
A

Maximizing Range Sum in External Memory

DONG-WAN CHOI, KAIST
CHIN-WAN CHUNG, KAIST
YUFEI TAO, Chinese University of Hong Kong and KAIST

This article studies the MaxRS problem in spatial databases. Given a set O of weighted points and a rectan-
gle r of a given size, the goal of the MaxRS problem is to find a location of r such that the sum of the weights
of all the points covered by r is maximized. This problem is useful in many location-based services such as
finding the best place for a new franchise store with a limited delivery range and finding the hot spot with
the largest number of attractions around for a tourist with a limited reachable range. However, the problem
has been studied mainly in the theoretical perspective, particularly, in computational geometry. The existing
algorithms from the computational geometry community are in-memory algorithms which do not guaran-
tee the scalability. In this article, we propose a scalable external-memory algorithm (ExactMaxRS) for the
MaxRS problem, which is optimal in terms of the I/O complexity. In addition, we propose an approximation
algorithm (ApproxMaxCRS) for the MaxCRS problem that is a circle version of the MaxRS problem. We
prove the correctness and optimality of the ExactMaxRS algorithm along with the approximation bound of
the ApproxMaxCRS algorithm.

Furthermore, motivated by the fact that all the existing solutions simply assume that there is no tied area
for the best location, we extend the MaxRS problem to a more fundamental problem, namely AllMaxRS, so
that all the locations with the same best score can be retrieved. We first prove that the AllMaxRS problem
cannot be trivially solved by applying the techniques for the MaxRS problem. Then we propose an output-
sensitive external-memory algorithm (TwoPhaseMaxRS), that gives the exact solution for the AllMaxRS
problem through two phases. Also, we prove both the soundness and completeness of the result returned
from TwoPhaseMaxRS.

From extensive experimental results, we show that ExactMaxRS and ApproxMaxCRS are several orders
of magnitude faster than methods adapted from existing algorithms, the approximation bound in practice
is much better than the theoretical bound of ApproxMaxCRS, and TwoPhaseMaxRS is not only much faster
but also more robust than the straightforward extension of ExactMaxRS.

CCS Concepts: rTheory of computation → Data structures and algorithms for data management;
Database query processing and optimization (theory); rInformation systems→ Spatial-temporal systems;

General Terms: Algorithms, Theory, Experimentation

Additional Key Words and Phrases: External memory, optimal-location query, range sum, spatial databases

ACM Reference Format:
Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2014. Maximizing Range Sum in External Memory. ACM
Trans. Datab. Syst. V, N, Article A (January YYYY), 45 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

Author’s addresses: D.W. Choi, Department of Computer Science, KAIST, Daejeon, Korea; email: dong-
wan@islab.kaist.ac.kr; C.W. Chung (corresponding author), Department of Computer Science and Division
of Web Science and Technology, KAIST, Daejeon, Korea; email: chungcw@kaist.edu; Y. Tao, Department of
Computer Science, Chinese University of Hong Kong, Sha Tin, Hong Kong and Division of Web Science and
Technology, KAIST, Daejeon, Korea; email: taoyf@cse.cuhk.ed.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 0362-5915/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Dong-Wan Choi et al.

1. INTRODUCTION
In the era of mobile devices, location-based services (LBSs) are being used in a variety
of contexts such as emergency, navigation, and tour planning. Essentially, these appli-
cations require managing and processing a large amount of location information, and
technologies studied in spatial databases are getting a great deal of attention for this
purpose. Traditional researches in spatial databases, however, have mostly focused on
retrieving objects (e.g., range search, nearest neighbor search, etc.), rather than finding
the best location to optimize a certain objective.

Recently, several location selection problems [Du et al. 2005; Rocha-Junior et al.
2010; Wong et al. 2009; Xia et al. 2005; Xiao et al. 2011; Yiu et al. 2007; Zhang et al.
2006; Zhou et al. 2011] have been proposed. One type of these problems is to find
a location for a new facility by applying the well-known facility location problem in
theory to database problems such as optimal-location queries and bichromatic reverse
nearest neighbor queries. Another type of location selection problems is to choose one
of the predefined candidate locations based on a given ranking function such as spatial
preference queries.

In this article, we solve the maximizing range sum (MaxRS) problem in spatial
databases. Given a set O of weighted points (a.k.a. objects) and a rectangle r of a
given size, the goal of the MaxRS problem is to find a location of r which maximizes
the sum of the weights of all the objects covered by r. Figure 1 shows an instance
of the MaxRS problem where the size of r is specified as d1 × d2. In this example, if
we assume that the weights of all the objects are equally set to 1, the center point of
the rectangle in solid line is the solution, since it covers the largest number of objects
which is 8. The figure also shows some other positions for r, but it should be noted
that there are infinitely many such positions – r can be anywhere in the data space.
The MaxRS problem is different from existing location selection problems mentioned
earlier in that there are no predefined candidate locations or other facilities to compete
with. Furthermore, this problem is also different from range aggregate queries [Sheng
and Tao 2011] in the sense that we do not have a known query rectangle, but rather,
must discover the best rectangle in the data space.

d1

d2

Fig. 1. An instance of the MaxRS problem

An intuitive application of MaxRS is related to many kinds of facilities that should
be associated with a region of a certain size. For example, if we open a new pizza
franchise store that has a limited delivery range in a downtown area, it is important
to maximize the number of residents in a rectangular area1 around the pizza store.
This case is about finding a more profitable place to set up a new service facility.

1Note that a range in a downtown area is well represented as a rectangle because an urban area is widely
modelled as a grid of city blocks and streets.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:3

For an opposite case, the MaxRS problem can be applied to find a more serviceable
place for mobile users. Consider a tourist who wants to find the most representative
spot in a city. In this case, the tourist will prefer to visit as many attractions as possible
around the spot, and at the same time s/he usually does not want to go too far away
from the spot.

In addition, MaxRS can also play an important role in spatial data mining where
various kinds of massive location log datasets are employed. Indeed, many works are
being reported to mine interesting locations from a large amount of GPS log data of mo-
bile subscribers [Srivastava et al. 2011; Tiwari and Kaushik 2012; Zheng et al. 2009].
These works are mostly involved in extracting the hot spot from a massive dataset of
points, which can be naturally abstracted as MaxRS. Also, some location datasets are
associated with a set of events such as the traffic accident and the crime. For instance,
when we do the geographic profiling in crime analysis, it is frequently required to de-
termine the most probable area of offender residence by analysing the set of crime
locations 2. This task is also strongly related to the MaxRS problem.

There has been little research for this natural problem in the database community.
In fact, this problem has been mainly studied in the computational geometry com-
munity. The first optimal in-memory algorithm for finding the position of a fixed-size
rectangle enclosing the maximum number of points was proposed in [Imai and Asano
1983]. Later, a solution to the problem of finding the position of a fixed-size circle en-
closing the maximum number of points was provided in [Chazelle and Lee 1986].

Unfortunately, these in-memory algorithms are not scalable for processing a massive
dataset of spatial objects such as a GPS log dataset of mobile users and a set of crime
locations for several years, since they are developed based on the assumption that the
entire dataset can be loaded in the main memory. A straightforward adaptation of
these in-memory algorithms into the external memory can be considerably inefficient
due to the occurrence of excessive I/O’s.

In this article, we propose the first external-memory algorithm, called ExactMaxRS,
for the maximizing range sum (MaxRS) problem. The basic processing scheme of Ex-
actMaxRS follows the distribution-sweep paradigm [Goodrich et al. 1993], which was
introduced as an external version of the plane-sweep algorithm. Basically, we divide
the entire dataset into smaller sets, and recursively process the smaller datasets until
the size of a dataset gets small enough to fit in memory. By doing this, the ExactMaxRS
algorithm gives an exact solution to the MaxRS problem. We derive the upper bound
of the I/O complexity of the algorithm. Indeed, this upper bound is proved to be the
lower bound under the comparison model in external memory, which implies that our
algorithm is optimal.

In addition, we propose an approximation algorithm, called ApproxMaxCRS, for the
maximizing circular range sum (MaxCRS) problem. This problem is the circle version
of the MaxRS problem, and is more useful than the rectangle version, when a bound-
ary with the same distance from a location is required. In order to solve the MaxCRS
problem, we apply the ExactMaxRS algorithm to the set of Minimum Bounding Rect-
angles (MBR) of the data circles. After obtaining a solution from the ExactMaxRS
algorithm, we find an approximate solution for the MaxCRS problem by choosing one
of the candidate points, which are generated from the point returned from the Exact-
MaxRS algorithm. We prove that ApproxMaxCRS gives a (1/4)-approximate solution
in the worst case, and also show by experiments that the approximation ratio is much
better in practice.

As a major extension of the MaxRS problem, this article also propose a new funda-
mental problem in spatial databases, namely AllMaxRS. Given O and r, the goal of

2http://en.wikipedia.org/wiki/Geographic profiling

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Dong-Wan Choi et al.

the AllMaxRS problem is to retrieve all the locations of r which equally have the max-
imum total weight of objects covered by r. This problem is addressed by the fact that
there exist multiple locations having the same best score in many real world LBSs. In
this kind of LBSs, it is more desirable to provide users with all these options for the
best location rather than recommending an arbitrary location among all those tied best
locations. To the best of our knowledge, the AllMaxRS problem has not been studied
even in theoretical communities.

Unfortunately, it is not trivial at all to solve the AllMaxRS problem by extending the
ExactMaxRS algorithm for the MaxRS problem. We prove that the simple extended al-
gorithm is inefficient in terms of the I/O complexity, especially because it is not output-
sensitive. This is based on the theoretical analysis on the upper bound of the number
of disjoint areas containing all the best locations.

Our approach for the AllMaxRS problem is to divide the entire process into two
phases, and thereby we propose a two-phase external-memory algorithm, namely
TwoPhaseMaxRS. In the first phase, we build the preliminary structures, which tell
the information of all the best locations to be finally returned, in a manner similar to
the ExactMaxRS algorithm for the MaxRS problem. By means of these preliminary
structures, in the second phase, we actually construct and retrieve all the best loca-
tions. We prove that the I/O complexity of TwoPhaseMaxRS is output-sensitive, and
the result returned from TwoPhaseMaxRS is sound and complete.
Contributions.
We summarize our main contributions as follows:

— We propose the ExactMaxRS algorithm, the first external-memory algorithm for the
MaxRS problem. We also prove both the correctness and optimality of the algorithm.

— We propose the ApproxMaxCRS algorithm, an approximation algorithm for the
MaxCRS problem. We also prove the correctness as well as tightness of the ap-
proximation bound with regard to this algorithm.

— We propose a new fundamental problem in spatial databases (as well as in compu-
tational geometry), namely the AllMaxRS problem, which is a more general version
of the MaxRS problem.

— We propose the TwoPhaseMaxRS algorithm for the AllMaxRS problem and prove
that it has an output-sensitive I/O complexity. We also prove both the soundness
and completeness of the result returned from TwoPhaseMaxRS.

— We derive the tight upper bound of the number of disjoint areas that contain all the
best locations for the AllMaxRS problem, which is of independent interest in the
theoretical perspective.

— We experimentally evaluate our algorithms using both real and synthetic datasets.
From the experimental results, we show that (1) ExactMaxRS is two orders of mag-
nitude faster than methods adapted from existing algorithms, (2) ApproxMaxCRS
is also one or more orders of magnitude faster than its competitor adapted from the
state-of-the-art algorithm, (3) the approximation bound of ApproxMaxCRS in prac-
tice is much better than its theoretical bound, (4) TwoPhaseMaxRS is much faster
than the simple extension of ExactMaxRS, and (5) the performance of TwoPhase-
MaxRS is more stable than that of the simple extension when varying the values of
experimental parameters.

Organization.
In Section 2, we formally define the problems studied in this article, and explain our
computation model. In Section 3, related work is discussed. In Section 4, we review
the in-memory algorithms proposed in the computational geometry community. In Sec-
tions 5 and 6, the ExactMaxRS algorithm and ApproxMaxCRS algorithm are derived,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:5

respectively. The AllMaxRS problem and its TwoPhaseMaxRS algorithm are presented
in Sections 7 and 8. In Section 9, we show experimental results. Conclusions are made
and future work is discussed in Section 10.

2. PROBLEM FORMULATION
We consider a set of spatial objects, denoted by O. Each object o ∈ O is located at a
point in the 2-dimensional space, and has a non-negative weight w(o). We also use P
to denote the infinite set of points in the entire data space.

Let r(p) be a rectangular region of a given size centered at a point p ∈ P , and Or(p) be
the set of objects covered by r(p). Then the maximizing range sum (MaxRS) problem is
formally defined as follows:

Definition 1 (MaxRS Problem). Given P , O, and a rectangle of a given size, find a
location p that maximizes:

∑

o∈Or(p)

w(o).

Similarly, let c(p) be a circular region centered at p with a given diameter, and Oc(p)
be the set of objects covered by c(p). Then we define the maximizing circular range sum
(MaxCRS) problem as follows:

Definition 2 (MaxCRS Problem). Given P , O, and a circle of a given diameter, find
a location p that maximizes:

∑

o∈Oc(p)

w(o).

For simplicity, we discuss only the SUM function in this article, even though our al-
gorithms can be applied to other aggregates such as COUNT and AVERAGE. Without
loss of generality, objects on the boundary of the rectangle or the circle are excluded.

Since we focus on a massive number of objects that do not fit in the main memory,
the whole dataset O is assumed to be stored in external memory such as a disk. There-
fore, we follow the standard external memory (EM) model [Goodrich et al. 1993] to
develop and analyze our algorithms. According to the EM model, we use the following
parameters:

N : the number of objects in the database (i.e., |O|)
M : the number of objects that can fit in the main memory
B : the number of objects per block

We comply with the assumption that N is much larger than M and B, and the main
memory has at least two blocks (i.e., M ≥ 2B).

In the EM model, the time of an algorithm is measured by the number of I/O’s rather
than the number of basic operations as in the random access memory (RAM) model.
Thus, when we say linear time in the EM model, it means that the number of blocks
transferred between the disk and memory is bounded by O(N/B) instead of O(N). Our
goal is to minimize the total number of I/O’s in our algorithms.

For clarity, Table I summarizes the main symbols that will frequently appear
throughout the article.

3. RELATED WORK
We first review the range aggregate processing methods in spatial databases. The
range aggregate (RA) query was proposed for the scenario where users are interested

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Dong-Wan Choi et al.

Table I. List of frequent symbols

Symbol Description
O, R, and C the set of objects, the set of rectangles, and the set of circles
o ∈ O, r ∈ R, and c ∈ C an object in O, a rectangle in R, and a circle in C
w(o) the weight of the object o
N the total number of objects, i.e., N = |O| = |R|
M the number of objects that can fit in the main memory
B the number of objects per block
m the number of slabs at each recursion
γ and γi (i ∈ [1,m]) a slab and its i-th sub-slab
S and Si (i ∈ [1,m]) the slab-file of γ and the slab-file of γi
X and Xi (i ∈ [1,m]) the region-file of γ and the region-file of γi
t and ti (i ∈ [1,m]) a tuple (max-intervals or h-lines) in S and a tuple in Si

u and ui (i ∈ [1,m]) a tuple (max-ranges) in X and a tuple in Xi

ρ the max-region with regard to R

in summarized information about objects in a given range rather than individual ob-
jects. Thus, a RA query returns an aggregation value over objects qualified for a given
range. In order to efficiently process RA queries, usually aggregate indexes [Cho and
Chung 2007; Jürgens and Lenz 1998; Lazaridis and Mehrotra 2001; Papadias et al.
2001; Sheng and Tao 2011] are deployed as the underlying access method. To calculate
the aggregate value of a query region, a common idea is to store a pre-calculated value
for each entry in the index, which usually indicates the aggregation of the region spec-
ified by the entry. However, the MaxRS problem cannot be trivially solved by the RA
query processing scheme even if the aggregate index could help to reduce the search
space, because the key is to find out where the best rectangle is. A naive solution to the
MaxRS problem is to issue an infinite number of RA queries, which is prohibitively
expensive.

Recently, researches about the selection of optimal locations in spatial databases
have been reported, and they are the previous work most related to ours. Du et al.
proposed the optimal-location query [Du et al. 2005], which returns a location in a
query region to maximize the influence that is defined to be the total weight of the
reverse nearest neighbors. They also defined a different query semantics in their ex-
tension [Zhang et al. 2006], called min-dist optimal-location query. In both works, their
problems are stated under L1 distance. Similarly, the maximizing bichromatic nearest
neighbor (MaxBRNN) problem was studied by Wong et al. [Wong et al. 2009] and Zhou
et al. [Zhou et al. 2011]. This is similar to the problem in [Du et al. 2005] except that
L2 distance, instead of L1 distance, is considered, making the problem more difficult.
Moreover, Xiao et al. [Xiao et al. 2011] applied optimal-location queries to road network
environments.

