Exact and Approximate Algorithms for the Most
Connected Vertex Problem

Cheng Sheng!, Yufei Tao'-2, Jianzhong Li?

LChinese University of Hong Kong
2Korea Advanced Institute of Science and Technology
3Harbin Institute of Technology

An (edge) hidden grapis a graph whose edges are not explicitly given. Detectiagtlsence of an edge requires
an expensivedge-probingjuery. We consider themost connected verték-MCV) problem on hidden bipartite
graphs. Given a bipartite gragh with independent vertex sefs andW, the goal is to find thé vertices inB
with the largest degrees using the minimum number of quefTiess problem can be regarded as a topxtension
of semi-join, and is encountered in several applicationsractice.

If B andW haven andm vertices respectively, the number of queries needed te dbb/problem isvm in
the worst case. This, however, is a pessimistic estimateoammany queries are necessary on practical data. In
fact, on some inputs, the problem may be settled with énly+ n queries, which is significantly lower thanm
for k < n. The huge difference betweénn + n andnm makes it interesting to design an adaptive algorithm
that is guaranteed to achieve the best possible perforntameeery inputG. Fork < n/2, we give an algorithm
that isinstance optimahmong a broad class of solutions. This means that, folGamur algorithm can perform
more queries than the optimal solution (which is unknownphly a constant factor, which can be shown to be
at most 2.

As a second step, we study espproximate version of the-MCV problem, where is a parameter satisfying
0 < e < 1. The goal is to returrk black verticesy, ..., by such that the degree éf (: < k) can be smaller
thant; by a factor of at most, wherety, ..., t; (in non-ascending order) are the degrees ofktheost connected
black vertices. We give an efficient randomized algorithiat uccessfully finds the correct answer with high
probability. In particular, for a fixed and a fixed success probability, our algorithm perforfism) queries in
expectation for;, = w(logn). In other words, whenevey, is greater tharog » by more than a constant, our
algorithm beats th€(nm) lower bound for solving th&-MCV problem exactly. All the proposed algorithms,
despite the complication of their underlying theory, aree enough for easy implementation in practice. Ex-
tensive experiments have confirmed that their performanceality agrees with our theoretical findings very
well.

Categories and Subject Descriptors: RRlysis of Algorithms and Problem Complexity]: Miscellaneous
General Terms: Theory

Additional Key Words and Phrases: Maximum Degree, Bipaftaph, Competitive Analysis

Author’s address: C. Shenggheng@cse.cuhk.eduthBepartment of Computer Science and Engineering, Chi-
nese University of Hong Kong, Sha Tin, Hong Kong; Y. Téaof/f@cse.cuhk.edufjkAffiliation 1: Department

of Computer Science and Engineering, Chinese Universityafg Kong, Sha Tin, Hong Kong; Affiliation 2:
Division of Web Science and Technology, Korea Advanceditlitst of Science and Technology, Korea; J. Li
(liizh@hit.edu.ch, School of Computer Science and Technology, Harbin brstibf Technology, China.
Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfpwoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead motice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 20

Fig. 1. The 1-MCV result i$o

1. INTRODUCTION

An (edge) hidden graplis a graph whose edges are not explicitly available. Detgcti
the presence of an edge between two vertices requiredgerprobing querywhich is an
operation that incurs expensive cost. In recent ydaasning hidden graphfGoldreich
et al. 1998] has attracted considerable attention in th@ytmommunity [Alon and Shapira
2008a; Angluin and Chen 2008; Bogdanov et al. 2002; Goldretal. 1998]. The main
objective of the relevant research is to decide whether thplghas a certaiproperty;
by probing the least number of edges. The underneath réigm¢hat, learning only a
property of the graph (e.g., whether it is bipartite) is eaiian revealing the whole graph.
Therefore, the number of edges that need to be probed magmhiécintly smaller than
the total number of edges that may exist.

As will be reviewed in Section 2, the existing research ombitdgraphs is mostly moti-
vated by biological and chemical applications. This papeu§es on the database context.
We consider thé: most connected vertgk-MCV) problem on hidden bipartite graphs.
Specifically, given a bipartite graggh between two set® andiV of vertices, the objective
is to find thek vertices inB having the maximum degrees. In Figure 1, for examplbas
vertices{by, ..., bs}, andW is {wy, ..., ws }; the output of the 1-MCV problem is. The
challenge is to minimize the number of edge-probing queriésxt, we discuss several
applications of thé&-MCV problem.

1.1 Motivation

Application 1 (semi-join aggregation with complex predicates). ConsiderB andW as
relational tables, and a join predicate betwdeandW. An edge-probing query in this
scenario examines whether a tuple®fcan be joined with a tuple dfi”. The result of
the k-MCV problem is thek tuples inB that can be joined with the most tupleslii, as
described by the following pseudo-SQL statement:

SELECT b

FROM B b, W w

WHERE [a join predicate aboutandw]

GROUP BY b

HAVI NG count(x) > the size of the:-th largest group

Notice that, if we remove the GROUP-BY and HAVING clauseg $tatement becomes
a standardemi-join Hence £-MCV can be regarded astap-k extension of a semi-join,
which returns the: tuples of tableB having the strongest joining power with respect to
tableWW. For example, suppose thatis a list of hotels, andV is a list of tour attractions.
Setting an edge-probing query to check whether a ticdeld an attractiom are within 1

ACM Journal Name, Vol. V, No. N, Month 20YY.

mile, the above statement is essentiallpp-+ spatial join[Zhu et al. 2005], which finds
the k hotels whose 1-mile vicinities cover the largest numbeitivhations.

The join predicate can be rather unfriendly to relationatrguoptimization. For ex-
ample, the simple geometric condition given earlier (diegjdvhetheh andw are within
1 mile) is not well supported by a DBMS. This is especiallyetitithe “1 mile” refers
to theroad networkdistance, in which case evaluating the join predicate may eeed
to perform ashortest-pattsearch on a map. If effective optimization is impossible, th
DBMS may execute the statement by first performing a carigsiaduct betwee and
W, followed by a group-by and selection of the largest groagch a strategy may incur
prohibitive cost.

A remedy in the above situation is a fast algorithm for sajvihe k-MCV problem,
which can improve efficiency dramatically by reducing thenter of times that the join-
predicate is evaluated (i.e., the number of edges probeate tat, to be incorporated in a
relational engine, such an algorithm must be general entutgtkleany join predicate
as opposed to only special queries. For this reason, thé@wwf [Zhu et al. 2005] are
not appropriate for DBMS incorporation.

In fact, the concept of semi-join exists not only in relatibdatabases, but is implicit in
the applications of other environments. As detailed betbe/k-MCV problem finds use
in those applications as well.

Application 2 (frequent patterns). Assume that each vertéxc B represents a candidate
pattern, and each vertax € W corresponds to a data item. Given a pattera B
and a data itemw € W, an edge-probing query detects whethexists inw. In other
words, there is an edge @& betweerb andw if b is observed inv. Thek-MCV problem
returns thek patterns inB that are most commonly found in the itemsidf. In some
environments, detecting the presence of a pattern can herraxpensive, such that the
overall computation time is dominated by the total cost bfjakries.

As an example, the pharmaceutical industry has establisheavel methodology of
discovering new drugs, calldchgment-based drug discoveigapoor 2000]. This is mo-
tivated by the frustration thadfinding a new drug is like playing golf, where the target is
the pin” [Kapoor 2000]. The new methodology relieves the frustrakig initiating a drug-
searching process fromfeagment which is a basic chemical compound in the molecular
structures of drugs. Hence, an important problem is to ifletite £ fragments that are
most frequently present in a set of drugs. This is a typie®ICV problem, whereB in-
cludes all the fragments, afd is the set of drugs under screening. An edge-probing query
checks whether a fragmeit B exists in a druge € . Since molecular structures are
graphs, the query essentially carries ostiagraph isomorphism teggarey and Johnson
1979], which can be rather costly. Therefore, reducing tiralver of queries is the key to
efficiency.

In general, pattern detection is often achieved by evalgdhe distance between a pat-
tern and a data item: a pattern is considered to exist if thauice is sufficiently small.
Some distance functions are expensive to evaluate, d&ygamic time warpingKeogh
2002] and eved,, norms inultra-high dimensional spacgbloule and Sakuma 2005]. In
those cases, the cost of edge-probing queries may domhrexécution time, justifying
the need to minimize such queries.

Application 3 (querying by web service). Today, many websites provide convenient inter-
faces to allow the public to query their backend databasesh Services have significantly

ACM Journal Name, Vol. V, No. N, Month 20YY.

increased the amount of data that an ordinary user can abgagsnoving the need for the
user to store gigantic datasets locally. For instanc€im¢ma Freenefwww.cinfn.com
people can input the name of an actor/actress and the tienobvie; then the website
will return, among other information, whether the actotrless played a role in the movie.
As another example, using the APIs@bogle Map a program is able to obtain the road-
network distance between two addresses given in the taxtfpi.e., the coordinate infor-
mation of neither address is necessary.

These services can be leveraged to séhMCV problems in a way we caljuerying
by web service For example, assume thBtis a set of actors and actresses, &¥ids a
set of movies. Given an actor/actréss B and a moviev € W, an edge-probing query
contactsCinema Freeneto verify whether appeared ifV. Thek-MCV result is thek
actors/actresses that participated in the largest nunilpeowaes. In a similar wayGoogle
Map can be employed to solve thep-k spatial join problem mentioned in Application
1, withoutknowing the coordinates of the hotels and tour attractidaradlaGiven a hotel
b € B and an attractiom € W, a query connects tGoogle Mapto check if the distance
from b to w is within 1 mile. Then, the output df-MCYV is the k hotels that have the most
attractions within their 1-mile neighborhoods. The perfance bottleneck in the above
environments is the total network latency of the queriegsads Once again, minimizing
the number of queries should be the aim éf®ICV algorithm.

1.2 Our main results

The first objective of this work is to design a generic aldoritfor thek-MCV problem that
can be directly used as a black box in all the above applicatitf the vertex set® and

W have sizes andm respectively, in the worst case, solving the problem dermand
edge-probing queries. Howeveny is a very pessimistic estimate on how many queries
are needed on practical data. As we will see, on some infnggroblem can be settled
with only km + n queries, which is significantly lower thann for & < n.

The above discussion suggests that it is a wrong directialesign aworst-case opti-
mal algorithm — virtuallyany correct algorithm is worst-case optimal. In fact, the wide
spectrum betweehm + n (good case) andm (worst case) indicates that we should aim
at anadaptivealgorithm, which is guaranteed to achieve the lowest costwanyinput.
Intuitively, the cost of the algorithm ought to be a functiointhe difficulty of the input.
Namely, when the input is “easy”, the algorithm must perfdamless thamm queries.
As the input’s hardness increases, the cost of the algoiglatiowed to grow, but only to
the extent enough to tackle the additional difficulty.

