Worst-case [/O-efficient Skyline Algorithms

CHENG SHENG

Chinese University of Hong Kong

and

YUFEI TAO

Korea Advanced Institute of Science and Technology

We consider the skyline problem (a.k.a. the mazima problem), which has been extensively studied
in the database community. The input is a set P of d-dimensional points. A point dominates
another if the coordinate of the former is at most that of the latter on every dimension. The goal
is to find the skyline, which is the set of points p € P such that p is not dominated by any other
point in P.

The main result of this article is that, for any fixed dimensionality d > 3, in external memory
the skyline problem can be settled by performing O((N/B) lOg;iV;/2B (N/B)) 1/Os in the worst
case, where N is the cardinality of P, B the size of a disk block, and M the capacity of main
memory. Similar bounds can also be achieved for computing several skyline variants, including the
k-dominant skyline, k-skyband, and «a-skyline. Furthermore, the performance can be improved if
some dimensions of the data space have small domains. When the dimensionality d is not fixed,
the challenge is to outperform the naive algorithm that simply checks all pairs of points in P x P.
We give an algorithm that terminates in O((N/B) log?~2 N) I/Os, thus beating the naive solution
for any d = O(log N/ loglog N).

Categories and Subject Descriptors: F2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems

General Terms: Algorithms, theory

Additional Key Words and Phrases: Skyline, admission point, pareto set, maxima set

1. INTRODUCTION

This paper studies the skyline problem. The input is a set P of d-dimensional points
(by the definition of a set, no two points in P are identical). Given a point p € R?,
denote its i-th (1 < ¢ < d) coordinate as p[i]. A point p is said to dominate another
point pe, represented as p; < po, if the coordinate of p; is at most that of ps on

Author’s address: C. Sheng (csheng@cse.cuhk.edu.hk), Department of Computer Science and
Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong; Y. Tao (taoyf@kaist.ac.kr),
Division of Web Science and Technology, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea.

This work was supported in part by (i) projects GRF 4169/09, 4166/10, 4165/11 from HKRGC,
and (ii) the WCU (World Class University) program under the National Research Foundation of
Korea, and funded by the Ministry of Education, Science and Technology of Korea (Project No:
R31-30007).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-077.

rating

® Ut

o

®—

price

Fig. 1. The skyline is {1, 5,7}

every dimension, namely:
pili] < palil, Vi =1, d.

The goal is to compute the skyline of P, denoted as SKY (P), which includes all
the points in P that are not dominated by any other point, namely:

SKY(P)={pe P | € Pst. p <p} (1)

The skyline is also known under other names such as the pareto set, the set of
admission points, and the set of mazimal vectors (see [Sarma et al. 2009]).

Ever since its debut in the database literature a decade ago [Borzsonyi et al.
2001], skyline computation has generated considerable interests in the database
area (see [Sarma et al. 2009] for a brief survey). This is, at least in part, due to the
relevance of skylines to multi-criteria optimization. Consider, for example, a hotel
recommendation scenario, where each hotel has two attributes price and rating
(a smaller rating means better quality). Figure 1 illustrates an example with 8
hotels, of which the skyline is {1, 5, 7}. Every hotel not in the skyline is worse than
at least one hotel in the skyline on both dimensions, i.e., more expensive and rated
worse at the same time. In general, for any scoring function that is monotone on all
dimensions, the skyline always contains the best (i.e., top-1) point that minimizes
the function. This property is useful when it is difficult, if not impossible, for a user
to specify a suitable scoring function that accurately reflects her/his preferences on
the relative importance of various dimensions. In Figure 1, for instance, {1,5,7}
definitely includes the best hotel, no matter the user emphasizes more, and how
much more, on price or rating.

1.1 Computation model

Our complexity analysis is under the standard external memory (EM) model [Ag-
garwal and Vitter 1988], which has been successful in capturing the characteristics
of algorithms dealing with massive data that do not fit in memory (see [Vitter
2006] for a broad summary of results in this model). Specifically, in this model, a
computer has a main memory that is able to accommodate M words, and a disk of
unbounded size. The disk is formatted into disjoint blocks, each of which contains B
consecutive words. The memory should have at least two blocks, i.e., M > 2B. An
I/0 operation reads a block of data from the disk into memory, or conversely, writes

ACM Journal Name, Vol. V, No. N, Month 20YY.

a block of memory information into the disk. The time complexity is measured in
the number of I/Os performed by an algorithm. CPU calculation is free.

In EM, linear cost should be interpreted as O(N/B) for a dataset of size N,
as opposed to O(N) in a memory-resident model such as RAM. In this pa-
per, poly-logarithmic should be understood as O(polylog,;,5(N/B)), instead of
O(polylog N), namely, it is important to achieve base M/B. In this paper, a func-
tion is said to be mnear-linear if it is in O((N/B) polylog, 5(IN/B)) but not in
O(N/B).

1.2 Previous results

In internal memory, Matousek [Matousek 1991] showed how to find the skyline in
O(N?-988) time when the dimensionality d of the dataset P is as high as the num-
ber N of points in P. In 2d space, Kung et al. [Kung et al. 1975] proposed an
O(N log N)-time algorithm. For any fixed dimensionality d > 3, they also gave an
algorithm with time complexity O(N log? 2 N). Bentley [Bentley 1980] developed
an alternative algorithm achieving the same bounds as those of [Kung et al. 1975].
Kirkpatrick and Seidel [Kirkpatrick and Seidel 1985] presented algorithms whose
running time is sensitive to the result size, and has the same complexity as the algo-
rithms in [Bentley 1980; Kung et al. 1975] when the skyline has (V) points. It can
be shown that any algorithm in the comparison class' must incur Q(N log N) time,
implying that the solutions of [Bentley 1980; Kung et al. 1975] are already optimal
in this class for d = 2 and 3 (see also some recent results on instance optimality due
to Afshani et al. [Afshani et al. 2009]). For d > 4, Gabow et al. [Gabow et al. 1984]
discovered an algorithm terminating in O(N log? ™2 N loglog N) time, whereas re-
cently Chan et al. [Chan et al. 2011] improved the bound to O(N log?~* N). Note,
however, that the solutions of [Chan et al. 2011; Gabow et al. 1984] do not belong
to the comparison class, due to their reliance on the features of the RAM model.
Faster algorithms have been developed in some special circumstances where, for
example, the data follow special distributions [Bentley et al. 1993; Bentley et al.
1978; Dai and Zhang 2004].

All the RAM algorithms can be applied in the EM model directly by treating the
disk as virtual memory. Such a brute-force approach, however, can be expensive
in practice because it fails to take into account the effects of blocking, which do
not exist in RAM but are inherent in external memory. For example, running
the solution of [Chan et al. 2011] in EM naively would entail O(N log?~® N) I/Os,
which amounts to reading the entire dataset O(B log®™3 N) times (B is at the order
of thousands in practice). Hence, there is a genuine need to design I/O-oriented
algorithms. For d = 2, using the findings of [Kung et al. 1975], the problem can be
settled by sorting the data followed by a single scan (we will come back to this in
Section 2), which takes O((IN/B)logy;, 5(N/B)) 1/Os in total. To our knowledge,
for general d, the RAM algorithm that can be most efficiently adapted to EM is
the one by Bentley [Bentley 1980], which performs O((N/B)logd—2(N/M)) 1/Os —
note that the base of the log is 2, instead of M/B.

The skyline of a dataset P can be trivially obtained by computing the cartesian

LA skyline algorithm is comparison-based if it can infer the dominance relation by only comparing
pairs of points. The comparison class includes all such algorithms.

ACM Journal Name, Vol. V, No. N, Month 20YY.

product P x P (i.e., by comparing all pairs of points in P). For any fixed d, the
cartesian product can be produced by a blocked nested loop (BNL)in ©(N?/(M B))
I/Os. Tt has been observed [Borzsonyi et al. 2001] that such a quadratic complexity
is too slow in practice for large N. In the past decade, several algorithms, as we
survey below, have been designed to alleviate the deficiency, typically by leveraging
the transitivity of the dominance relation (i.e., p1 < p2 and pa < ps imply p; < p3).
Although empirical evaluation has confirmed their effectiveness on selected datasets,
none of those algorithms has been proved to be asymptotically faster than BNL in
the worst case. We say that they are captured by the quadratic trap.

