithm is slower, the grid T it imposes on R

d has Ω(n) non-empty

cells—more specifically, we observe that the cutoff threshold is roughly n/
√
2 cells,

regardless of d. This makes sense because, in such a case, most non-empty cells have
very few points (e.g., one or two), thus the extra overhead of creating and processing
the grid no longer pays off.

The above observations will be verified in the next section.

7. EXPERIMENTS

The philosophy of the following experiments differs from that in the short version
[Gan and Tao 2015]. Specifically, [Gan and Tao 2015] treated DBSCAN clustering
as a computer science problem, and aimed to demonstrate the quadratic nature of
the previous DBSCAN algorithms for d ≥ 3. In this work, we regard DBSCAN as an
application, and will focus on parameter values that are more important in practice.

All the experiments were run on a machine equipped with 3.4GHz CPU and 16 GB
memory. The operating system was Linux (Ubuntu 14.04). All the programs were coded
in C++, and compiled using g++ with -o3 turned on.

Section 7.1 describes the datasets in our experimentation, after which Section 7.2
seeks parameter values that lead to meaningful clusters on those data. The evaluation
of the proposed techniques will then proceed in three parts. First, Section 7.3 assesses
the clustering precision of ρ-approximate DBSCAN. Section 7.4 demonstrates the
efficiency gain achieved by our approximation algorithm compared to exact DBSCAN
in dimensionality d ≥ 3. Finally, Section 7.5 examines the performance of exact
DBSCAN algorithms for d = 2.

7.1. Datasets

In all datasets, the underlying data space had a normalized integer domain of [0, 105]
for every dimension. We deployed both synthetic and real datasets whose details are
explained next.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:26

Fig. 13. A 2D seed spreader dataset

Synthetic: Seed Spreader (SS). A synthetic dataset was generated in a “random
walk with restart” fashion. First, fix the dimensionality d, take the target cardinality
n, a restart probability ρrestart , and a noise percentage ρnoise . Then, we simulate a seed
spreader that moves about in the space, and spits out data points around its current
location. The spreader carries a local counter such that whenever the counter reaches
0, the spreader moves a distance of rshift towards a random direction, after which the
counter is reset to creset . The spreader works in steps. In each step, (i) with probability
ρrestart , the spreader restarts, by jumping to a random location in the data space, and
resetting its counter to creset ; (ii) no matter if a restart has happened, the spreader
produces a point uniformly at random in the ball centered at its current location with
radius rvincinity , after which the local counter decreases by 1. Intuitively, every time
a restart happens, the spreader begins to generate a new cluster. In the first step, a
restart is forced so as to put the spreader at a random location. We repeat in total
n(1− ρnoise) steps, which generate the same number of points. Finally, we add n · ρnoise
noise points, each of which is uniformly distributed in the whole space.

Figure 13 shows a small 2D dataset which was generated with n = 1000 and 4
restarts; the dataset will be used for visualization. The other experiments used larger
datasets created with creset = 100, ρnoise = 1/104, ρrestart = 10/(n(1 − ρnoise)). In
expectation, around 10 restarts occur in the generation of a dataset. The values of
rvincinity and rshift were set in two different ways to produce clusters with either similar
or varying densities:

— Similar-density dataset: Namely, the clusters have roughly the same density. Such
a dataset was obtained by fixing rvincinity = 100 and rshift = 50d.

— Varying-density dataset: Namely, the clusters have different densities. Such a
dataset was obtained by setting rvincinity = 100 · ((i mod 10) + 1) and rshift =
rvincinity · d/2, where i equals the number of restarts that have taken place (at

Table I. Parameter values (defaults are in bold)

parameter values
n (synthetic) 100k, 0.5m, 1m, 2m, 5m, 10m
d (synthetic) 2, 3, 5, 7

ǫ from 100 (or 40 for d = 2) to 5000
(each dataset has its own default)

MinPts 10, 20, 40, 60, 100
(each dataset has its own default)

ρ 0.001, 0.01, 0.02, ..., 0.1

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:27

Table II. Cluster quality under different (MinPts, ǫ): SS similar density

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

40 0.978 10 325 0.555 230 309224
60 0.994 9 197 0.577 72 33489
80 0.994 9 197 0.994 9 506

100 0.994 9 197 0.994 9 197
200 0.994 9 197 0.994 9 197

(a) SS-simden-2D

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.996 14 200 0.205 240 467
200 0.996 14 200 0.996 14 200
400 0.996 14 200 0.996 14 200
800 0.996 14 200 0.996 14 200

1000 0.996 14 200 0.996 14 200

(b) SS-simden-3D
MinPts = 10 MinPts = 100

ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts
100 0.102 4721 219 0.583 19057 632
200 0.996 13 200 0.996 13 241
400 0.996 13 200 0.996 13 200
800 0.996 13 200 0.996 13 200

1000 0.996 13 200 0.996 13 200

(c) SS-simden-5D
MinPts = 10 MinPts = 100

ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts
100 0.588 19824 215 0.705 19822 1000
200 0.403 14988 215 0.403 14976 998
400 0.992 17 200 0.992 17 200
800 0.984 17 200 0.984 17 200

1000 0.980 17 200 0.980 17 200

(d) SS-simden-7D

the beginning i = 0). Note that the “modulo 10” ensures that there are at most
10 different cluster densities.

The value of n ranged from 100k to 10 million, while d from 2 to 7; see Table I.
Hereafter, by SS-simden-dD, we refer to a d-dimensional similar-density dataset
(the default cardinality is 2m), while by SS-varden-dD, we refer to a d-dimensional
varying-density dataset (same default on cardinality).

Real. Three real datasets were employed in our experimentation:

— The first one, PAMAP2, is a 4-dimensional dataset with cardinality 3,850,505,
obtained by taking the first 4 principle components of a PCA on the PAMAP2
database [Reiss and Stricker 2012] from the UCI machine learning archive [Bache
and Lichman 2013].

— The second one, Farm, is a 5-dimensional dataset with cardinality 3,627,086, which
contains the VZ-features [Varma and Zisserman 2003] of a satellite image of a
farm in Saudi Arabia4. It is worth noting that VZ-feature clustering is a common
approach to perform color segmentation of an image [Varma and Zisserman 2003].

— The third one, Household, is a 7-dimensional dataset with cardinality 2,049,280,
which includes all the attributes of the Household database again from the UCI
archive [Bache and Lichman 2013] except the temporal columns date and time.
Points in the original database with missing coordinates were removed.