This paper presents the first study on thCV problem. Fork < n/2, we propose
an algorithm with the properties described earlier, and/@rbat it isinstance optimal
among a class of solutions (to be defined in the next sectlas)ance optimality [Fagin
et al. 2001] requires that, anydata input, our algorithm should be as fast as the optimal
solution (which is unknown), up to only a constant factor. &ve able to show that the
constant is at most 2. In practidejs usually very small (e.g., 10) compared to the size
of B, such that it can be regarded as a constant. In this case,owve ftrat our algorithm
can be slower than the optimal solution by only a tiny factor 8- O(1/n).

As a second step, we study aapproximate version of the-MCV problem where:
is a constant satisfying < ¢ < 1. Denote byty, ..., tx (in non-ascending order) the
degrees of th& most connected vertices 8. Then, thec-approximatek-MCV problem
returnsk vertices where the-th (i < k) vertex has a degree at leasfl — ¢), that is,

ACM Journal Name, Vol. V, No. N, Month 20YY.

the degree of this vertex can be lower thiarby no more than a factor af We give

a randomized algorithm that returns the correct answer wiittbability at leastl — ¢,
and performs()(e%% log %) queries in expectation. Note that, for fixedand s, the
cost of our algorithm is bounded by (%™ log n), thus beating the lower bourfe(nm)

of the exactk-MCV problem whenevet;, = w(logn), namely, the degrees of all the
result vertices are greater théwg, n by more than a constant. In practideg, n is a
small value (e.g., forn being a million,log, n is roughly 20). Hence, the finding suggests
that approximate algorithms may have a performance adgargeer exact solutions in
the worst case For example, our approximate algorithm is more superiosemi-join
aggregation (Application 1 of Section 1.1), when at Idabtack tuples each match, say,
at least 1% of the white vertices. In such a case, the appaigisolution incurs only
O(nlogn) cost, as opposed to tlig(nm) cost of the exact algorithm.

The rest of the paper is organized as follows. The next sedgédines the problem and
reviews the previous work related to ours. Then, Sectiont8 the stage for theoretical
analysis by defining the algorithm classes, and giving soasiclkprobabilistic facts. Sec-
tion 4 explains the details of the proposed algorithms fergkact:-MCV problem, whose
performance is studied in Section 5. Section 6 is devotetide-approximatek-MCV
problem, by giving our algorithmic solutions and analyzthgir performance. Section 7
experimentally evaluates the efficiency of the proposeldrtiggies. Finally, Section 8 con-
cludes the paper with directions for future work.

2. PROBLEM AND RELATED WORK

We first expand the discussion in Section 1 to formally defireg:tmost-connected vertex
(k-MCV) problem and its approximate version. Then, we reviea éxisting research on
the relevant problems.

The k-MCV problem. LetG = (B, W, E) be a bipartite graph, where the debf edges
are between a sét of black verticesand a set?” of white verticesG is ahidden graph
meaning that none of the edges fhis explicitly given. To find out whether an edge
exists between a vertéxe B and a vertexv € W, we must perform aedge-probing
queryq(b,w), which returns a boolean answggsor no. The edges of7 that have not
been probed are said to belden The goal of thé:-MCV problem is to find the: black
vertices with the largest degrees, by minimizing the nunolbgueries, or equivalently, the
number of edges probed.

Two black vertices may have the same degree, namely, a tiethEsake of fairness,
we adopt the policy that the vertices having a tie shouldivedbe same treatment. That
is, either they are all reported, or none of them is reportéis means that sometimes the
result may have more thanvertices. Formally, denote bjeg(b) the degree of a black
vertexb € B; thek-MCV result is theminimalsetR of black vertices satisfying:

(1) |R| > k,and
(2) deg(b) > deg(V') foranyb € Randd’ € B\ R
where|R| denotes the size @?, andB \ R is the set difference betwedhand R.
The above definition aims to retrieve vertices with largerdeg, whereas a symmetric
definition exists for extracting vertices with small degre€hroughout the paper, we focus

on the former version because our solutions can be direpfijjead to the latter version by
working with the complement d@f, i.e., a bipartite grapti that hasB and¥ as the vertex

ACM Journal Name, Vol. V, No. N, Month 20YY.

sets, and has an edge betwéen B andw € W if and only if there is no edge betweén
andw in G.

Denote byn andm the numbers of vertices iB andWW, respectively (i.e.(G can have
between 0 andvm edges). Imagine that we have ranked all the vertice® af non-
ascending order of their degrees, breaking ties arbirafie refer to the-th (1 < i < n)
vertex in the ranked list as theth most connected vertéx B.

We consider that the value &fis an integer from 1 ta/2. In practice, users are usually
interested in theéop few(e.g., 10) black vertices with the maximum or minimum degree
This implies that ideally a good solution to theMCV problem should be especially effi-
cientfork = O(1).

The e-approximate k-MCV problem. Besides the inputs in the exact version of problem,
we are given an extra parametesatisfyingd < e < 1 to control the relative precision.
Denote byty, ..., t; the degrees of thé most connected black vertices (d. The e-
approximate:-MCV problem aims at returning black vertice$,, ...,b;, such that for any
1<i<k:

deg(bi) > t;(1 —¢)
namely, the degree of is smaller thari; by at most a factor of.

Related work. Although graph databasesave been extensively studied (see [Angles
and Gutiérrez 2008] for a recent survey), we are not awaengfprevious work dealing
with the k-MCV problem on hidden graphs. Traditionally, the edges gfaph are given
explicitly (e.g., in an adjacency matrix/list), so that essing an edge incurs negligible
cost. In that scenario, finding thevertices with the largest degrees is a trivial task. A
distinctive feature of ouk-MCV problem is that detecting an edge is costly, such that th
number of edge-probing queries determines the overallgigctime.

Learning hidden graphsalso known agraph testingwas first studied by Goldreich et
al. [1998]. At a high level, given a hidden graph the objective of learning is to either
confirmthatG has a certain property, aienythe existence of the property @&. A fuzzy
answerdon'’t-careis allowed whenG is closeto having such a property. For example, a
property that has been widely studied [Alon and Krivele\2€l92; Bogdanov et al. 2002;
Goldreich et al. 1998] is whethé# is bipartite. Adon’t-careanswer is permitted whe@
can be converted to a bipartite graph by adding/removing ardmall number of edges.
The learning of other properties has also been investigats] for example, [Alon and
Shapira 2008a; 2008b] for a summary.

In the original setup of [Goldreich et al. 1998], an edgebing query is assumed to
detect an edge between only two vertices. In recent yeaes,a@uthors [Alon et al. 2004;
Angluin and Chen 2008; Biedl et al. 2004] have considesgaker querieseach of which
detects whether at least an edge exists among a set of gartittes underlying graph. This
is motivated by biological and chemical applications. Fxaraple, consider aaction
graph where each vertex is a chemical, and two vertices are céemhéthe corresponding
chemicals react with each other. Then, a super query canderstood as an experiment
of mixing several different chemicals, and observing if aegction happens. If yes, it
implies that at least two of the chemicals involved reachwich other.

Our k-MCV problem differs from thegraph testingformulation of [Goldreich et al.
1998]. Specifically, we are not attempting to verify any gahproperty. Instead, we aim
atidentifying particular vertices in thggvengraph satisfying our degree requirements. This

ACM Journal Name, Vol. V, No. N, Month 20YY.

is analogous to retrieving the items of a dataset qualifgiqgery condition, as opposed to
recognizing which distribution best describes the dataBebur knowledge, th&-MCV
problem has not been addressed in the literature of graphges

Finding the vertex with the maximum degree is a basic oparati attacking several
problems on bipartite graphs. Our algorithms can be appléed building brick in those
problems, under the circumstances where detecting theq@re®f edges is expensive. An
important example is theinimum set covgiMSC) problem. In the context of a bipartite
graph between two vertex selsand W, the MSC problem is to compute the minimum
subsetB’ C B such that every vertex ifilV is connected to at least one vertex .
The problem is NP-hard but a good approximate solution cdouoed by a classic greedy
algorithm [Cormen et al. 2001], which requires solving riplé¢t 1-MCV problems. Our
techniques can be immediately employed.

The concept of instance optimality was introduced by Fagial.2001]. An earlier,
similar, concept icompetitive analysifBorodin and El-Yaniv 1998], whose differences
from instance optimality are nicely explained in [Fagin €t2001]. Instance optimal
algorithms have been designed for many other problemsxtonple, manipulating binary
search trees [Demaine et al. 2009], approximating the riistdrom a point to a curve
[Baran and Demaine 2005], computing the union/intersaafcorted lists [Demaine et al.
2000], finding the convex hull of polygons [Barbay and Che@&0to mention just a
few. Recently, a generic framework has been developed ishadi et al. 2009] to design
instance optimal algorithms for geometric problems.

Thek-MCV problem can be regarded as a variant oftthyek problem which has been
extensively studied in distributed systems [Fagin et a130relational databases [llyas
et al. 2008], uncertain data [Soliman et al. 2008], and sokowever, the solutions in
those works are specific to their own contexts, and cannodaptad fork-MCV. Another
related problem in relational databasetois-k join [llyas et al. 2003; Natsev et al. 2001;
Schnaitter and Polyzotis 2008], which returns the kapples from a join with the highest
scores The score of a (joined) tuple is calculated from a monotametion based on the
tuple’s attributes. The ranking criteria iRMCV, on the other hand, are not based on any
attribute, but instead, depend on fbming powerof a tuple in a participating relation (i.e.,
it can be joined with how many tuples from the opposite relati

A preliminary version of this work was published in [Tao et2010]. While that short
version studies only the exaktMCV problem, the current article also provides solutions
with theoretical guarantees to th@pproximatek-MCV problem (in Section 6), and ac-
cordingly, includes the extra empirical results (Sectipn 7

3. PRELIMINARIES

This section will first explain the classes of algorithms sidered for the exadt-MCV
problem. Then, we will elaborate the concept of instancéadity, based on the frame-
work established by [Fagin et al. 2001]. Finally, we will imwv Chernoff bounds.