However, all these works share the spirit of the classic facility location problem,
where there are two kinds of objects such as customers and service sites. The goal of
these works is essentially to find a location that is far from the competitors and yet
close to customers. This is different from the MaxRS (MaxCRS) problem, since we aim
at finding a location with the maximum number of objects around, without considering
any competitors. We have seen the usefulness of this configuration in Section 1.

There is another type of location selection problems, where the goal is to find top-k
spatial sites based on a given ranking function such as the weight of the nearest neigh-
bor. Xia et al. proposed the top-t most influential site query [Xia et al. 2005]. Later, the
top-k spatial preference query was proposed in [Rocha-Junior et al. 2010; Yiu et al.
2007], which deals with a set of classified feature objects such as hotels, restaurants,
and markets by extending the previous work. Even though some of these works con-
sider the range sum function as a ranking function, their goal is to choose one of the
candidate locations that are predefined. However, there are an infinite number of can-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:7

didate locations in the MaxRS (MaxCRS) problem, which implies that these algorithms
are not applicable to the problem we are focusing on.

In the theoretical perspective, MaxRS and MaxCRS have been studied in the past.
Specifically, in the computational geometry community, there were researches [Bare-
quet et al. 1997; Dickerson and Scharstein 1998] for the max-enclosing polygon prob-
lem. The purpose is to find a position of a given polygon to enclose the maximum num-
ber of points. This is almost the same as the MaxRS problem, when a polygon is a
rectangle. For the max-enclosing rectangle problem, Imai et al. proposed an optimal in-
memory algorithm [Imai and Asano 1983] whose time complexity is O(n log n), where
n is the number of rectangles. Actually, they solved a problem of finding the maximum
clique in the rectangle intersection graph based on the well-known plane-sweep algo-
rithm, which can be also used to solve the max-enclosing rectangle problem by means
of a simple transformation [Nandy and Bhattacharya 1995]. Inherently, however, these
in-memory algorithms do not consider a scalable environment that we are focusing on.

In company with the above works, there were also works to solve the max-enclosing
circle problem, which is similar to the MaxCRS problem. Chazelle et al. [Chazelle and
Lee 1986] were the first to propose an O(n2) algorithm for this problem by finding a
maximum clique in a circle intersection graph. The max-enclosing circle problem is
actually known to be 3SUM-hard [Aronov and Har-Peled 2005], namely, it is widely
conjectured that no algorithm can terminate in less than Ω(n2) time in the worst case.
Therefore, several approximation approaches were proposed to reduce the time com-
plexity. Recently, Berg et al. proposed a (1 − ε)-approximation algorithm [Berg et al.
2009] with time complexity O(n log n + nε−3). They divide the entire dataset into a
grid, and then compute the local optimal solution for a grid cell. After that the local
solutions of cells are combined using a dynamic-programming scheme. However, it is
generally known that a standard implementation of dynamic programming leads to
poor I/O performance [Chowdhury and Ramachandran 2006], which is the reason why
it is difficult for this algorithm to be scalable.

Finally, a preliminary version of this article was published in [Choi et al. 2012].
Even though a scalable solution for the MaxRS (and corresponding MaxCRS) problem
is presented in that previous work, the solution considers only a single best location.
Here in this long version of the article, by further extending the MaxRS problem, we
also tackle a new fundamental problem in spatial databases, namely AllMaxRS, which
aims to retrieve all the best locations with the same worth. More specifically, we (1)
present the theoretical analysis of the number of the tied best locations, (2) provide an
output-sensitive algorithm for the AllMaxRS problem with proofs of its efficiency and
correctness, and (3) evaluate the algorithm by conducting extensive experiments.

4. PRELIMINARIES
In this section, we explain more details about the solutions proposed in the computa-
tional geometry community. Our solution also shares some of the ideas behind those
works. In addition, we show that the existing solutions cannot be easily adapted to our
environment, where a massive size of data is considered.

First, let us review the idea of transforming the max-enclosing rectangle problem
into the rectangle intersection problem in [Nandy and Bhattacharya 1995]. The max-
enclosing rectangle problem is the same as the MaxRS problem except that it con-
siders only the count of the objects covered by a rectangle (equivalently, each object
has weight 1). The rectangle intersection problem is defined as “Given a set of rectan-
gles, find an area where the most rectangles intersect”. Even though these two prob-
lems appear to be different at first glance, it has been proved that the max-enclosing
rectangle problem can be mapped to the rectangle intersection problem [Nandy and
Bhattacharya 1995].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Dong-Wan Choi et al.

We explain this by introducing a mapping example shown in Figure 2. Suppose that
the dataset has four objects (black-filled) as shown in Figure 2(a). Given a rectangle of
size d1×d2, an optimal point can be the center point p of rectangle r (see Figure 2(a)). To
transform the problem, we draw a rectangle of the same size centered at the location of
each object as shown in Figure 2(b). It is not difficult to observe that the optimal point
p in the max-enclosing rectangle problem can be any point in the most overlapped area
(gray-filled) which is the outcome of the rectangle intersection problem. Thus, once
we have found the most overlapped area in the transformed rectangle intersection
problem, the optimal location of the max-enclosing rectangle problem can trivially be
obtained.

d1

d2

r
p

(a) Max-enclosing rectangle problem

x3 x5 x8x2 x6
x7

r4

(b) Rectangle intersection problem
Fig. 2. An example of transformation

For the rectangle intersection problem, an in-memory algorithm was proposed in
[Imai and Asano 1983], which is based on the well-known plane-sweep algorithm. Ba-
sically, the algorithm regards the top and bottom edges of rectangles as horizontal
intervals, and maintains a binary tree on the intervals while sweeping a conceptual
horizontal line from bottom to top. For example, there will be 7 intervals in the binary
tree when the sweeping line is at ` in Figure 2(b), namely [−∞, x2], [x2, x3], [x3, x5],
[x5, x6], [x6, x7], [x7, x8], and [x8,∞]. When the line meets the bottom (top) edge of a
rectangle, a corresponding interval is inserted to (deleted from) the binary tree, along
with updating the counts of intervals currently residing in the tree, where the count
of an interval indicates the number of intersecting rectangles within the interval. In
Figure 2(b), when the line encounters the top edge of the rectangle r4, the intervals in
the range of [x6, x8] will be updated or deleted from the binary tree. Thereafter, the re-
sulting intervals in the binary tree will be [−∞, x2], [x2, x3], [x3, x5], [x5, x7], and [x7,∞],
whose counts are 0, 1, 2, 1, and 0, respectively. During the whole sweeping process, an
interval with the maximum count is returned as the final result. The time complexity
of this algorithm is O(n log n), where n is the number of rectangles, since n insertions
and n deletions are performed during the sweep, and the cost of each tree operation
is O(log n). This is the best efficiency possible in terms of the number of comparisons
[Imai and Asano 1983].

Unfortunately, this algorithm cannot be directly applied to our environment that
is focused on massive datasets, since the plane-sweep algorithm is an in-memory al-
gorithm based on the RAM model. Furthermore, a straightforward adaptation of us-
ing the B-tree instead of the binary tree still requires a large amount of I/O’s, in fact
O(N logB N). Note that the factor of N is very expensive in the sense that linear cost
is only O(N/B) in the EM model.

5. EXACT ALGORITHM FOR MAXIMIZING RANGE SUM
In this section, we propose an external-memory algorithm, namely ExactMaxRS, that
exactly solves the MaxRS problem in O((N/B) logM/B (N/B)) I/O’s. This is known

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:9

[Arge et al. 1993; Imai and Asano 1983] to be the lower bound under the comparison
model in external memory.

5.1. Overview
Essentially, our solution is based upon the transformation explained in Section 4.
Specifically, to transform the MaxRS problem, for each object o ∈ O, we construct a
corresponding rectangle ro which is centered at the location of o and has a weight w(o).
All these rectangles have the same size, which is as specified in the original problem.
We use R to denote the set of these rectangles. Also, we define two notions which are
needed to define our transformed MaxRS problem later:

Definition 3 (Location-weight). Let p be a location in P , the infinite set of points
in the entire data space. Its location-weight with regard to R equals the sum of the
weights of all the rectangles in R that cover p.

Definition 4 (Max-region). The max-region ρ with regard to R is a rectangle such
that:

— every point in ρ has the same location-weight τ , and
— no point in the data space has a location-weight higher than τ .

Intuitively, the max-region ρ with regard to R is an intersecting region with the maxi-
mum sum of the weights of the overlapping rectangles. Then our transformed MaxRS
problem can be defined as follows:

Definition 5 (Transformed MaxRS Problem). Given R, find a max-region ρ with re-
gard to R.

Apparently, once the above problem is solved, we can return an arbitrary point in ρ
as the answer for the original MaxRS problem.

At a high level, the ExactMaxRS algorithm follows the divide-and-conquer strategy,
where the entire datset is recursively divided into mutually disjoint subsets, and then
the solutions that are locally obtained in the subsets are combined. The overall process
of the ExactMaxRS algorithm is as follows:

(1) Recursively divide the whole space vertically into m sub-spaces, called slabs and
denoted as γ1, ..., γm, each of which contains roughly the same number of rectangles,
until the rectangles belonging to each slab can fit in the main memory.

(2) Compute a solution structure for each slab, called slab-file, which represents the
local solution to the sub-problem with regard to the slab.

(3) Merge m slab-files to compute the slab-file for the union of the m slabs until the
only one slab-file remains.

In this process, we need to consider the following: (1) How to divide the space to
guarantee the termination of recursion; (2) how to organize slab-files, and what should
be included in a slab-file; (3) how to merge the slab-files without loss of any necessary
information for finding the final solution.

5.2. The ExactMaxRS Algorithm
Next we address each of the above considerations, and explain in detail our Exact-
MaxRS algorithm.

5.2.1. Division Phase. Let us start with describing our method for dividing the entire
space. Basically, we recursively divide the space vertically into m slabs along the x-
dimension until the number of rectangles in a slab can fit in the main memory. Since
a rectangle in R can be large, it is unavoidable that a rectangle may need to be split

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Dong-Wan Choi et al.

into a set of smaller disjoint rectangles as the recursion progresses, which is shown
in Figure 3. As a naive approach, we could just insert all the split rectangles into

γ 1 γ 2 γ 3

r

. . . .

Fig. 3. An example of splitting a rectangle

the corresponding slabs at the next level of recursion. In Figure 3, the three parts of
rectangle r will be inserted into slabs γ1, γ2, and γ3, respectively.

However, it is not hard to see that this approach does not guarantee the termination
of recursion, since rectangles may span an entire slab, e.g., the middle part of r spans
slab γ2. In the extreme case, suppose that all rectangles span a slab γ. Thus, no matter
how many times we divide γ into sub-slabs, the number of rectangles in each sub-slab
still remains the same, meaning that recursion will never terminate.

Therefore, in order to gradually reduce the number of rectangles for each sub-
problem, we do not pass spanning rectangles to the next level of recursion, e.g., the
middle part of r will not be inserted in the input of the sub-problem with regard to γ2.
Instead, the spanning rectangles are considered as another local solution for a sepa-
rate, special, sub-problem. Thus, in the merging phase, the spanning rectangles are
also merged along with the other slab-files. In this way, it is guaranteed that recursion
will terminate eventually as proved in the following lemma:

LEMMA 1. After O(logm(N/M)) recursion steps, the number of rectangles in each
slab will fit in the main memory.

PROOF. Since the spanning rectangles do not flow down to the next recursion step,
we can just partition the vertical edges of rectangles. There are initially 2N vertical
edges. The number of edges in a sub-problem will be reduced by a factor of m by divid-
ing the set of edges into m smaller sets each of which has roughly the same size. Each
vertical edge in a slab represents a split rectangle. It is obvious that there exists an h
such that 2N/mh ≤M . The smallest such h is thus O(logm(N/M)).

Determination of m.
We set m = Θ(M/B), where M/B is the number of blocks in the main memory.

5.2.2. Slab-files. The next important question is how to organize a slab-file. What the
question truly asks about is what structure should be returned after conquering the
sub-problem with regard to a slab. Each slab-file should have enough information to
find the final solution after all the merging phases.

To get the intuition behind our solution (to be clarified shortly), let us first consider
an easy scenario where every rectangle has weight 1, and is small enough to be totally
inside a slab, which is shown in Figure 4. Thus, no spanning rectangle exists. In this
case, all we have to do is to just maintain a max-region (black-filled in Figure 4) with
regard to rectangles in each slab. Recall that a max-region is the most overlapped area

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:11

γ1 γ 2 γ m-1 γ m

ρm

Fig. 4. An easy scenario to illustrate the intuition of slab-files

with respect to the rectangles in the corresponding slab (see Definition 4). Then, in the
merging phase, among m max-regions (i.e., one for each slab), we can choose the best
one as the final solution. In Figure 4, for instance, the best one is ρm because it is the
intersection of 3 rectangles, whereas the number is 2 for the max regions of the other
slabs.

Extending the above idea, we further observe that the horizontal boundaries of a
max-region are laid on the horizontal lines passing the bottom or top edge of a certain
rectangle. Let us use the term h-line to refer to a horizontal line passing a horizontal
edge of an input rectangle. Therefore, for each h-line in a slab, it suffices to maintain
a segment that could belong to the max-region of the slab. To formalize this intuition,
we define max-interval as follows:

Definition 6 (Max-interval). Let (1) `.y be the y-coordinate of a h-line `, and `1 and
`2 be the consecutive h-lines such that `1.y < `2.y, (2) ` ∩ γ be the part of a h-line ` in
a slab γ, and (3) rγ be the rectangle formed by `1.y, `2.y, and vertical boundaries of γ.
A max-interval is a segment t on `1 ∩ γ such that, the x-range of t is the x-range of the
rectangle rmax bounded by `1.y, `2.y, and vertical lines at xi and xj , where each point
in rmax has the maximum location-weight among all points in rγ .

Figure 5 illustrates Definition 6.

γ

1

2

rmax

t

xi xj

Fig. 5. An illustration of Definition 6

Our slab-file is a set of max-intervals defined only on h-lines. Specifically, each max-
interval is represented as a tuple specified as follows:

t =< y, [x1, x2], sum >

where y is the y-coordinate of t (hence, also of the h-line that defines it), and [x1, x2] is
the x-range of t, and sum is the location-weight of any point in t. In addition, all the
tuples in a slab-file should be sorted in ascending order of y-coordinates.

Example 1. Figure 6 shows the slab-files that are generated from the example in
Figure 2, assuming that m = 4 and ∀o ∈ O, w(o) = 1. Max-intervals are represented
as solid segments. For instance, the slab-file of slab γ1 consists of tuples (in this order):

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Dong-Wan Choi et al.

< y2, [x1, x2], 1 >, < y4, [x1, x2], 2 >, < y6, [x0, x2], 1 >, < y7, [−∞, x2], 0 >. The
first tuple < y2, [x1, x2], 1 > implies that, in slab γ1, on any horizontal line with y-
coordinate in (y2, y4), the max-interval is always [x1, x2], and its sum is 1. Similarly, the
second tuple < y4, [x1, x2], 2 > indicates that, on any horizontal line with y-coordinate
in (y4, y6), [x1, x2] is always the max-interval, and its sum is 2. Note that spanning
rectangles have not been counted yet in these slab-files, since (as mentioned earlier)
they are not part of the input to the sub-problems with regard to slabs γ1, ..., γ4.

x0 x1 x2

γ 1 γ 2 γ 3 γ 4

y0

y1

y2

y3

y4

y5

y6

y7

Fig. 6. An example of slab-files

LEMMA 2. Let K be the number of rectangles in a slab, where K ≤ N . Then the
number of tuples in the corresponding slab-file is O(K).

PROOF. The number of h-lines is at most double the number of rectangles. As a h-
line defines only one max-interval in each slab, the number of tuples in a slab-file is at
most 2K, which is O(K).

5.2.3. Merging Phase. Now we tackle the last challenge: how to merge the slab-files,
which is also the main part of our algorithm.

The merging phase sweeps a horizontal line across the slab-files and the file con-
taining spanning rectangles. At each h-line, we choose a max-interval with the great-
est sum among the max-intervals with regard to the m slabs, respectively. Sometimes,
max-intervals from adjacent slabs are combined into a longer max-interval.

The details of merging, namely MergeSweep, are presented in Algorithm 1. The input
includes a set of spanning rectangles and m slab-files. Also, each spanning rectangle
contains only the spanning part cropped out of the original rectangle ro ∈ R, and has
the same weight as ro (recall that the weight of ro is set to w(o)). We use upSum[i] to
denote the total weight of spanning rectangles that span slab γi and currently intersect
the sweeping line; upSum[i] is initially set to 0 (Line 2). Also, we set tslab[i] to be the
tuple representing the max-interval of γi in the sweeping line. Since we sweep the line
from bottom to top, we initially set tslab[i].y = −∞. In addition, the initial interval and
sum of tslab[i] are set to be the x-range of γi and 0, respectively (Line 3). When the
sweeping line encounters the bottom of a spanning rectangle that spans γi, we add the
weight of the rectangle to upSum[i] (Lines 5 - 6); conversely, when the sweeping line
encounters the top of the spanning rectangle, we subtract the weight of the rectangle
(Lines 7 - 8). When the sweeping line encounters several tuples (from different slab-
files) having the same y-coordinate (Line 9), we first update tslab[i]’s accordingly (Lines
10 - 12), and then identify the tuples with the maximum sum among all the tslab[i]’s
(Line 13). Since there can be multiple tuples with the same maximum sum at an h-line,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:13

we call a function GetMaxInterval to generate a single tuple from those tuples (Line
14). Specifically, given a set of tuples with the same sum value, GetMaxInterval simply
performs:

(1) If the max-intervals of some of those tuples are consecutive, merge them into one
tuple with an extended max-interval.