4http://www.satimagingcorp.com/gallery/ikonos/ikonos-tadco-farms-saudi-arabia

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:28

Table III. Cluster quality under different (MinPts, ǫ): SS varying density

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.480 1294 50904 0.457 164 774095
200 0.574 70 2830 0.584 153 250018
400 0.946 6 161 0.836 21 18383
800 0.904 6 154 0.939 6 154
1000 0.887 6 153 0.905 6 153

(a) SS-varden-2D

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.321 1031 577830 0.055 114 1358330
200 0.698 1989 317759 0.403 100 600273
400 0.864 573 23860 0.751 91 383122
800 0.917 11 195 0.908 91 50711
1000 0.904 11 194 0.884 27 236

(b) SS-varden-3D
MinPts = 10 MinPts = 100

ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts
400 0.244 5880 267914 0.523 10160 568393
800 0.755 286 200 0.858 4540 432
1000 0.952 12 200 0.903 1667 357
2000 0.980 8 200 0.980 8 200
3000 0.980 8 200 0.980 8 200

(c) SS-varden-5D
MinPts = 10 MinPts = 100

ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts
400 0.423 7646 801947 0.450 6550 837575
800 0.780 9224 10167 0.686 5050 425229
1000 0.804 7897 200 0.860 8054 506
2000 0.781 1045 200 0.781 1044 400
3000 0.949 13 200 0.949 13 200
4000 0.949 13 200 0.949 13 200

(d) SS-varden-7D

7.2. Characteristics of the Datasets

This subsection aims to study the clusters in each dataset under different parameters,
and thereby, decide the values of MinPts and ǫ suitable for the subsequent efficiency
experiments.

Clustering Validation Index. We resorted to a method called clustering validation
(CV) [Moulavi et al. 2014] whose objective is to quantify the quality of clustering
using a real value. In general, a set of good density-based clusters should have two
properties: first, the points in a cluster should be “tightly” connected; second, any two
points belonging to different clusters should have a large distance. To quantify the first
property for a cluster C, we compute a Euclidean minimum spanning tree (EMST) on
the set of core points in C, and then, define DSC (C) as the maximum weight of the
edges in the EMST. “DSC” stands for density sparseness of a cluster, a term used by
[Moulavi et al. 2014]. Intuitively, the EMST is a “backbone” of C such that if C is tightly
connected, DSC (C) ought to be small. Note that the border points of C are excluded
because they are not required to have a dense vicinity. To quantify the second property,
define DSPC (Ci, Cj) between two clusters Ci and Cj as

min{dist(p1, p2) | p1 ∈ C1 and p2 ∈ C2 are core points}

where “DSPC” stands for density separation for a pair of clusters [Moulavi et al. 2014].
Let C = {C1, C2, ..., Ct} (where t ≥ 2) be a set of clusters returned by an algorithm. For

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:29

each Ci, we define (following [Moulavi et al. 2014]):

VC (Ci) =
(min1≤j≤t,j 6=i DSPC (Ci, Cj))−DSC (Ci)

max
{

DSC (Ci),min1≤j≤t,j 6=i DSPC (Ci, Cj)
}

Then, the CV index of C is calculated as in [Moulavi et al. 2014]:

t
∑

i=1

|Ci|
n

VC (Ci)

where n is the size of the dataset. A higher validity index indicates better quality of C .

[Moulavi et al. 2014] computed DSC (Ci) and DSPC (Ci, Cj) differently, but their

approach requires O(n2) time which is intolerably long for the values of n considered
here. Our proposition follows the same rationale, admits faster implementation (EMST
is well studied [Agarwal et al. 1991; Arya and Mount 2016]), and worked well in our
experiments as shown below.

Influence of MinPts and ǫ on DBSCAN Clusters. For each dataset, we examined
the quality of its clusters under different combinations of MinPts and ǫ. For MinPts, we
inspected values 10 and 100, while for ǫ, we inspected a wide range starting from ǫ = 40
and 100 for d = 2 and d ≥ 3, respectively. Only two values of MinPts were considered
because (i) either 10 or 100 worked well on the synthetic and real data deployed, and
(ii) the number of combinations was already huge.

Table II presents some key statistics for SS-simden-dD datasets with d = 2, 3, 5 and
7, while Table III shows the same statistics for SS-varden-dD. Remember that the
cardinality here is n = 2m, implying that there should be around 200 noise points.
The number of intended clusters should not exceed the number of restarts whose
expectation is 10. But the former number can be smaller, because the seed spreader
may not necessarily create a new cluster after a restart, if it happens to jump into the
region of a cluster already generated.

Both MinPts = 10 and 100, when coupled with an appropriate ǫ, were able to discover
all the intended clusters—observe that the CV index stabilizes soon as ǫ increases. We
set 10 as the default for MinPts on the synthetic datasets, as it produced better clusters
than 100 under most values of ǫ. Notice that, for varying-density datasets, ǫ needed
to be larger to ensure good clustering quality (compared to similar-density datasets).
This is due to the reason explained in Section 6 (c.f. Figure 12). The bold ǫ values in
Tables II and III were chosen as the default for the corresponding datasets (they were
essentially the smallest that gave good clusters).

Figure 14 plots the OPTICS diagrams5 for SS-simden-5D and SS-varden-5D,
obtained with MinPts = 10. In an OPTICS diagram [Ankerst et al. 1999], the data
points are arranged into a sequence as given along the x-axis. The diagram shows the
area beneath a function f(x) : [1, n] → R, where f(x) can be understood roughly as
follows: if p is the x-th point in the sequence, then f(x) is the smallest ǫ value which
(together with the chosen MinPts) puts p into some cluster—in other words, p remains
as a noise point for ǫ < f(x). A higher/lower f(x) indicates that p is in a denser/sparser
area. The ordering of the sequence conveys important information: each “valley”—a
subsequence of points between two “walls”–corresponds to a cluster. Furthermore, the
points of this valley will remain in a cluster under any ǫ greater than the maximum
f(x) value of those points.