Borzsonyi et al. [Borzsonyi et al. 2001] presented a divide and conquer (DC)
method that partitions P into disjoint groups P, ..., P; where the number s of
groups is large enough so that each P; (i < s) fits in memory. DC proceeds by
invoking an in-memory algorithm to find the skyline SKY(P;) of each P;, and
then, deleting those points of SKY (P;) dominated by some point in the skyline of
another group. Although divide and conquer is a promising paradigm for attacking
the skyline problem (it is also employed in our solutions), its application in DC'is
heuristic and does not lead to any interesting performance bound.

The sort first skyline (SFS) algorithm by Chomicki et al. [Chomicki et al. 2003]
works by sorting the points p € P in ascending order of score(p), where score
can be any function R? — R that is monotonically increasing on all dimensions.
The monotonicity ensures that, p; < p2 implies score(p1) < score(pz) (but the
opposite is not true). As a result, a point p € P cannot be dominated by any point
that ranks behind it in the ordering. Following this rationale, SF'S scans P in its
sorted order, and maintains the skyline ¥ of the points already seen so far (note
that ¥ C SKY(P) at any time). As expected, the choice of score is crucial to the
efficiency of the algorithm. No choice, unfortunately, is known to be able to escape
the quadratic trap in the worst case.

In SFS, sorting is carried out with the standard external sort. Intuitively, if
mutual comparisons are carried out among the data that ever co-exist in memory
(during the external sort), many points may get discarded right away once con-
firmed to be dominated, at no extra I/O cost at all. Based on this idea, Godfrey
et al. [Godfrey et al. 2007] developed the linear elimination sort for skyline (LESS)
algorithm. LESS has the property that, it terminates in linear expected I/Os under
the independent-and-uniform assumption (i.e., all dimensions are independent, and
the points of P distribute uniformly in the data space), provided that the memory
size M is not too small. When the assumption does not hold, however, it remains
unknown whether the cost of LESS is o(N?/(M B)).

Sarma et al. [Sarma et al. 2009] described an output-sensitive randomized algo-
rithm RAND, which continuously shrinks P with repetitive iterations, each of which
performs a three-time scan on the current P as follows. The first scan takes a ran-
dom sample set S C P with size ©@(M). The second pass replaces (if possible) some
samples in S with other points that have stronger pruning power. All samples at
the end of this scan are guaranteed to be in the skyline, and thus removed from P.
The last scan further reduces | P|, by eliminating all the points that are dominated
by some sample. At this point, another iteration sets off as long as P # (). RAND
is efficient when the result has a small size. Specifically, if the skyline has p points,

ACM Journal Name, Vol. V, No. N, Month 20YY.

method I/O complexity remark

[Kung et al. 1975] O(Nlog? 2 N)

[Chan et al. 2011] O(N log?—3) not in the comparison
class.

[Bentley 1980] O((N/B)logd=2(N/M)) | adapted from Bentley’s
O(N log?=? N) algorithm
in RAM

BNL O(N?/(MB)) same for the BNL variant
of [Borzsonyi et al. 2001]

DC [Borzsonyi et al. 2001] | Q(N?/(MB))

SFS [Chomicki et al. 2003] | O(N?/(MB))

LESS [Godfrey et al. 2007] | O(N?/(MB))

RAND [Sarma et al. 2009] | O(uN/(MB)) expected | p is the number of points
in the skyline, which can
be Q(N).

this article O((N/B)logy, % (N/B))

Table I. Comparison of skyline algorithms for fixed d > 3

RAND entails O(uN/(MB)) 1/0s in expectation. When p = Q(N), however, the
time complexity falls back in the quadratic trap.

There is another line of research that concerns pre-processing a dataset P into a
structure that supports retrieval of the skyline without reading the whole dataset
(see [Bartolini et al. 2008; Janardan 1991; Kapoor 2000; Kossmann et al. 2002;
Lin et al. 2005; Papadias et al. 2005] and the references therein). In our context,
these pre-computation-based methods do not have a notable advantage over the
algorithms mentioned earlier.

1.3 Our results

Main result. We prove in this article:

THEOREM 1. For any fized d > 3, the skyline of N points in R? can be computed
in O((N/B)logg; "5 (N/B)) 1/0s.

The theorem concerns only d > 3 because, as mentioned before, the skyline prob-
lem is known to be solvable in O((N/B)log,, g(N/B)) I/Os in 2d space. Unlike the
result of Godfrey et al. [Godfrey et al. 2007], we make no assumption on the data
distribution. Our algorithm is the first one that beats the quadratic trap and, at
the same time, achieves near-linear running time. For any fixed d, Theorem 1 shows
that the skyline problem can be settled in O(N/B) I/Os, when N/B = (M/B)¢
for some constant ¢ (a situation that is likely to happen in practice). No previous
algorithm is known to have such a property. See Table I for a comparison of our
and existing results.

The core of our technique is a distribution-sweep? algorithm for solving the skyline
merge problem, where we are given s skylines 1, ..., X that are separated by s — 1

2 An algorithm paradigm proposed by Goodrich et al. [Goodrich et al. 1993] that can be regarded
as the counterpart of plane-sweep in external memory.

ACM Journal Name, Vol. V, No. N, Month 20YY.

hyper-planes orthogonal to a dimension; and the goal is to return the skyline of the
union of all the skylines, namely, SKY (X7 U ... UXy). It is not hard to imagine
that this problem lies at the heart of computing the skyline using a divide-and-
conquer approach. Indeed, the lack of a fast solution to skyline merging has been
the obstacle in breaking the curse of quadratic trap, as can be seen from the divide-
and-conquer attempt of Borzsonyi et al. [Borzsonyi et al. 2001]. We overcome
the obstacle by lowering the dimensionality to 3 gradually, and then settling the
resulting 3d problem in linear I/Os. Our solution can also be regarded as the
counterpart of Bentley’s algorithm [Bentley 1980] in external memory.

We note that the 3d result of Theorem 1 was briefly mentioned to be achievable
in [Goodrich et al. 1993], although no algorithmic details were given in that work.
Our results for d > 4 appear in the literature for the first time to our knowledge.

Skyline variants. We show that performance bounds similar to that in Theo-
rem 1 can also be achieved for computing several skyline variants, including the
k-dominant skyline [Chan et al. 2006], k-skyband [Papadias et al. 2005], and «a-
skyline [Xia et al. 2008].

Low-cardinality domains. Let [z] denote the set of integers {1,...,xz}. Our
discussion has been assuming that each point is in the data space R?. Morse et al.
[Morse et al. 2007] pointed out that, in practice, some dimensions may have small
domains, e.g., the rating of a hotel may be an integer from 1 to 10. They raised
the question whether the computation time can be reduced in such a scenario.
Formally, let P be a set of N points in [U]* x R?~* for some integer U, and some
integer ¢t € [0, d]. In other words, the data space has ¢ short dimensions with domain
[U], plus d—t long dimensions with domain R. The goal is still to compute SKY (P)
which is defined as in (1).

Assuming t > d—1 (i.e., at least d — 1 dimensions are short), Morse et al. [Morse
et al. 2007] solved the problem in O(U?~! + N/B) 1/Os. In this article, we show:

THEOREM 2. For any fized d > 3, the skyline of N points in [U]* x Rt can be
computed in

+ X log 5 %) I/Os if t > d —1;
'10gM/B %) I/OS th = d— 27'

logh /5 X)) I/Os if t <d —2.

*O(% logM/B
—O(% IOgLIi\Z/?}s
*O(% logg\/[/B

Again, the theorem focuses on d > 3 because the problem can be solved in
o(% log/ B X) 1/Os in 2d space. Note that, for ¢ < d, the above result is better
than Theorem 1 when N is far greater than U. For small N, one can always revert
to the algorithm of Theorem 1.

DS RS W=

Non-fixed d. The skyline problem is challenging when the dimensionality d cannot
be regarded as a constant, but instead, needs to play a part in the I/O complexity.
In fact, d can even exceed M, i.e., the memory is not even large enough to hold
all the coordinates of a single point, such that checking whether a point dominates
another requires O(d/B) I/Os. In this case, a tough competitor is the naive al-
gorithm that simply checks all pairs of points and thus performs O(dN?/B) 1/Os
in total. Beating this naive solution becomes the primary goal. In this article, we

ACM Journal Name, Vol. V, No. N, Month 20YY.

Ymin——»e

o’
ot

(a) (b)
Fig. 2. Tllustration of algorithms by Kung et al. (a) 2d, (b) 3d

establish:

THEOREM 3. For any non-fized d > 3, the skyline of N points in RY can be
computed in O((N/B)log? 2 N) I/Os.