Classes of exact algorithms.We aim at designing generic algorithms that do not as-
sume any pre-knowledge of the underlying graphn other words, the algorithm obtains
information about only from the problem input (i.e., the vertex sdésand W), and
the results of the edge-probing queries already perforrednake our discussion more
specific, Figure 2 describes a high-level framework to cataMCV algorithms. The
framework describes two core operations performed réyaliitby an algorithm:

ACM Journal Name, Vol. V, No. N, Month 20YY.

algorithm MCV

input: a hidden bipartite graph
output: the k-MCV result

1. repeat

2. b = pick-black

3. probe-nexth)

4. until itis safe to return the result

Fig. 2. An algorithmic framework

—pick-black which returns the black vertédxon which the algorithm wants to probe a
hidden edge, according to the current status of the algoistlexecution. Different
strategies can make a huge difference. This is the key ofigjoeitom design.

—probe-nexth), which reveals an edge 6fthat is still hidden at this time. Specifically, it
selects a white vertex whose edge witlh has not been probed, and performs a query

q(b, w).

It would be ideal if we could implememtrobe-nextb) in a way that caselectivelyprobe
an edge that is likely to be present or absent. This, howeaweties that we must know
at least something abo@t, such as the correlations among the edges. Since our ofgjecti
is to propose a generic algorithm, it appears unjustifie@toif a specific application by
leveraging its properties, since this will inevitably @gbr another application that does
not have such properties. Hence, we focus on two “neutrabiors ofprobe-nexth):

—Randomized.A randomizedprobe-nexth), as shown in Figure 3, probes any hidden
edge ofb with the same probability. This is reasonable when the &lyor cannot
predict the nature (i.e., present or not) of any hidden edge.

—Deterministic. Assume that then white vertices inl¥/ are arranged into a sequence
(w1, wa, ..., wy,). A deterministicprobe-nexth), as shown in Figure 4, probes the next
hidden edge ob according to the sequence. This is reasonable in scenanieevhe
white vertices must be accessed sequentially due to a tionitan access pattern in the
underlying application. For example, in ainindexdescribed in [Imielinski et al. 1997],
a server periodically broadcasts the data objects in a roobith fashion, whereas a
client receives the objects in the order they appear in thadirasting sequence. Another
advantage of deterministic implementation is that it reesothe need of remembering
which edges have already been probed (such information beustaintained for the
random version oprobe-nex)).

Depending on which version girobe-nextb) is adopted, the algorithmic framework of
Figure 2 is specialized into two algorithm classésian and Apgr. Specifically, AgaN,
referred to as theandom-probe algorithm classncludes algorithms that apply the ran-
domized versionApgeT, thedeterministic-probe algorithm classontains algorithms that
apply the deterministic version. In each class, the algor#t differ in their implementa-
tions ofpick-black

Instance optimality. In the worst casepm edge-probing queries are needed to solve
the k-MCV problem. To prove this, consider an inpdtwith no edge at all, namely, no
black vertex is connected to any white vertex. Any algorigorrectly solving the 1-MCV

ACM Journal Name, Vol. V, No. N, Month 20YY.

algorithm probe-next(b)

/* for the random-probeclassAran; an algorithm of this class probes the edges of a black vertex
in random order */

1. if b has no more hidden edgeen

2 return NULL

3. w =arandom vertex off” whose edge witlh has not been probed.

4. return q(b,w)

Fig. 3. Randomizegrobe-nexth)

algorithm probe-next(b)

[* for the deterministic-probelassApi; for every black vertex, an algorithm of this class probes
its edges by the same sequence of white veriiegswa, . .., wm) */

1. i =the number of edges éfthat have been probed

2. if i = mthen return NULL

3. return q(b, wit1)

Fig. 4. Deterministiprobe-nextb)

Fig. 5. An easy input to 1-MCV

problem on this graph must probe the edge betvesspair of black and white vertices,
before it can conclude that all black vertices have degr&kipping any edge, say between
b € B andw € W, leaves the risk thdtmay have a degree of 1.

Worst case analysis often incurs the criticism of being @egrservative in practice. In
our problem, the previous paragraph indicates that thetveaise cost of solving-MCV
is nm anyway. So by this yardstick, it does not even make sensaitty she problem,
because all algorithms are equally bad. This, however, issgimistic judgment because
it is possible to do much better than the worst case on mamygsnfgo make our argument
solid, consider an inpu¥ where one vertek* in B has degree: (i.e.,b* has an edge with
every vertex ini¥), and all the othen — 1 vertices inB have degreé (see Figure 5). It
is easy to see that the 1-MCV problem can be solved by issesgjthann + n queries.
Specifically, we can probe all the edgestodf and onlyoneedge for every other black
vertexb € B,b # b*. The total number of queries i& + n — 1, but this is enough to
find out thatb* has degree:, and that any other black vertéhas degree at most — 1.
Thereforep* must be the only vertex in the result.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10

Motivated by this, we turn our attention to designing an &tho that guarantees the
best performance oeveryinput. Specifically, on difficult inputs that requiren queries
anyway, our algorithm does not achieve any improvement. édew on easier inputs, our
algorithm incurs lower cost, actually so low that it is prbiyaas fast as even the optimal
algorithm (which remains unknown currently), up to a smaditor.

Next, we formalize the above discussion using the conceijpistdince optimalityntro-
duced by [Fagin et al. 2001]. This concept requires an dlgorto be optimal on every
data input, and is thus stronger than worst-case optimafitgeneral, letd be a class of
algorithms, and a family of datasets. Denote byst(A, D) the cost of algorithri € A
on dataseD € D. Then, an algorithmi* € A is instance optimabver.4 andD if there
is a constant satisfying

cost(A*, D) < r - cost(A, D) 1)

foranyA € AandanyD € D.

In our context,A is eitherAr ax Or ApeT, andD includes all the bipartite graphs. Note
that while all the algorithms ipdg on Must be randomized, those Mg can be either
randomized or deterministic, depending on their impleratos ofpick-black In any
case, we defineost(A, G) to be theexpected cosif an algorithmA (in Arax OF ApgT)
on the input grapld; € D, where cost is measured by the number of edge-probing guerie
performed byA. This definition trivially applies to a deterministit, whosecost(A, G) is
simply its single-execution cost @r.

Our objective is to find aml* in each algorithm class that makes (1) hold. Furthermore,
it is important to keep the constantas small as possible. In particular, a much stronger
result is obtained if- can be shown talecreasewith the size of the input. For example,
if an algorithm achieves an= 1 + 1/n, then the algorithm is not only instance optimal
(notice thatl + 1/n is at mos®), but is nearly optimal in the absolute sense for lardan
which caser- is very close to 1).

Chernoff bounds. The essence of Chernoff bounds is that the summation of erdmt
random variables often does not deviate much from the suiomat their respective ex-
pectations. Actually, we need only a special case, wherthafie variables follow the
Bernoulli distribution. Specifically, leX, ..., X be independent Bernoulli variables, all
with success probability. In other words,X; equals 1 with probabilityp, and 0 with
probabilityl — p. Note that the sum oK, ..., X, equalssp in expectation. The standard
Chernoff bounds [Hagerup and Rub 1990] state that, forcany0:

[s 1 o sp
€
Pr|> X, > (1+a)sp| < <7> 2)
— | (1+a)(1+)

and fora satisfyingd < a < 1:

[s] P sp
Pr ; X < (1— 04)519— < (a_i_zéw) 3)

The above inequalities are a bit complex, and may not be coeneto apply. The
proposition below gives some simpler but weaker altereativ

PrROPOSITION 1. Let Xy, ..., X, be s independent Bernoulli variables with success

ACM Journal Name, Vol. V, No. N, Month 20YY.

11

probability p. It holds that:

-, ; o,

Pr ZXi > (14 a)sp| <exp (sga) , when0 < a < 1 4)
Li=1 J
<] —(1+a)sp

Pr ZXi > (1+a)sp| <exp 5 , whena > 1 (5)
Li=1 _
[s T e (14+a)sp

Pr ZXl-Z(l—l-oz)sp §<1+a) , whena > 0 (6)
Li=1 J
- : o,

Pr ZXi <(1—a)sp| <exp (sga) , when0 < a < 1 @)
i=1 _

PROOF The proofs of (4) and (7) can be found in [Hagerup and Rub L9B®prove
(5) and (6), first notice that

e sp ea/(l+a) (1+a)sp
(o) - ()

Thus, (6) follows immediately from (2) and the fact théat '+ < e. Now, define:

co/(14a)
He) = =72~

which is monotonically decreasing, becaudln f) = (1 +a)™2 — (1 +a)~! < 0. As
aresult,f(a) < f(1) ~ 0.824 < e/ whena > 1. This, together with (2), establishes
(5). O

The inequalities of the above proposition are useful intdistaing the theoretical guar-
antees of the proposed solutions to the approximketdCV problem. As discussed in
Section 6, our algorithms probe the edges of the input graplrdandom fashion. As far as
a black vertex is concerned, if we randomly pick one of itsesjghe event that the edge
is solid happens with a fixed probability, namely, the evamt loe described by a Bernoulli
random variable. The Chernoff bound will then be used tavestt the number of solid
edges among its edges that have been probed.

4. EXACT ALGORITHMS

In this section, we give two algorithms for solving the (etydeMCV problem. The first
one, calledsample-sortis based on a simple sampling idea. It is included because, i
general, it is good practice wisprovethe efficiency of straightforward solutions, before
moving to more complex methods. Indeed, we give an argumeheinext section show-
ing thatsample-sorfails to be instance optimal. Our second algorithm, cadietch-on-
empty is less intuitive, but turns out to be instance optimal.

Notations and basic strategy. Let us first introduce some key notations and explain a
basic bounding strategy. Recall thdtg(b) denotes the degree of a black vertex B.
Let R C B be the set of black vertices that an algoritdndecides to return. As mentioned
in Section 2,4 must have evidence showing:

foranyb € R andb’ ¢ R, deg(b) > deg(V’).

ACM Journal Name, Vol. V, No. N, Month 20YY.

12

algorithm sample-sort(s)

[* for eachb € B, solid(b) andempty(b) are dynamically maintained throughout the

algorithm */

1. for each black vertek

2. callprobe-nextb) s times

3. sort all black vertices by solid(b) in descending order, breaking ties randomly;
let L be the sorted order

4. maintaint = thek-th largestsolid(b) of all b € B in the rest of the algorithm

5. for each black vertek by the ordering in_

6. repeat

7 probe-nexth)

8 until all edges ob have been probedr empty(b) > m —t+1

9. return thek black vertices with the largest degrees (handle ties if seag)

Fig. 6. Algorithmsample-sort

This, however, does not imply that the algorithm needs tcehthe exactieg(b) and
deg(b'). It suffices to show that a lower bounddfyg(b) is greater than an upper bound of
deg(b').