5The OPTICS algorithm [Ankerst et al. 1999] requires a parameter called maxEps, which was set to 10000
in our expeirments.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:30

Table IV. Cluster quality under different (MinPts, ǫ): real data

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.174 6585 2578125 0.103 478 3369657
200 0.222 17622 1890108 0.210 818 2800524
400 0.092 11408 620932 0.226 1129 2396808
500 0.059 5907 406247 0.233 1238 2097941
800 0.037 3121 215925 0.099 756 949167
1000 0.032 2530 159570 0.078 483 594075
2000 0.033 549 28901 0.126 237 209236
3000 0.237 110 5840 0.302 100 75723
4000 0.106 30 1673 0.492 31 24595
5000 0.490 9 673 0.506 12 9060

(a) PAMAP2

MinPts = 10 MinPts = 100
ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.002 925 3542419 0.001 3 3621494
200 0.005 3296 2473933 0.008 21 3404402
400 0.006 1420 1153340 0.191 13 1840989
700 0.004 962 514949 0.364 28 1039114
800 0.004 994 410432 0.198 18 859002
1000 0.005 689 273723 0.295 15 594462
2000 0.002 217 46616 0.120 13 181628
3000 0.001 55 15096 0.131 6 62746
4000 0.058 35 8100 0.764 3 24791
5000 0.024 27 5298 0.157 6 12890

(b) Farm
MinPts = 10 MinPts = 100

ǫ CV Index # clusters # noise pts CV Index # clusters # noise pts
100 0.057 3342 1702377 0.026 54 1944226
200 0.114 5036 1314498 0.074 87 1829873
400 0.085 4802 911088 0.088 165 1598323
800 0.048 2148 490634 0.257 47 974566
1000 0.045 1800 404306 0.227 55 829398
2000 0.129 601 139483 0.416 28 327508
3000 0.074 447 73757 0.241 48 193502
4000 0.007 195 34585 0.565 10 112231
5000 0.015 131 18059 0.649 8 68943

(c) Household

Figure 14a has 13 valleys, matching the 13 clusters found by ǫ = 200. Notice that
the points in these valleys have roughly the same f(x) values (i.e., similar density).

 0

 100

 200

 300

 400

 500

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(a) SS-simden-5D

 0
 500

 1000
 1500
 2000
 2500
 3000

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(b) SS-varden-5D

Fig. 14. Optics diagrams for 5D synthetic data

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:31

 0

 1000

 2000

 3000

 4000

 5000

0 0.5m 1m 1.5m 2m 2.5m 3m 3.5m

OPTICS ordering

reachability distance

(a) PAMAP2

 0

 1000

 2000

 3000

 4000

 5000

0 0.5m 1m 1.5m 2m 2.5m 3m 3.5m

OPTICS ordering

reachability distance

(b) Farm

 0

 2000

 4000

 6000

 8000

 10000

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(c) Household

Fig. 15. Optics diagrams for real datasets

Figure 14b, on the other hand, has 8 valleys, namely, the 8 clusters found by ǫ = 2000.
Points in various valleys can have very different f(x) values (i.e., varying density). The
OPTICS diagrams for the other synthetic datasets are omitted because they illustrate
analogous observations about the composition of clusters.

Next, we turned to the real datasets. Table IV gives the statistics for PAMAP2,
Farm, and Household. The CV indexes are much lower (than those of synthetic data),
indicating that the clusters in these datasets are less obvious. For further analysis, we
chose MinPts = 100 as the default (because it worked much better than MinPts = 10),
using which Figure 15 presents the OPTICS diagrams for the real datasets, while
Table V details the sizes (unit: 1000) of the 10 largest clusters under each ǫ value in
Table IV. By combining all these data, we make the following observations:

— PAMAP2: From Figure 15a, we can see that this dataset contains numerous “tiny
valleys”, which explains the large number of clusters as shown in Table IV(a). An
interesting ǫ value would be 500, which discovers most of those valleys. Notice from
Table IV(a) that the CV index is relatively high at ǫ = 500. It is worth mentioning
that, although ǫ = 4000 and 5000 have even higher CV indexes, almost all the valleys
disappear at these ǫ values, leaving only 2 major clusters one of which contains over
90% of the points.

— Farm: There are two clusters in the dataset. The first one is the valley between 2.6m
and 2.8m on the x-axis of Figure 15b, and the second one is the small dagger-shape
valley at 3.5m. The best value of ǫ that discovers both clusters lies around 700—they
are the 2nd and 4th largest clusters at the row of ǫ = 700 in Table V(b). Once again,
there exist some large values ǫ such as 4000 that give high CV indexes, but assign
almost all the points (over 99% for ǫ = 4000) into one cluster.

— Household: This is the “most clustered” real dataset of the three. It is evident that
ǫ = 2000 is an interesting value: it has a relatively high CV index (see Table IV(c)),

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:32

Table V. Sizes of the 10 largest clusters: real data (unit: 103)

ǫ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
100 18.8 16.9 11.9 10.2 9.72 8.10 7.00 5.57 5.54 5.54
200 25.9 21.6 20.0 18.9 18.8 18.2 18.2 17.4 16.9 15.5
400 66.9 54.9 39.1 35.2 29.1 28.1 23.8 21.7 20.0 19.4
500 124 114 55.5 53.4 47.0 42.9 41.2 29.3 29.2 20.0
800 2219 41.5 37.3 26.7 20.5 19.2 19.0 17.4 15.3 13.9
1000 2794 116 20.5 16.4 13.1 9.12 9.08 8.69 7.65 7.10
2000 3409 78.0 18.2 13.3 9.65 9.57 6.60 6.60 5.11 5.04
3000 3470 239 18.5 11.8 2.03 1.90 1.83 1.21 1.20 1.09
4000 3495 315 2.03 1.86 1.84 0.965 0.786 0.735 0.698 0.687
5000 3497 339 1.85 0.977 0.553 0.551 0.328 0.328 0.217 0.216

(a) PAMAP2

ǫ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
100 4.10 1.34 0.150
200 195 18.0 3.93 0.868 0.717 0.647 0.529 0.393 0.391 0.303
400 1604 129 37.3 11.1 1.75 0.713 0.408 0.327 0.265 0.226
700 2282 218 44.1 17.0 10.4 4.27 3.59 1.12 1.09 0.863
800 2358 381 17.4 6.28 1.34 0.921 0.859 0.545 0.528 0.414
1000 3009 18.0 1.47 0.740 0.718 0.446 0.422 0.332 0.287 0.214
2000 3418 18.8 2.79 1.88 1.45 0.386 0.374 0.230 0.186 0.165
3000 3562 0.951 0.681 0.350 0.190 0.177
4000 3600 1.08 0.470
5000 3611 1.18 0.537 0.273 0.130 0.114

(b) Farm
ǫ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

100 37.8 19.8 16.2 12.3 3.84 3.31 2.33 0.529 0.525 0.505
200 47.8 30.9 24.8 24.5 20.3 15.2 7.79 6.91 5.82 4.39
400 52.6 39.9 34.2 31.9 27.3 25.9 21.1 18.8 15.9 15.8
800 274 193 117 97.3 70.2 48.0 33.9 33.6 27.0 24.8

1000 294 198 158 99.7 94.5 81.7 51.6 30.8 27.2 25.0
2000 560 320 222 220 110 75.2 71.4 68.2 25.1 25.0
3000 586 337 243 221 111 91.8 85.0 69.7 26.6 26.1
4000 1312 575 17.0 10.9 9.98 7.07 3.71 0.381 0.197 0.100
5000 1918 22.2 14.9 13.3 11.2 0.299 0.101 0.100

(c) Household

Note: interesting clusters are underlined.

and discovers most of the important valleys in Figure 15, whose clusters are quite
sizable as shown in Table V(c).