Note that the theorem improves the naive O(dN?/B) bound for all d =
O(log N/loglog N). We achieve the above result by observing that the analysis of
[Kung et al. 1975] can be tightened. Specifically, it was shown there that, in internal
memory, the skyline problem of a non-fixed d can be solved in O(d2N log?~2 N)
time. By slightly modifying the algorithm of [Kung et al. 1975] and presenting a
more careful analysis, we improve their bound to O(Nlog? "2 N). We then show
that our analysis extends to external memory as well.

Remark. A short version of this article has appeared in [Sheng and Tao 2011].
That earlier work presented Theorem 1 and discussed k-dominant skylines, whereas
all the other results mentioned above are additional materials of the current article.

2. PRELIMINARIES

In this section, we review some skyline algorithms designed for memory-resident
data. The purposes of the review are three fold. First, we will show that the 2d
solution of Kung et al. [Kung et al. 1975] can be easily adapted to work in the EM
model. Second, our discussion of existing algorithms for d > 3 not only clarifies
several characteristics of the underlying problems, but also sheds light on some
obstacles preventing a direct extension to achieve near-linear time complexity in
external memory. Finally, we briefly explain the cost lower bound established in
[Kung et al. 1975] and why a similar bound also holds in the I/O context.

Let us first agree on some terminologies. We refer to the first, second, and third
coordinate of a point as its x-, y-, and z-coordinate, respectively. Sometimes, it
will be convenient to extend the definition of dominance to subspaces in a natural
manner. For example, in case p; has smaller x- and y-coordinates than ps, we
say that p; dominates ps in the x-y plane. No ambiguity can arise as long as the
subspace concerning the dominance is always mentioned.

2d. The skyline SKY (P) of a set P of 2d points can be extracted by a single
scan, provided that the points of P have been sorted in ascending order of their
x-coordinates. To understand the rationale, consider any point p € P; and let

ACM Journal Name, Vol. V, No. N, Month 20YY.

P’ be the set of points of P that rank before p in the sorted order. Apparently,
p cannot be dominated by any point that ranks after p, because p has a smaller
x-coordinate than any of those points. On the other hand, p is dominated by some
point in P’ if and only if the y-coordinate of p is greater than y,min, where Yy is
the smallest y-coordinate of all the points in P’. See Figure 2a where P’ includes
points 1, 2, 3; and that no point in P’ dominates p can be inferred from the fact
that p has a lower y-coordinate than y,;,. Therefore, to find SKY (P), it suffices
to read P in its sorted order, and at any time, keep the smallest y-coordinate y.,in
of all the points already seen. The next point p scanned is added to SKY (P) if its
y-coordinate is below y,n, in which case ym,;, is updated accordingly. In the EM
model, this algorithm performs O((N/B)logy; g(IN/B)) 1/Os, which is the time
complexity of sorting N elements in external memory.

3d. Suppose that we have sorted P in ascending order of their x-coordinates.
Similar to the 2d case, consider any point p € P, with P’ being the set of points
before p. It is clear that p cannot be dominated by any point that ranks after p.
Judging whether p is dominated by a point of P’, however, is more complex than
the 2d scenario. The general observation is that, since all points of P’ have smaller
x-coordinates than p, we only have to check whether p is dominated by some point
of P’ in the y-z plane. Imagine that we project all the points of P’ onto the y-z
plane, which yields a 2d point set P”. Let ¥ be the (2d) skyline of P”. Tt is
sufficient to decide whether a point in ¥ dominates p in the y-z plane.

It turns out that such a dominance check can be done efficiently. In general, a
2d skyline is a “staircase”. In the y-z plane, if we walk along the skyline in the
direction of growing y-coordinates, the points encountered must have descending
z-coordinates. Figure 2b illustrates this with a ¥ that consists of points 1, ..., 5. To
find out whether p is dominated by any point of ¥ in the y-z plane, we only need
to find the predecessor o of p along the y-dimension among the points of X, and
give a “yes” answer if and only if o has a lower z-coordinate than p. In Figure 2b,
the answer is “no” because the predecessor of p, i.e., point 2, actually has a greater
z-coordinate than p. Returning to the earlier context with P’, a “no” indicates
that p is not dominated by any point in P’, and therefore, p belongs to the skyline
SKY(P).

Based on the above reasoning, the algorithm of [Kung et al. 1975] maintains ¥
while scanning P in its sorted order. To find predecessors quickly, the points of X
are indexed by a binary tree 71" on their y-coordinates. The next point p is added
to SKY(P) upon a “no” answer as explained before, which takes O(log N) time
with the aid of T'. Furthermore, a “no” also necessitates the deletion from ¥ of all
the points that are dominated by p in the y-z plane (e.g., points 3, 4 in Figure 2b).
Using T, this requires only O(log N) time per point removed. As each point of P
is deleted at most once, the entire algorithm finishes in O(N log N) time.

A straightforward attempt to externalize the algorithm is to implement T as a
B-tree. This will result in the total execution time of ©(N logg N), which is higher
than the cost O((N/B)log,;,5(N/B)) of our solution by a factor of (B logg M).
The deficiency is due to the fact (see [Goodrich et al. 1993]) that plane sweep, which
is the methodology behind the above algorithm, is ill-fitted in external memory,
because it issues a large number of queries (often Q(N)), rendering it difficult to

ACM Journal Name, Vol. V, No. N, Month 20YY.

control the overall cost to be at the order of N/B.
Following a different rationale, Bentley [Bentley 1980] gave another algorithm of
O(N log N) time. We will not elaborate his solution here because our algorithm in

the next section degenerates into Bentley’s, when M and B are set to constants
satisfying M/B = 2.

Dimensionalities at least 4. Kung et al. [Kung et al. 1975] and Bentley [Bentley
1980] deal with a general d-dimensional (d > 4) dataset P by divide-and-conquer.
More specifically, their algorithms divide P into P, and P» of roughly the same
size by a hyper-plane perpendicular to dimension 1. Assume that the points of Py
have smaller coordinates on dimension 1 than those of P». Let ¥; be the skyline
SKY (Py) of P, and similarly, ¥o = SKY(P,). All points of ¥; immediately
belong to SKY (P), but a point p € ¥z is in SKY (P) if and only if no point in 3
dominates p. Hence, after obtaining 3; and ¥, from recursion, a skyline merge is
carried out to evict such points as p.

Externalization of the algorithms of Kung et al. [Kung et al. 1975] and Bentley
[Bentley 1980] is made difficult by a common obstacle. That is, the partitioning in
the divide-and-conquer is binary, causing a recursion depth of Q(polylog(N/M)).
To obtain the performance claimed in Theorem 1, we must limit the depth to
O(polylog /g (IN/B)). This cannot be achieved by simply dividing P into a greater
number s > 2 of partitions P, ..., Ps, because doing so may compromise the effi-
ciency of merging skylines. To illustrate, let ¥; = SKY(P;) for each 1 < i < s.
A point p € S; must be compared to SKY (P;) for all j < i. Applying the sky-
line merge strategy of [Bentley 1980] or [Kung et al. 1975] would blow up the cost
by a factor of Q(s?), which would offset all the gains of a large s. Remedying the
drawback calls for a new skyline merge algorithm, which we give in the next section.

Cost lower bound. Kung et al. [Kung et al. 1975] proved that any 2d skyline
algorithm in the comparison class must incur (N log N) execution time. To de-
scribe the core of their argument, let us define the rank permutation of a sequence
S of distinct numbers (z1, ..., zx), as the sequence (r1, ...,y) where r; (1 <i < N)
is the number of values of S that are at most z;. For example, the rank permu-
tation of (9,20,3) is (2,3,1). Kung et al. [Kung et al. 1975] identified a series of
hard datasets, where each dataset P has N points p1,...,py whose x-coordinates
can be any integers. They showed that, any algorithm that correctly finds the
skyline of P must have determined the rank permutation of the sequence formed
by the x-coordinates of p,...,pn. In the EM model, it is known [Aggarwal and
Vitter 1988] that deciding the rank permutation of a set of N integers demands
Q((N/B)logy g(N/B)) 1/Os in the worst case for any comparison-based algo-
rithm. It thus follows that this is also a lower bound for computing 2d skylines in
external memory. Note that the same bound also holds in higher-dimensional space
where the problem is no easier than in the 2d space.

It is worth mentioning that the I/O lower bound Q((N/B)log,,,5(N/B)) is also
a direct corollary of a result due to Arge et al. [Arge et al. 1993].