If b € B does not have an edge with € W in G, we say thab has anempty edge
with w; otherwisep has asolid edgewith w. Hence,deg(b) equals the number of solid
edges ob. Moreover, the total number of empty and solid edges efualsm (= |IV|).
Each time when an edge-probing query is performed, the méaeveals that the edge is
either empty or solid. Denote kynpty(b) the number of empty edges bthat have been
probed, and similarly, letolid(b) be the number of its solid edges probed. It immediately
follows that:

solid(b) < deg(b) < m — empty(b). (8)

For eachh € B, algorithm A maintains, at all times, an upper boumd— empty(b) of
deg(b), as well as a lower bounglid(b). It terminates as soon as it is able to conclude on
the final resultk based on these bounds, in the way explained earlier.

Algorithm sample-sort (SS).Next, we explain our first algorithm. It aims at quickly dis-
coveringk black vertices with large degrees. After this is donezlbe the smallest degree
of the vertices identified. Then, we can prune any black wdrtencem — x + 1 of its
empty edges have been found. Apparently, a highgives stronger pruning power.

But how do we know which vertices are likely to have large @éegf The idea of sam-
pling naturally kicks in. Specifically, algorithm SS has tpbases. The firstampling
phaserandomly probes edges of every black vertex, wherés a parameter of the algo-
rithm. At the end of this phase, all the black vertidesre sorted in descending order of
solid(b). Denote the sorted list as. As " solid(b) is an unbiased estimate @ég(b), L
essentially ranks all black vertices in descending ordé¢hneif estimated degrees.

The secondrefinement phaserocesses the black vertices by their sorted ordér.in
For each black vertelk SS keeps probing its hidden edges until all of its edges baea
probed (at which point, the exadétg(b) is available) ob can be pruned. To enable pruning,
at all times, the algorithm maintains a threshglevhich equals thé-th largestsolid(b’)
of all ¥ € B (t may change continuously as more edges are probed). Thsigruned

ACM Journal Name, Vol. V, No. N, Month 20YY.

13

onceempty(b) > m —t + 1.

The overall algorithm is presented in Figure 6. Its main dragk is the reliance on
parametes, for which careful tuning is needed to obtain good efficieritlis motivates
the next algorithm, which does not require any parameter.

Algorithm switch-on-empty (SOE). The algorithm works irrounds where each round
finds exactlyoneempty edge for every black vertex. Rounds continue untieflgerithm
is able to conclude the result sBtof black vertices. Each round works as follows. For
every black vertex, we keep probing its hidden edges, and stomgisoon asan empty
edge ofb is found, or (i) wherb has no more edge to probe. In either case, we switch to
another black vertex (hence the nasvdtch-on-empfy and repeat the same. The round
finishes when all the black vertices i have been processed like this.

Before starting the next round, the algorithm checks whetbme black vertices can be
safely putinto the resulR and thus removed fromB. Specifically, a vertek € B is added
to R if it satisfies two conditions:

(1) Allits m edges have been probed.

(2) empty(b) is the lowest among all the vertices still i (remember that the vertices in
R are already removed from).

To see why, note that Condition 1 implies that we have obththe exactleg(b), and
Condition 2 ensures thakg(b) = m — empty(b) > m — empty(b’') > deg(b") for any
b € B,V # b, namelyb has the largest degree among all verticeBin

SOE terminates when (& has at leask vertices, and (ii) the remaining vertices ih
definitely have lower degrees than thosehinnamely, for each vertek € B, we have
found at leasin — t + 1 of its empty edges, whereis the smallest degree of the vertices
in R). Figure 7 formally summarizes the algorithm.

LEMMA 1. SOE returns thé-MCV result correctly.

PROOF As mentioned before, a black vertex ent&enly if its exact degree is (i) al-
ready known, and (ii) guaranteed to be the maximum amonggetin@ining vertices irB.
This ensures that vertices are addedktim non-ascending order of their degrees, and that
the minimum degree i is at least the maximum degreeih Thereforet becomes the
the degree of thé-th most connected vertex i at the momentR)| first reacheg:. After
that, R is guaranteed to be a subset of th&ICV result since no vertex with degree less
thant can be appended #®. Finally, R is also a superset of theMCV result, because the
terminating condition will be triggered only after all viegs with degrees at leashave
been removed fron® (equivalently, putinta?). O

Example We illustrate SOE using the input graph in Figure 8 whBrandW have 2 and

5 vertices, respectively. Assume thkat= 1 and that the algorithm class considered is the
random-probe clasdgran (the case of the deterministic-probe clagsgr is similar). At

the beginning, all the edges are hidden; so for each bladkx,e8OE initializes an upper
bound of|IW| = 5 on its degree.

Then, SOE executes its rounds, each of which keeps probirtach bertex’s hidden
edges until encountering an empty edge or the vertex has ne Inden edge. In round
1, for by, suppose that SOE probes first its edge with which turns out to be solid.
Hence, the algorithm probes another edgé offor example, its edge withv;. As the

ACM Journal Name, Vol. V, No. N, Month 20YY.

14

algorithm switch-on-empty

[* for eachb € B, solid(b) andempty(b) are dynamically maintained throughout the

algorithm */

1. R=0/*the result set*/

2. maintaint = the smallest degree of the verticeshrin the rest of the algorithm
(t=—if |R| < k)

3. maintaine,,i» = the smallesempty(b) of all verticesb still in B

4. repeat

5. perform-a-round* see below */

6. Buaone = {the vertices inB with no more hidden edge

7 Bimin = {the vertices inBg,,. With degreem — epin }

8 if Bimin # 0 andm — emin >t

9 addB,.q» to R, and removeB,,.;, from B

/* this may change the values bande,,in */

10. until all vertices still inB have a degree upper bound smaller than
namely,m — emin <t —1

11. returnk

algorithm perform-a-round
1. for eachb € B

2. repeat
3. probe-nexth)
4. until an empty edge is founor b has no more hidden edge

Fig. 7. Algorithmswitch-on-empty

by by

O O
Wi 1% w3 Wy Ws

Fig. 8. An example to illustrate SOE

edge is empty, SOE is done wibh in this round. Fob., suppose that SOE first probes its
edge withws, (since it is solid) then its edge with,, and (since an empty edge is found)
stops. The first round finishes at this point. No result canddiened, because each
black vertex still has hidden edges. Nevertheless, theighgo knows that the degree of
each black vertex can be at most 4 because one empty edgedmafobed forb; andb,,
respectively.

In the second round, as all the hidden edges;oére solid, SOE probes all of them
before processing the next black vertex. Ber suppose that SOE probes (among its
hidden edges) its edge with;, which is empty. Thus, the algorithm finishes the second
round. At this time, SOE sees thétg(b;) equals 4, andeg(b;) is at most 3 (as 2 empty
edges ob, have been identified). Therefore, it terminates by repgitinas the result.

ACM Journal Name, Vol. V, No. N, Month 20YY.

15

Remark. Algorithm SOE simultaneously belongs to both the randowbpralgorithm
classAgran and the deterministic-probe algorithm cladsgr, depending on which ver-
sion ofprobe-nexth) (Figure 3 or 4) is plugged in. Although the same is true fooathm
SS, it is better suited fadr an. The reason is that, in the contextdfygr, the sampling
phase can no longer guarantee probing a set of random edgexfoblack vertex, because
the sequence of white vertices in Figure 4 may not be a raneéguesice.

5. THEORETICAL ANALYSIS OF THE EXACT ALGORITHMS

In this section, we analyze the performance of algorithmar@8SOE. Section 5.1 first es-
tablishes their theoretical guaranteedlifia x, and then, Section 5.2 extends the discussion
to Apgr.

5.1 The randomized algorithm class

Let us start with a property of all the algorithrdse Agan. Consider any black vertex
b € B. Assume, without loss of generality, thistasm! empty edges in the input gragh
wherel is a value between 0 and 1. In other worldis, connected tan (1 —1) white vertices
in G. LetQ(u) be the expected number of edge-probing queriesAhaust perform for
b, in order to findu empty edges of. We have:

PROPOSITION 2. Q(u) = u(m +1)/(ml + 1).

PROOF Consider a set of balls, among whicly are black. Keep randomly removing
balls from the set without replacement until< y black balls have been removed. The
total number of balls that are removed follows thegative hypergeometric distribution
with expectatiorz(z + 1)/(y + 1) [Matuszewski 1962].

Let X be the random variable that equals the number of queriesithaist perform on
b before seeing. empty edges ob. Then,z, y, z correspond ton, ml, u, respectively.
Therefore, the expectation &f, namelyQ(u), equalsu(m + 1)/(ml+1). O

Equipped with the proposition, next we discuss algorithi@sa8d SOE separately.

Sample-sort. Recall that SS has a parametemwhich specifies the number of edges to
probe for each black vertex in the sampling phase. In genecah be a function of and
m, thatis, SS may decideafter obtaining the sizes @ andV.

As shown in the experiments, with a suitableSS can be fairly efficient, but such an
s appears to heavily depend on the dataset. Because of thareweterested in knowing
whether there is a “universal” choice efthat makes SS instance optimal. A positive
answer would allow us to get rid of this parameter. Unfortetyawe ended up proving:

THEOREM 1. If s is already determined prior to running the first query, SSrzatrbe
instance optimal.

Proor We will find two families of bipartite graphg§; andg,, such that (i) for any
sufficiently largen andm satisfyingn > m, there is a grapli’; (n, m) in G; and a graph
G2(n,m) in Gy, both of which havex (m) black (white) vertices, and (ii) they demand
conflicting ways to set so that algorithm SS can be instance optimal. Since (without
probing any edge) SS cannot tell whether the input is feganor G,, it is not able to set
s correctly, and thus, fails to be instance optimal. For thevalpurpose, we focus on
k = 1. Given a pair of. andm, next we explain how to constru€; (n, m) andGz(n, m)
respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16

G1(n,m) is exactly the graph illustrated in Figure 5, where a uniglaelbvertex has
degreen, and the other black vertices all have degree 0. In Sectisredave shown that
algorithm SOE solves the problem with- m —1 = O(n) queries. As for SS, its sampling
phase already probé&3(sn) edges; s& must beO(1) if SS needs to be instance optimal.
In the sequel, we assume<)\, where\ is a constant.

Fig. 9. lllustration ofG'2(n, m)

G2(n,m) is such that one black vertéx has degree:, and the other black vertices all
have degreem, where constant € (0,1) will be determined later. Figure 9 illustrates
G2(n, m) by using the height of a column to represent a black vertes¢ggee. Consider
the sampling phase of SS 6 (n, m). Let S be the set of black verticésc B such that
all the s edges ob probed by SS are solid (notice thatis definitely inS). The choice
of ¢ will make sure thatS| > n/4 with probability at least /2 (later we will argue that
suchc always exists). Assumings| > n/4, let us look at the refinement phase of SS,
where the black verticdsare processed in descending ordesd@fid(b), i.e., how many
solid edges ob were found in the sampling phase. Since all verticeS imave the same
solid(b), their ordering is random. Hence, with probability at leBst, /8 of the vertices
in S rank beforeé*. For each such vertéx SS needs to probe all of ita edges; hence, at
leastnm /8 edges are probed in total. Therefore, the expected coSL6m, m) is at least
(1/4) - (nm/8) = Q(nm).