Based on the above discussion, we set the default ǫ of each real dataset to the bold
values in Table V.

7.3. Approximation Quality

In this subsection, we evaluate the quality of the clusters returned by the proposed
ρ-approximate DBSCAN algorithm.

2D Visualization. To show directly the effects of approximation, we take the 2D
dataset in Figure 13 as the input (note that the cardinality was deliberately chosen to
be small to facilitate visualization), and fixed MinPts = 20. Figure 16a demonstrates
the 4 clusters found by exact DBSCAN with ǫ = 5000 (which is the radius of the
circle shown). The points of each cluster are depicted with the same color and marker.
Figures 16b, 16c, and 16d present the clusters found by our ρ-approximate DBSCAN
when ρ equals 0.001, 0.01, and 0.1, respectively. In all cases, ρ-approximate DBSCAN
returned exactly the same clusters as DBSCAN.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:33

(a) Exact (ǫ = 5000) (b) ρ = 0.001, ǫ = 5000 (c) ρ = 0.01, ǫ = 5000 (d) ρ = 0.1, ǫ = 5000

(e) Exact (ǫ = 11300) (f) ρ = 0.001, ǫ = 11300 (g) ρ = 0.01, ǫ = 11300 (h) ρ = 0.1, ǫ = 11300

(i) Exact (ǫ = 12200) (j) ρ = 0.001, ǫ = 12200 (k) ρ = 0.01, ǫ = 12200 (l) ρ = 0.1, ǫ = 12200

Fig. 16. Comparison of the clusters found by exact DBSCAN and ρ-approximate DBSCAN

Making things more interesting, in Figure 16e, we increased ǫ to 11300 (again, ǫ
is the radius of the circle shown). This time, DBSCAN found 3 clusters (note that
2 clusters in Figure 16a have merged). Figures 16f, 16g, and 16h give the clusters
of ρ-approximate DBSCAN for ρ = 0.001, 0.01, and 0.1, respectively. Once again,
the clusters of ρ = 0.001 and 0.01 are exactly the same as DBSCAN. However,
0.1-approximate DBSCAN returned only 2 clusters. This can be understood by
observing that the circle in Figure 16e almost touched a point from a different cluster.
In fact, it will, once ǫ increases by 10%, which explains why 0.1-approximate DBSCAN
produced different results.

Then we pushed ǫ even further to 12200 so that DBSCAN yielded 2 clusters as
shown in Figure 16i. Figures 16j, 16k, and 16l illustrate the clusters of ρ-approximate
DBSCAN for ρ = 0.001, 0.01, and 0.1, respectively. Here, both ρ = 0.01 and 0.1 had
given up, but ρ = 0.001 still churned out exactly the same clusters as DBSCAN.

Surprised by ρ = 0.01 not working, we examined the reason behind its failure.
It turned out that 12200 was extremely close to the “boundary ǫ” for DBSCAN to
output 2 clusters. Specifically, as soon as ǫ grew up to 12203, the exact DBSCAN would
return only a single cluster. Actually, this can be seen from Figure 16i—note how close
the circle is to the point from the right cluster! In other words, 12200 is in fact an
“unstable” value for ǫ.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:34

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(g) PAMAP2 (h) Farm (i) Household

Fig. 17. Largest ρ in {0.001, 0.01, 0.1, 1} for our ρ-approximate DBSCAN algorithm to return the same
results as precise DBSCAN

Dimensionalities d ≥ 3. We deployed the same methodology to study the
approximation quality in higher dimensional space. Specifically, for a dataset and a
value of ǫ, we varied ρ among 0.001, 0.01, 0.1 and 1 to identify the highest error-free ρ
under which our ρ-approximate algorithm returned exactly the same result as precise
DBSCAN. Figure 17 plots the highest error-free ρ for various datasets when ǫ grew
from 100 to 5000. For example, by the fact that in Figure 17a the (highest) error-free
ρ is 1 at ǫ = 100, one should understand that our approximate algorithm also returned
the exact clusters at ρ = 0.001, 0.01, and 0.1 at this ǫ. Notice that in nearly all the cases,
0.01-approximation already guaranteed the precise results.

As shown in the next subsection, our current implementation was fast enough on
all the tested datasets even when ρ was set to 0.001. We therefore recommend this
value for practical use, which was also the default ρ in the following experiments.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:35

Recall that, by the sandwich theorem (Theorem 4.3), the result of 0.001-approximate
DBSCAN must fall between the results of DBSCAN with ǫ and 1.001ǫ, respectively.
Hence, if 0.001-approximate DBSCAN differs from DBSCAN in the outcome, it means
that the (exact) DBSCAN clusters must have changed within the parameter range
[ǫ, 1.001ǫ].

7.4. Computational Efficiency for d ≥ 3

We now proceed to inspect the running time of DBSCAN clustering in dimensionality
d ≥ 3 using four algorithms:

— KDD96 [Ester et al. 1996]: the original DBSCAN algorithm in [Ester et al. 1996],
which deployed a memory R-tree whose leaf capacity was 12 and internal fanout
was 4 (the same values were used in the R-trees deployed by the other methods as
well).

— CIT08 [Mahran and Mahar 2008]: the state of the art of exact DBSCAN, namely,
the fastest existing algorithm able to produce the same DBSCAN result as KDD96.

— SkLearn (http://scikit-learn.org/stable): the DBSCAN implementation in the
popular machine learning tool-kit scikit-learn. One should note that, judging from
its website, SkLearn was implemented in Cython with its wrapper in Python.