(2) Return an arbitrary one of the remaining tuples after the above step.

Lastly, we insert the tuple generated from GetMaxInterval into the slab-file to be re-
turned (Line 15). This process will continue until the sweeping line reaches the end of
all the slab files and the set of spanning rectangles.

It is worth noting that the MergeSweep algorithm itself requires only Θ(m) =
Θ(M/B) memory space, since all the in-memory data structures in the algorithm,
namely upSum, tslab, T , and T ′, cannot have more than m tuples.

ALGORITHM 1: MergeSweep
Input: m slab-files S1, ..., Sm for m slabs γ1, ..., γm, a set of spanning rectangles R′

Output: a slab-file S for slab γ =
m⋃
i=1

γi. Initially S ← φ

1 for i = 1 to m do
2 upSum[i]← 0
3 tslab[i]← < −∞, the range of x-coordinates of γi, 0 >
4 while sweeping the horizontal line ` from bottom to top do
5 if ` meets the bottom of ro ∈ R′ then
6 upSum[j]← upSum[j] + w(o), ∀j s.t. ro spans γj
7 if ` meets the top of ro ∈ R′ then
8 upSum[j]← upSum[j]− w(o), ∀j s.t. ro spans γj
9 if ` meets a set of tuples T = {t | t.y = `.y} then

10 forall the t ∈ T do
11 tslab[i]← t, s.t. t ∈ Si

12 tslab[i].sum← t.sum+ upSum[i], s.t. t ∈ Si

13 T ′ ← the set of tuples in tslab[1], ..., tslab[m] with the largest sum values
14 tmax ← GetMaxInterval(T ′)
15 S ← S ∪ {tmax}
16 return S

Example 2. Figure 7 shows how the MergeSweep algorithm works by using Exam-
ple 1. For clarity, rectangles are removed, and the sum value of each max-interval is
given above the segment representing the max-interval. Also, the value of upSum for
each slab is given as a number enclosed in a bracket, e.g., upSum[2] = 1, between y2
and y6.

When the sweeping line ` is located at y0, two max-intervals from γ3 and γ4 are
merged into a larger max-interval. On the other hand, when ` is located at y1, the
max-interval from γ4 is chosen, since its sum value 2 is the maximum among the 2
max-intervals at y1. In addition, it is important to note that sum values of the max-
intervals at y4 and y5 are increased by the value of upSum[2] = 1. Figure 7(b) shows
the resulting max-intervals at the end of merging slab-files. We can find that the max-
region of the entire data space is between max-intervals at y4 and y5, because the
max-interval at y4 has the highest sum value 3.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Dong-Wan Choi et al.

11

2

1

0

1

0

1

1

2

1

0

2
1

0

(1)

(0)

(1)

(0)

(0)(0)

y0

y1

y2
y3

y4

y5

y6

y7

γ 1 γ 2 γ 3 γ 4

(a) Four slab-files before merge

1

2

1

1

0

3

2

y0

y1

y2
y3

y4

y5

y6

y7

(b) A slab-file after merge
Fig. 7. An example to illustrate MergeSweep algorithm

We can derive the following lemma:

LEMMA 3. Let K be the number of rectangles in slab γ in a certain recursion. Given
m slab-files S1, ..., Sm of slabs γ1, ..., γm, s.t., γ = ∪mi=1γi, and a set of spanning rectangles
R′, MergeSweep algorithm returns the slab-file S of γ in O(K/B) I/O’s.

PROOF. Since we set m = Θ(M/B), a block of memory can be allocated as the input
buffer for each slab-file as well as the file containing spanning rectangles. Also, we use
another block of memory for the output buffer. By doing this, we can read a tuple of
slab-files or a spanning rectangle, or write a tuple to the merged slab-file in O(1/B)
I/O’s amortized.

The number of I/O’s performed by MergeSweep is proportional to the total num-
ber of tuples of all slab-files plus the number of spanning rectangles, i.e., O((|R′| +∑m
i=1 |Si|)/B). Let Ki be the number of rectangles in γi. Then |Si| = O(Ki) by Lemma

2. Also, Ki = Θ(K/m), since the 2K vertical edges of the K rectangles are divided into
m slabs evenly. Therefore,

∑m
i=1 |Si| = O(K), which leads O((|R′| + ∑m

i=1 |Si|)/B) =
O(K/B), since |R′| ≤ K.

5.2.4. Overall Algorithm. The overall recursive algorithm ExactMaxRS is presented in
Algorithm 2. We can obtain the final slab-file with regard to a set R of rectangles by
calling ExactMaxRS(R, γ, m), where the x-range of γ is (−∞,∞). Note that when the
input set of rectangles can fit in the main memory, we invoke PlaneSweep(R) (Line 8),
which is an in-memory algorithm that does not cause any I/O’s.

From returned S, we can find the max-region by comparing sum values of tuples
trivially. After finding the max-region, an optimal point for the MaxRS problem can be
any point in the max-region, as mentioned in Section 5.1.

The correctness of Algorithm 2 is proved by the following lemma and theorem:

LEMMA 4. Let I∗ be a max-interval at a h-line with regard to the entire space and
I∗1 ,...,I∗µ be consecutive pieces of I∗ for a recursion, each of which belongs to slab γi,
where 1 ≤ i ≤ µ. Then I∗i is also the max-interval at the h-line with regard to slab γi.

PROOF. Let sum(I) be the sum value of interval I. To prove the lemma by contra-
diction, suppose that there exists I∗i that is not a max-interval in γi. Thus, there exists
I ′ in γi such that sum(I ′) > sum(I∗i) on the same h-line. For any upper level of recur-
sion, if no rectangle spans γi, then sum(I ′) and sum(I∗i) themselves are already the
sum values with regard to the entire space. On the contrary, if there exist rectangles
that span γi at some upper level of recursion, then the sum values of I ′ and I∗i with

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:15

ALGORITHM 2: ExactMaxRS
Input: a set of rectangles R, a slab γ, the number of sub-slabs m
Output: a slab-file S for γ

1 if |R| > M then
2 Partition γ into γ1,...,γm, which have roughly the same number of rectangles.
3 Divide R into R1,...,Rm, R′, where Ri is the set of non-spanning rectangles whose left (or

right) vertical edges are in γi and R′ is the set of spanning rectangles.
4 for i = 1 to m do
5 Si ← ExactMaxRS(Ri, γi, m)
6 S ←MergeSweep(S1,...,Sm, R′)
7 else
8 S ← PlaneSweep(R)
9 return S

regard to the entire space will be sum(I ′) + Wspan and sum(I∗i) + Wspan, where Wspan

is the total sum of the weights of all the rectangles spanning γi in all the upper level
of recursion. In both cases above, sum(I ′) > sum(I∗i) with regard to the entire space,
which contradicts that I∗ is the max-interval with regard to the entire space.

THEOREM 1. The slab-file returned from the ExactMaxRS algorithm is correct with
regard to a given dataset R.

PROOF. Let ρ∗ be the max-region with regard to R, and similarly I∗ be the best
max-interval that is in fact the bottom edge of ρ∗. Then we want to prove that the
algorithm eventually returns a slab-file which contains I∗.

Also, by Lemma 4, we can claim that for any level of recursion, a component interval
I∗i of I∗ will also be the max-interval for its h-line within slab γi. By Algorithm 1, for
each h-line, the best one among the max-intervals at each h-line is selected (perhaps
also extended). Therefore, eventually I∗ will be selected as a max-interval with regard
to the entire space.

Moreover, we can prove the I/O efficiency of the ExactMaxRS algorithm as in the
following theorem:

THEOREM 2. The ExactMaxRS algorithm solves the MaxRS problem in
O((N/B) logM/B (N/B)) I/O’s, which is optimal in the EM model among all
comparison-based algorithms.

PROOF. The dataset needs to be sorted by x-coordinates before it is fed into Algo-
rithm 2. The sorting can be done in O((N/B) logM/B (N/B)) I/O’s using the textbook-
algorithm external sort.

Given a dataset with cardinality N sorted by x-coordinates, the decomposition of
the dataset along the x-dimension can be performed in linear time, i.e., O(N/B). Also,
by Lemma 3, the total I/O cost of the merging process at each recursion level is also
O(N/B), since there can be at most 2N rectangles in the input of any recursion. By the
proof of Lemma 1, there are O(logM/B (N/B)) levels of recursion. Hence, the total I/O
cost is O((N/B) logM/B (N/B)).

The optimality of this I/O complexity follows directly from the results of [Arge et al.
1993] and [Imai and Asano 1983].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Dong-Wan Choi et al.

6. APPROXIMATION ALGORITHM FOR MAXIMIZING CIRCULAR RANGE SUM
In this section, we propose an approximation algorithm, namely ApproxMaxCRS, for
solving the MaxCRS problem (Definition 2). Our algorithm finds an (1/4)-approximate
solution in O((N/B) logM/B (N/B)) I/O’s. We achieve the purpose by a novel reduction
that converts the MaxCRS problem to the MaxRS problem.

6.1. The ApproxMaxCRS Algorithm
Recall (from Definition 2) that the goal of the MaxCRS problem is to find a circle with
a designated diameter that maximizes the total weight of the objects covered. Denote
by d the diameter. Following the idea explained in Section 4, first we transform the
MaxCRS problem into the following problem: Let C be a set of circles each of which
is centered at a distinct object o ∈ O, has a diameter as specified in the MaxCRS
problem, and carries a weight w(o). We want to find a location p in the data space to
maximize the total weight of the circles in C covering p. Figure 8(a) shows an instance
of the transformed MaxCRS problem, where there are four circles in C, each of which
is centered at an object o ∈ O in the original MaxCRS problem. An optimal answer can
be any point in the gray area.

We will use the ExactMaxRS algorithm developed in the previous section as a tool
to compute a good approximate answer for the MaxCRS problem. For this purpose, we
convert each circle of C to its Minimum Bounding Rectangle (MBR). Obviously, the
MBR is a d × d square. Let R be the set of resulting MBRs. Now, apply ExactMaxRS
on R, which outputs the max-region with regard to R. Understandably, the max-region
(black area in Figure 8(b)) returned from the ExactMaxRS algorithm may contain loca-
tions that are suboptimal for the original MaxCRS problem (in Figure 8(b), only points
in the gray area are optimal). Moreover, in the worst case, the max-region may not
even intersect with any circle at all as shown in Figure 8(c).

p

(a) The transformed MaxCRS
problem

(b) MBRs of circles (c) Worst case

Fig. 8. Converting MaxCRS to MaxRS

Therefore, in order to guarantee the approximation bound, it is insufficient to just
return a point in the max region. Instead, our ApproxMaxCRS algorithm returns the
best point among the center of the max-region and four shifted points. The algorithm
is presented in Algorithm 3.

After obtaining the center point p0 of the max-region ρ returned from ExactMaxRS
function (Lines 2 - 4), we find four shifted points pi, where 1 ≤ i ≤ 4, from p0 as
shown in Figure 9 (Lines 5 - 6). We use σ to denote the shifting distance which de-
termines how far a shifted point should be away from the center point. To guarantee
the approximation bound as proved in Section 6.2, σ can be set to any value such that
(
√

2− 1)d2 < σ < d
2 . Finally, we return the best point p̂ among p0, ..., p4 (Lines 7 - 8).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:17

ALGORITHM 3: ApproxMaxCRS
Input: a set of circles C, the number of slabs m
Output: a point p̂

1 Construct a set R of MBRs from C
2 γ ← a slab whose x-range is (−∞,∞)
3 ρ← ExactMaxRS(R, γ, m)
4 p0 ← the center point of ρ
5 for i = 1 to 4 do
6 pi ← GetShiftedPoint(p0, i)
7 p̂← the point p among p0, ..., p4 that maximizes the total weight of the circles covering p
8 return p̂

p0

p1

p2p3

p4

σ

Fig. 9. The illustration of shifting points

Table II. List of symbols in Section 6.2

Symbol Description
d the diameter of circles (a given parameter of the MaxCRS problem)
p0 the centroid of the max-region returned by ExactMaxRS
pi (i ∈ [1, 4]) a shifted point described in Algorithm 3
ci (i ∈ [0, 4]) the circle with diameter d centering at point pi
r0 the MBR of c0
O(s) the set of objects covered by s, where s is a circle or an MBR
W (s) the total weight of the objects in O(s)

Note that Algorithm 3 does not change the I/O complexity of the ExactMaxRS algo-
rithm, since only linear I/O’s are required in the entire process other than running the
ExactMaxRS algorithm. Note that Line 6 of Algorithm 3 requires only a single scan of
C.

6.2. Approximation Bound
Now, we prove that the ApproxMaxCRS algorithm returns a (1/4)-approximate answer
to the optimal solution, and also prove that this approximation ratio is tight with
regard to this algorithm. To prove the approximation bound, we use the fact that a
point p covered by the set of circles (or MBRs) in the transformed MaxCRS problem is
truly the point such that the circle (or MBR) centered at p covers the corresponding set
of objects in the original MaxCRS problem. The main symbols used only in this section
are summarized in Table II.

LEMMA 5. For each i ∈ [0, 4], let ci be the circle centered at point pi, r0 be the MBR
of c0, and O(s) be the set of objects covered by s, where s is a circle or an MBR. Then
O(r0) ⊆ O(c1) ∪O(c2) ∪O(c3) ∪O(c4).

PROOF. As shown in Figure 10, all the objects covered by r0 are also covered by c1,
c2, c3, or c4, since (

√
2− 1)d2 < σ < d

2 .

Let W (s) be the total weight of the objects covered by s, where s is a circle or an
MBR. Then, we have:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Dong-Wan Choi et al.

c0

c4

c3

c1

c2

r0

(a) σ = (
√
2− 1) d

2

c0

c4

c3

c1

c2

r0

(b) σ = d
2

Fig. 10. Lemma 5

p1

p2p3

p4

p*

p0

Fig. 11. Theorem 4

LEMMA 6. W (r0) ≤ 4 max
0≤i≤4

W (ci).

PROOF.

W (r0) ≤
∑

1≤i≤4
W (ci) (by Lemma 5)

≤ 4 max
0≤i≤4

W (ci)

THEOREM 3. The ApproxMaxCRS algorithm returns a (1/4)-approximate answer
to the MaxCRS problem.

PROOF. Recall that p̂ is the point returned from Algorithm 3 as the approximate
answer to the MaxCRS problem. Let point p∗ be an optimal answer for the MaxCRS
problem. Denote by r̂ and r∗ the MBRs centered at point p̂ and p∗, respectively. Like-
wise, denote by ĉ and c∗ be the circles centered at point p̂ and p∗, respectively. The goal
is to prove W (c∗) ≤ 4W (ĉ).

We achieve this purpose with the following derivation:

W (c∗) ≤W (r∗) ≤W (r0) ≤ 4 max
0≤i≤4

W (ci) = 4W (ĉ)

The first inequality is because r∗ is the MBR of c∗. The second inequality is because
p0 is the optimal solution for the MaxRS problem on R. The last equality is because
ApproxMaxCRS returns the best point among p0, ..., p4.

THEOREM 4. The 1/4 approximation ratio is tight for the ApproxMaxCRS algo-
rithm.

PROOF. We prove this by giving a worst case example. Consider an instance of the
transformed MaxCRS problem in Figure 11 where each circle has weight 1. In this
case, we may end up finding a max-region centered at p0 using the ExactMaxRS algo-
rithm. This is because both p0 and p∗ are covered by 4 MBRs, and MergeSweep (see
Algorithm 1) chooses an arbitrary one in such a tie case. Supposed that p0 is the cen-
ter of the max-region returned from ExactMaxRS, we will choose one of p1, ..., p4 as an
approximate solution. Since each of p1, ..., p4 is covered by only 1 circle, our answer is
(1/4)-approximate, because the optimal answer p∗ is covered by 4 circles.

7. THEORETICAL STUDY ON THE PROBLEM OF FINDING ALL THE MAX-REGIONS
In this section, we discuss an extended version of the MaxRS problem, namely All-
MaxRS, where all the max-regions are retrieved while only one max-region is returned

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:19

Table III. List of symbols in Section 7.1

Symbol Description
k the count of rectangles covering each max-region w.r.t. R
ρk a max-region covered by k rectangles
Mk the set of all ρk ’s
|Mk| the upper bound of the number of all ρk ’s

in Section 5. This is a natural extension in the sense that there can be many max-
regions whose location-weights are equal to the maximum especially when a dataset
is dense. By slightly modifying Definition 5, the AllMaxRS problem can be defined as
follows:

Definition 7 (AllMaxRS Problem). Given a set R of N rectangles with the same
size, find all the max-regions w.r.t. R.