The 1-MCV problem orG2(n, m) can be solved by algorithm SOE with(n) queries
in expectation. Specifically, when SOE terminates, it hasmébexactly one empty edge
of eachb € B,b # b*, plus all them edges ob*. By Proposition 2, in expectation, SOE
probesm(g”_i*c%+1 = O(1) edges ob. Hence, the expected cost of SOFIgr — 1 +m) =
O(n), meaning that SS is worse by a factort(in).

It remains to show that the we need always exists. Léf be a random variable that
equals the size of after SS finishes its sampling phaséfollows a Binomial distribution
B(n — 1,p), wherep is the probability that all the edges probed for & € B,b # b*
are solid. More precisely; is the success probability of the followirsgmpling-without-
replacemenbperation: imagine a bag witlu balls in whichem are red, and the others
blue; we sample balls from the bag without replacement, and call gwccessf all of
them are red. Whem is large enoughy can be approximated with arbitrarily small error
by the success probability of the correspondingampling-with-replacemeimperation.
So, conservatively, assume> ¢* — ¢ > ¢* — ¢, wheree > 0 is an arbitrarily small
constant. By Hoeffding’s inequality X > (n — 1)/2 > n/4 with probability at least

1 — exp(—2(n — 1)(p — 0.5)), which is at least 0.5 if > (12¥2)0-5 4 .5, To ensure

LIn general, ifX obeysB(n, p), thenPr[X < z] < exp(—2(np — z)2/n) for all z < np.

ACM Journal Name, Vol. V, No. N, Month 20YY.

17

this, it suffices to guaranteg > (131/15)0'5 + 0.5 + €. Hence, for large:, we can set to
0.6/,

We have shown, for a specifig there is always a that makes SS worse than SOE by
a factor ofQ(m) on Gy(n, m) (implying SS cannot be instance optimal). To break the
argument)\ cannot exist which, by the definition af means that cannot be a constant.
This, however, conflicts with the requirementsodn G4 (n, m). O

The theorem indicates that, while sampling is a natural tdestack thek-MCV prob-
lem, it is non-trivial to decide the proper sample size. Irtipalar, straightforward strate-
gies such as “sample a certain percentage of the edges ob eadb’ does not work. In
other words, the correct sample size needs to be chadaptively based on the degree
distributions of the black vertices. This is consistentwitie design of algorithm SOE,
since it proceeds by continuously monitoring the edgesdamall the black vertices.

Switch-on-empty. In the sequel, we denote lythe set of black vertices in the result. Let
t* be the lowest degree of the verticeginhor formally:

= min deg(b) 9)

Denote byR;,:; C R the set of vertices il having degre¢*. Letk* = |R|. Apparently,
k* > k; furthermore, ifk* > k, thenR;,; must contain at leagt* — k£ + 1 vertices.

We first point out two more properties of all algorithmse Agan. The first one con-
cerns the status of when it finishes. For eadhe B, let solid 4(b) andempty 4(b) be the
numbers of solid and empty edges thdtas found om at its termination, respectively. De-
note byt 4 the minimumsolid 4 (b) of all verticesb € R, namelyt 4 = mine g solid 4 (b).
We have:

LEMMA 2. At termination, for each non-result black vertexe B\ R, it holds that
emptya(b) >m —ts + 1.

ProOF Obvious because otherwigecannot have concluded thiahas a smaller de-
gree than the vertices iR. [

The second property concerns the scenario where k:

LeEmmMA 3. If k* > k, attermination A has probed all then edges of at leagt* —k+1
black vertices inR;;;.

PROOF LetS C Ry, be the set of vertices iR;,;; such that, for any black vertex in
S, algorithm A did not probe all of its edges. Let = |R:qi| — (k* — k). Note thatg is
always positive becaus®; ;| is at leastt* — k + 1, as mentioned earlier.

A crucial observation is thdtS| must be at mosy. Otherwise, assumi| > g; then
consider any vertices, say, ..., by, in S, and useS’ to denote the set of those vertices.
Since eaclb; has at least 1 hidden edge, it is possible that all thosielden edges (one
for eachb;) turn out to be solid, and at the same time, the black veriités\ S’ have no
more hidden solid edge. In this cagg,; \ S’ must be eliminated from the result, which
contradicts the fact that was able to terminate safely.

Therefore A must have probed all the edges of at leas®R;q;;| — |S| > |Riait| — (9 —

1) = k* — k4 1 vertices. [

The next lemma states a property of algorithm SOE:

ACM Journal Name, Vol. V, No. N, Month 20YY.

18

LEMMA 4. SOE probes all the: edges of each vertex . For each verte € B\ R,
it finds exactlyn — ¢* + 1 of its empty edges. Furthermore, the last edgé pfobed by
SOE is empty.

PrROOF The lemma follows directly from the algorithm descriptiorFigure 7. O
Let us label thes — k* black verticesiotin the resultk as
bioe i1, bir 2, ooy by
respectively (ordering unimportant). For each [k* + 1, n], let
l; =1—deg(b;)/m.

Equivalently,ml; is the number of empty edges bf Furthermore, defing);(u) as the
expected number of edges fafthat must be probed by an algorithm ik AN, in order

to find « empty edges 0b;. Q,(u) is calculated as in Proposition 2. By Lemma 4, the
expected cost of SOE can be written as

cost(SOE, G) = mk* + Z Qi:(m —t"+1). (10)
i=k*+1
Denote byA,,: the fastest algorithm itdlgan for solving thek-MCV problem on the
input graphGG. Namely,
Aope = argmin{cost(4, G)}.
A€ AraN
Next, we proceed to show that SOE is optimal up to a small falcﬁeﬁ, by discussing
cases:* = k andk* > k separately. Fok* = k, we have:

LEMMA 5. If k* = k, cost(SOE, G) /cost(Aopr, G) < 1+ L.
ProoE Define a random variable:

topt = IbIéIII%l solidopt(b). (11)
where, for eachh € R, solid,,.(b) is the number of solid edges bk R found by A,,, at
termination. In the sequel, we fix an integerand focus on the event

—_

B itopt =,

i.e., the eventthad,,, terminates witht,,; = . As solid,p:(b) < deg(b) for eachb € R,
it holds that:

x = E%izg solidop (b) < g%i}r% deg(b) = t*

Define functionC'(x) to be the expected cost df,,; conditioned orE,. The rest of the
proof will show that- = cost(SOE, G)/C(x) <1+ k/(n — k) for anyz. This, together
with cost(Aope, G) =Y, C(z) - Pr[Z,], will establish the lemma.

By Lemma 2,A4,,: needs to find at least — = + 1 empty edges of each black vertgx
(k* 4+ 1 <i < n), meaning that it is expected to perfotgjy(m — = + 1) probes orb;. For
every other black vertex,,; has to discover at leastsolid edges. Therefore,

n
C(x) > xk + g Qi(m —x+1).
i=k*+1
ACM Journal Name, Vol. V, No. N, Month 20YY.

19

Combining the above with (10), we know
< mk” + Z?:k*-i—l Qi(m —1* +1)
- zk+ Z?:k“rl Qim—xz+1)
- mk* + Z?:k*-l-l Qilm—z+1)
- k4 Z?:k“rl Qim—xz+1)
(m —x)k*
rk* + Z?:k*Jrl Qi(m—z+1)
By Proposition 2(0;(m —z+ 1) = (m —z + 1) -2

= (applyingz < t*)

r—1<
1 .
ot Hence:
(m — x)k*
zk* + a(m — z)

r—1<

where
o= Y 2t (12)

imkr 41 mil; +1

If © = m, thenr = 1, trivially satisfyingr < 1+ k/(n — k). Forz < m, equipped with
a>n—k*=n—k,we have
(m—a)k k

r-ls (n—k)(m—x) Tk

This completes the proof.(]
The following lemma covers the other case> k:
LEMMA 6. If k* > k, cost(SOE, G)/cost(Agp, G) < 1+ 2.

ProoOF According to Lemma 3, at termination,,; must have probed all the edges
of at leastk* — k + 1 > 1 vertex in Ry,;. Hence,t,,:, as defined in (11), equais.
Consequently4,,; probes

—Q;(m —t* 4+ 1) edges in expectation for each non-result vebigk* + 1 < i < n), by
Lemma 2 and the definition @p;;

—all them edges ofc* — k + 1 result vertices, by Lemma 3;

—at least* solid edges for each of the remainihg- 1 result vertices, in order to confirm
that their degrees are at least

Therefore,

cost(Aopt, G) > t"(k—1)+m(k* —k+ 1)+ Z Qi(m—1t"+1)
i=k*+1

Setr = cost(SOE, G)/cost(A,p, G). Combining the above formula with (10) gives:
- mk* + 300 . 1 Qilm —t" +1)
Ttk —DAmEr —k+ 1)+ >0 g Qi(m —t* + 1)
mk* + Z?:k*Jrl Qi(m —t*+1)
mk* 4+ 30y Qilm — 4+ 1) — k(m — t¥)
ACM Journal Name, Vol. V, No. N, Month 20YY.

(ast* < m)

IN

20

m/2

B m/10
b* b

Fig. 10. Why SOE is not strictly optimal

Hence, applying Proposition 2, we have:

1 < k(m — t*)
r—
~ mk*+a(m—t*+1)— k(m—t*)

wherea is given in (12). Again, ift* = m, thenr = 1 < 1+ k/(n — k). Otherwise,
knowinga > n — k*, we derive:

k(m — t*)
T S T S) m =) = k(m =)
k(m — t*) k

~nm—t)—k(m—-t*) n—k
This establishes the lemmald

Combining the above two lemmas, we have proved the followiegrem:
THEOREM 2. The expected cost of SOE is at mosbst (A, G), wherer = 1+ -+

There are two interesting corollaries:

—For anyk < n/2, the value of- is always lower than 2that is, SOE is instance optimal.

—Whenk = O(1), r = 1 + O(1/n), namely, SOE imearly as fast as the optimal
algorithmin finding thetop few(e.g., 10) black vertices having the maximum degrees.