3. OUR SKYLINE ALGORITHM

This section will present a new algorithm for solving the skyline problem when the
dimensionality d is a fixed constant. Let us agree on some more terminologies.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10

When we say a set S of points is “sorted on a certain dimension”, we mean that the
points of S are sorted by their coordinates of that dimension. By “partitioning S
into s sets S(1), ..., S(s) along a dimension, say x,” we mean cutting the data space
into slabs o (1), ...,0(s) using s — 1 hyper-planes perpendicular to the x-dimension,
such that S(i) = SNo(i) for each i € [1, s]. Furthermore, we follow the convention
that points in S(i) have smaller x-coordinates than those in S(j) for any i < j.
Also, by “synchronously scan S(1), ..., 5(s) on, for example, the x-dimension”, we
mean fetching the points of S(1)U...US(s) in ascending order of their x-coordinates.
We will present the proposed solution in a step-by-step manner. Section 3.1 first
explains the overall divide-and-conquer framework underpinning the algorithm by
clarifying how it works in 3d space. To tackle higher dimensionalities d, there is an-
other layer of divide-and-conquer inside the framework, as elaborated in Section 3.2
for d = 4. The 4d description of our algorithm can then be easily extended to gen-
eral d, which is the topic of Section 3.3. For simplicity, in the above subsections,
we will assume that P is in general position, i.e., no two points of P share the same
coordinate on any dimension. This assumption will be removed in Section 3.4.

31 3d

Our algorithm accepts as input a dataset P sorted on the x-dimension. If the size
N of P is at most M (i.e., the memory capacity), we simply find the skyline of P
using a memory-resident algorithm. The I/O cost incurred is O(N/B).

If N > M, we divide P into s = ©(M/B) partitions P(1), ..., P(s) with roughly
the same size®. As P is already sorted on the x-dimension, the partitioning can be
done in linear cost, while leaving the points of each P(i) sorted in the same way.
The next step is to obtain the skyline () of each P(i), i.e., 3(i) = SKY (P(2)).
Since this is identical to solving the original problem (only on a smaller dataset), we
recursively invoke our algorithm on P(i). Now consider the moment when all (%)
have been returned from recursion. Our algorithm proceeds by performing a skyline
merge, which finds the skyline of the union of all ¥(3), that is, SK'Y (X(1)U...UX(s)),
which is exactly SKY (P). We enforce an invariant that, SKY (P) be returned in
a disk file where the points are sorted in ascending order of y-coordinates (to be
used by the upper level of recursion, if any). Due to recursion, the invariant implies
that, the same ordering has been applied to all the ¥(z) at hand.

We now elaborate the details of the skyline merge. SKY(P) is empty in the
outset. X3(1),...,X(s) are scanned synchronously. In other words, the next point
fetched is guaranteed to have the lowest y-coordinate among the points of all (%)
that have not been encountered yet. As s = ©(M/B), the synchronization can
be achieved by assigning a block of memory as the input buffer to each X(z). We
maintain a value A(7), which equals the minimum z-coordinate of all the points that
have already been seen from X(¢). If no point from X(¢) has been read, A(i) = co.

We decide whether to include a point p in SKY (P) when p is fetched by the
synchronous scan. Suppose that p is from X(7) for some i. We add p to SKY (P) if

pB3] < A(j), Vi <i (2)
where p[3] denotes the z-coordinate of p. See Figure 3 for an illustration. The

3“Roughly the same size” means that the size of each P(i) is the same up to a constant factor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

11

AZ / Yy
// | |
/ 7) 6 .8 |
/] |
S0 | s |
3)/ : y g (2 y
® 4 / ;1 : () / 1
i / ' / ?
B A, o’ i
X EPYC)N
2 X :
) :
)\ 1 : N
X ()>< % 5

Fig. 3. Illustration of 3d skyline merge. The value of s is 3. Only the points already
encountered are shown. Points are labeled in ascending order of their y-coordinates
(which is also the order they are fetched). Point 8 is the last one seen. Each cross
is the projection of a point in the x-y plane. (1) contains points 2, 3, 7, ¥(2)
includes 4, 6, 8, and X(3) has 5, 1. A(1), A(2), A(3) equal the z-coordinate of point
2, 8, 5, respectively. Point 8 does not belong to SKY (P) because its z-coordinate
is larger than A(1) (i.e., it violates (2) on j = 1).

lemma below shows the correctness of this rule.
LEMMA 1. p € SKY(P) if and only if (2) holds.

PROOF. Clearly, p cannot be dominated by any point in 3(i+1), ..., X(s) because
p has a smaller x-coordinate than all those points. Let S be the set of points in
% (j) already scanned before p, for any j < i. No point p’ € X(j) \ S can possibly
dominate p, as p has a lower y-coordinate than p’. On the other hand, all points
in S dominate p in the x-y plane. Thus, some point in S dominates p in R? if and
only if (2) holds. O

We complete the algorithm description with a note that a single memory block
can be used as an output buffer, so that the points of SKY (P) can be written to the
disk in linear I/Os, by the same order they entered SKY (P), namely, in ascending
order of their y-coordinates. Overall, the skyline merge finishes in O(N/B) I/Os.

Running time. Denote by F(N) the I/O cost of our algorithm on a dataset with
cardinality N. It is clear from the above discussion that

_ | ov/B) if N <M
PNy = { s-F(N/s)+ G(N) otherwise (3)

where G(N) = O(N/B) is the cost of a skyline merge. Solving the recurrence gives
F(N) = O((N/B)log/p(N/B)).
32 4d

To find the skyline of a 4d dataset P, we proceed as in the 3d algorithm by using
a possibly smaller s = @(min{v/ M, M/B}). The only difference lies in the way

ACM Journal Name, Vol. V, No. N, Month 20YY.

12

that a skyline merge is performed. Formally, the problem we face in a skyline
merge can be described as follows. Consider that P has been partitioned into
P(1),..., P(s) with s slabs 01(1), ..., o1(s) separated by s—1 hyper-planes orthogonal
to dimension 1. We are given the skyline ¥;(¢) of each P(i), where the points of
%1 (7) are sorted in ascending order of their 2nd coordinates. The goal is to compute
SKY (X1(1)U...UX1(s)), which is equivalent to SKY (P). Further, the output order
is important (for backtracking to the upper level of recursion): we want the points
of SKY(P) to be returned in ascending order of their 2nd coordinates.

The previous subsection solved the problem in 3d space with O(N/B) I/Os
where N = |P|. In 4d space, our objective is to pay only an extra factor of
O(logyr p(N/B)) in the cost. We fulfill the purpose with an algorithm called
preMerge-4d, the input of which includes

—slabs 01(1), ..., 01(8)

—a set IT of points sorted in ascending order of their 2nd coordinates. II has the
property that, if two points p1, p2 € II fall in the same slab, they do not dominate
each other.

preMerge-4d returns the points of SKY (II) in ascending order of their $rd coordi-
nates.

Although stated somewhat differently, the problem settled by preMerge-4d is
(almost) the same as skyline merge. Notice that II can be obtained by merg-
ing ¥1(1),...,21(s) in O(N/B) I/Os. Moreover, we can sort SKY (II) (output by
preMerge-4d) on dimension 2 to fulfill the order requirement of skyline merge,
which demands another O((N/B)log, 5(N/B)) 1/0Os.

Algorithm preMerge-4d. In case II has at most ©(M) points, preMerge-4d
solves the problem in memory. Otherwise, in O(|II|/B) I/Os the algorithm di-
vides II into s partitions II(1),...,II(s) of roughly the same size, along dimen-
sion 2. We then invoke preMerge-4d recursively on each II(i), feeding the same
{o1(1), ...,01(5)}, to calculate £5(:) = SKY (II(7)). Apparently, SKY (II) is equiv-
alent to the skyline of the union of all ¥3(7), namely, SKY(II) = SKY (25(1) U
...U3X5(s)). It may appear that we are back to where we started — this is another
skyline merge! The crucial difference, however, is that only two dimensions remain
“unprocessed” (i.e., dimensions 3 and 4). In this case, the problem can be solved
directly in linear I/Os, by a synchronous scan similar to the one in Section 3.1.

By recursion, the points of each ¥5(i) have been sorted on dimension 3. This
allows us to enumerate the points of ¥2(1)U...UXa(s) in ascending order of their 3rd
coordinates, by synchronously reading the 35 (7) of alli € [1, s]. In the meantime, we
keep track of s2 values \(i1,142) for every pair of i1,is € [1,s]. Specifically, A(i1, i2)
equals the lowest 4th coordinate of all the points in oq(41) N X2 (i2) that have been
scanned so far; or \(i1,42) = oo if no such point exists. Note that the choice of s
makes it possible to maintain all A(é1,i2) in memory, and meanwhile, allocate an
input buffer to each 35(4) so that the synchronous scan can be completed in linear
I/Os.