Surprisingly, it is not trivial at all to extend the ExactMaxRS algorithm for solving
the AllMaxRS problem. The straightforward extension of ExactMaxRS can be very in-
efficient especially when there are lots of tied max-intervals. In Section 7.1, we first
examine the upper bound of the number of tied max-regions, and thereby prove that
a simple extension of ExactMaxRS is significantly inefficient in terms of the I/O com-
plexity in Section 7.2.

7.1. The Upper Bound of the Number of Max-regions
In this section, we examine the upper bound of the number of max-regions; at most
how many tied max-regions w.r.t. R can exist in the extreme case. For the clarity of
our argument, we first assume that the weight of every rectangle is equally set to 1
(i.e., unweighted), and then generalize the argument to the case where the weights of
rectangles can be different.

In the unweighted version of the AllMaxRS problem, max-regions are just the most
intersecting regions. Let us use the term count, instead of the location-weight, to refer
to the number of intersecting rectangles. We use k to denote the count of each max-
region w.r.t. R, and use ρk to denote such a max-region covered by k rectangles. Also,
we use Mk to denote the set of all ρk ’s, which should be returned by the AllMaxRS
problem. Then our goal is to find the upper bound of |Mk|, denoted by |Mk|. New
symbols frequently used in this section are presented in Table III.

We first focus on figuring out how many max-regions can exist inside a rectangle as
follows:

LEMMA 7. There exist at most k2 max-regions inside a rectangle r ∈ R.

PROOF. See appendix.

Lemma 7 derives the following important corollary:

COROLLARY 1. |Mk| < k2N
k = kN

PROOF. This is proved by the fact that there are at most k2N max-regions for N
rectangles by Lemma 7 and each max-region is covered by k different rectangles. Since
not every rectangle can have k2 max-regions inside it, the total number of max-regions
cannot exceed k2N/k.

We now examine the upper bound of |Mk| which is tight in the worst case as the
following theorem:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Dong-Wan Choi et al.

THEOREM 5. Given a set R of N unweighted rectangles with the same size, there
can exist at most Θ(kN) max-regions in the arrangement of R, where k is the count of
each max-region.

PROOF. Let N = m2k for some m ≥ 2 without loss of generality. This can be seen
that R consists of k plates of m × m rectangles (see Figure 12(a)). By overlapping k
plates as shown in Figure 12(b), we have (mk − (k − 1))2 max-regions even if this may
not be the arrangement of R that maximizes |Mk|. Thus, we have:

|Mk| ≥ |Mk| = (mk − (k − 1))2 = m2k2 − 2mk(k − 1) + (k − 1)2

= kN − 2(k − 1)
√
kN + (k − 1)2 (by N = m2k)

=
N2

f
− 2N2

f

√
1

f
+ 2N

√
1

f
+
N2

f2
− 2N

f
+ 1 (by k ← N

f)

=
N2

f
(1− 2

√
1

f
+

1

f
) + 2N

√
1

f
− 2N

f
+ 1

>
N2

4f
+ 2N

√
1

f
− 2N

f
(by f = m2 ≥ 4)

=
kN

4
+ 2
√
kN − 2k. (1)

Finally, by considering Corollary 1 together with (1), for all k ≤ N
4 , there exists c > 0

such that:

ckN ≤ |Mk| < kN.

m

m

(a) A plate of m×m rectangles

m× k

k

k − 1

(b) k overlapping plates
Fig. 12. The illustration of Theorem 5

Theorem 5 is based upon the assumption that the weight of every rectangle is
equally set to 1. By the following theorem, we claim that the same argument is also
valid with respect to a set of weighted rectangles:

THEOREM 6. Given a set R of N weighted rectangles with the same size, let Wmax

denote the location-weight of each max-region, and k denote the maximum number of in-
tersecting rectangles whose total weight equals Wmax. Then the number of max-regions
w.r.t. R is less than kN .

PROOF. See appendix.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:21

7.2. A Simple Extension of ExactMaxRS
By slightly modifying the ExactMaxRS algorithm that solves the MaxRS problem, we
can also solve the AllMaxRS problem. To retrieve all the max-regions w.r.t. R, each
slab-file should maintain all the tied max-intervals, instead of one max-interval, on
every h-line. Thus, each tuple of a slab-file has the following form:

t =< y, {[x1, x2], [x3, x4], ..., [xi, xj]}, sum >

where {[x1, x2], [x3, x4], ..., [xi, xj]} is the set of separated max-intervals whose location-
weights are equal to sum. In the merging phase of ExactMaxRS, for each h-line, we
generate this set of separated max-intervals from multiple tuples with the maximum
sum among all the tuples on the h-line. By doing this, it is guaranteed that every max-
region w.r.t. R must be retrieved, since all the max-intervals are obviously contained
in the final slab-file. We call this simple extension of ExactMaxRS SimpleAllMaxRS.

However, the SimpleAllMaxRS algorithm is significantly inefficient in the worst case
where there are many tied max-intervals on a same h-line in every recursion. The
worst case I/O complexity is proved as the following theorem:

THEOREM 7. SimpleAllMaxRS solves the AllMaxRS problem in
O((kN2/B) logM/B (N/B)) I/O’s in the worst case, where k is the maximum num-
ber of rectangles containing a max-region w.r.t. R.

PROOF. By Theorems 5 and 6, if there are K rectangles in γ, there can be at most
Θ(kK) max-regions in γ. Even though some of the rectangles in γ can be cropped by
the boundaries of γ, they do not change the upper bound of the number of max-regions
in the worst case.

Furthermore, to determine the top of each max-region, we should maintain all the
max-intervals on every h-line that intersects with the max-region. Thus, every max-
interval should be duplicated in many times, which is in fact at most O(N) times in
the worst case.

Therefore, the number of tuples in the slab-file of γ is at most Θ(kK2) in the worst
case. By the proofs of Lemmas 2 and 3, we can claim that the MergeSweep algorithm
requires O(kK2/B) I/O’s to create a slab-file of γ. Therefore, the total I/O cost of the
worst case is O((kN2/B) logM/B (N/B)), which follows from the proof of Theorem 2.

Besides its high I/O complexity, another crucial disadvantage of SimpleAllMaxRS lies
in the fact that it is not an output-sensitive algorithm. Thus, regardless of the number
of max-regions to be returned, SimpleAllMaxRS maintains all the max-intervals in
every slab file, even if those local max-intervals are not truly the global max-intervals
w.r.t. R. This limitation is due to the fact that, in the basic processing scheme of Exact-
MaxRS, we cannot be sure which max-intervals are also the global max-intervals until
the final merging process is finished.

8. TWO-PHASE OUTPUT-SENSITIVE ALGORITHM FOR FINDING ALL THE MAX-REGIONS
Motivated by the limitation of SimpleAllMaxRS, we devise a two-phase output-
sensitive algorithm, called TwoPhaseMaxRS, for solving the AllMaxRS problem.
TwoPhaseMaxRS exactly retrieves all the max-regions inO(((N+T)/B) logM/B (N/B))

I/O’s, where T is the number of max-regions to be returned.

8.1. Overview
We first outline the intuition behind TwoPhaseMaxRS. To this end, let us imagine
a tournament where multiple co-winners are allowed, which is a metaphor for the
process of SimpleAllMaxRS. In this tournament, to be the final winners (max-intervals
w.r.t. R), each player (each max-interval w.r.t. a slab) should beat every competitor in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Dong-Wan Choi et al.

every single match (in the merging phase of every recursion). In this perspective, an
important observation is that SimpleAllMaxRS just sends all the winners up to the
next level until the final winners are decided. This approach is natural, but could be
inefficient in the sense that not all of the winners can be the final winners.

Our remedy for this problem is to keep track of the path information of all the final
winners, and thereby considering only the winners who will be selected as the final
winners. To this end, we adopt a two-phase approach. In the first phase, we record
only the score of the winners for each match in a bottom-up manner, as shown in
Figure 13(a). After that, in the second phase, we downwardly mark the players only
who have the maximum score as recorded in the first phase, as shown in Figure 13(b).
Finally, we return only the winners who are marked (i.e., P4 and P6 in Figure 13).

P1

17

17

17 15

1515171517

17

17

10

1010 7

P2 P3 P4 P5 P6 P7 P8

(a) The first phase

17

17

17 15

1515171517

17

17

10

1010 7

P1 P2 P3 P4 P5 P6 P7 P8

(b) The second phase
Fig. 13. The illustration of marking winners in a tournament

Now we apply the above intuition to the AllMaxRS problem. To build the path in-
formation of all the max-regions, rather than maintaining all the max-intervals per
h-line, we store h-lines themselves augmented with their maximum location-weights
in slab-files. For each h-line in slab-files, we mark the h-line, only if it actually contains
any global max-intervals (i.e., final winners). After that, by considering only marked
h-lines in all these slab-files, we can finally construct all the max-regions w.r.t. R effi-
ciently.

The overall process of the TwoPhaseMaxRS algorithm is as follows:
In the first phase,

(1) During the top-down process, recursively divide the data space (and the set of rect-
angles) vertically into m slabs (and m subsets of rectangles), as if doing in Exact-
MaxRS and SimpleAllMaxRS.

(2) During the bottom-up process, construct the slab-file for each slab by merging the
slab-files in the lower level of recursion.

In the second phase,

(1) During the top-down process, recursively mark all the h-lines in each slab-file that
could constitute the path information of all the global max-intervals.

(2) During the bottom-up process, retrieve all the max-regions w.r.t. R by gradually
constructing max-regions only laid on marked h-lines.

In this process, we will encounter the following questions: (1) How to reorganize the
structure of the slab-file in such a way that the path information of all the max-regions
will be stored; (2) how to merge such reorganized slab-files; (3) how the marking pro-
cess is performed to complete the path information of all the max-regions; (4) how to
finally construct the max-regions using the path information built in slab-files.

While addressing all these questions, the most important and challenging, in partic-
ular theoretically, mission is that the entire process must be performed in an output-
sensitive manner.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:23

8.2. The TwoPhaseMaxRS Algorithm
We now address each of the above questions, and describe the details of the TwoPhase-
MaxRS algorithm.

8.2.1. Slab-files Revisited. For the TwoPhaseMaxRS algorithm, we use slab-files for a
different purpose from those of ExactMaxRS and SimpleAllMaxRS. Instead of directly
obtaining the solution (i.e., max-region) from slab-files, we store (acquire) the path
information in (from) slab-files. Therefore, each slab-file needs to record no longer
max-intervals, but just h-lines attached with location-weights and other additional
information.

Now each tuple t of slab-files has the following form to represent an h-line:

t = < y, sum, marked > .

y and sum are defined as before, but note that the x-range [x1, x2] is removed. Thus,
from t, we cannot know exact max-intervals at y, but only the fact that there exist one
or more max-intervals at y and their location-weights are equal to sum. In order to
mark h-lines, we use marked that can be either true or false. When we construct max-
regions from the lowest level of recursion, only marked (i.e., marked = true) h-lines are
considered.

Example 3. Figure 14(a) introduces a running example to illustrate the TwoPhase-
MaxRS algorithm. Assuming that every rectangle’s weight is 1, there are three max-
regions (black-filled regions) each of which is covered by three rectangles. Given m = 4
(i.e., four slabs), Figure 14(b) shows the corresponding slab-files in the modified form.
Since we do not consider the x-ranges of max-intervals, each tuple (i.e., h-line) is rep-
resented as a line segment spanning its slab.

γ1 γ2 γ3 γ4

y0

y1

y2
y3
y4
y5

y6

y7

(a) Multiple max-regions w.r.t R

γ1 γ2 γ3 γ4

y0

y1

y2
y3
y4
y5

y6

y7

1

2
1

0

1

2

(1)

(0)

1

0

(1)

(2)

1

0
1
(1)

(0)

0

1

2

3

1

0

2

(b) Slab-files (revisited)
Fig. 14. A running example to illustrate TwoPhaseMaxRS

8.2.2. First Phase. We now explain the details of the first phase. The top-down dividing
scheme of TwoPhaseMaxRS is exactly the same as ExactMaxRS or SimpleAllMaxRS;
we therefore describe only the revised merging process, called PathSweep, which is
performed during the bottom-up process.

The goal of PathSweep is basically to generate a merged slab-file for the upper level
of recursion, and hence its basic flow, as represented in Algorithm 4, is very similar
to MergeSweep. One difference is that in PathSweep we do not need a function to
generate a (extended) single interval from tied several max-intervals (recall a function
“GetMaxInterval” in MergeSweep). Instead, we generate a tuple with the maximum

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Dong-Wan Choi et al.

sum, which represents just the h-line where the current sweeping line is located (Lines
12 - 13). It is worth noting that tslab[i] indicates a tuple in Si having the maximum sum
at the current sweeping line, and it can be below the tuple in the upper level slab-file
that it actually contributes to. Thus, a tuple in a slab-file does not always contribute to
the tuple in the same line in the upper level slab-file. Finally, if there has been a change
about the current max-intervals, the newly generated tuple is inserted into the slab-
file to be returned (Lines 14 - 15). Note that we can always know the max-intervals
at the current sweeping line during the entire sweeping process, even though such
max-intervals are not stored in slab-files.

ALGORITHM 4: PathSweep
Input: m slab-files S1, ..., Sm for m slabs γ1, ..., γm, a set of spanning rectangles R′

Output: a slab-file S for slab γ =
m⋃
i=1

γi. Initially S ← φ

1 for i = 1 to m do
2 upSum[i]← 0
3 tslab[i]← < −∞, 0, false >
4 while sweeping the horizontal line ` from bottom to top do
5 if ` meets the bottom of ro ∈ R′ then
6 upSum[j]← upSum[j] + w(o), ∀j s.t. ro spans γj
7 if ` meets the top of ro ∈ R′ then
8 upSum[j]← upSum[j]− w(o), ∀j s.t. ro spans γj
9 if ` meets a set of tuples T = {t | t.y = `.y} then

10 foreach t ∈ T do
11 tslab[i]← t, s.t. t ∈ Si

12 if ` meets any tuples or edges of spanning rectangles then
13 tmax ←< `.y, max

i∈[0,m]
{tslab[i].sum+ upSum[i]}, false >

14 if there has been a change from the previous tmax.sum or the set of max-intervals that
contributed to the previous tmax then

15 S ← S ∪ {tmax}

16 return S

Example 4. Figure 15 illustrates the result of PathSweep by using Example 3,
which is the resulting slab-file of the entire space. From this final slab-file, we know
that one or more max-regions are laid on the h-lines at y2 and y4, and the global maxi-
mum sum is 3.

LEMMA 8. Let K be the number of rectangles in slab γ in a certain recursion. Given
m slab-files and a set of spanning rectangles, the PathSweep algorithm returns the slab-
file of γ in O(K/B) I/O’s.

PROOF. Every tuple in a slab-file complying to the modified form corresponds to a
unique h-line, and the number of h-lines in γ is O(K) by Lemma 2. Similar to the proof
of Lemma 3, the I/O cost is proportional to the total number of tuples in files, which
implies that the total I/O cost is O(K/B).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:25

y0

y1

y2
y3
y4
y5

y6

y7

4⋃
i=1

γi = (−∞,∞)

1

2

3
2
3
2

1

0

Fig. 15. A merged slab-file for the entire space

8.2.3. Second Phase. By using the slab-files that are created in the first phase, in the
second phase we actually construct the max-regions. During the top-down process, we
recursively mark every h-line whose maximum location-weight (i.e., sum) is the same
as that of the h-line already marked in the upper level of recursion. Through this,
we can build the path information of the max-regions w.r.t. R. After that, during the
bottom-up process, we retrieve all the max-regions by sending up only max-regions
that are laid on the marked h-lines in slab-files.

Top-down process.
Let us first examine how we can mark the h-lines that constitute the path information
of the final max-regions. Marking h-lines is basically the process of finding out where
(which slabs) each max-region comes from over the entire recursions. This marking
process, called MarkSweep, can be done by sweeping a horizontal line downwardly
across the slab-files together with their merged slab-file and the file of spanning rect-
angles.

The details of MarkSweep are shown in Algorithm 5. One merged slab-file S, m
slab-files S1, ..., Sm, and the file R′ of spanning rectangles are given as the input. As
mentioned in Section 8.2.1, each tuple t of slab-files indicates that there exist one or
more max-intervals with t.sum at t.y. Therefore, as an initial step, in the case of final
slab-file for the entire space, we mark every h-line (i.e., tuple) whose sum equals the
global maximum sum, denoted by Wmax (Lines 1 - 4).

Next, we need to determine where all the marked h-lines in S originate from. To this
end, let us first define a notion “promote” as follows:

Definition 8 (Promotion). Let S be a slab-file of γ, and Si be a slab-file of γi ⊂ γ.
Then we say that ti ∈ Si is promoted to t ∈ S when ti is selected in the merging process
as a tuple with the maximum sum (plus the total weight of spanning rectangles) at t.y.