We close the subsection with a note on why SOE issinttly better than all other
algorithms inAgran. Imagine a simples whose B has only 2 vertice$* and b with
degreesn/2 andm/10, respectively. Figure 10 illustrates this by using the heif a
column to represent the degree of a node. Consider the 1-M@Gblgm on suclG. By
Lemma 4, SOE probes alh edges ofb*, and enough edges éfuntil seeingl + m/2
empty edges. Hence, by Proposition 2, the expected cost BfiS@ + (1 + $m)(m +
1)/(%m + 1) ~ 1.56m. An alternative solution is to probe all edgestofand enough
edges ob* until seeingl + m /10 solid edges. This strategy’s expected coshig (1 +
sm)(m+1)/(14 3m) ~ 1.2m.

5.2 The deterministic algorithm class

Next, we extend the analysis of the previous subsection eécatjorithm classApgr.
We focus on only SOE because the instance optimality of S&3ar can be disproved
using an argument similar to, but much simpler than, the fpsb®heorem 1. FotApgr,
Proposition 2 obviously is not applicable; Lemmas 2-4, haveare still correct. Define

ACM Journal Name, Vol. V, No. N, Month 20YY.

21

Aope as the fastest algorithm idpgr for solving thek-MCV problem on the input.
Namely:

Aope = argmin{cost(A, G)}.
A€ApET

We first give a theorem that is the counterpart of Theorem 2.
THEOREM 3. The cost of SOE is at mo&t + —£) - cost(Ap, G).

PROOF The proof is similar to that of Theorem 2 (called thie proofin the sequel).
Refer to the sequendev;, wo, ..., w,,) in Figure 3 as th@robing sequence.et k*, t*, b;

(k* + 1 <i < n) retain their meanings in the old proof.

Letr; (k*+1 < ¢ < n) be the number of edges ifthat SOE has probed at termination.
7; equals the position of then — t* 4 1)-th white vertex (in the probing sequence) that
has an empty edge with. By Lemma 4,cost(SOE,G) = mk* + .1 .| 7;. Define
topt, solidyp (b), C(x) in the same way as in the old proof. Lt be the number of edges
that A,,: probes for;, conditioned ort,,; = x. Sincez = t,,: < t*, by Lemma 2,4,,;
must have seen at least— « + 1 > m — t* + 1 empty edges of;. In other words A,
probes all the edges of that SOE needs to probe; hence:

T < T (13)

Setr = cost(SOE,G)/C(z) anda =)" .., 77. As explained earlietd,,; probes
at leastn — = + 1 edges for each dfy+ 11, ..., b, indicating

a>(n—k)m-xz+1). (14)
Next, we establish the counterpart of Lemma 5. When= £, it holds thatC(z) >
xk* + 3", ., 77 Hence
e mk* + Zn?:k*ﬂ Ti _ mk* + a
— xk* 4+ Zi:k*ﬂ T zk*+a

where the last inequality used (13).2df= m, thenr = 1, and the lemma is trivially true.
Forz < m:
_ * _ *
r1< (m—ax)k - (m—ax)k
- zk*4+a — a
(m — xz)k* k* k

(by(14)) < (n—k*)(m_w) - n — k* - n—k

We now prove the counterpart of Lemma 6. When> k, an argument similar to that

of Lemma 6 show€’(x) > t*(k — 1) + m(k* —k+1)+ > ., 77. Thus,

- mk* + 37 e 1 T
Ttk 4+mE —k+1) > T
mk* 4+ a
— mk*+a—k(m —t*) -
ro1 < k(m — t*)
mk* +a — k(m — t*)
ACM Journal Name, Vol. V, No. N, Month 20YY.

(by (13) andt* < 1m)

N

(15)

22

bl -

b1 bg b] b2
(@G (b) G4

Fig. 11. No algorithm is strictly optimal iMpgT

If t* = m, thenr = 1, in which case the lemma is trivially true. For < m, by (14) and
(15), we have:

k(m —t*)
T S T S) =+ 1) = R(m — 1)
k(m —) ok

~ nlm—t*)—k(m—t*) n-—k
which completes the proof.(]

The same conclusions idgan can be drawn about SOE iApgr. Specifically, for
k < n/2, SOE is also instance optimal iipgr. Furthermore, whek = O(1), SOE can
be more expensive than the optimal algorithmdipg only by a factor ofl + O(1/n).

Absence of a strictly optimal algorithm. We conclude the section by proving thaad
algorithm in Apgr can be strictly optimal We will use two input graph&/; and G4
as illustrated in Figure 11. Fd¥Fs, order the white vertices so that the first twmbe-
nexibs) returnemptyandsolid, respectively. Similarly, fo6z4, impose an ordering for the
first two probe-nextb,) to returnsolid andempty respectively. Observe that, for each of
G3 and(Gy, there is an algorithm that can settle the 1-MCV problem with- 1 queries.
Specifically, to achieve this fdaks, the algorithm can probe a single edgéetind all the
edges ob,, whereas the algorithm f@r, can probe a single edgeiaf and all the edges of
bs. We will prove, however, that no algorithm can guarantesfiimg with at mostn + 1
queries orbothgraphs, which essentially means that no algorithm is optimall cases.

Following the notations before, given an algoritin € Apgpr and a graph, we
denote bysolid 4 (b) the number of solid edges thatprobes on a black vertéxof G, and
by empty 4 (b) the corresponding number on the empty edgés U¥e have:

LEMMA 7. Forany algorithmA € Apgr, max{cost(A, Gs3),cost(A,G4)} > m+ 1.

PrROOF We will use an adversary argument, the rationale of whiatoisto permitA
to distinguish betweeid’s and G4 until we are sure that it must probe at least 2
edges. First, note that, to concludediy(b,) > deg(bz), A needs to showolid 4(by) >
m — emptya(b2), or equivalently:

solida(by) + emptya(ba) > m + 1. (16)
Hence, if the input is7; (G4) and two edges of; (b1) have been probed, the cost 4f
must be at least: + 2. To see this folG3, recall that one of the first two edges probed on

bs is solid. This edge is not counted by the left hand side of,(th&)s making the total cost
at leastn + 2. The reason fo6, is similar.

ACM Journal Name, Vol. V, No. N, Month 20YY.

23

Next, we describe the strategy that the adversary followfertce A to probe at least
m + 2 edges. Leb; be the first vertex selected Ipjck-black Since the firsprobe-nexbf
b1 (b2) must besolid (empty no matter the input graph 85 or G4, A cannot distinguish
between the two graphs after the first query. Denotg;lifie vertex chosen by the second
pick-black We enumerate all the possible cases:

—b; = b; = by: We fix the input to be&7 4. By the earlier discussion costs at least: + 2
as it has probed two edgesigf

—b; = b; = by: We fix the input ag73. A costs at least: + 2 as it has probed two edges
of bo.

—b; # b;: In this case, one solid edge bf and one empty edge 6f are found. The
algorithm is still unable to decide whether the input grap@'j or G4. We then fix the
input according to the vertdx. chosen by the thirgick-black If b, = by, let the input
beGy; if b, = bo, let the input beFs. In either case, (again, by our earlier discussion)
A requires at least: + 2 queries.

This establishes the lemmal]

6. APPROXIMATE ALGORITHMS AND THEIR ANALYSIS

We proceed to study theapproximate version of the-MCV problem. Section 6.1 first
presents an algorithm for solving the problem wltes 1, and establishes its performance
guarantees. Then, Section 6.2 extends our solution angsieitd generat > 1. Given a
constan®t € (0, 1), our algorithms succeed with probability at least § and guarantee
good efficiency in expectation.

6.1 1-MCV

Algorithm. The basic component of our method is a procedure callde-sampling
(NS) which, as given in Figure 12, is similar to the SS aldomitin Section 4. NS is
given a parametes, which is used to determine the numbeof edges probed for each
black vertex (Line 1). Each of these edges is randomly sainfotem all the possible
edges ofh. We perform the sampling in &ith-replacementanner, namely, each edge
is chosen independently of the previous edges probed. @ocedly, we may waste some
work by probing the same edge more than once, but allowinl eeatundancy facilitates
the analysis considerably, as will be clear later. NS retuhe black vertex having the
largest number of solid edges sampled.

Our algorithm fork = 1, called AMCV (see Figure 12), invokes NS repetitively with
doubly decreasing. Specifically, the first invocation uses= 1, whereas every subse-
guent invocation halves the previopsAssume that, in the current invocation, NS returns
a black vertexb. AMCV terminates withb as the result ifsolid(b) is large enough (see
Line 3); otherwise, another invocation is performed.

Analysis. Next, we analyze the behavior of AMCV, and by doing so, retiealrationales
behind its design. For each black vertexiefine:

p(b) = deg(b)/m. (17)
Denote byv* the black vertex with the maximum degree. 8et deg(b*) andp* = p(b*).

The next lemma shows that, if the input parametef NS is set top*, then NS returns a
correct answer with high probability:

ACM Journal Name, Vol. V, No. N, Month 20YY.

24

algorithm naive-sampling(p)
1. s= % }2 In 37”
2. for each black vertek
3. sample with replacementedges ob
4 solid(b) = the number of solid edges bfsampled
(counting the same edge once more each time it is sampled)
return (bret, solid(bret)), Whereb,.. is the black vertex with the largessolid(b)

(breaking ties arbitrarily)

algorithm AMCV
1. forp=1,1/2,1/4,1/8, ...
2. (b, solid(b)) = naive-samplingp)
3. if solid(b) > 2ps then return b
/* s is given at Line 1 ohaive-sampling/

o

Fig. 12. Algorithm for solving the-approximate 1-MCV problem

LEMMA 8. When executed gn= p*, NS returns a correct answer for thepproximate
1-MCV problem with probability at leadt— /3.

PROOF Consider the following two conditions:

(1) solid(b*) > (1 —¢/2)sp™.
(2) for everyb such thatdeg(b) < (1 — €)t* (that is,b cannot be used as an answer),
solid(b) < (1 —€/2)sp*.

If both conditions are satisfied, NS returns a correct rg$oitthe approximate 1-MCV
problem) because for any vertéxhat is an illegal result, it must hold thablid(b) <
(1—¢/2)sp* < solid(b*), meaning thak cannot be selected by Line 5 of algorithmaive-
sampling(Figure 12). Next, we show that the two conditions hold sitamgously with
high probability.

For any black vertex, solid(b) follows a binomial distribution, measuring the number
of successes inftrials, each of which succeeds with probabilitp). Hence solid(b) has
expectatiorsp(b). By settinga. = ¢/2 andp = p* in (7), we know that the probability for
Condition 1 to fail is bounded above ly:p(—sp*e?/12) which equalsi/(3n) given our
choice ofs.