SKY(II) is empty at the beginning of the synchronous scan. Let p be the next
point fetched. Suppose that p falls in 01(i1), and is from ¥s(i2), for some i1, is.

ACM Journal Name, Vol. V, No. N, Month 20YY.

13

We insert p in SKY (IT) if
pl4] < A(j1, J2), Vi1 <1, ja < iz (4)

where p[4] is the coordinate of p on dimension 4. An argument similar to the proof
of Lemma 1 shows that p € SKY (II) if and only if the above inequality holds. Note
that checking the inequality happens in memory, and incurs no I/O cost. Finally, as
the points of SKY (II) enter SKY (II) in ascending order of their 3rd coordinates,
they can be written to the disk in the same order.

Running time. Let H(K) be the I/O cost of preMerge-4d when IT has K points.
We have

H(K) = O(K/B) ifK<M
| s-H(K/s)+O(K/B) otherwise

where s = Q(/M/B). This recurrence gives H(K) = O((K/B)log;, 5(K/B)).
Following the notations in Section 3.1, denote by G(N) the cost of a skyline

merge when the dataset P has size N, and by F(IN) the cost of our 4d skyline

algorithm. G(N) equals H(N) plus the overhead of sorting SKY (P). Hence:

G(N) = O((N/B)logn/p(N/B)).
With the above, we solve the recurrence in (3) as F(N) = O((N/B) log?WB(N/B)).

3.3 Higher dimensionalities

We are now ready to extend our technique to dimensionality d > 5, the core of which
is to attack the following problem (that generalizes the skyline merges encountered
in the preceding subsections). The input includes:

—A parameter h satisfying 0 < h < d — 2.

—(Applicable only to h > 0) a set of s = O(min{M/(@=2) M/B}) slabs
0i(1),...,04(s) for each dimension i € [1,h] (there are h sets in total). Each
set of o;(1),...,04(s) is obtained by cutting R? with s — 1 hyper-planes perpen-
dicular to dimension i. We follow the convention that all points in o;(j1) have
smaller coordinates on dimension ¢ than those in ¢;(j2) for any 1 < j; < ja < s.

—A set II of points sorted on dimension h + 1. These points have the property
that, for any p;,p2 € II, they do not dominate each other if they are covered
by the same slab, namely, both p; and ps fall in a o;(j) for some ¢ € [1, h] and
Jj€1,s].

The objective is to output SKY (II) in ascending order of their coordinates on
dimension h + 1. We refer to the problem as (h, d)-merge.

Set K = |II|. Our earlier analysis has shown that (1,3)- and (2,4)-merges can
both be settled in linear I/Os, while (1,4)-merge in O((K/B)log,,5(K/B)) 1/Os.
Next, we will establish a general result:

LEMMA 2. For any fized d, the (h,d)-merge problem on N d-dimensional points
can be solved in O((K/B) log‘]i\;/%_Q(K/B)) I/0s.

The subsequent discussion proves the lemma by handling h =d—2and h < d—2
separately.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14

h = d — 2. Our algorithm in this case performs a single scan of II. At any time,
we maintain s” memory-resident values A(i1, ...y i), where 1 < i; < s for each

€ [1,h]. Specifically, A(i1,...,i) equals the lowest coordinate on dimension d of
all the points already scanned that fall in o1 (i1) N ... Nop(ip); or A(i1, ..., 0n) = 0o if
no such point has been encountered yet. By remembering in memory the description
of all slabs, we can update the corresponding A(i1, ..., 4,) (if necessary) right after
a point is read, without any extra I/O.

SKY(II) is empty at the beginning of the algorithm. Let p be the next point
of II found by the scan. Assume, without loss of generality, that p falls in
o1(i1) N...Nop(ip) for some iy, ...,7,. We add p to SKY (II) if

p[d] <)\(j17"'7jh)7vj1 <i17"'7jh <ih (5)

where p[d] is the d-th coordinate of p. With the experience from (2) and (4), it is
not hard to see that p € SKY (II) if and only if (5) holds. Obviously, SKY (II) can
be easily output in ascending order of the coordinates of dimension h + 1 as this is
the order by which points enter SKY (IT).

The above process requires O(s") memory to store the slab description and all
the A(41, ...,%r), plus an extra block as the input buffer of IT and output buffer of
SKY (IT), respectively. This is not a problem because s" = O(M). The algorithm
terminates in O(K/B) 1/Os.

h < d—2. We deal with this scenario by converting the problem to (h+1, d)-merge,
using a divide-and-conquer approach similar to transforming (1, 4)-merge into (2, 4)-
merge in Section 3.2. Our approach is to generalize the algorithm preMerge-4d in
Section 3.2. The resulting algorithm, named preMerge, solves the same problem
as (h,d)-merge except that it outputs the points of SKY (IT) in ascending order of
their coordinates on dimension h + 2. This is minor because SKY (II) can then
be sorted again in O((K/B)logy,,5(K/B)) 1/Os to meet the order requirement of
(h,d)-merge.

If K < M, preMerge trivially computes SKY (II) in memory. Otherwise, in
linear I/Os the algorithm divides IT into II(1),...,TI(s) of roughly the same size
along dimension h+1. Naturally, each II(i) corresponds to a slab op41(4), such that
on+1(1),...,on+1(s) are separated by s — 1 hyper-planes perpendicular to dimension
h+1. We then invoke preMerge recursively on II(4), feeding the same h sets of slabs
{0i(1),...,0i(s)} of all i € [1,h]. On return, we have obtained X(i) = SKY (II(7)),
with the points therein sorted on dimension h 4 2. In O(K/B) I/0s, (1), ..., 3(s)
can be merged into a single list ¥’ where all points remain sorted on dimension
h + 2. At this point, we are facing a (h 4 1, d)-merge problem on ¥’ and h + 1
sets of slabs {0;(1),...,0:(s)} of all ¢ € [1,h + 1]. The converted problem is solved
recursively as described above.

Running time of (h,d)-merge. The pseudocode of Figure 4 summarizes the
execution flows of (h,d)-merge (i.e., function merge) and preMerge. Let H(h, K)
be the cost of preMerge(h,II) on a dataset II of size K, and G(h, K) the cost of a
(h,d)-merge on II. From the earlier discussion, we have:
O(K/B) ith=d-2
Gh, K) = H(h,K)+ O (% logr/ B %) otherwise (6)

ACM Journal Name, Vol. V, No. N, Month 20YY.

15

merge(h,II)
/* perform a (h,d)-merge on II */
1. if h =d — 2 then
2. compute SKY (IT) in O(|IT|/B) 1/0s
/* SKY (IT) now sorted by dimension h + 1 */
3. else
4. SKY (II) « preMerge(h,II)
5 sort the points of SKY (II) by dimension h + 1
6. return SKY(II)

preMerge(h,II)
1. if II fits in memory then
2. compute SKY (IT) in O(|IT|/B) 1/0s, ensuring that the points of
SKY (II) be sorted by dimension h + 2
4. else
5. divide II into II(1),...,TI(s) on dimension h + 1
6. for i + 1 to s do
7 Y(i) + preMerge(h,I1(i))
8 merge (1), ..., X(s) into X’
/* ¥’ now sorted by dimension h + 2 */
9. SKY (II) « merge(h+1,%)
/* SKY (II) now sorted by dimension h + 2 */
10. return SKY (II)

Fig. 4. High-level description of the algorithms for performing a (h, d)-merge

and, for h < d —3:

_ [O(K/B) itK <M
H(h,K)—{ s-H(h2)+0(5)+G(h+1,K) otherwise @

where s = Q((M/B)'/(?=2)). To solve the above recurrences, first notice that
H(d—3,K) = O((K/B)logy;, 5 (K/B)) (8)
which, together with (6), implies that, for h < d — 3:
G(h,K)=0O(H(h,K)) 9)
Hence, for h < d — 4:
Hh, K) = { SO.(II;/(?)%) +O(H(h+1,K)) gtﬁ{er:vijs\z

From the above and (8), we obtain H(h, K) = O((K/B)logi;/}gz(K/B)) for all

h < d — 3. This, together with (9) and the first case of (6), completes the proof of
Lemma 2.

Computing the skyline. Let P be a dataset that has been sorted in ascending
order along dimension 1. We find SKY (P) by simply performing a (0, d)-merge

ACM Journal Name, Vol. V, No. N, Month 20YY.

16

on P. By Lemma 2, the overall I/O complexity is O((N/B) logCIl\/;/%g (N/B)), which
concludes the proof of Theorem 1.