Intuitively, “a tuple is promoted” means that the tuple is selected as a winner in the
merging step. For example, in Figure 14(b), the tuple at y1 in γ4 is promoted to the
tuple at y1 in Figure 15, but tuples at y1 in γ1 or γ2 are not.

It is worth noting that a tuple, say ti ∈ Si, can be below its promoted tuple t ∈ S that
ti actually contributes to. For example, the tuple at y6 in Figure 15 actually originates
from the tuple at y5 in γ1 in Figure 14(b).

This brings us a question how we can determine whether a tuple in S has been
promoted by a tuple in Si. This can be answered by the following lemma:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Dong-Wan Choi et al.

LEMMA 9. Let S be a slab-file of γ, and Si be a slab-file of γi ⊂ γ. Then t ∈ S is
promoted by ti ∈ Si iff . (1) ti is in the same line as t or immediately below t, and (2)
ti.sum equals t.sum−Wspan[i], where Wspan[i] is the total weight of rectangles spanning
γi at t.y.

PROOF. (1) implies that there is no tuple in Si at any horizontal line between ti.y
and t.y. Therefore, before Si is merged, in γi, the maximum location-weight at t.y is
ti.sum by the definition of the tuple in slab-files. When we merge all Si’s along with
the set R′ of spanning rectangles (by PathSweep), we increase the location-weight
accordingly by the total weight of spanning rectangles. Thus, we must also increase
the location-weight by Wspan[i] when the sweeping line is at t.y, and hence the maxi-
mum location-weight at t.y in γi becomes ti.sum + Wspan[i]. Since, in γ, the maximum
location-weight at t.y is specified as t.sum by S and t.sum = ti.sum+Wspan[i] by (2), ti
must be selected for (promoted to) a tuple at t.y in S (i.e., t ∈ S).

Our next step is to find and mark all the tuples (i.e., h-lines) in Si’s that have been
promoted to the tuples already marked in S. We use maxSum[i] to maintain t.sum −
Wspan[i], as mentioned in Lemma 9, for each marked t ∈ S. upSum[i] is also used as
before. When the sweeping line encounters a marked tuple t ∈ S, we updatemaxSum[i]
to be compared with sum values of tuples in Si’s (Lines 8 - 11). When the sweeping line
encounters a tuple ti ∈ Si, we mark ti only if ti can be promoted to the current marked
tuple tmax ∈ S based on Lemma 9 (Lines 13 - 14). When the sweeping line encounters
the top (bottom) of a spanning rectangle that spans γj , we subtract (add) the weight
of the spanning rectangle from (to) upSum[j] (Lines 15 - 18). Note that the way of
tackling the weight of each spanning rectangle is exactly the same as PathSweep even
though the sweeping direction here is the opposite. This is why we can just add current
upSum[i] in order to calculate maxSum[i] (Line 11).

ALGORITHM 5: MarkSweep
Input: a slab-file S of γ, m slab-files S1, ..., Sm for m sub-slabs of γ, a set of spanning rectangles

R′

1 if γ is the entire space then
2 foreach t ∈ S do
3 if t.sum =Wmax then
4 t.marked← true

5 for i = 1 to m do
6 maxSum[i]← 0, upSum[i]← 0

7 while sweeping the horizontal line ` from top to bottom do
8 if ` meets t ∈ S, s.t. t.marked = true then
9 tmax ← t

10 for i = 1 to m do
11 maxSum[i]← tmax.sum+ upSum[i]

12 if ` meets ti ∈ Si then
13 if (maxSum[i] = ti.sum) ∧ (ti is immediately below or in the same line as tmax) then
14 ti.marked← true

15 if ` meets the bottom of ro ∈ R′ then
16 upSum[j]← upSum[j] + w(o), ∀j s.t. ro spans γj
17 if ` meets the top of ro ∈ R′ then
18 upSum[j]← upSum[j]− w(o), ∀j s.t. ro spans γj

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:27

Example 5. Figure 16 shows the result of our example after MarkSweep. In Figure
16(a), only h-lines with sum = 3 are marked (represented as bold lines) in the final
slab-file, due to Wmax = 3. Also, upSum[i]’s at each marked h-line are given as numbers
in parenthesis. Figure 16(b) shows four slab-files where h-lines to be promoted in the
final slab-file are marked. For example, a tuple at y0 in γ3 is marked because it is
immediately below the marked tuple at y2 and Wmax + upSum[i] = 3 + (−2) = 1 equals
its sum = 1.

4⋃
i=1

γi = (−∞,∞)

1

2

3
2
3
2

1

0

y0

y1

y2
y3
y4
y5

y6

y7

(−1) (−2)

(−2)

(0) (0)

(0)(−1)(0)

(a) The final slab-file after MarkSweep

γ1 γ2 γ3 γ4

y0

y1

y2
y3
y4
y5

y6

y7

1

2
1

0

1

2

(1)

(0)

1

0

(1)

(2)

1

0
1
(1)

(0)

0

1

2

3

1

0

2

(b) Four slab-files after MarkSweep
Fig. 16. The example to illustrate the MarkSweep algorithm

LEMMA 10. Let K be the number of rectangles in slab γ in a certain recursion.
Given a slab-file S of γ, m slab-files S1, ..., Sm of slabs γ1, ..., γm, s.t., γ = ∪mi=1γi, and a
set R′ of spanning rectangles, the MarkSweep algorithm is performed in O(K/B) I/O’s.

PROOF. Let us first address that the sweeping direction of MarkSweep is exactly
the opposite to that of PathSweep, but every slab-file is sorted in ascending order of
y-coordinates. Fortunately, this can be easily done without any overhead in terms of
I/O cost. Consider tuples residing in two consecutive blocks Bi−1 and Bi in a slab-file
such that Bi is next to Bi−1 in ascending order. Thus, all tuples in Bi are not below any
tuples in Bi−1. To access tuples downwardly, we can just load Bi−1, instead of Bi+1,
followed by Bi, and sort tuples loaded in memory in descending order of y-coordinates.
This does not cause any additional I/O’s.

In common with PathSweep and MergeSweep, the total I/O cost is proportional to
the total number of tuples in files, which is O(|S|/B + |S1|/B + ...+ |Sm|/B + |R′|/B) =
O(K/B)

Region-files.
Now we have all the path information of final max-regions, which are built in slab-files.
To actually store and return max-regions, we need another type of data structures for
each slab, called region-files. A region-file of slab γ is basically the set of rectangles that
are necessary for constructing the final max-regions residing in γ. More specifically,
each rectangle in a region-file can be regarded as an intermediate result of a final max-
region, which is in fact identical to rmax in Definition 6. We use the term max-range to
distinguish this intermediate rectangle from its final max-region. Each max-range in
a region-file is formally defined as follows:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Dong-Wan Choi et al.

Definition 9 (Max-range). Let t be a marked tuple in a slab-file of slab γ. Then a
max-range u is a rectangle in γ such that (1) the bottom-edge of u is on t, (2) the x-
range of u is the x-range of a certain max-interval on t, denoted by [x1, x2], and (3)
the top-edge of u is on the lowest h-line such that the location-weight of [x1, x2] at the
h-line is not equal to t.sum.

It is important to note that a max-range is not necessarily fully-contained between
two consecutive h-lines, unlike rmax in Definition 6. This is because, in PathSweep, we
insert a new tuple (i.e., h-line) even when a new max-interval with the same location-
weight is added, which is different from that a tuple (i.e., max-interval) is inserted only
if the maximum location-weight is changed in MergeSweep. Each max-range needs
both the x-range and the y-range as specified by the following tuple u:

u =< [y1, y2], [x1, x2] > .

Example 6. Figure 17 shows four region-files that are created from our example in
Figure 14(a). Note that spanning rectangles are not counted here. Each max-range is
represented as a gray-filled rectangle attached with its sum value. Thus, the region-
file of γ1 is empty. Other rectangles represent the intermediate results generated when
we initially create the region-files at the lowest level (i.e., in memory). Among these
intermediate results, we store and send up only ones whose bottom edges are on the
marked h-lines, which are the max-ranges.

γ1 γ2 γ3 γ4

y0

y1

y2
y3
y4
y5

y6

y7

1

2

1

1 1

2 2

1 1

1

1

2

2

1

3

Fig. 17. Four region-files

LEMMA 11. Let Ti be the number of max-regions w.r.t. R residing in slab γi, i.e.,
their side edges are in slab γi. Then the number of max-ranges in the corresponding
region-file Xi is O(Ti).

PROOF. We prove this lemma by showing that each max-range in Xi contains at
least one max-region w.r.t. R. Let ui be a max-range in Xi. By Definition 9, the bottom
edge of ui is on a marked h-line ti ∈ Si, where Si is the slab-file corresponding to Xi.
Since ti is marked, we can guarantee that ti is eventually promoted to a marked h-
line tmax ∈ S, where S is the final slab-file w.r.t. the entire space. Thus, after all the
merging steps, the maximum location-weight at tmax.y in γi, which could be either in
the same line as ti or above ti, will be ti.sum+Wspan = tmax.sum = Wmax, where Wspan

is the total weight of all the spanning rectangles in γi at tmax.y.
Now we show that tmax must intersect ui (i.e., ui.y1 ≤ tmax.y < ui.y2). This implies

that there exists a region in ui whose location-weight is Wmax after all the merging
steps, which completes the proof of this lemma. It is obvious to prove ui.y1 ≤ tmax.y, as
ui.y1 = ti.y ≤ tmax.y.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:29

To prove tmax.y < ui.y2 by contradiction, suppose ui.y2 ≤ tmax.y. Let t′i ∈ Si be
another h-line that contains the top edge of ui. Then we have ti.y < t′i.y ≤ tmax.y.

Such t′i must exist in Si, because the x-range of ui, i.e., [ui.x1, ui.x2], will be removed
from the set of max-intervals above t′i by Definition 9 (recall that a new tuple is inserted
by PathSweep whenever there has been any changes in the max-intervals). Moreover,
[ui.x1, ui.x2] is always the max-interval w.r.t. any upper level slabs. This is because
ti is a marked tuple, which means [ui.x1, ui.x2] can never be discarded by other max-
intervals during the entire merging step. Since [ui.x1, ui.x2] is always removed from the
set of max-intervals above t′i.y, there is always a tuple at t′i.y in any slab-files merged
from Si.

Let txi denote the tuple, promoted from ti, in the x-th following merged slab-file,
that is, the resulting slab-file after x merging steps from Si. By Lemma 9, ti must be
immediately below or in the same line as its next promoted tuple. Then we have:

ti.y = t0i .y ≤ t1i .y ≤ t2i .y ≤ ... ≤ tα−1i ≤ tαi = tmax.y. (2)

Also, there is no tuple between txi and tx+1
i in the x-th following merged slab-file for

any x ∈ [0, α− 1] by Lemma 9. This contradicts that, at t′i.y, there exists a tuple in any
following merged slab-file such that ti.y < t′i.y ≤ tmax.y by the initial assumption.

The bottom-up process.
Now we are ready to actually construct max-regions. The basic processing scheme of
constructing max-regions is similar to that of constructing slab-files in the first phase.
Thus, in a bottom-up manner, we continuously merge region-files, and thereby the final
region-file of the entire space will be created, which contains all the max-regions w.r.t.
R. More specifically, each merging step is the process of finding intersections of the
max-ranges in each region-file and the marked h-line in the upper level slab-file.

The details of each merging step, called IntersectSweep, are presented in Algorithm
6. IntersectSweep also uses a bottom-up sweeping scheme, andm region-files are given
for the input, together with one merged slab-file, m slab-files, and the file of spanning
rectangles. We use upSum[i] as before, and specially maintain a pair of lists Li and
actLi for each region file Xi to keep track of active max-ranges in Xi, both of which
are initially empty (Lines 1 - 2). When the sweep line encounters spanning rectangles,
we update upSum[i] values accordingly as before (Lines 4 - 7). Especially, when the
sweep line encounters the bottom of any max-range, we insert the max-range to the
appropriate list Li (Lines 14 - 15). When the sweep line encounters a marked h-line in
the merged slab-file, we find the intersections of this h-line and all the max-ranges in
Li’s, and insert those max-ranges into the corresponding active list actLi’s (Lines 21 -
24).

More precisely, we scan all the max-ranges currently residing in Li’s, and check if
they intersect the sweeping line `. If a max-range u is intersecting `, we also check
whether the weight of the tuple ti ∈ Si that contributes to u’s bottom edge plus the
total weight of the current spanning rectangles equals the weight of the marked h-line
t under consideration (i.e., t.sum) (Line 22). Then we update u.y1 to be the y-coordinate
of t, as pictured in Figure 18(a), assuming that u′ is the next max-range to be returned
in the next region-file (i.e., X) (Line 23). To activate u, we move u from Li to actLi,
which indicates that u has ever met a marked h-line (Line 24). It is not difficult to
notice that the purpose of this process is to determine the bottom boundary of the next
max-range to be returned.

Now we should update the top boundaries of active max-ranges, which are residing
in actLi’s. We observe that the top of a max-range is changed only when encountering
spanning rectangles. As shown in Figure 18(a), the original top of u should be changed
to the top of u′, which is the top of the lowest spanning rectangles involved in u. Thus,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Dong-Wan Choi et al.

whenever we encounter the top of a rectangle spanning slab γj , we examine each ac-
tive max-range in the corresponding actLj and update its y2 accordingly by comparing
their original y2 (Lines 8 - 10). Then each updated max-range is inserted into the next
region-file to be returned (Line 11). Furthermore, the area cropped from original u may
encounter a marked h-line later, and hence it is moved again to Li from actLi (Lines
12 - 13).

However, we still have an issue to construct all the max-regions w.r.t. R, which is the
case of spanning max-ranges as shown in Figure 18(b). Our strategy for this case is to
use upSum[i] values, which represent the total weight of all the rectangles that span
the i-th slab at the current sweeping line, as before. If the current upSum[i] value for
a slab γi is equal to t.sum, then we construct the spanning max-range uspan (Lines 18
- 20). A more challenging problem in constructing uspan is to know the y-coordinate of
the top of uspan. Fortunately, we can always know this y-coordinate by merging with
the max-range created in Li−1, which is supported by the following lemma:

LEMMA 12. Let Li be the set of active max-ranges in a region-file Xi, and ui be a
spanning max-range created in Li. Then there should exist a merge-able max-range
ui−1 created in Li−1.

PROOF. Let Rspan be the set of spanning rectangles covering ui, and ro be the right-
most one in Rspan. Then there must be a slab γj that contains the left side edge of
ro, which means ro does not span γj . Since ro is the right-most rectangle in Rspan, all
other rectangles in Rspan should either span or intersect γj . Therefore, there exists an
intersecting area covered by all the rectangles in Rspan in γj , and hence the area is
also a max-range, denoted by uj . Then uj cannot span γj since ro does not span γj . If
j = i − 1, this lemma is proved, since it is obvious that uj can be merge-able with ui.
If j < i− 1, we can also claim that there should be another spanning max-range ui−1,
since all the rectangles in Rspan must span γi−1. It is not difficult to know that this ui−1
is also merge-able with ui, since they consist of the same set of rectangles Rspan.

Note that this is feasible because we scan Li’s from left to right (i.e., i = 1 to m).

t

u.y2

u
u′

u.y1 ti

(a)

t

uspan

(b)
Fig. 18. The illustration of the IntersectSweep algorithm

Example 7. Figure 19 shows the final region-file containing all the final max-
regions that are shown in Figure 14(a), which is merged from four region-files shown in
Figure 17 considering the final slab-file shown in Figure 16(a). Each final max-region
is represented as a black-filled rectangle, and max-ranges in four region-files are also
represented here as empty rectangles.