— OurExact: the exact DBSCAN algorithm we developed in Theorem 3.3, except that
we did not use the BCP algorithm in Lemma 2.5; instead, we indexed the core
points of each cell with an R-tree, and solved the BCP problem between two cells
by repetitive nearest neighbor search [Hjaltason and Samet 1999] using the R-tree.

— OurApprox: the ρ-approximate DBSCAN algorithm we proposed in Theorem 4.6.
Our implementation has improved the one in the short version [Gan and Tao 2015]
by incorporating new heuristics (see Section 6). In some experiments, we will also
include the results of the old implementation—referred to as OurApprox-SIG—to
demonstrate the effectiveness of those heuristics.

Each parameter was set to its default value unless otherwise stated. Remember
that the default values of MinPts and ǫ may be different for various datasets; see
Section 7.2.

Influence of ǫ. The first experiment aimed to understand the behavior of each method
under the influence of ǫ. Figure 18 plots the running time as a function of ǫ, when this
parameter varied from 100 to 5000 (we refer the reader to [Gan and Tao 2015] for
running time comparison under ǫ > 5000).

KDD96 and CIT08 retrieve, for each data point p, all the points in B(p, ǫ). As
discussed in Section 6, these methods may be efficient when ǫ is small, but their
performance deteriorates rapidly as ǫ increases. This can be observed from the
results in Figure 18. OurExact and OurApprox (particularly the latter) offered either
competitive or significantly better efficiency at a vast majority of ǫ values. Such a
property is useful in tuning this crucial parameter in reality. Specifically, it enables
a user to try out a large number of values in a wide spectrum, without having to worry
about the possibly prohibitive cost—note that KDD96 and CIT08 demanded over 1000
seconds at many values of ǫ that have been found to be interesting in Section 7.2.

The performance of OurApprox-SIG is reported in the first synthetic dataset
SS-simden-3D and the first real dataset PAMAP2. There are two main observations
here. First, the proposed heuristics allowed the new implementation to outperform
the one at SIGMOD quite significantly. Second, the improvement diminished as ǫ
increased. This happens because for a larger ǫ, the side length of a cell (in the grid

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:36

OurApprox OurExact

KDD96CIT08 SkLearn

OurApprox-SIG

0.1

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0.1

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

10

50

100

150

200

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

0

500

1000

1500

2000

0.1 0.2 0.4 0.7 1 2 3 4 5
ε (10

3
)

time (sec)

0

200

400

600

800

1000

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(g) PAMAP2 (h) Farm (i) Household

Fig. 18. Running time vs. ǫ (d ≥ 3)

imposed by our algorithm) increases, which decreases the number of non-empty cells.
In that scenario, the graph G (see Section 4.4) has only a small number of edges,
thus making even a less delicate implementation (such as OurApprox-SIG) reasonably
fast. In other words, the importance of the heuristics is reflected chiefly in small ǫ. To
avoid clattering the diagrams, OurApprox-SIG is omitted from the other datasets, but
similar patterns were observed.

Scalability with n. The next experiment examined how each method scales with the
number n objects. For this purpose, we used synthetic SS datasets by varying n from
100k to 10m, using the default ǫ and MinPts values in Tables II and III. The results are
presented in Figure 19—note that the y-axis is in log scale. If SkLearn does not have a
result at a value of n, it ran out of memory on our machine (same convention adopted

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:37

OurApprox OurExact KDD96CIT08 SkLearn

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0.01

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

Fig. 19. Running time vs. n (d ≥ 3)

1

10

10
2

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

SS-simden-3D
SS-simden-5D
SS-simden-7D

1

10

10
2

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

SS-varden-3D
SS-varden-5D
SS-varden-7D

1

10

10
2

10
3

10
4

10
5

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

PAMAP2

Farm

Household

(a) SS similar density data (b) SS varying density data (c) Real datasets

Fig. 20. Running time vs. ρ (d ≥ 3)

in the rest of the evaluation). KDD96 and CIT08 had competitive performance on
similar-density datasets, but they were considerably slower (by a factor over an ordge
of magnitude) than OurApprox and OurExact on varying-density data, confirming the
analysis in Section 6.

Influence of ρ. Figure 20 shows the running time of OurApprox as ρ changed
from 0.001 to 0.1. The algorithm did not appear sensitive to this parameter. This,
at first glance, may look surprising, because the theoretical analysis in Section 4.3
implies that the running time should contain a multiplicative term (1/ρ)d−1, as is the
worst-case cost of an approximate range count query, which is in turn for detecting
whether two cells in G (i.e., the grid our algorithm imposes) have an edge. There

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:38

OurApprox OurExact KDD96CIT08 SkLearn

 0

 15

 30

 45

 60

10 20 40 60 80 100
minPts

time (sec)

 20

 40

 60

 80

10 20 40 60 80 100
minPts

time (sec)

 20

 40

 60

 80

 100

 120

10 20 40 60 80 100
minPts

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

10
2

10
3

10
4

10 20 40 60 80 100
minPts

time (sec)

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(g) PAMAP2 (h) Farm (i) Household

Fig. 21. Running time vs. MinPts (d ≥ 3)

are primarily two reasons why such a dramatic blow-up was not observed. First,
the union-find heuristic explained in Section 6 significantly reduces the number of
edges that need to be detected: once two cells are found to be in the same connected
component, it is unnecessary to detect their edges. Second, even when an edge
detection is indeed required, its cost is unlikely to reach (1/ρ)d−1 because our algorithm
for answering an approximate range count query often terminates without exploring
the underlying quad-tree completely—recall that the algorithm can terminate as soon
as it is certain whether the query answer is zero.

Influence of MinPts. The last set of experiments in this section measured the
running time of each method when MinPts increased from 10 to 100. The results are
given in Figure 21. The impact of this parameter was limited, and did not change any
of the observations made earlier.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:39

Wavefront Delaunay KDD96 SkLearnG13

0.01

0.1

1

10

10
2

0.1 1 2 5 10
n (million)

time (sec)

0.01

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Fig. 22. Running time vs. n (d = 2)

7.5. Computational Efficiency for d = 2

In this subsection, we will focus on exact DBSCAN in 2D space, and compare the
following algorithms:

— KDD96 and SkLearn: As introduced at the beginning of Section 7.4.

— G13 [Gunawan 2013]: The O(n log n) time algorithm by Gunawan, as reviewed in
Section 2.2.

— Delaunay: Our algorithm as explained in Section 5.1, which runs in O(n log n) time.