3.4 Eliminating the general-position assumption

The skyline problem is still well defined on a set P of points that are not in general
position, namely, two points may have identical coordinates on some (but not all)
dimensions. Next, we explain how to extend our algorithm to support such P.

The only part that needs to be clarified is how to deal with ties in sorting. Recall
that, in several places of our algorithm, we need to sort a set II C P of points in
ascending order of their coordinates on dimension ¢, where 1 < ¢ < d. The goal
of tie-breaking is to ensure that if a point p; ranks after another point ps, then p;
cannot dominate po. This purpose can be achieved as follows. If p; and ps have
the same i-th coordinate, we rank them lexicographically. Specifically, we first find
the smallest j such that p; and ps have different coordinates on dimension j. Note
that j must exist because P is a set, and hence, does not have duplicate points. If
the j-th coordinate of p; is smaller than that of ps, we rank p; earlier; otherwise,
po is ranked earlier.

4. VARIANTS OF THE SKYLINE PROBLEM

This section will explain how to extend our algorithm of Section 3 to settle some
variants of the skyline problem in a worst-case efficient manner.

k-dominant skyline. Chan et al. [Chan et al. 2006] proposed the concept of k-
dominant skyline, where k is a positive integer at most d. Intuitively, the dominance
relation accompanying the new concept requires a point p; to be better than another
p2 only on k dimensions, instead of all dimensions. Specifically, p; is said to k-
dominate po, denoted as p; <j po, if:

3 at least k& dimensions i1, ..., 7 S.t.
p1li;] < pa2[i;] for each j =1,.... k.

The k-dominant skyline of P is the set of points in P that are not k-dominated by
any other point in P. This problem can be trivially solved by BNL in O(N? /(M B))
I/Os. The existing k-dominant-skyline algorithms [Chan et al. 2006] are heuristic,
and have the same complexity as BNL in the worst case.

For a fixed d, our technique can be utilized to settle this problem in
O((N/B)long/;/QB(N/B)) I/Os for any k > 3. Let a k-subspace be the space S
defined by k dimensions of R?. We say that a point p € P is in the skyline un-
der S, if p is a skyline point of the k-dimensional dataset obtained by projecting
P onto S. Clearly, there are (Z) = O(1) k-subspaces. It is easy to verify that p
belongs to k-dominant skyline of P if and only if p is in the skyline under all k-
subspaces. The proposed skyline algorithm allows us to find the skyline under each
of the k-subspaces in totally O((N/B) 1og’f\;/2B(N/B)) I/Os, after which it is easy
to extract the k-dominant skyline in O((N/B)logy,5(N/B)) 1/Os. Finally, note
that the 2-dominant skyline can be found in O((N/B)log,;,5(N/B)) 1/Os using
similar ideas, whereas the 1-dominant skyline can be retrieved in O(N/B) I/Os by
scanning the dataset once (to get the minimum coordinate of the points in P on
every dimension).

ACM Journal Name, Vol. V, No. N, Month 20YY.

17

k-skyband. Given a set P of d-dimensional points, a k-skyband consists of all
the points p € P such that p is dominated by less than k points in P. Hence, the
skyline of P is simply the 1-skyband, and in general, the k-skyband is a subset of the
(k + 1)-skyband. This notion, introduced by Papadias et al. [Papadias et al. 2005],
provides a user with a richer set of choices (than the conventional skyline), and yet
guarantees that any point offered is among the k£ elements in P that minimize at
least one monotone preference function (i.e., a top-k set).
For any

E=0(M'")

where € is any positive constant smaller than 1, our algorithm can be adapted to

find the k-skyband of P in O(% 1og‘§/[_/23) 1/Os, where N = |P|. Next, we explain

this only for d = 3 because the generalization to higher d is straightforward.
Consider that P has already been sorted on the x-dimension. Set

s = ©O(min{M*, M/B}).

As in our skyline algorithm, divide P into P(1),..., P(s) along the x-dimension of
roughly the same size. Recurse on each P(i) for ¢ € [1,s] to find its k-skyband
3(i). On return, we require that 3(i) should have been sorted on the y-dimension.
Furthermore, each point p € X(i) should be associated with a value cnt(p) that
equals the number of points in P(i) dominating p. Clearly, cnt(p) < k.

Synchronously scan (1), ..., X(s) on the y-dimension. For each ¥(¢), record the
k smallest z-coordinates of the points of () that have been seen. Denote those
coordinates as A1 (), ..., Ag(4) in ascending order (A;(i) = oo if less than j points
have been encountered in 3(7)). Let p € 3(i) for some i be the next point fetched
by the synchronous scan. We find the number ¢ of values smaller than p[3] among
Ajr(j) forall 1 < j/ < k and 1 < j < i, and increase cnt(p) by c. If cnt(p) is at
least k now, p is discarded. The remaining points are written to the file sorted on
the y-dimension.

The choice of s ensures that the memory, besides storing sk z-coordinates, can
still accommodate a block as the input buffer for each ¥(7), as well as a block as
the output buffer.

Dominance filtering. Let us consider the following problem. Let IT and P be
two sets of d-dimensional points. We want to report all the points in P that are
not dominated by any point in II. We call this problem dominance filtering. As an
application in practice, imagine that II (P) represents a set of hotels of a company
Cy (C3). The output of dominance filtering can be understood as those hotels of
C5 that are not superseded by any hotel of C;. Besides its own practical usefulness,
the problem is also fundamental to solving some other problems, as will be clear
later.

Set N = |II| + | P|. Below we show how to slightly modify our skyline algorithm
to solve the dominance filtering problem in O(% logi;/zB) 1/0s. We will focus
on 3d because the same idea extends to higher d. Let S = II U P, assuming for
simplicity that no point of II coincides with a point in P.

Consider that S has been sorted on the x-dimension. Similar to our skyline
algorithm, partition S into S(1),...,S(s) of roughly the same size along the x-

ACM Journal Name, Vol. V, No. N, Month 20YY.

18

dimension, where s = ©(M/B). Let I1(i) = 11N S(i) and P(i) = PN .S(i). Recurse
on each S(i) such that, on return, all those points in P(¢) that are dominated by
some point in TI(¢) have been eliminated. Let P’(#) be the set of points of P(%)
that remain. We require that, on return from the recursion, S’(7) = II(i) U P’(%)
should be sorted on y-dimension. Synchronously scan S’(1),...,5'(s) on the y-
dimension. At any moment, maintain A(7) for ¢ € [1, s] as the smallest z-coordinate
of the points in TI(¢) that have been encountered (A(i) = oo if no such point has
been seen). When a point p € P’(i) for some i has been fetched, discard it if its
z-coordinate is larger than any of A(1),...,A(i — 1).

a-skyline. Next, we will put the above dominance filtering algorithm to an imme-
diate use (we will see another use later in Section 6). Given two points py,ps € RY,
we say that p1 a-dominates po if

Vi=1,..,d, p1[i] — o < pali]

where « is a real value. Intuitively, a positive @ makes it easier for p; to dominate
p2, whereas a negative a makes it more difficult. In any case, note that it is possible
for p1,p2 to mutually a-dominate each other. Given a set P of points in RY, its
a-skyline is the set of points in P that are not a-dominated by any other point in
P. This notion was proposed by Xia et al. [Xia et al. 2008] as a tool to adjust the
number of points returned to the user.

Our dominance filtering algorithm can be used to find the a-skyline of P in
o(% log‘]iw_fB) 1/0s, where N = |P|. We only need to create a point set II where
each point is obtained from a distinct point p € P by reducing its coordinate by « on
all dimensions. Then, we simply return those points in P that are not dominated by
any point in IT (note that the dominance here is defined as in conventional skylines,
instead of a-dominance).

5. LOW-CARDINALITY DOMAINS

We proceed to discuss the skyline problem that Theorem 2 concerns, where the
data space has t short dimensions with domain [U], plus d — t long dimensions
with domain R. We focus on ¢ > 1, and without loss of generality, assume that
dimensions 1, ..., t are short, and dimensions ¢ + 1, ..., d are long.

Set s = O(min{ M/ (?=2) M/B}). Let us generalize the (h,d)-merge problem of
Section 3.3 to the following (h, d)-general-merge problem. The input includes

—An integer h € [0,d — 2].
—A set IT of points sorted on dimension h + 1.

—(Applicable only to h > 0) for each i € [1, h], one of the following is true:
—dimension ¢ has a domain with size at most s. In this case we say that the
dimension is ezhausted, and let v;(1),...,v;(s) be the values in the domain in
ascending order.
—otherwise, we are given s slabs 0;(1), ..., 0;(s) that are separated by s—1 hyper-
planes perpendicular to dimension ¢, such that any two points in the same slab
0i(j) (for any j € [1, s]) do not dominate each other.