When the sweeping line is at y2, we find all the max-ranges intersecting the line
since the h-line at y2 in the final slab-file is marked. For each max-range intersecting
the sweeping line y2, we check if the weight of the max-range is equal to the weight of
the marked h-line at y2 in the final slab-file (i.e., 3). The weight of each max-range at

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:31

ALGORITHM 6: IntersectSweep
Input: a slab-file S of γ, m slab-files S1, ..., Sm and m region-files X1, ..., Xm for m sub-slabs of

γ, a set of spanning rectangles R′
Output: a region-file X for γ. Initially X ← φ

1 for i = 1 to m do
2 upSum[i]← 0, Li ← φ, actLi ← φ

3 while sweeping the horizontal line ` from bottom to top do
4 if ` meets the bottom of ro ∈ R′ then
5 upSum[j]← upSum[j] + w(o), ∀j s.t. ro spans γj
6 if ` meets the top of ro ∈ R′ then
7 upSum[j]← upSum[j]− w(o), ∀j s.t. ro spans γj
8 foreach u ∈ actLj , , ∀j s.t. ro spans γj do
9 copy u into u′

10 u′.y2 ← min{u′.y2, `.y}
11 output u′ to X with merge
12 u.y1 ← u′.y2
13 insert u into Li and delete u from actLi

14 if ` meets the bottom of ui ∈ Xi then
15 insert ui into Li

16 if ` meets t ∈ S, s.t. t.marked = true then
17 for i = 1 to m do
18 if upSum[i] = t.sum then
19 generate a spanning max-range uspan on t.y
20 insert uspan into actLi−1 with merge
21 foreach u ∈ Li do
22 if (u.y1 ≤ t.y) ∧ (u.y2 > t.y) ∧ (ti.sum+ upSum[i] = t.sum, s.t. ti ∈ Si is

promoted to t) then
23 u.y1 ← t.y
24 insert u into actLi and delete u from Li

25 for i = 1 to m do
26 foreach u ∈ Li ∪ actLi do
27 output u to X with merge

28 return X

y2 equals the weight of the h-line at the bottom of the max-range plus the total weight
of the spanning rectangles at y2. For the max-range at y2 in the region-file of γ3 (i.e.,
X3), the weight of the underlying h-line (which is at y0) is 1 as shown in Figure 17
and the total weight of spanning rectangles at y2 in γ3 is 2 as shown in Figure 16(b).
Thus, the weight of the max-range at y2 in X3 is 3, and hence we update this max-
range to generate a new max-range for the merged region-file. Note that the updated
max-range in X3 is a piece of the final max-region, because the merged region-file is
indeed the region-file with respect to the entire space. Another max-range intersecting
the sweeping line at y2, that is, the max-range at y2 in the region-file of γ4 (i.e., X4),
is similarly processed and merged with the updated max-range in X3, and thereby the
final max-region is created as represented as a black-filled rectangle at y2 in Figure
19.

Other final max-regions lying on the h-line at y4 are created in a similar manner.
Note that the top edge of the max-region at y4 in γ3 can be determined by the y-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Dong-Wan Choi et al.

coordinate of the top of the closest spanning rectangle, which is y5 as shown in Figure
16(b).

γ1 γ2 γ3 γ4

y0

y1

y2
y3
y4
y5

y6

y7

Fig. 19. The final region-file

LEMMA 13. Let K be the number of rectangles in slab γ in a certain recursion, and
T be the number of max-regions w.r.t. R residing in γ. Given a slab-file S of γ, m slab-
files S1, ..., Sm and m region-files X1, ..., Xm of slabs γ1, ..., γm, s.t., γ = ∪mi=1γi, and a set
of spanning rectangles R′, the IntersectSweep algorithm returns the region-file X of γ
in O((K + T)/B) I/O’s.

PROOF. Since IntersectSweep is also a sweeping algorithm, its I/O cost is propor-
tional to the number of tuples in files. Therefore, by Lemma 11, we have O(|S|/B +
|S1|/B + ...+ |Sm|/B + |X1|/B + ...+ |Xm|/B + |R′|/B) = O((K + T)/B).

8.2.4. Overall Algorithm. The overall algorithm of TwoPhaseMaxRS is shown in Algo-
rithm 7. The inputs of TwoPhaseMaxRS are the set R of rectangles and the number of
sub-slabs m, and the output is the region-file containing all the max-regions w.r.t. R.
We use three global variables, R, S, and R′, which are a set of sets of rectangles, a set
of slab-files, and a set of sets of spanning rectangles, respectively. The algorithm con-
sists of two subroutines, namely DoFirstPhase and DoSecondPhase. DoFirstPhase is
almost the same as ExactMaxRS except that it uses PathSweep (Algorithm 4) instead
of MergeSweep (Algorithm 1). After DoFirstPhase is finished, all the sets of files (i.e.,
R, S, and R′) are built, and they are further used in DoSecondPhase.

ALGORITHM 7: TwoPhaseMaxRS
Input: a set of rectangles R, the number of sub-slabs m
Output: a region-file X with regard to the entire space
Global variables: a set of sets of rectangles R, a set of slab-files S, a set of sets of spanning

rectangles R′
1 γ ← a slab whose x-range is (−∞,∞)
2 DoFirstPhase(R, γ, m) /* R, S, and R′ are built. */
3 X ← DoSecondPhase(γ, m)
4 return X

The details of the recursive algorithm DoSecondPhase are shown in Algorithm 8.
First, we obtain the slab-file S of the input slab γ from S (Line 1), and check if γ was
not further split in the first phase. If γ has sub-slabs, say γ1, ..., γm, we obtain all the
slab-files of these sub-slabs and the file of spanning rectangles at the level of γ (Lines 2

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:33

- 4). With these slab-files and the file of spanning rectangles, we invoke the MarkSweep
algorithm (Algorithm 5) (Line 5). Next, for each sub-slab γi, we recursively invoke
DoSecondPhase, which returns the region-file of γi (Lines 6 - 7). Finally, we merge all
these returned region-files by IntersectSweep (Algorithm 6), and thereby obtain the
merged region-file X to be returned (Line 8).

In the case that γ is a slab at the bottom level of recursion, we initially create the
region-file X of γ, with the file R of rectangles residing in γ and the corresponding
slab-file S (Lines 9 - 11). Note that this process can be done in the main memory as γ
is at the bottom level. The in-memory algorithm CreateRegionFile is straightforward,
so the details are skipped here.

ALGORITHM 8: DoSecondPhase
Input: a slab γ, the number of sub-slabs m
Output: a region-file X for γ

1 S ← the slab-file of γ in S
2 if γ is not a slab at the bottom level of recursion then
3 S1, ..., Sm ← the slab-files of sub-slabs of γ in S
4 R′ ← the set of spanning rectangles of γ in R′
5 MarkSweep(S, S1, ..., Sm, R′)
6 for i = 1 to m do
7 Xi ← DoSecondPhase(γi, m)
8 X ← IntersectSweep(S, S1, ..., Sm, X1, ..., Xm, R′)
9 else

10 R← the set of rectangles of γ in R
11 X ← CreateRegionFile(S, R) /* in-memory algorithm */

12 return X

8.3. Theoretical Analysis
This section provides a theoretical analysis of TwoPhaseMaxRS in the perspective of
its I/O efficiency and correctness.

8.3.1. I/O Efficiency. First, we prove the I/O cost of TwoPhaseMaxRS as the following
theorem:

THEOREM 8. The TwoPhaseMaxRS algorithm solves the AllMaxRS problem in
O(((N + T)/B) logM/B (N/B)) I/O’s, where T is the number of max-regions to be re-
turned.

PROOF. Let us first examine the first phase. It is easy to follow that the first phase
requires exactly the same I/O’s as ExactMaxRS, since PathSweep needs the same I/O
cost as MergeSweep by Lemma 8.

In the second phase, IntersectSweep needs more I/O’s than MergeSweep, which is
proved in Lemma 13. The number of recursions, however, are still O(logM/B(N/B)).
Thus, we have to find out the total I/O’s required for each level. Since each max-region
has two side edges, we have

∑
∀i |Xi| ≤ 2T = O(T), which leads for the total I/O’s for

each level to be O((N + T)/B) by Lemmas 10 and 13. Therefore, the total I/O cost of
the second phase is O(((N + T)/B) logM/B (N/B)), which dominates the total I/O cost
of TwoPhaseMaxRS.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Dong-Wan Choi et al.

8.3.2. Correctness. Now we prove the correctness of TwoPhaseMaxRS by showing the
soundness and completeness of the results returned from TwoPhaseMaxRS as the fol-
lowing theorem:

THEOREM 9. The set of max-regions in the region-file returned from the TwoPhase-
MaxRS algorithm is sound and complete with regard to a given dataset R.

Completeness.
Let us establish the completeness first. The completeness of TwoPhaseMaxRS is iden-
tical to the argument that all the max-regions w.r.t. R must be contained in the fi-
nal region-file returned from TwoPhaseMaxRS. This can be started with the following
lemma:

LEMMA 14. Let ti, t′i ∈ Si be two consecutive h-lines, where Si is the slab-file of slab
γi. If the bottom edge of a max-region ρi w.r.t. R residing in γi is on a horizontal line `i
between ti and t′i (i.e., ti.y ≤ `i.y < t′i.y), there should be a max-range with the x-range
the same as that of ρi whose bottom edge is on ti.

PROOF. Since ti and t′i are consecutive, we can guarantee that the max-intervals
are not changed from ti to t′i, and the maximum location-weight in the rectangular
area, denoted by rγi , formed by ti, t′i, and the vertical boundaries of γi is ti.sum by the
definition of a tuple in slab-files.

Let tmax ∈ S be the marked h-line that contains the bottom edge of ρi (i.e., `i.y =
tmax.y), where S is the final slab-file of the entire space. Then we will prove that ti is
eventually marked by tmax after α marking steps, which implies that ti is eventually
promoted to tmax after α merging steps.

First of all, we can claim that the maximum location-weight in rγi becomes tmax.sum
after all the merging steps. Let W x

span be the total weight of spanning rectangles cov-
ering tmax.y in the x-th merging step from Si. Then we have:

ti.sum+

α∑

x=1

W x
span = tmax.sum (3)

We first examine the cases of α = 1 and α = 2, and then generalize to the case of α = k.
Case of α = 1. In this case, after one merging step, we obtain the final slab-file.

By (3), ti.sum+W 1
span = tmax.sum. Also, since ti and t′i are consecutive, ti is immediate

below or in the same line as tmax. Therefore, by Lemma 9, ti is marked by tmax.
Case of α = 2. In this case, two merging steps are performed to obtain the final

slab-file. Let us first consider the merged slab-file, denoted by Snext, after one merging
step. Then there must be a h-line in Snext whose location-weight is ti.sum+W 1

span. Let
y1 be the y-coordinate of the h-line. Then we have ti.y ≤ y1 ≤ tmax.y.

Now we will prove that ti.sum + W 1
span is the maximum location-weight from y1 to

tmax.y in Snext. Suppose, by contradiction, that there exists another tuple tj ∈ Sj at
y1 such that tj .sum > ti.sum+W 1

span. Then, after second merging step, the maximum
location-weight at tmax.y becomes tj .sum+W 2

span, since spanning rectangles that cover
the slab of Si also cover the slab of Sj in the second merging step. By (3) and the initial
assumption, we have tj .sum+W 2

span > ti.sum+W 1
span +W 2

span = tmax.sum, which is a
contradiction that tmax.sum is the maximum.

Since ti.sum + W 1
span is the maximum from y1 in Snext, there must be a tuple t1i ∈

Snext s.t. t1i .sum = ti.sum + W 1
span and t1i .y = y1. Furthermore, if any other tuples

between y1 and tmax.y exist, they should have t1i .sum as their location-weight. Let t1max
be the highest one among those tuples. Then we can derive that t1max.sum = t1i .sum =

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:35

tmax.sum − W 2
span by (3). Therefore, t1max is marked by tmax by Lemma 9. Moreover,

since ti.y ≤ y1 ≤ t1max.y and ti.sum = t1max.sum−W 1
span, ti is also marked by t1max.

Case of α = k. In this case, we generalize the case of α = 2 by defining the following
notations:

— Sx: the slab-file merged from Si after x merging steps, e.g., S0 = Si and Sk = S.
— yx: the lowest y-coordinate of the h-line whose location-weight becomes ti.sum +∑x

j=1W
j
span after x merging steps s.t. yx−1 ≤ yx ≤ tmax.y, e.g., y0 = ti.y and yk =

tmax.y.
— txmax: the highest one among the set of tuples between yx and tmax.y whose location-

weight are equally set to ti.sum+
∑x
j=1W

j
span, e.g., t0max = ti and tkmax = tmax.

Then we prove this case by induction. The base cases of k = 1 and k = 2 follow the
proofs in the above two cases of α = 1 and α = 2, respectively. Now we check whether ti
can be eventually marked by tmax, assuming that ti can be eventually marked by tk−2max.

By the definition of tk−1max and (3), we have tk−1max.sum = tmax.sum−W k
span, and there is

no tuple between tk−1max.y and tmax.y in Sk−1. Therefore, tk−1max is marked by tmax.
Now we check whether tk−2max can be marked by tk−1max. Similar to tk−1max, we have

tk−2max.sum = tk−1max.sum − W k−1
span. Also, tk−2max.y ≤ tk−1max.y is guaranteed by the following

two cases:
1) If yk−1 ≥ tk−2max.y, then tk−2max.y ≤ yk−1 ≤ tk−1max.y.
2) If yk−1 < tk−2max.y, then there should be a tuple at tk−2max.y in Sk−1, since its location-

weight is also the maximum and it will cover a different set of max-intervals from the
set of max-intervals covered by the tuple at yk−1 in Sk−1 (which is the same set of max-
intervals covered by the tuple at yk−2 in Sk−2). This is why tk−2max.y exists in Sk−2. Since
tk−1max is defined as the highest one among all the tuples between yk−1 and tmax.y, we
have tk−2max.y ≤ tk−1max.y. Therefore, tk−2max is also marked by tk−1max, because tk−2max.y ≤ tk−1max.y
also implies that there is no tuple in Sk−2 between tk−2max.y and tk−1max.y by the definition
of txmax.

Now we can claim that ti is eventually marked by tmax after α marking steps, and
there should be a max-range whose bottom edge is on ti in the region-file of γi.

Indeed, Lemma 14 can be generally applicable to any slab-file in any level of recur-
sion. Thus, we can guarantee that there is no missing max-region w.r.t. R, since any
max-region can be constructed by its corresponding max-range containing its bottom
edge. This concludes the proof of the completeness of TwoPhaseMaxRS.
Soundness.
It is not difficult to find out that TwoPhaseMaxRS is also sound. By Lemma 11, it is
proved that every max-range in any slab-file should contain at least one max-region
w.r.t. R. Furthermore, by IntersectSweep, we construct the max-ranges for the upper
level of recursion, which are laid on only marked h-lines in the upper level slab-file, by
checking their location-weights. Since it is guaranteed that each marked h-line in any
slab-file is eventually promoted to the marked h-line in the final slab-file, we can finally
construct max-ranges whose bottom edges are on the marked h-line in the final slab-
file and their location-weight is obviously the same as the maximum location-weight
of the h-line. This implies that each max-range in the final region-file is indeed a max-
region w.r.t. R, since every point in the max-range has the same location-weight, by
Definition 9, which is the global maximum. The proof of the soundness of TwoPhase-
MaxRS is done.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Dong-Wan Choi et al.

9. EMPIRICAL STUDY
In this section, our objective is to evaluate the practical performance of the proposed
external-memory algorithms, particularly focusing on the I/O cost.

9.1. Environment Setting
9.1.1. Datasets. We use both real and synthetic datasets in the experiments. We first

generate synthetic datasets under uniform distribution and Gaussian distribution. We
set the cardinalities of dataset (i.e., |O|) to be from 100,000 to 500,000 (default 250,000).
The range of each coordinate is set to be [0, 4|O|] (default [0, 106]).

We also use two real datasets, namely North East (NE) dataset and GeoLife (GEO)
dataset. The NE dataset contains 123,593 postal addresses in New York, Philadel-
phia, and Boston3, which can be regarded as an example of our intuitive application
of MaxRS (recall the example of finding the best location of a new pizza store in Sec-
tion 1). The GEO dataset is a set of 24,858,308 GPS locations collected from about
200 mobile subscribers for several years in the GeoLife project of Microsoft Research
Asia4. Based on the average location, we discard the points that are extremely far away
from the average, and thereby the resulting cardinality is 11,862,976. This dataset is
a representative example of a massive historical dataset, and useful to evaluate the
performance of our algorithms in a more scalable scenario. The range of coordinates
of NE and GEO are normalized to [0, 106] and [0, 109], respectively. The specification of
two real datasets are listed in Table IV.

9.1.2. Competitors. Since no method is directly applicable to the MaxRS problem in
spatial databases, we should externalize the in-memory algorithm [Imai and Asano
1983; Nandy and Bhattacharya 1995] for max-rectangle enclosing problem, described
in Section 4, to be compared with our ExactMaxRS algorithm. In fact, the external-
ization of this in-memory algorithm is already proposed by Du et al. [Du et al. 2005],
which is originally invented for processing their optimal-location queries. They present
two algorithms based on plane-sweep, called Naive Plane Sweep and aSB-Tree, which
are also applicable to the MaxRS problem, even though their main algorithm based
on a preprocessed structure, called the Vol-Tree, cannot be used in the MaxRS prob-
lem. Both Naive Plane Sweep and aSB-Tree are basically the same as the in-memory
algorithm in Section 4 except that they use the external-memory structure instead
of the binary tree. Specifically, Naive Plane Sweep uses a simple sequential file, and
aSB-Tree exploits a B-tree-like structure.

For the MaxCRS problem, we compare one state-of-the-art algorithm, called Max-
Overlap [Wong et al. 2009], with ApproxMaxCRS. MaxOverlap is originally intended
to solve the MaxBRNN problem by Wong et al. However, its basic processing scheme
is to find the most overlapping region in the arrangement of circles, and hence it can
be applied to the MaxCRS problem as well.