— Wavefront: Our algorithm as in Theorem 5.2, assuming that the dataset has been
bi-dimensionally sorted—recall that this is required to ensure the linear-time
complexity of the algorithm.

Once again, each parameter was set to its default value (see Table I and Section 7.2)
unless otherwise stated. All the experiments in this subsection were based on SS
similar- and varying-density datasets.

Results. In the experiment of Figure 22, we measured the running time of each
algorithm as the cardinality n escalated from 100k to 10m. Wavefront consistently
outperformed all the other methods, while Delaunay was observed to be comparable
to G13. It is worth pointing out the vast difference between the running time here
and that shown in Figure 19 for d ≥ 3 (one can feel the difficulty gap of the DBSCAN
problem between d = 2 and d ≥ 3).

Next, we compared the running time of the five algorithms by varying ǫ. As shown
in Figure 23, the cost of Wavefront, Delaunay, and G13 actually improved as ǫ grew,
whereas KDD96 and SkLearn worsened. Wavefront was the overall winner by a wide
margin.

Finally, we inspected the influence of MinPts on the running time. The results are
presented in Figure 24. In general, for a larger MinPts, Wavefront, Delaunay, and
G13 require a higher cost in labeling the data points as core or non-core points. The
influence, however, is contained by the fact that this parameter is set as a small
constant compared to the dataset size. The relative superiority of all the methods
remained the same.

8. CONCLUSIONS

DBSCAN is an effective technique for density-based clustering, which is very
extensively applied in data mining, machine learning, and databases. However,
currently there has not been clear understanding on its theoretical computational

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:40

Wavefront Delaunay KDD96 SkLearnG13

0.1

1

10

10
2

10
3

10 100 200 400 800
ε

time (sec)

0.1

1

10

10
2

10
3

10
4

0.1 1 2 3 4 5
ε (10

3
)

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Fig. 23. Running time vs. ǫ (d = 2)

Wavefront Delaunay KDD96 SkLearnG13

0.1

1

10

10
2

10 20 40 60 80 100
minPts

time (sec)

0.1

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Fig. 24. Running time vs. MinPts (d = 2)

hardness. All the existing algorithms suffer from a time complexity that is quadratic
to the dataset size n when the dimensionality d is at least 3.

In this article, we show that, unless very significant breakthroughs (ones widely
believed to be impossible) can be made in theoretical computer science, the DBSCAN
problem requires Ω(n4/3) time to solve for d ≥ 3 under the Euclidean distance. This
excludes the possibility of finding an algorithm of near-linear running time, thus
motivating the idea of computing approximate clusters. Towards that direction, we
propose ρ-approximate DBSCAN, and prove both theoretical and experimentally that
the new method has excellent guarantees both in the quality of cluster approximation
and computational efficiency.

The exact DBSCAN problem in dimensionality d = 2 is known to be solvable in
O(n log n) time. This article further enhances that understanding by showing how
to settle the problem in O(n) time, provided that the data points have already been
pre-sorted on each dimension. In other words, coordinating sorting is in fact the
hardest component of the 2D DBSCAN problem. The result immediately implies that,
when all the coordinates are integers, the problem can be solved in O(n log log n) time
deterministically, or O(n

√
log log n) expected time randomly.

We close the article with a respectful remark. The objective of the article, as
well as its short version [Gan and Tao 2015], is to understand the computational
complexity of DBSCAN and how to bring down the complexity with approximation.
The intention has never, by any means, been to argue against the significance of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:41

DBSCAN—in contrary, there is no doubt that DBSCAN has proved to be a highly
successful technique. In fact, even though many algorithmic aspects about this
technique have been resolved in this article, from the data mining perspective, how
to choose between exact DBSCAN (even implemented just as in the KDD96 algorithm)
and our approximate DBSCAN is far from being conclusive. There are, for sure,
datasets where a small ǫ value suffices, in which case exact DBSCAN may finish
even faster than the approximate version. However, selecting the right parameters is
seldom trivial in reality, and often requires multiple iterations of “trial and error”. The
proposed approximate algorithm has the advantage of being reasonably fast regardless
of the parameters. This allows users to inspect the clusters under numerous parameter
values in a (much) more efficient manner. With this said, we feel that the exact
and approximate versions can comfortably co-exist with each other: the approximate
algorithm serves nicely as a “filtering step” for the exact algorithm.

REFERENCES

Pankaj K. Agarwal, Herbert Edelsbrunner, and Otfried Schwarzkopf. 1991. Euclidean Minimum Spanning
Trees and Bichromatic Closest Pairs. Discrete & Computational Geometry 6 (1991), 407–422.

Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. 1998. Sorting in Linear Time?
Journal of Computer and System Sciences (JCSS) 57, 1 (1998), 74–93.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. OPTICS: Ordering Points
To Identify the Clustering Structure. In Proceedings of ACM Management of Data (SIGMOD). 49–60.

Sunil Arya and David M. Mount. 2000. Approximate range searching. Computational Geometry 17, 3-4
(2000), 135–152.

Sunil Arya and David M. Mount. 2016. A Fast and Simple Algorithm for Computing Approximate Euclidean
Minimum Spanning Trees. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1220–1233.

K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.uci.edu/ml

Christian Böhm, Karin Kailing, Peer Kröger, and Arthur Zimek. 2004. Computing Clusters of Correlation
Connected Objects. In Proceedings of ACM Management of Data (SIGMOD). 455–466.

B Borah and D K Bhattacharyya. 2004. An improved sampling-based DBSCAN for large spatial databases.
In Proceedings of Intelligent Sensing and Information Processing. 92–96.

Prosenjit Bose, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel H. M. Smid, and Jan Vahrenhold.
2007. Space-efficient geometric divide-and-conquer algorithms. Computational Geometry 37, 3 (2007),
209–227.

Vineet Chaoji, Mohammad Al Hasan, Saeed Salem, and Mohammed J. Zaki. 2008. SPARCL: Efficient and
Effective Shape-Based Clustering. In Proceedings of International Conference on Management of Data
(ICDM). 93–102.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry:
Algorithms and Applications (3 ed.). Springer-Verlag.

Mark de Berg, Constantinos Tsirogiannis, and B. T. Wilkinson. 2015. Fast computation of categorical
richness on raster data sets and related problems. 18:1–18:10.

Jeff Erickson. 1995. On the relative complexities of some geometric problems. In Proceedings of the Canadian
Conference on Computational Geometry (CCCG). 85–90.