In the rest of the proof, considérs a vertex described in Condition 2. et ﬁ;) (1-
€/2) — 1 to ensurg(l — ¢/2)p* = (1 + a)p(b). Thus,Pr[solid(b) > (1 — ¢/2)sp*] =
Pr[solid(b) > (1 4+ «)sp(b)]. We then distinguish two possibilities:

—If a > 1, apply (5) withp = p(b), which gives:
Prlsolid(b) > (1+ a)sp(b)] < eap(—(1 — ¢/2)sp*/6) < 6/(3n),
where the last inequality used the fact that ¢/2 > 1/2.
—If a < 1, apply (4) withp = p(b), which gives:
Prfsolid(b) > (1 +)sp(b)] < cap(—sp(b)a®/3) = exp(—sp*B/3) (18)

ACM Journal Name, Vol. V, No. N, Month 20YY.

25

wheres = (1 —¢/2)a?/(1 + a). Note thatdeg(b) < (1 — €)t* implies that
a>(1-¢/2)/(1—¢€) —1=¢/(2—2¢).
As 3 monotonically increases with whena > 0, it holds that

(1—€/2)(c/(2—-26))* ¢
1+¢/(2—2¢) 4 — 4e

Plugging this into (18) shows th&r[solid(b) > (1 + a)sp(b)] < exp(—sp*e?/12) =
0/(3n).

As there can be at most— 1 such vertice$, by the union bound (a.k.a., Boole’s inequal-
ity), the probability that at least one suslsatisfiessolid(b) > (1 — ¢/2)sp* is at most
”T‘l % which is also the probability for Condition 2 to fail.

Again, by the union bound, the probability that either Caiodi 1 or 2 fails is bounded
above byd /3. Hence, they hold at the same time with probability at Iéasté /3. O

B8 > > €2 /4.

The previous lemma suggests thatyifwas known in advance, we could easily settle
the e-approximation 1-MCV problem by NS. Of course, in realjty is not necessarily
available. AMCYV deals with this by using to approachp* gradually. Even without
knowing p*, we still hope that AMCV can terminate with a correct answéewp has
eventually fallen into the rangg* /8, p*]. The reasons are two-fold. First, using & p*
essentially tells NS to sample more edges than necessatyemte, guarantees at least
the same success probability as in Lemma 8. Second, enshatygis not much smaller
thanp* (we choose > p*/8) prevents NS from sampling excessively, so that we can still
control the overall cost to be at ma3{1) times greater than the cost of running NS with
p*. The next lemma shows that our hope as described earliecaritle true with high
probability.

LEmMMA 9. With probability at least — ¢, both of the following happen:

(1) AMCYV terminates with a correct answer for th@pproximate 1-MCV problem;
(2) atterminationp € [p*/8,p*].
PROOF. The proof considers > 2 because the lemma is trivially correct for= 1. If

either of the two conditions stated in the lemma is violadctly one of the following
events must have occurred:

—Premature AMCYV terminates whem > p*.
—Overdue AMCYV does not terminate after invoking NS withpa< p* /4.
—Wrong-result AMCV terminates whem € [p* /8, p*], but returns an incorrect result.

We will show that with high probability, none of these eventsurs. The same argument
in the proof of Lemma 8 can be used to show Mabng-resulthappens with probability
at mostd /3. Notice that forp < p*, the value ofs is even greater than that in the proof of
Lemma 8, i.e., we are using more samples than needed to ge@i@anditions 1 and 2.
Next, we show that the same is true for bBtlematureandOverdug which will complete
the proof with the union bound.

Bounding the probability of Prematurket us focus on a single invocation of NS. Denote
by v the ratio between the curreptandp*, namely,v = p/p*. Letb,., be the vertex

ACM Journal Name, Vol. V, No. N, Month 20YY.

26

returned by NS, andolid(b,.:) the number of solid edges bf.; found in this invocation.
We will prove

Pr[solid(byet) > 2sp] < (6/3)/(2v) (19)

which is equivalent to saying that AMCV terminates aftestimvocation with probability
at most(6/3)/(2v). We will give a stronger fact that, for each black verbex holds that

Pr[solid(b) > 2sp] < (§/3)/(2nv) (20)
which validates (19) with the union bound.

To prove (20), setv = 2% — 1, which makeg1 + «)p(b) = 2p. Applying (5) and (6)

with this « yields, respectively:

Pr[solid(b) > 2sp] < exp(—2sp/6) (21)

2sp 9
€ e SP
j > < =— < (=
Pr[solid(b) > 2sp] < (2p/p(b)) < (21/) (22)
where the last inequality used the fact thAap(b) > v. Our choice ofs leads to

exp(—2sp/6) = ((§/3)/n)"/<" < (6/3)/4n

where the last inequality is true for amy> 2. This, together with (21), proves (20) for
v < 2. On the other hand,

(e/20)%P = (2/v)**P(e/4)*F < (2/v)**P exp(~2sp/6) < (2/v)((5/3)/4n)
where the first inequality used the fact thdtt < ¢~'/6. The above, when combined with
(22), proves (20) for > 2.
Now that we have (19), the probability Brematurecan be bounded above by the sum
ofthe(§/3)/(2v) of all p > p* deployed by AMCYV to invoke NS. Let,,;,, be the smallest
of thosep; and set,,,i, = pmin/p*. Thus, the probability oPrematureis at most

5/3 5/3 63, _0/3

2Vmin 2Vmin -2 2Vmin -4 Vmin

<6/3.

Bounding the probability of Overduét suffices to prove that, when invoked withpa<
p* /4, NS fails to terminate with probability at mo&t3. In fact, if NS does not terminate,
it must be thatolid(b*) < 2sp < sp*/2 < (1 — €/2)sp*. The probability ofOverdue
does not exceed

Pr[solid(b*) < 2sp] < Pr[solid(b*) < (1 —€/2)p*] < (6/3)/n
where the last inequality has been established in the pfd@d#oma 8. O

Now it remains to bound the running time of AMCV.

LEMMA 10. AMCV probe) (4 2 log) edges in expectation.

PROOF Itis easy to see that the cost of NS with input parameieO(sn) = O(% Eiz log %).
Note that this cost is proportional 1g'p. Starting from the second invocation of Ngis
half of thep of the previous invocation. Hence, the cost of an invocationbles each

ACM Journal Name, Vol. V, No. N, Month 20YY.

27

time. Until p drops belowp*/8, the total cost spent on NS is bounded by that of the last
invocation, which in turn is bounded above@yp Llog2) =0(H2 log 2).

We use the terrfate phaseo refer to the execution of AMCV with < p*/8. Let A be
the cost of the entire late phase. Next, we bound the expattaft \. Let/\ (2' > 1) be
the cost of the-th invocation of NS in the late phase. It follows that= O(% % log 5h
and\; = 2)\;_; fori > 2. As shown in the proof of Lemma 9, the probabﬁ)lty that AMCV
needs to go into the late phase is at mg8tbecause a®verduesvent must have occurred.
Furthermore, if NS needs to be execui¢ithes in the late phase, it means that the previous
1 — 1 invocations in the late phase have all generate@wa@ardueevent, respectively. In
other words, the-th invocation of NS in the late phase occurs with probapgit most

(6/3)%. It follows that:

0 6* 0\ 5 (. 25 (26’
B = g+ (§> e <§> T =Aig (”?%?) +>
which is bounded by)(A\16/3). O

So we conclude:

THEOREM 4. Foranyd € (0, 1), there is an algorithm that solves theapproximate
1-MCV problem with probability at least — §, and probes)(12 7 log %) edges in ex-
pectation, where* is the maximum degree of the black vertices.

6.2 k-MCV

Algorithm. The algorithm in Figure 12 can be easily modified to suppast 1:

—In NS (haive-samplinj Line 1 setss = %iln %5+, namely, twice as large as the

original value.

—For each black vertek as before, letolid(b) be the number of solid edges iofound.
NS returns thé: verticesb having the greatestolid(b) (breaking ties arbitrarily), to-
gether with theirolid(b) values.

—In AMCYV, let b4, ..., b, be the vertices obtained from NS at Line 2, sorted in such a way
thatsolid(b;) > solzd(;) forl <i < j <k. AtLine 3, AMCV returns these vertices
if solid(by) > 2ps.

In the sequel, all occurrences of NS and AMCYV refer to the atamlapted algorithms,
which capture the ones in Figure 12 as special cases.

Analysis. Denote bybi, ...,b; thek black vertices with the maximum degrees (ties broken
arbitrarily) such thatleg(b;) > deg(b;) for 1 < i < j < k. Definet; = deg(b;)
andp; = p(b}), where functiorp(.) is as given in (17). The next two lemmas are the
counterparts of Lemmas 8 and 9. As the new proofs are baséx dthetas already clarified
in Section 6.1, we will focus on explaining only the diffeces.

LEMMA 11. When executed gn= p}, NS returns a correct answer for theapproximate
k-MCV problem with probability at leadt — /3.

PROOF Given ani < k and a black vertek, we say thab fails on i in either of the
following cases:

—deg(b) > t; whereassolid(b) < (1 — €/2)sp};

ACM Journal Name, Vol. V, No. N, Month 20YY.

28

—deg(b) < (1 — €)t; whereasolid(b) > (1 — €/2)sp}.

Observe that NS returns a correct answer if no vertex failaron < k.
With an argument similar to the proof of Lemma 8, we can shat ¢fach vertek fails
on ani < k with probability at most(§/3)/n)?. Here, the square comes from the fact
that we are using antwice larger than that in Figure 12. Hence, with probab#ityeast
1 —nk((6/3)/n)?> >1—4/3,novertex failsonany < k. O

LEMMA 12. With probability at least — §, both of the following happen:
(1) AMCYV terminates with a correct answer for th@pproximatek-MCV problem;
(2) atterminationp € [p*/8, p*].

PROOF Below we redefine the three events in the proof of Lemma @(red to as the
old proofin the sequel) and bound their occurrence probabilities:

—Premature AMCV terminates wherp > p;. Whenp > p;, the argument in the old
proof shows that, with probability at least— §/3, no vertexb € B\ {b},...,b5_,}
satisfiessolid(b) > 2sp. Hence Prematureoccurs with probability at most/3.

—Overdue AMCV does not terminate after invoking NS withpa< p; /4. The argument
in the old proof can be used to prove that, when p; /4,

Prsolid(b}) < 2sp] < (6/3)/n

forall i < k. As a result, the probability thawvlid(b}) > 2sp for all « < k is at least
1 — ¢/3 by the union bound. In other word®verdueoccurs with probability at most
4/3.

—Wrong-result: AMCV terminates whem € [p*/8, p*], but returns an incorrect result.
The occurrence probability of this event is bounded abov&/Bydue to Lemma 11.