9.1.3. Performance Metrics. As performance metrics, we first use the number of I/O’s,
precisely the number of transferred blocks during the process, which is the main issue
dealt with in this article. We also report all the corresponding execution times, aiming
to reveal whether our algorithms are also efficient in terms of the CPU performance.

9.1.4. Parameters. We fix the block size to 4KB, and set the buffer size to 1024KB
by default. The GEO dataset deserves a larger buffer size, so we set the default size
to 4096KB. (recall that we consider a massive dataset which cannot be fully loaded
into the main memory). Also, for MaxRS and AllMaxRS, we set the rectangle size to

3http://www.rtreeportal.org
4http://research.microsoft.com/en-us/projects/geolife

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:37

Table IV. The specifications of real datasets

Dataset Cardinality Space size
NE 123,593 1M × 1M

GEO 11,862,976 1G× 1G

Table V. The default values of parameters

Parameter Default value
Cardinality (|O|) 250,000

Block size 4KB
Buffer size 1024KB,

4096KB (GEO)
Space size 1M × 1M

Rectangle size (d1 × d2) 1K × 1K
Circle diameter (d) 1K

1000 × 1000 by default. Similarly, for the MaxCRS problem, we set the circle diameter
to 1000 by default. All the default values of parameters are presented in Table V.

The way of determining the number of slabs (i.e.,m) deserves a bit more explanation.
As mentioned earlier, m is basically set to Θ(M/B), that is, the number of blocks in
the main memory. However, a larger m does not always imply a better performance.
The I/O complexity of our algorithms commonly have two factors. The first factor is
either O(N/B) or O((N + T)/B), and the second factor is O(logm (N/B)). Intuitively,
the first factor explains the I/O cost of one recursion, and the second factor indicates
the total number of recursions. Once the number of recursions gets less than a certain
integer, say i, m does not have to be large until the number of recursions becomes
i − 1. Rather, a lager m can cause additional overhead due to the occurrence of many
spanning rectangles unless it does not reduce the number of recursions. Based on this
heuristic, we set m to be the minimum value such that blogm (N/B)c is maximized.

9.1.5. Environment. We implement all the algorithms in Java, and conduct all the ex-
periments on a PC running Linux (Ubuntu 13.10) equipped with Intel Core i7 CPU
3.4GHz and 16GB memory.

9.2. Experimental Results on MaxRS
In this section, we present our experimental results on the MaxRS problem. By varying
the parameters, we examine the performance of alternative algorithms in terms of the
I/O cost and execution time. Note that both the I/O cost and execution time are in log
scale in all the relevant graphs in this section.

9.2.1. Effect of the Dataset Cardinalities. Figure 20 shows the experimental results for
varying the total number of objects in the dataset. Both of the results of Gaussian
distribution and uniform distribution show that our ExactMaxRS is much more ef-
ficient than the algorithms based on plane-sweep. Especially, even if the dataset gets
larger, the ExactMaxRS algorithm achieves performance similar to that on the smaller
dataset, which effectively shows that our algorithm is scalable to datasets of a massive
size.

Considering the overall performance (together with the CPU time), ExactMaxRS
is extremely faster than Naive Plane Sweep and aSB-Tree, and its execution time is
always about just one second.

9.2.2. Effect of the Buffer Size. Figure 21 shows the experimental results for varying the
buffer size. Even though all the algorithms exhibit better performance as the buffer
size increases, the ExactMaxRS algorithm is more sensitive to the size of buffer than
the others. This is because our algorithm uses the buffer more effectively. As proved
in Theorem 2, the I/O complexity of ExactMaxRS is O((N/B) logM/B (N/B)), which
means the largerM , the smaller the factor logM/B (N/B). Nevertheless, once the buffer
size is larger than a certain size, the ExactMaxRS algorithm also shows behavior sim-
ilar to the others, since the entire I/O cost will be dominated by O(N/B), i.e., linear
cost.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Dong-Wan Choi et al.

Naive aSB-Tree ExactMaxRS

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 100 200 300 400 500

n
u

m
b

e
r

o
f

I/
O

s

number of objects (×10
3
)

(a) I/O (Gaussian)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 100 200 300 400 500

n
u

m
b

e
r

o
f

I/
O

s

number of objects (×10
3
)

(b) I/O (Uniform)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 100 200 300 400 500

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

number of objects (×10
3
)

(c) Time (Gaussian)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 100 200 300 400 500

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

number of objects (×10
3
)

(d) Time (Uniform)

Fig. 20. Effect of the dataset cardinalities using synthetic datasets on MaxRS

Naive aSB-Tree ExactMaxRS

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s

buffer size(KB)

(a) I/O (Gaussian)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s

buffer size(KB)

(b) I/O (Uniform)

10
0

10
1

10
2

10
3

10
4

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(c) Time (Gaussian)

10
0

10
1

10
2

10
3

10
4

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(d) Time (Uniform)

Fig. 21. Effect of the buffer size using synthetic datasets on MaxRS

Naive aSB-Tree ExactMaxRS

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

range size (×10
3
)

(a) I/O (Gaussian)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

range size (×10
3
)

(b) I/O (Uniform)

10
-1

10
0

10
1

10
2

10
3

10
4

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(c) Time (Gaussian)

10
0

10
1

10
2

10
3

10
4

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(d) Time (Uniform)

Fig. 22. Effect of the range size using synthetic datasets on MaxRS

The graphs representing execution times are similar to those of I/O costs, which
means that the overall performance of these external-memory algorithms are well ex-
plained by the I/O cost.

9.2.3. Effect of the Range Size. Figure 22 shows the experimental results for varying
the range parameters. Without loss of generality, we use the same value for each di-
mension, i.e., each rectangle is a square. It is observed that the ExactMaxRS algorithm
is less influenced by the size of range than the other algorithms. This is because as the
size of range increases, the probability that rectangles overlap also increases in the
algorithms based on plane-sweep, which means that more intervals should be inserted
into the maintaining data structure such as the B-tree. Meanwhile, the ExactMaxRS
algorithm is not much affected by the overlapping probability.

9.2.4. Results of Real Datasets. We conduct the same kind of experiments on real
datasets except varying cardinalities. As shown in Table IV, since GEO is much larger
than NE, we use larger buffer sizes for GEO.

Overall trends of the graphs are similar to the results in synthetic datasets, as shown
in Figures 23 and 24. Note that in Figures 23(b), 23(d), 24(b), and 24(d), Naive Plane

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:39

Naive aSB-Tree ExactMaxRS

10
3

10
4

10
5

10
6

10
7

10
8

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s

buffer size(KB)

(a) I/O (NE)

10
5

10
6

10
7

10
8

 2000 4000 6000 8000

n
u

m
b

e
r

o
f

I/
O

s

buffer size(KB)

(b) I/O (GEO)

10
-1

10
0

10
1

10
2

10
3

10
4

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(c) Time (NE)

10
1

10
2

10
3

10
4

 2000 4000 6000 8000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(d) Time (GEO)

Fig. 23. Effect of the buffer size using real datasets on MaxRS

Naive aSB-Tree ExactMaxRS

10
3

10
4

10
5

10
6

10
7

10
8

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

range size (×10
3
)

(a) I/O (NE)

10
5

10
6

10
7

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

range size (×10
3
)

(b) I/O (GEO)

10
-1

10
0

10
1

10
2

10
3

10
4

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(c) Time (NE)

10
1

10
2

10
3

10
4

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(d) Time (GEO)

Fig. 24. Effect of the range size using real datasets on MaxRS

Sweep is not presented. This is because the execution time of the Naive Plane Sweep
algorithm when using GEO is extremely long5, and therefore we cannot conduct such
experiments for Naive Plane Sweep using GEO.

9.3. Experimental Results on MaxCRS
In this section, we present the experimental results with regard to the MaxCRS prob-
lem. We first show the performance comparison result in Section 9.3.1, and examine
the quality of approximation of ApproxMaxCRS in Section 9.3.2. The GEO dataset is
not used in this section, since it is too large to find the exact solution of the MaxCRS
problem.

9.3.1. Performance Comparison. As mentioned earlier, we employ the MaxOverlap algo-
rithm [Wong et al. 2009], which can exactly solve the MaxCRS problem, as a competitor
of the ApproxMaxCRS algorithm. Let us illustrate the overall process of MaxOverlap
briefly. The MaxOverlap algorithm comprises of three steps. First, the R-tree on the
set of objects (i.e., O) should be built. Second, by using the R-tree on O, the algorithm
performs N range queries, one from the location of each object in O, to construct a
table having the overlapping relationship among the circles centered at objects in O
(i.e., C). Finally, while scanning the table, the final answer can be obtained.

For the simplicity, among three steps of MaxOverlap, we only implement and mea-
sure the I/O cost and the execution time of the second step since the costs of other
steps are similar to or less than that of the second step according to the analysis in
[Wong et al. 2009]. Nevertheless, as shown in Figures 25 and 26, ApproxMaxCRS out-
performs MaxOverlap in the experiments for varying the diameter. Especially when
the diameter becomes large, the probability that circles overlap each other increases,
which results in excessive I/O’s of MaxOverlap.

5It took a few days for Naive Plane Sweep to find a single solution from the GEO dataset.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Dong-Wan Choi et al.

MaxOverlap ApproxMaxCRS

10
3

10
4

10
5

10
6

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

diameter (×10
3
)

(a) I/O (Gaussian)

10
3

10
4

10
5

10
6

10
7

10
8

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s

diameter (×10
3
)

(b) I/O (Uniform)

10
0

10
1

10
2

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

diameter (×10
3
)

(c) Time (Gaussian)

10
0

10
1

10
2

10
3

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

diameter (×10
3
)

(d) Time (Uniform)

Fig. 25. Performance comparison using synthetic datasets on MaxCRS

MaxOverlap ApproxMaxCRS

10
3

10
4

10
5

10
6

 2 4 6 8 10

n
u
m

b
e
r

o
f
I/
O

s

diameter (×10
3
)

(a) I/O (NE)

10
0

10
1

10
2

 2 4 6 8 10

e
x
e
c
u
ti
o
n
 t
im

e
(s

e
c
)

diameter (×10
3
)

(b) Time (NE)

Fig. 26. Performance comparison using NE on MaxCRS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

e
rr

o
r

ra
ti
o

diameter (×10
3
)

Uniform
Gaussian

NE
Theoretical bound

Fig. 27. Approximation quality

One interesting point lies in the case of a tiny diameter, in which the MaxOverlap
algorithm causes only a few I/O’s. This is because, in this case, MaxOverlap will visit
only a small number of non-leaf nodes at high levels in the R-tree since circles with
a tiny diameter rarely overlap each other. However, its execution time is longer than
that of ApproxMaxCRS (even though it gets shorter for a smaller diameter). This can
be interpreted that it is not very cheap to check the entries in such a few non-leaf
nodes in the main memory to see whether each entry intersects the queried range (i.e.,
a circle centered at an object).

9.3.2. Quality of Approximation. Next, we evaluate the quality of approximation obtained
from the ApproxMaxCRS algorithm in Figure 27. Since the quality can be different
when the diameter changes, we examine the quality by varying d on both synthetic
and real datasets. Optimal answers are obtained by implementing a theoretical al-
gorithm [Drezner 1981] that has time complexity O(n2 log n) (and therefore, is not
practical). We observe that when the diameter gets larger, the quality of approxima-
tion becomes higher and more stable, since more objects are included in the given
range. Even though theoretically our ApproxMaxCRS algorithm guarantees the (1/4)-
approximation bound, the average approximation ratio is much larger than 1/4 in prac-
tice, which is close to 0.9.

9.4. Experimental Results on AllMaxRS
In order to evaluate the proposed algorithms for the AllMaxRS problem, we conduct
the same kind of experiments as done in Section 9.2.

Alternative algorithms that are compared with ExactMaxRS are not considered any
more in this section, because their performance for finding only one max-region is even
worse than that of our algorithms, SimpleAllMaxRS and TwoPhaseMaxRS, for return-
ing all the max-regions. The I/O cost of ExactMaxRS is only provided as a bottom-line
reference for assessing performance, even though it also returns only one max-region.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:41

Although it is theoretically proved that TwoPhaseMaxRS is more efficient than Sim-
pleAllMaxRS, the I/O complexity of TwoPhaseMaxRS includes some hidden constants.
Furthermore, if the number of tied max-intervals is small enough (almost one as
in ExactMaxRS), the cost of SimpleAllMaxRS will be close to that of ExactMaxRS.
Thus, there could be cases where SimpleAllMaxRS’s I/O cost is smaller than that of
TwoPhaseMaxRS. From this observation, we can expect that SimpleAllMaxRS could
be also useful in practice.

9.4.1. Effect of the Dataset Cardinalities. Figure 28 shows the results for varying the num-
ber of objects in the dataset. Unlike our expectation that SimpleAllMaxRS can be com-
parable to TwoPhaseMaxRS, in both of the distributions, TwoPhaseMaxRS is much
more scalable than SimpleAllMaxRS. The main reason behind this result is that the
second phase of TwoPhaseMaxRS needs only a small number of I/O’s compared with
the first phase, which will be shown in Section 9.4.5. Moreover, the total number of
I/O’s in the first phase is much less than the number of I/O’s performed in SimpleAll-
MaxRS. This is obviously because TwoPhaseMaxRS maintains only one tuple per h-
line, while all tied max-intervals at each h-line are maintained in SimpleAllMaxRS.

The graphs on the execution time show similar patterns to those on the I/O cost. A
minor drawback of TwoPhaseMaxRS is that its CPU overhead seems relatively higher
than SimpleAllMaxRS, as shown that the performance gap in Figures 28(c) and 28(d)
is smaller than that in Figures 28(a) and 28(b).

9.4.2. Effect of the Buffer Size. Figure 29 shows the results for varying the buffer size.
All the algorithms show very sensitive results to the buffer size, since they are basically
rooted on ExactMaxRS. In some cases, the I/O cost even increases a little when the
buffer size increases. This is due to the inaccuracy of our simple heuristic to determine
the optimal number of slabsm. In practical environment,m can be appropriately tuned
for further improving the performance. In a macro view, however, we can claim that
the larger buffer size, the better performance, especially assuming that the cardinality
of the dataset is massive (i.e., N �M).

From the observation that the difference between total I/O’s is not very large when
the size of buffer is tiny, we conclude that TwoPhaseMaxRS tends to require more
buffers than SimpleAllMaxRS. This is because, in the second phase of TwoPhase-
MaxRS, the IntersectSweep algorithm needs to scan many kinds of files simulta-
neously, and each file requires at least one block for its I/O buffer. Nevertheless,
TwoPhaseMaxRS shows almost always better results than SimpleAllMaxRS, and its
overall trends are very close to ExactMaxRS which can be regarded as optimal. As
with the result in Figure 28, the performance gap gets a little smaller in the result on
the execution time, even though the overall trends are not changed much.

9.4.3. Effect of the Range Size. Figure 30 shows the results for varying the size of rect-
angle. For all the experimental results, the number of I/O’s of TwoPhaseMaxRS is
always less than that of SimpleAllMaxRS. One somewhat surprising result is that
SimpleAllMaxRS shows extremely unsatisfactory result when the range size is very
small. In this case, the count of each max-region is relatively small (less than 4), and
hence the probability of occurring multiple max-regions with the same maximum count
is also relatively high. Thus, there are not only many max-regions to be returned but
also even more tied max-intervals to be maintained such that their counts are a little
less than that of the final max-regions (e.g., 2 or 3). This demonstrates why SimpleAll-
MaxRS can be much inefficient in the worst case. Meanwhile, TwoPhaseMaxRS shows
very stable results. The I/O cost and the execution time of TwoPhaseMaxRS are always
within a constant factor of those of ExactMaxRS.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Dong-Wan Choi et al.

ExactMaxRSSimpleAllMaxRS TwoPhaseMaxRS

 0

 20

 40

 60

 80

 100

 120

 100 200 300 400 500

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

number of objects (×10
3
)

(a) I/O (Gaussian)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 100 200 300 400 500

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

number of objects (×10
3
)

(b) I/O (Uniform)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 100 200 300 400 500

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

number of objects (×10
3
)

(c) Time (Gaussian)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 100 200 300 400 500

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

number of objects (×10
3
)

(d) Time (Uniform)

Fig. 28. Effect of the dataset cardinalities using synthetic datasets on AllMaxRS

ExactMaxRSSimpleAllMaxRS TwoPhaseMaxRS

 0

 50

 100

 150

 200

 250

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

buffer size(KB)

(a) I/O (Gaussian)

 0

 50

 100

 150

 200

 250

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

buffer size(KB)

(b) I/O (Uniform)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(c) Time (Gaussian)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(d) Time (Uniform)

Fig. 29. Effect of the buffer size using synthetic datasets on AllMaxRS

ExactMaxRSSimpleAllMaxRS TwoPhaseMaxRS

 20
 40
 60
 80

 100
 120

660

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

range size (×10
3
)

(a) I/O (Gaussian)

 20

 40

 60

 80

 100

 120

300

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

range size (×10
3
)

(b) I/O (Uniform)

 2
 4
 6
 8

 10
 12

138
140

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(c) Time (Gaussian)

 2
 4
 6
 8

 10
 12

32
34

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(d) Time (Uniform)

Fig. 30. Effect of the range size using synthetic datasets on AllMaxRS

9.4.4. Results of Real Datasets. We also conduct the performance test using real
datasets. Similarly, TwoPhaseMaxRS also shows more stable and better results than
SimpleAllMaxRS. Furthermore, compared with the results using synthetic datasets,
the fluctuation of the performance of SimpleAllMaxRS gets even higher. This shows
that the cases unfavorable for SimpleAllMaxRS can arise even more in practice, which
implies that TwoPhaseMaxRS is more efficient practically as well as theoretically than
SimpleAllMaxRS.