The output is SKY (II) sorted on dimension h 4+ 1. With K = |X|, we will show:

ACM Journal Name, Vol. V, No. N, Month 20YY.

19
LEMMA 3. The (h,d)-general-merge problem can be solved in

fO(KlogM/B B 1ogM/BB—|— logM/Bg log‘]i\;/tgzg) I/Osift <d—2;

—0(H1og8 5") 1/0s it =d—1.

Note that Theorem 2 follows directly from the above lemma by setting A to 0,
and including the cost of sorting the dataset on dimension 1. We first explain how
to perform an (h, d)-general-merge, before proving Lemma 3.

h = d — 2. Given iy, ..., i, each of which ranges from 1 to s, define cell(i1, ..., i)
as the region v1(i1) N...N Y, (%n), where v; = v; if dimension j is exhausted, or
v; = 0; otherwise. Scan the points of II in ascending order of their coordinates on
dimension d — 1. Meanwhile, maintain A(i1,...,4,) as the smallest coordinate on
dimension d of all the points in cell(iy, ..., i) that have been seen. The rest of the
algorithm is the same as the one in Section 3.3 for the case h = d — 2.

h < d — 2. We will describe an algorithm named preMerge-gen that solves
the same problem as (h, d)-general-merge, except that on return SKY (IT) should
have been sorted on dimension i + 2. To settle (h, d)-general-merge, we first apply
preMerge-gen and then sort SKY (II) on dimension h+1. Algorithm preMerge-gen
works as follows:

—If dimension h + 1 is not exhausted, preMerge-gen behaves like preMerge:

—If dimension h + 1 is long, it divides II along this dimension into II(1), ..., II(s)
of roughly the same size, which correspond to slabs op41(1),...,0n41(8) Te-
spectively, as are separated by s — 1 hyper-planes perpendicular to dimension
h+1.

—If dimension h + 1 is short, let D be the size of its domain. preMerge-gen
partitions the data space into slabs op,41(1), ..., op41(8) with s—1 hyper-planes
perpendicular to dimension h+1 (suppose, as before, that the points in o1 (%)
have smaller coordinates on dimension h 4+ 1 than those in op41(j) for any
i < j). Bachof op41(1),...,0n41(s) contains ©(D/s) values of dimension h+ 1.
Accordingly, IT is divided into TI(1),...,II(s) such that II(i) = TN o1 (i) for
each i € [1, s].

In either case, we recursively invoke preMerge-gen on each I1(3), treating op11(7)

as the data space. After the recursion, we finish with an (h+ 1, d)-general-merge

as in handling h < d — 2 in Section 3.3.

—If dimension h + 1 is exhausted, we simply sort II on dimension h + 2, and
convert the problem to (h+ 1, d)-general-merge (by feeding the domain values of
dimension h + 1 directly).

Analysis. We will prove Lemma 3 first for ¢t < d — 2. Denote by Gsport(h, D, K)
the cost of an (h,d)-general-merge on II when h < t (i.e., dimension h + 1 is
short), where D is the domain size of dimension h+ 1. Hence, D < U. If h < d—2,
define Hgport(h, D, K) to be the cost of the corresponding preMerge-gen. Similarly,
denote by G(h, K) the cost of (h,d)-general-merge when h > t.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20

The analysis of G(h, K) is exactly the same as in Section 3.3, namely:

K. 4noK
G(h,K)=0 (E logy; /55 2 E) . (10)

It follows from the description of our algorithm that for all A < t:
K D
Gshort(haDaK):Hshort(haDaK)+O EIOgM/BE (11)

Note that the second term on the right hand side of (11) corresponds to the cost
of sorting the SKY (II) output by preMerge-gen on a dimension with domain size
D. The cost of this is O((K/B)log,;,5(D/B)) 1/Os using the algorithm in [Arge
et al. 1993], as opposed to O((K/B)logy, 5(K/B)). Fuarthermore:

Hshort(t - 15D5K)

_ o (% logar/ B %) +G(t, K) D <s
izt Honort (t -1 %v |H(Z>|) +G(t, K) otherwise
K K K. d—t-2 K .
(by (10)) = (0] (E logM/B §) +0 (E logM/B §) if D<s b
iy Honore (t = 1, 2, |11(3)]) + O (5 logf; /5" &) otherwise
=1 s B '°8Mm/B B

and for h <t —2:
Hshort(h';DaK)

_ [0(%10805 B) + Gonort(h +1,U, K) D<s g
iy Honort (hy 2, 11(3)[) + Gshore(h +1,U, K) otherwise
Solving Equation (12) gives:

K K K U 4K
HShOTt(t_:l?U?K)_O(ElogM/B§+§logM/B§'1OgM/B E . (14)

From (11), (13) and (14), we can derive that, for h < ¢ — 2:
Hshort(h7 Uv K)
K. i1-nU K K. 5, U d—t—2 I
=0 (ElogM/B 5 -1ogM/B 5 + 5 logM/B 5 ~1ogM/B 5
The proof of Lemma 3 for ¢ > d — 1 is much simpler. First, we no longer need
G(h,K), and Ggport(d — 2, D, K) equals simply O(K/B). This, together with (11)
and (13), leads to

K. 40, U
Hshort(h7 U, K) =0 <§10gM/B E) .

6. NON-FIXED DIMENSIONALITY

Next, we present our results for skyline computation in R? where d is not a fixed
constant, but a parameter in asymptotic complexities. Section 6.1 first shows how
to improve the classic result of [Kung et al. 1975] by a factor of O(d?) in internal
memory, and then, Section 6.2 extends the analysis to external memory.

ACM Journal Name, Vol. V, No. N, Month 20YY.

21

6.1 An improved algorithm in internal memory

We first slightly modify the algorithm of [Kung et al. 1975] for solving the dominance
filtering problem in memory. As defined in Section 4, in this problem, we are given
a pair (II, P), where II (P) is a set of d-dimensional points. The goal is to report
those points of P that are not dominated by any point in II. Let S = II U P,
and refer to N = |S]| as the problem size. We consider that S has been sorted on
dimension 1.

If d < 5, we settle the problem in O(N log?—2 N) time using the algorithm of
[Kung et al. 1975]. Next, consider d > 6. If N is below a constant, the problem
can be trivially solved in O(d) time. Otherwise, we partition S into S; and S of
roughly the same size along dimension 1. This can be done in O(dN) time using the
algorithm of [Blum et al. 1973]. Let II; = IINS;, Il = INSe, P, = PN Sy, and
P, = PN Sy. We then recursively solve the dominance filtering problem on (Il;, P;)
and (T, P»), respectively. The output of (IT;, P1) can be directly returned. Let
P} be the output of (Ilz, P2). We sort II; U Py on dimension 2, recursively solve
the dominance filtering problem on (IIy, Py) in the (d — 1)-dimensional subspace
excluding dimension 1, and return the output.

It was shown in [Kung et al. 1975] that the dominance problem can be settled in
O(d?Nlog®~? N) time. Below we prove a better result:

LEMMA 4. For any non-fized d, our dominance filtering algorithm finishes in
O(N log? 2 N) time.

PROOF. All the logarithms in this proof have base 2. Let Ty(N) be the time
of solving the d-dimensional dominance problem when the problem size is N. By
the result of [Kung et al. 1975], the lemma is correct when d < 5. Next, we will
prove by induction that, for any d > 6 and N greater than a constant, there exists
a constant ¢ > 0 such that

Ti(N) < ¢Nlog? 2 N + c¢dN. (15)

Note that the inequality obviously holds if IV is at most a constant, regardless of
d. Assuming that (15) is true when either N < N'Ad < d or N < N' Ad < d
holds, we will show that it is also true for N = N’ and d = d’, where N’ > 16 and
d’ > 6 are two integers. Once this is done, Lemma 4 follows from the fact that
Nlog?> N +dN < 2Nlog? 2N for d > 4 and N > 4.
Our algorithm ensures that, with some constant ¢’ > 0:
Ta(N') < 2-Ty(N'/2) 4+ Tyr—1(N") + 'd’N"log(d'N")
(by inductive assumption) < c¢N’ logd/_2(N’/2) +cdN' +cN' 1og‘7l/_3 N’

+e(d —1)N' 4+ d'N'log N' + 'd’ N’ log d’

Our goal is to show that the right hand side of the above is at most the right hand
side of (15) when N = N’ and d = d’, namely:

/ /
(log N/ = 1) =2 4 1og? > N' + (d' = 1) + <%) d' log N’ + (%) d' logd’

S logd,72 N/

ACM Journal Name, Vol. V, No. N, Month 20YY.