Jeff Erickson. 1996. New Lower Bounds for Hopcroft’s Problem. Discrete & Computational Geometry 16, 4
(1996), 389–418.

Martin Ester. 2013. Density-Based Clustering. In Data Clustering: Algorithms and Applications. 111–126.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of ACM Knowledge
Discovery and Data Mining (SIGKDD). 226–231.

Junhao Gan and Yufei Tao. 2015. DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation. In
Proceedings of ACM Management of Data (SIGMOD). 519–530.

Ade Gunawan. 2013. A Faster Algorithm for DBSCAN. Master’s thesis. Technische University Eindhoven.

Jiawei Han, Micheline Kamber, and Jian Pei. 2012. Data Mining: Concepts and Techniques. Morgan
Kaufmann.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:42

Yijie Han and Mikkel Thorup. 2002. Integer Sorting in 0(n sqrt (log log n)) Expected Time and Linear Space.
In Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS). 135–144.

G. R. Hjaltason and H. Samet. 1999. Distance Browsing in Spatial Databases. ACM Transactions on
Database Systems (TODS) 24, 2 (1999), 265–318.

David G. Kirkpatrick and Stefan Reisch. 1984. Upper Bounds for Sorting Integers on Random Access
Machines. Theoretical Computer Science 28 (1984), 263–276.

Matthias Klusch, Stefano Lodi, and Gianluca Moro. 2003. Distributed Clustering Based on Sampling Local
Density Estimates. In Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI).
485–490.

Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. 2010. Swarm: Mining Relaxed Temporal Moving
Object Clusters. Proceedings of the VLDB Endowment (PVLDB) 3, 1 (2010), 723–734.

Bing Liu. 2006. A Fast Density-Based Clustering Algorithm for Large Databases. In Proceedings of
International Conference on Machine Learning and Cybernetics. 996–1000.

Eric Hsueh-Chan Lu, Vincent S. Tseng, and Philip S. Yu. 2011. Mining Cluster-Based Temporal Mobile
Sequential Patterns in Location-Based Service Environments. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 23, 6 (2011), 914–927.

Shaaban Mahran and Khaled Mahar. 2008. Using grid for accelerating density-based clustering. In
Proceedings of IEEE International Conference on Computer and Information Technology (CIT). 35–40.

Jirı́ Matousek. 1993. Range Searching with Efficient Hiearchical Cutting. Discrete & Computational
Geometry 10 (1993), 157–182.

Boriana L. Milenova and Marcos M. Campos. 2002. O-Cluster: Scalable Clustering of Large High
Dimensional Data Sets. In Proceedings of International Conference on Management of Data (ICDM).
290–297.

Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur Zimek, and Jörg Sander. 2014.
Density-Based Clustering Validation. In International Conference on Data Mining. 839–847.

Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik Manne, and Alok N.
Choudhary. 2012. A new scalable parallel DBSCAN algorithm using the disjoint-set data structure.
In Conference on High Performance Computing Networking, Storage and Analysis. 62.

Tao Pei, A-Xing Zhu, Chenghu Zhou, Baolin Li, and Chengzhi Qin. 2006. A new approach to the
nearest-neighbour method to discover cluster features in overlaid spatial point processes. International
Journal of Geographical Information Science 20, 2 (2006), 153–168.

Attila Reiss and Didier Stricker. 2012. Introducing a New Benchmarked Dataset for Activity Monitoring. In
International Symposium on Wearable Computers. 108–109.

S. Roy and D. K. Bhattacharyya. 2005. An Approach to Find Embedded Clusters Using Density Based
Techniques. In Proceedings of Distributed Computing and Internet Technology. 523–535.

Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. 2000. WaveCluster: A Wavelet Based
Clustering Approach for Spatial Data in Very Large Databases. The VLDB Journal 8, 3-4 (2000),
289–304.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2006. Introduction to Data Mining. Pearson.

Robert Endre Tarjan. 1979. A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets.
Journal of Computer and System Sciences (JCSS) 18, 2 (1979), 110–127.

Cheng-Fa Tsai and Chien-Tsung Wu. 2009. GF-DBSCAN: A New Efficient and Effective Data Clustering
Technique for Large Databases. In Proceedings of International Conference on Multimedia Systems and
Signal Processing. 231–236.

Manik Varma and Andrew Zisserman. 2003. Texture Classification: Are Filter Banks Necessary?. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 691–698.

Wei Wang, Jiong Yang, and Richard R. Muntz. 1997. STING: A Statistical Information Grid Approach to
Spatial Data Mining. In Proceedings of Very Large Data Bases (VLDB). 186–195.

Ji-Rong Wen, Jian-Yun Nie, and HongJiang Zhang. 2002. Query clustering using user logs. ACM
Transactions on Information Systems (TOIS) 20, 1 (2002), 59–81.

A. APPENDIX: SOLVING USEC WITH LINE SEPARATION (PROOF OF LEMMA 5.5)

We consider that all the discs in Sball intersect ℓ (any disc completely below ℓ can
be safely discarded), and that all discs are distinct (otherwise, simply remove the
redundant ones).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:43

For each disc s ∈ Sball , we define its portion on or above ℓ as its active region (because
only this region may contain points of Spt). Also, we use the term upper arc to refer to
the portion of the boundary of s that is strictly above ℓ. See Figure 25 for an illustration
of these notions (the upper arc is in bold). Note that, as the center of s is on or below
ℓ, the active region and upper arc of s are at most a semi-disc and a semi-circle,
respectively. The following is a basic geometric fact:

PROPOSITION A.1. The upper arcs of any two discs in Sball can have at most one
intersection point.

Define the coverage region—denoted by U—of Sball as the union of the active regions
of all the discs in Sball . Figure 26a demonstrates U for the example of Figure 10.
Evidently, the answer of the USEC instance is yes if and only if Spt has at least a
point falling in U .

We use the term wavefront to refer to the part of the boundary of U that is strictly
above ℓ; see the solid curve in Figure 26b. A disc in Sball is said to be contributing, if it
defines an arc on the wavefront. In Figure 26b, for instance, the wavefront is defined
by 3 contributing discs, which are shown in bold and labeled as s1, s3, s6 in Figure 26a.

It is rudimentary to verify the next three facts:

PROPOSITION A.2. U equals the union of the active regions of the contributing discs
in Sball .

PROPOSITION A.3. Every contributing disc defines exactly one arc on the wavefront.

PROPOSITION A.4. The wavefront is x-monotone, namely, no vertical line can
intersect it at two points.