9.4.5. Overall Performance Comparison. Overall performance on AllMaxRS is summa-
rized in Figure 33. The graphs show the average ratio of the I/O cost and the execu-
tion time of each algorithm to those of ExactMaxRS. This result well explains why
TwoPhaseMaxRS is much more efficient than SimpleAllMaxRS. Both in terms of the
I/O cost and CPU time, the first phase of TwoPhaseMaxRS has almost the same perfor-
mance as ExactMaxRS, and the second phase adds only a small amount of overhead,
which is far less than the cost of ExactMaxRS as well as the first phase. Also, the cost
of the second phase is related to the number of max-regions to be finally returned.
For example, the GEO dataset almost always has only one max-region while the NE
dataset has about 4 max-regions on average and 14 max-regions at most. Therefore,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:43

ExactMaxRSSimpleAllMaxRS TwoPhaseMaxRS

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1000 2000

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

buffer size(KB)

(a) I/O (NE)

 0

 500

 1000

 1500

 2000

 2500

 3000

 2000 4000 6000 8000

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

buffer size(KB)

(b) I/O (GEO)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(c) Time (NE)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 2000 4000 6000 8000

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

buffer size(KB)

(d) Time (GEO)

Fig. 31. Effect of the buffer size using real datasets on AllMaxRS

ExactMaxRSSimpleAllMaxRS TwoPhaseMaxRS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

range size (×10
3
)

(a) I/O (NE)

 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 2 4 6 8 10

n
u

m
b

e
r

o
f

I/
O

s
 (

×
1

0
3
)

range size (×10
3
)

(b) I/O (GEO)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(c) Time (NE)

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10

e
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

range size (×10
3
)

(d) Time (GEO)

Fig. 32. Effect of the range size using real datasets on AllMaxRS

TwoPhaseMaxRS(1st)ExactMaxRS SimpleAllMaxRS TwoPhaseMaxRS(2nd)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

UniformGaussian

ra
ti
o

 o
f

th
e

 n
u

m
b

e
r

o
f

I/
O

s

(a) I/O (Synthetic)

 0

 2

 4

 6

 8

 10

 12

UniformGaussian

ra
ti
o

 o
f

th
e

 e
x
e

c
u

ti
o

n
 t

im
e

(b) Time (Synthetic)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

GEO NE

ra
ti
o

 o
f

th
e

 n
u

m
b

e
r

o
f

I/
O

s

(c) I/O (Real)

 0

 0.5

 1

 1.5

 2

 2.5

 3

GEO NE

ra
ti
o

 o
f

th
e

 e
x
e

c
u

ti
o

n
 t

im
e

(d) Time (Real)

Fig. 33. Overall performance comparison on AllMaxRS

the result shows that the overall cost of the second step in NE is relatively larger than
that in GEO.

10. CONCLUSIONS
In this article, we solve the MaxRS problem in spatial databases. This problem is use-
ful in many scenarios such as finding the most profitable service place and finding the
most serviceable place, where a certain size of range should be associated with the
place. For the MaxRS problem, we propose the first external-memory algorithm, Ex-
actMaxRS, with a proof that the ExactMaxRS algorithm correctly solves the MaxRS
problem in optimal I/O’s. Furthermore, we propose an approximation algorithm, Ap-
proxMaxCRS, for the MaxCRS problem that is a circle version of the MaxRS problem.
We also prove that the ApproxMaxCRS algorithm gives a (1/4)-approximate solution
to the exact solution for the MaxCRS problem. Through extensive experiments on both
synthetic and real datasets, we demonstrate that the proposed algorithms are also ef-
ficient in practice.

By further extending the MaxRS problem, we propose a more complete version of the
MaxRS problem, the AllMaxRS problem, which has not been studied even in the the-
oretical communities. We devise two external-memory algorithms, SimpleAllMaxRS

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Dong-Wan Choi et al.

and TwoPhaseMaxRS, which are a simple extension of ExactMaxRS and a two-phase
output-sensitive algorithm, respectively. Based on the extensive theoretical and exper-
imental analysis, we prove that TwoPhaseMaxRS is much more efficient than Sim-
pleAllMaxRS in both theory and practice.

In closing, we discuss some future works on MaxRS and its variants. First, we can
think of the MaxRS problem in a higher dimensional space, extending this article that
has been focused on spatial databases (i.e., objects are points in the 2D space). MaxRS
and its variants in a higher dimensionality will also be useful in many applications
involving the density analysis in data mining. Another future work can be devising
an online algorithm for MaxRS. In this case, the goal is to preprocess a given set of
objects in such a way that individual MaxRS queries with different parameters can be
answered more quickly.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We would like to thank the editors and anonymous reviewers for their helpful comments. Dong-Wan Choi
and Chin-Wan Chung were supported in part by the National Research Foundation of Korea(NRF) Grant
funded by the Korean Government(MSIP)(No. NRF-2014R1A1A2002499) and in part by Defense Acquisition
Program Administration and Agency for Defense Development under the contract UD110006MD, Korea.
Yufei Tao was supported in part by projects GRF 4165/11, 4164/12, and 4168/13 from HKRGC.

REFERENCES
Lars Arge, Mikael Knudsen, and Kirsten Larsen. 1993. A general lower bound on the I/O-complexity of

comparison-based algorithms. In Proceedings of Algorithms and Data Structures (WADS). 83–94.
Boris Aronov and Sariel Har-Peled. 2005. On approximating the depth and related problems. In Proceedings

of ACM-SIAM Symposium on Discrete Algorithms (SODA). 886–894.
Gill Barequet, Matthew Dickerson, and Petru Pau. 1997. Translating a convex polygon to contain a maxi-

mum number of points. Computational Geometry 8, 4 (1997), 167–179.
Mark De Berg, Sergio Cabello, and Sariel Har-Peled. 2009. Covering many or few points with unit disks.

Theory Comput. Syst. 45, 3 (2009), 446–469.
B. M. Chazelle and D. T. Lee. 1986. On a circle placement problem. Computing 36, 1 (1986), 1–16.
Hyung-Ju Cho and Chin-Wan Chung. 2007. Indexing range sum queries in spatio-temporal databases. In-

formation & Software Technology 49, 4 (2007), 324–331.
Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2012. A scalable algorithm for maximizing range sum in

spatial databases. PVLDB 5, 11 (2012), 1088–1099.
Rezaul Alam Chowdhury and Vijaya Ramachandran. 2006. Cache-oblivious dynamic programming. In Pro-

ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA). 591–600.
Matthew Dickerson and Daniel Scharstein. 1998. Optimal placement of convex polygons to maximize point

containment. Computational Geometry 11, 1 (1998), 1–16.
Zvi Drezner. 1981. Note—On a modified one-center model. Management Science 27, 7 (1981), 848–851.
Yang Du, Donghui Zhang, and Tian Xia. 2005. The optimal-location query. In International Symposium of

Advances in Spatial and Temporal Databases (SSTD). 163–180.
Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter. 1993. External-memory

computational geometry (preliminary version). In Proceedings of Annual Symposium on Foundations of
Computer Science (FOCS). 714–723.

Hiroshi Imai and Takao Asano. 1983. Finding the connected components and a maximum clique of an inter-
section graph of rectangles in the plane. Journal of Algorithms 4, 4 (1983), 310–323.

Marcus Jürgens and Hans-Joachim Lenz. 1998. The RA*-tree: an improved R-tree with materialized data
for supporting range queries on OLAP-data. In DEXA Workshop. 186–191.

Iosif Lazaridis and Sharad Mehrotra. 2001. Progressive approximate aggregate queries with a multi-
resolution Tree Structure. In SIGMOD Conference. 401–412.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory A:45

Subhas C. Nandy and Bhargab B. Bhattacharya. 1995. A unified algorithm for finding maximum and min-
imum object enclosing rectangles and cuboids. Computers and Mathematics with Applications 29, 8
(1995), 45–61.

Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. 2001. Efficient OLAP operations in spatial
data warehouses. In International Symposium of Advances in Spatial and Temporal Databases (SSTD).
443–459.

João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. 2010. Efficient processing of
top-k spatial preference queries. PVLDB 4, 2 (2010), 93–104.

Cheng Sheng and Yufei Tao. 2011. New results on two-dimensional orthogonal range aggregation in exter-
nal memory. In Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS). 129–139.

Shreyash Srivastava, Shaurya Ahuja, and Ankush Mittal. 2011. Determining most visited locations based
on temporal grouping of GPS data. In Proceedings of the International Conference on Soft Computing
for Problem Solving (SocPros). 63–72.

Shivendra Tiwari and Saroj Kaushik. 2012. Extracting region of interest (ROI) details using LBS infras-
tructure and web-databases. In Proceedings of the 13th IEEE International Conference on Mobile Data
Management (MDM). 376–379.

Raymond Chi-Wing Wong, M. Tamer Özsu, Philip S. Yu, Ada Wai-Chee Fu, and Lian Liu. 2009. Efficient
method for maximizing bichromatic reverse nearest neighbor. PVLDB 2, 1 (2009), 1126–1137.

Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. 2005. On computing top-t most influential
spatial sites. In Proceedings of International Conference on Very Large Data Bases (VLDB). 946–957.

Xiaokui Xiao, Bin Yao, and Feifei Li. 2011. Optimal location queries in road network databases. In Proceed-
ings of International Conference on Data Engineering (ICDE). 804–815.

Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis. 2007. Top-k spatial preference queries.
In Proceedings of International Conference on Data Engineering (ICDE). 1076–1085.

Donghui Zhang, Yang Du, Tian Xia, and Yufei Tao. 2006. Progressive computation of the min-dist optimal-
location query. In Proceedings of International Conference on Very Large Data Bases (VLDB). 643–654.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting locations and travel sequences
from GPS trajectories. In Proceedings of the 18th International Conference on World Wide Web (WWW).
791–800.

Zenan Zhou, Wei Wu, Xiaohui Li, Mong-Li Lee, and Wynne Hsu. 2011. MaxFirst for MaxBRkNN. In Pro-
ceedings of International Conference on Data Engineering (ICDE). 828–839.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Maximizing Range Sum in External Memory

DONG-WAN CHOI, KAIST
CHIN-WAN CHUNG, KAIST
YUFEI TAO, Chinese University of Hong Kong and KAIST

A. PROOF OF LEMMA 7
To prove Lemma 7, we will use a new notion, called the stair, which is an important
concept to examine the properties of the max-region, and several supporting lemmas,
namely Lemmas A1, A2, and A3.

Definition A1 (Stair). Given r ∈ R, a stair of r is a pair of perpendicular rays that
start from the same position in r and extend to a boundary of r.

Intuitively, stairs of r are the intersecting parts of other rectangles that intersect r (see
Figure A1), which have the following properties:

Property 1 There are four types of stairs based on their directions, which are called the
up-left-stair, up-right-stair, down-left-stair, and down-right-stair. To refer
to both of the up-left-stair and down-left-stair, we use the term left-stair,
and also use the terms right-stair, up-stair, and down-stair similarly. For
example, in Figure A1, s1 is an up-right-stair, and s2 is a down-left-stair.
We also regard a pair of adjacent edges of r as a stair.

Property 2 Each stair of r covers the part of the entire area of r from its starting
position to the boundaries of r towards its directions.

Property 3 Based on the starting position and directions of a stair, the count increases
by 1 when crossing the stair in the same direction; on the contrary, the
count decreases by 1 when crossing the stair in the opposite direction.

By using the properties of stairs, we show the following lemma about a max-region
inside a rectangle:

LEMMA A1. Let ρk denote a max-region inside a rectangle r ∈ R. Then the horizon-
tal boundaries of ρk consist of a pair of a left-stair and a right-stair that are facing each
other, and also the vertical boundaries of ρk are a pair of an up-stair and a down-stair
that are facing each other.

PROOF. By the definition of the max-region, every max-region has the maximum
count. Thus, when we cross the boundaries of a max-region in a way of escaping from
the max-region, the count should be decreased. This implies that there cannot exist a
max-region having either two left-stairs or two right-stairs as its side edges by Prop-
erty 1 and Property 3. A similar rule is applied to the top and bottom edges of the
max-region.

It should be noted that Lemma A1 does not mean that each max-region should be
bounded by four different stairs, e.g., a down-left stair, a down-right stair, and an up-
right stair can construct a max-region.

LEMMA A2. Let `h denote a horizontal line segment in r which has the same length
as the width of r. Then the following statements are valid:

c© YYYY ACM. 0362-5915/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 Dong-Wan Choi et al.

s1

s2

r

Fig. A1. An example of stairs of r

— there exist at most k max-regions that intersect `h, and
— there exist at most k left-stairs and k right-stairs that intersect `h.

PROOF. To prove the first statement by contradiction, suppose that there exist k′
max-regions that intersect `h for some k′ > k. By Lemma A1, there should be at least
k′ right-stairs and k′ left-stairs, which are intersected with `h, for k′ max-regions on
`h. By Property 2, there should exist a position on `h covered by either all the right-
stairs or all the left-stairs. This means that there is a position whose count is k′ > k,
which contradicts that the count of each max-region is k. Similarly, to prove the second
statement, suppose that either k′ left-stairs or k′ right-stairs are exist on `h for some
k′ > k. This means that the count of one of the end points of `h is k′, which is also a
contradiction.

LEMMA A3. Let `v denote a vertical line segment in r which has the same length as
the height of r. Then the following statements are valid:

— there exist at most k max-regions that intersect `v, and
— there exist at most k up-stairs and k down-stairs that intersect `v.

PROOF. We omit the proof, which follows easily from the proof of Lemma A2.

Now the proof of Lemma 7 is given as follows:

PROOF OF LEMMA 7. First, we can claim that there are at most k up-left stairs, k
up-right stairs, k down-left stairs, and k down-right stairs in r since the corners of r
should be covered by at most k stairs. By Lemma A2, there are at most k pairs of a
left-stair and a right-stair on any horizontal line (including the top and bottom edges)
in r, which implies that only k left/right-stairs among 2k left/right-stairs (i.e., k up-
left/right stairs and k down-left/right stairs) should be laid on the same horizontal
line. Furthermore, in order for each of these pairs to be a max-region, it should be
associated with a pair of an up-stair and a down-stair. By Lemma A3, there are at
most k pairs of an up-stair and a down-stair on any vertical line in r. Therefore, k2 is
the maximum number of max-regions that can reside in r. Intuitively, it can be seen
that there are at most k horizontal layers each of which has at most k max-regions (see
Figure A2(a)).

Figure A2(b) shows how nine max-regions can reside in a rectangle when k is 3.

B. PROOF OF THEOREM 6
To prove Theorem 6, we use the following supporting lemma:

LEMMA B1. Let ρx denote a max-region in r ∈ R, which is covered by x rectangles,
and ` denote a horizontal or vertical line intersecting ρx, which is parallel to an edge of
r and has the same length as the edge. Then there can exist at most x max-regions that
intersect `.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing Range Sum in External Memory App–3

ρk

(a) k max-regions on each line
segment in a rectangle

(b) An example of k2 max-
regions in a rectangle when
k = 3

Fig. A2. The illustration of Lemma 7

PROOF. First, it is obvious that Lemma A1 is valid in the weighted case. Thus, every
max-region should have a pair of a left-stair and a right-stair as its side edges. In order
to construct ρx, there should be at least x+ 1 stairs (including a pair of parallel edges
of r) on ` whose direction are towards ρx, as shown in Figure B1. Furthermore, except
these x + 1 stairs, any other stairs on ` should not be towards ρx since ρx should be
covered by only x rectangles (recall Property 2). This implies that we can construct only
x pairs of a left-stair and a right-stair on ` by putting another stair right next to each
of x+ 1 stairs that constitute ρx. By Lemma A1, there can be at most x max-regions on
`.

ρx

x+ 1 stairs

`

Fig. B1. The illustration of Lemma B1

Now the proof of Theorem 6 is given as follows:

PROOF OF THEOREM 6. We first prove that Lemma A2 and Lemma A3 are also
valid in the weighted case when we use k instead of k. Since k is the maximum number
of intersecting rectangles, any max-region is covered by at most k rectangles. This
implies that, on any horizontal or vertical line segment passing through a max-region,
there can exist at most k max-regions by Lemma B1, which derives Lemma A2 and
Lemma A3. Therefore, Corollary 1 is also valid by substituting k for k, which says the
upper bound of the number of max-regions should be less than kN .

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