22

Introducing z = log N’ — 1, we rewrite the above into

/

2w+ DT (d -1) + (c—

C

a3 d -3 c c i d —2
d'—2 - 4 / ' / 7 - i
+ +(d-1)+(—)d D4+ —)dlogd < =
T E (;):v () (c) (x+1) (c) ogd < E_ (;)x

=0

(d’—l)—i—(%)d’(m—i—l) ()d’logd’<z<(d/_2) (d/;?’))xi

Next, setting ¢ = ¢/, we will complete the proof by showing that the above holds
for d > 6 and x =log N’ — 1 > 3. In fact, we will prove a stronger argument that

(d—=1)+ (%I) d(z+1)+ (%I) d'logd
(DD)
(5 (5 #--0s

which is at least d’(x + 1) for any d’ > 6 (recall that > 3). Second:

d —2 d -3 r_ i
()~ (mg)) ez rsne

which is at least ' — 1+ d'logd’ for any d’ > 6. [

/
) d(z+1)+ (%) d'logd < (z+1)472% &

First:

Equipped with our dominance filtering algorithm, we find the skyline of a set
P of points as follows. First, divide P into P; and P, of roughly the same size
along the first dimension, and compute SKY(P;) and SKY(P,) by recursion.
Then, we return SKY (P;) directly, and the output of the dominance filtering on
(SKY (Py),SKY (Py)). Thus, we arrive at:

THEOREM 4. For any non-fized d, the skyline of N d-dimensional points can be
computed in time O(N log?™? N).

Note that the above result improves the naive algorithm that checks the dom-
inance of each pair of points in P (and hence incurs O(dN?) time) for all
d = O(log N/loglog N).

6.2 Externalizing the algorithm

Our dominance filtering algorithm can be easily adapted to work in external mem-
ory. Specifically, if d < 5, we solve the problem using our solution in Section 4 in
o% logi;/QB &) 1/0s. The subsequent discussion concentrates on d > 6. If N is
at most a constant, we settle the problem in O(d/B) I/Os by simply checking each
pair of IT x P. Otherwise, we proceed in exactly the same way as described in the
previous subsection. Two details are worth mentioning. First, partitioning .S into
S7 and Sy can be done in O(dN/B) 1/Os using the algorithm of [Aggarwal and

ACM Journal Name, Vol. V, No. N, Month 20YY.

23

Vitter 1988]. Second, sorting II; U P; requires O((dN/B)logy;,5(dN/B)) 1/0s.
Adapting the proof of Lemma 4 in a straightforward manner shows that our algo-
rithm terminates in O((N/B)log? 2 N) I/Os. Theorem 3 can then be obtained in
the same manner as deriving Theorem 4 from Lemma 4.

7. CONCLUSIONS

This article presents external memory algorithms for solving the skyline problem
and its variants in a worst-case efficient manner. For any fixed d > 3, we solved
the skyline problem in O((N/B) logi;/QB(N/B)) I/Os if the input contains N points
from R%. Analagous results were also established for computing several variants of
the skyline, including the k-dominant skyline, the k-skyband, and the a-skyline.
We also showed that the running time can be improved if some dimensions have
small domains.

When d is not fixed, beating the naive O(dN?/B) bound becomes the main
challenge. We partially solved the task with an algorithm whose running time is
0(dN?/B) when d = O(log N/loglog N). It still remains open how to achieve this
purpose for larger d.

Another interesting direction for future work is to study structures that can
be deployed to compute a skyline without reading the underlying dataset in its
entirety. Such a structure must also support point insertions and/or deletions. The
2d version of the problem has been well studied in internal memory (see a list of
results in [Brodal and Tsakalidis 2011]), while it still remains elusive in external
memory.

REFERENCES
AFrsHANI, P., BARBAY, J., AND CHAN, T. M. 2009. Instance-optimal geometric algorithms. In
FOCS. 129-138.

AGGARWAL, A. AND VITTER, J. S. 1988. The input/output complexity of sorting and related
problems. CACM 31, 9, 1116-1127.

ARGE, L., KNUDSEN, M., AND LARSEN, K. 1993. A general lower bound on the I/O-complexity of
comparison-based algorithms. In WADS. 83-94.

BarToLINI, 1., Ciaccia, P., AND PATELLA, M. 2008. Efficient sort-based skyline evaluation.
TODS 33, 4.

BENTLEY, J. L. 1980. Multidimensional divide-and-conquer. CACM 23, 4, 214-229.

BENTLEY, J. L., CLARKSON, K. L., AND LEVINE, D. B. 1993. Fast linear expected-time algorithms
for computing maxima and convex hulls. Algorithmica 9, 2, 168—183.

BENTLEY, J. L., KunG, H. T., SCHKOLNICK, M., AND THOMPSON, C. D. 1978. On the average
number of maxima in a set of vectors and applications. JACM 25, 4, 536-543.

BLuMm, M., FLoyDp, R. W., PRATT, V. R., RIVEST, R. L., AND TARJAN, R. E. 1973. Time bounds
for selection. JCSS 7, 4, 4 48-461.

BORzsONY1, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In ICDE. 421-430.

BropAL, G. S. AND TsaAkaLIDIS, K. 2011. Dynamic planar range maxima queries. In ICALP.
256-267.

Cuan, C. Y., JacapisH, H. V., Tan, K.-L., TunG, A. K. H., AND ZHANG, Z. 2006. Finding
k-dominant skylines in high dimensional space. In SIGMOD. 503-514.

CHaN, T. M., LARSEN, K. G., AND PATRASCU, M. 2011. Orthogonal range searching on the ram,
revisited. In SoCG. 1-10.

CuHoMmICKI, J., GODFREY, P., GRYZ, J., AND LiANG, D. 2003. Skyline with presorting. In ICDE.
717-816.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24

Dal, H. K. AND ZHANG, X.-W. 2004. Improved linear expected-time algorithms for computing
maxima. In Latin American Theoretical Informatics. 181-192.

GaBow, H. N., BENTLEY, J. L., AND TARJAN, R. E. 1984. Scaling and related techniques for
geometry problems. In STOC. 135-143.

GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2007. Algorithms and analyses for maximal vector
computation. VLDB J. 16, 1, 5-28.

GOODRICH, M. T., Tsay, J.-J., VENGROFF, D. E., AND VITTER, J. S. 1993. External-memory
computational geometry. In FOCS. 714-723.

JANARDAN, R. 1991. On the dynamic maintenance of maximal points in the plane. IPL 40, 2,
59-64.

KAPOOR, S. 2000. Dynamic maintenance of maxima of 2-d point sets. SIAM J. of Comp. 29, 6,
1858-1877.

KIRKPATRICK, D. G. AND SEIDEL, R. 1985. Output-size sensitive algorithms for finding maximal
vectors. In SoCG. 89-96.

KossMANN, D., RAMSAK, F., AND RoOsT, S. 2002. Shooting stars in the sky: An online algorithm
for skyline queries. In VLDB. 275-286.

Kung, H. T., Luccrio, F., AND PREPARATA, F. P. 1975. On finding the maxima of a set of vectors.
JACM 22, 4, 469-476.

LiN, X., YUAN, Y., WANG, W., AND Lu, H. 2005. Stabbing the sky: Efficient skyline computation
over sliding windows. In ICDE. 502-513.

MATOUSEK, J. 1991. Computing dominances in E™. IPL 38, 5, 277-278.

MoRrsg, M. D., PATEL, J. M., AND JAGADISH, H. V. 2007. Efficient skyline computation over
low-cardinality domains. In VLDB. 267-278.

PapaDIAS, D., Tao, Y., Fu, G., AND SEEGER, B. 2005. Progressive skyline computation in database
systems. TODS 30, 1, 41-82.

SARMA, A. D., LALL, A., NANONGKAI, D., AND XU, J. 2009. Randomized multi-pass streaming
skyline algorithms. PVLDB 2, 1, 85-96.

SHENG, C. AND TAO, Y. 2011. Finding skylines in external memory. In PODS. 107-116.

VITTER, J. S. 2006. Algorithms and data structures for external memory. Foundation and Trends
in Theoretical Computer Science 2, 4, 305-474.

Xia, T., ZHANG, D., AND TAO, Y. 2008. On skylining with flexible dominance relation. In ICDE.
1397-1399.

ACM Journal Name, Vol. V, No. N, Month 20YY.