A.1. Computing the Wavefront in Linear Time

Utilizing the property that the centers of the discs in Sball have been sorted by
x-dimension, next we explain how to compute the wavefront in O(|Sball |) time.

Label the discs in Sball as s1, s2, s3, ..., in ascending order of their centers’
x-coordinates. Let Ui (1 ≤ i ≤ |Sball |) be the coverage region that unions the active
regions of the first i discs. Apparently, U1 ⊆ U2 ⊆ U3 ⊆ ..., and U|Sball | is exactly U .
Define Wi to be the wavefront of Ui, namely, the portion of the boundary of Ui strictly
above ℓ. Our algorithm captures Wi in a linked list L(Wi), which arranges the defining
discs (of Wi) in left-to-right order of the arcs (on Wi) they define (e.g., in Figure 11,
L(W6) lists s1, s3, s6 in this order). By Proposition A.3, every disc appears in L(Wi) at
most once. Our goal is to compute W|Sball |, which is sufficient for deriving U according
to Proposition A.2.

It is straightforward to obtain W1 from s1 in constant time. In general, provided that
Wi−1 (i ≥ 2) is ready, we obtain Wi in three steps:

(1) Check if si defines any arc on Wi.
(2) If the answer is no, set Wi = Wi−1.
(3) Otherwise, derive Wi from Wi−1 using si.

ℓ

s

upper arc of s
active region of s

Fig. 25. Illustration of active region and upper arc

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:44

ℓ

s1

s2

s3

s4
s5

s6

ℓ

.

(a) Coverage region U (the shaded area) (b) Wavefront (solid curve)

Fig. 26. Deciding the existence of an edge by USEC with line separation

ℓ

s2

W1

I2 p

Fig. 27. Illustration of the Step-1 algorithm in Section A.1

Next, we describe how to implement Steps 1 and 3.

Step 1. We perform this step in constant time as follows. Compute the intersection of
si and ℓ. The intersection is an interval on ℓ, denoted as Ii. Let slast be the rightmost
defining disc of Wi−1 (i.e., the last disc in L(Wi−1)). If the right endpoint of Ii lies in
slast , return no (that is, si does not define any arc on Wi); otherwise, return yes.

As an example, consider the processing of s2 in Figure 26a. At this moment, W1 is
as shown in Figure 27, and includes a single arc contributed by s1. Point p is the right
endpoint of I2. As p falls in s1 (= slast), we declare that s2 does not define any arc on W2

(which therefore equals W1).

The lemma below proves the correctness of our strategy in general:

LEMMA A.5. Our Step-1 algorithm always makes the correct decision.

PROOF. Consider first the case where the right endpoint p of Ii is covered by slast .
Let Ilast be the intersection between slast and ℓ. By the facts that (i) the x-coordinate
of the center of si is larger than or equal to that of the center of slast , and (ii) si and
slast have the same radius, it must hold that Ii is contained in Ilast . This implies that
the active region of si must be contained in that of slast (otherwise, the upper arc of si
needs to go out of slast and then back in, and hence, must intersect the upper arc of
slast at 2 points, violating Proposition A.1). This means that si cannot define any arc
on Wi; hence, our no decision in this case is correct.

Now consider the case where p is not covered by slast . This implies that p is not
covered by Ui−1, meaning that Ii must define an arc on Wi (because at least p needs to
appear in Ui). Our yes decision is therefore correct.

Step 3. We derive L(Wi) by possibly removing several discs at the end of L(Wi−1), and
then eventually appending si. Specifically:

(3. 1) Set L(Wi) to L(Wi−1).
(3. 2) Set slast to the last disc in L(Wi).
(3. 3) If the arc on Wi−1 defined by slast is contained in si, remove slast from L(Wi) and

repeat from Step 3.2.
(3. 4) Otherwise, append si to the end of L(Wi) and finish.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:45

ℓ

arc defined by s1

s6

arc defined by s3

arc defined by s5

Fig. 28. Illustration of the Step-3 algorithm in Section A.1

To illustrate, consider the processing of s6 in Figure 26a. At this moment, the
wavefront W5 is as shown in Figure 28, where the arcs are defined by s1, s3, and
s5, respectively. Our Step-3 algorithm starts by setting L(W6) to L(W5), which lists
s1, s3, s5 in this order. Currently, slast = s5. As the arc on W5 defined by s5 is covered
by s6 (see Figure 28), we remove s5 from L(W6), after which slast becomes s3. As the
arc on W5 defined by s3 is not contained in s6, the algorithm terminates by adding s6
to the end of L(W6), which now lists s1, s3, s6 in this order.

Now we prove the correctness of our algorithm:

LEMMA A.6. Our Step-3 algorithm always obtains the correct L(Wi).

PROOF. If the arc on Wi−1 defined by slast is covered by si, the upper arc of slast
must be covered by the union of the discs in {s1, s2, ..., si} \ {slast}. Therefore, slast is
not a defining disc of Wi and should be removed.

Otherwise, slast must be retained. Furthermore, in this case, si cannot touch the
arc on Wi−1 defined by any of the discs that are before slast in L(Wi). All those discs,
therefore, should also be retained.

Finally, by Lemma A.5 and the fact that the execution is at Step 3, we know that si
defines an arc on Wi, and thus, should be added to L(Wi).

Running Time. It remains to bound the cost of our wavefront computation algorithm.
Step 1 obviously takes O(|Sball |) time in total. Step 2 demands

∑n
i=1

O(1 + xi) time,
where xi is the number of discs deleted at Step 3.3 when processing disc si. The
summation evaluates to O(|Sball |), noticing that

∑n
i=1

xi ≤ n because every disc can
be deleted at most once.

A.2. Solving the USEC Problem

Recall that the USEC instance has a yes answer if and only if a point of Spt is
on or below the wavefront. Proposition A.4 suggests a simple planesweep strategy
to determine the answer. Specifically, imagine sweeping a vertical line from left to
right, and at any moment, remember the (only) arc of the wavefront intersecting
the sweeping line. Whenever a point p ∈ Spt is swept by the line, check whether it
falls below the arc mentioned earlier. Because (i) the arcs of the wavefront have been
listed from left to right, and (ii) the points of Spt have been sorted on x-dimension, the
planesweep can be easily implemented in O(|Sball |+ |Spt |) time, by scanning the arcs in
the wavefront and the points of Spt synchronously in ascending order of x-coordinate.
This concludes the proof of Lemma 5.5, and also that of Theorem 5.2.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