If either of the two conditions stated in the lemma is viothtene of these events must
have occurred. Hence, with the union bound, the above dismusompletes the proof.c]

The proof of Lemma 10 applies to the adapted AMCYV directligathanging* to ¢}.
Therefore, we arrive at:

THEOREM 5. Foranyd € (0, 1), there is an algorithm that solves theapproximate
k-MCV problem with probability at least — ¢, and probesO(ei2 o log %) edges in ex-

pectation, where;; is the degree of the-th most connected black vertex.

Remark. For fixede andd, the cost of our AMCYV algorithm beats tlignm) lower bound
of solving the exack-MCV problem as long a5, = w(logn). As another interesting case,
whent} = Q(m), AMCV probes onlyO(n logn) edges.

7. EXPERIMENTS

In the sequel, we experimentally evaluate the performar¢heoproposed algorithms.

Section 7.1 describes the data employed in our experinienta@nd Section 7.2 clarifies

the alternative methods to be examined. Sections 7.3-8&ept the results on the exact
k-MCV problem. Specifically, Section 7.3 explores under wh@vironments can the

problem be settled much faster than the naive solution thailg probes all edges. Sec-

tions 7.4 and 7.5 evaluate the proposed techniques in tidenaiprobe and deterministic-

probe algorithm classes, respectively. Finally, Sectidhi§ devoted to the approximate
k-MCV problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

29

7.1 Datasets
Our experiments are based on synthetic and real data wheaxatained in the sequel:

Power-law graphs. This is a family of synthetic graphs where the degrees ofdolactices
follow a power lawdistribution. Each graph is generated as follows. It ha®3fack and
white vertices, respectively (i..3| = |IWW| = 5000). For each black vertek € B, its

degreeleg(b) equalsd (0 < d < 5000) with probability

c(d+1) (23)

where~ is a parameter of the power law, anis a normalizing constant chosen to make

220 ¢(d+ 1) equivalentto 1 (i.e¢ = 1/ 3,20 (d +1)~7). Oncedeg(b) is decided,
thedeg(b) white vertices connected toare selected randomly.

As will be clear in the next section, we often need to contrelaverage degreéeg of
the black vertices in a power-law graph. Hence, we need tihegiarametey to generate
a graph with the desiredeg. This is achieved by utilizing the fact that the expectatibn
the power law in (23) is:

5000

> (cd(d+1)77)

d=0
Therefore, we can solveby equating the above formula tiag.

NBA. This is a real graph selected to assess the benefits of thegadplgorithms when
they are incorporated into the execution engine of a relati®BMS. The original data
(fromwww.nba.comconsists of 16739 NBA players in history. For each player dataset
contains his performance statistics in 13 aspects, sucheasumbers of points scored,
rebounds, assists, etc. We definéaminating relationshifpetween players based on the
concept ofk-dominancgChan et al. 2006]. Specifically, a player 7-dominatesanother
playerp, if p; has better statistics than in at least 7 aspects (i.e., a majority of the total
13 aspects). We want to find tieplayers that 7-dominate the largest number of players,
as given by the following pseudo-SQL statentent

SELECT p1 FROMPLAYER p;, PLAYER ps
WHERE p, 7-dominate$,

GROUP BY p;

HAVI NG count(x) > the size of thek-th largest group

where PLAYER is a table with 13 attributes, and one row foihgalayer. The entire table
occupies less than 1 mega bytes, and can be comfortablyrkegin memory. Therefore,
the total overhead is determined by the number of times thepjedicate is evaluated. As
explained in Section 1.1, evaluating the above statemerit-i§ICV problem on a bipartite
graphG = (B, W, E), where each of the vertex sdisandWW includes all the players, and
the edge sel’ has an edge between two playérs B andw € W if b 7-dominateso.
The optimization goal is to minimize the number of edges ptbb

2This statement is essentiallyt@p-k dominating querywhich has been studied in [Papadias et al. 2005; Yiu and
Mamoulis 2009]. However, the solutions in [Papadias et @052 Yiu and Mamoulis 2009] are designed for a
different dominance definition, where an item dominates anothes, if and only if p; is better thamps in all
aspects. Those solutions heavily relytaansitivity, namely, the fact that; dominateg andps dominategp
implies thatp; dominategps. As shown in [Chan et al. 2006], transitivity doest hold onk-dominance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30

Actor. This is a real graph chosen to evaluate our algorithmgjunexying-by-web-service
environment (introduced in Section 1.1). The underlyinadahich is publicly available
at IMDB (www.imdb.cor is a social network between a set of actors, where two sctor
have an edge if they collaborated in a movie before. We etetdatbe 10000 most “active”
actors that have the largest number of collaborators, anasgx on studying thez-hop
relationships Specifically, an actos; has a 2-hop relationship with another actgrif
eitheray is a collaborator ofi», or they have a common collaborator (i®,,is at most two
hops away fromus in the social network). Note that 2-hop relationships arengortant
type of characteristics of a social network, as pointedo{ingla and Richardson 2008].
We aimed at finding thé actors that have the largest number of 2-hop relationships.
This is ak-MCV problem on a grapli: = (B, W, E), where each oB andWW contains
all the actors, and has an edge between two actérs B andw € W if b has a 2-hop
relationship withw. Detecting a 2-hop relationship betwdeandw can be accomplished
by submitting the names éfandw to the websiteCinema Freenefsee Section 1.1) and
obtaining its reply. The overall cost is dominated by thenek latency, which in turn
is decided by the total number of relationships checked, ¢te number of edges iR
probed).

7.2 Methods

Exact k-MCV. Since no previous solution is known for theMCV problem, we con-
centrate on comparing the proposed algoritisarsple-and-soiSS) andswitch-on-empty
(SOE), both of which were presented in Section 4. The valuewifl be varied from 1 to
100. Since the black vertex sBtin all our data graphs have at least= 5000 vertices,
the conditiont < n/2 always holds.

The cost of an algorithm is measured in the number of edgkipgajueries issued (if
the algorithm is randomized, the cost reported is the aeeodd runs). Sometimes we
will also give a theoreticdbwer boundLB) of the cost of any algorithm on the same data
input. The lower bound is derived using the fact that the cdSOE can be greater than
that of the optimal algorithm by a factor of at mdst+ k/(n — k) (see Theorems 2 and
3 and applyk < n/2). Therefore, if SOE needs to probesdges, we will report a lower
bound ofm.

In Sections 7.3 and 7.4, we study the random-probe algoriflass.4Ar on, Where an
algorithm deploys therobe-neximplementation in Figure 3. Section 7.5 investigates the
deterministic-probe algorithm claséprr, where an algorithm applies thobe-nexin
Figure 4.

Approximate k-MCV. We will focus on the AMCV algorithm proposed in Section 6,
which is the sole known solution to the approximat®CV problem. As before, the cost
of AMCYV is gauged as the average number of probed edges in§ wness otherwise
stated. Recall that, the building block of AMCYV is thaive-samplingdNS) algorithm,
where the numbes of samples per black vertex is determinedsas- 2! & In % (see

Figure 12 and the adaptations in Section 6.2). For conveaijeme writes to be equivalent

to gtheory/p, where
24~ 3n
gtheory = 6_2 In 7 (24)
which remains fixed in all the invocations of NS in AMCV. Thianrameter is crucial to the

ACM Journal Name, Vol. V, No. N, Month 20YY.

31

number of queries (million)

0 1000 2000 3000 4000 5000
average degree

Fig. 13. Impact of the average degree of black vertices

efficiency of AMCV.

As with most randomized algorithms, the theoretical arialgé AMCV is rather pes-
simistic, which in our context means that the values@afs computed witliheory IS typ-
ically unnecessarily larger than what is needed in pradfica wide margin. The main
cause is the extensive use of the union bound, which is knowsef albeit helpful for
theoretical analysis, almost always excessively loosedality. The implication is that,
in practice, there is hope for utilizing a much smalieto achieve the desired precision
requirements.

To give a simple heuristic of settingfor practical use, we aim at replaciggeory With
a good, much lowei so that we can calculateto be¢/p. With a tuning process to be
presented in Section 7.6, we observed that

gheuristic = gtheory/QOOO (25)

turns out to be a nice choice. The resulting version of AMCYjah is the same as the
theoretical version but applies the above equation to @egics referred to as AMCV-H
(standing for heuristic AMCV).

7.3 How pessimistic is the worst case?

If B andW haven andm edges respectively, solvingkaMCV problem requires probing
nm edges in the worst case. The objective of this subsectioo fsndl out when it is
possible to achieve cost (much) lower tham. For this purpose, we generated a series
of power-law graphs whoséeg (i.e., the average degree of black vertices) ranges from
the minimum 0 to the maximum 5000. Then, we measured the mpeafoce of SOE (the
version inAgan) in settling the 10-MCV problem on each of these graphs.

Figure 13 plots the cost of SOE and the lower bounds as a amofideg (notice that
the vertical axis is in log scale). Recall that bettlandm are 5000 in every power-law
graph, so the value ofm equals 25 million. Wheweg is close to the extreme value 0 or
5000, SOE needs to probe all the edges, and thus, incurs tist-@ase cost. However, its
efficiency improves dramatically soon afiérg moves away from the extreme values. For
example, whemleg equals 250 (i.e., on average, a black vertex is connectetbtofdhe
white vertices), SOE probes around 2 million edges, whidnisller than the worst case
by a factor over an order of magnitude. The minimum overhé&0OE is observed when

ACM Journal Name, Vol. V, No. N, Month 20YY.

32

number of queries (million) number of queries (million)
104 T T T T T T T T T 088 T T T T T T T T T
10.3 1 0.86 |
10.2 0.84
101 0.82
10 08
9.9)
9.8 0.78
9.7 0.76
96 1 1 1 1 1 1 1 1 1 074 1 1 1 1 1
1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
s s
(@) Power law withdeg = 50 (b) Power law withdeg = 3000
number of queries (million) number of queries (million)
20 T T T T T T T T T 112 I T T T T T T T T T
18 . 11 i
10.8 B
16 1 106 .
14 1 104 e
12 B 10.2 B
10 _ 10 _
9.8 B
8 1 96 .
6 al 9.4 4
4 1 1 1 1 1 92 1 1 1
1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
s s
(c) NBA (d) Actor

Fig. 14. Tuning the parameterof algorithm SS

deg is close to the middle value 2500; in this case, SOE needsotzepnly less than half
million edges.

It is clear that the worst-case cost can oaznly in a highly sparse or dense grapkor
other graphs, the cost can be substantially reduced. Théeeffy of SOE is built exactly
on this observation. In fact, as shown in Figure 13, the cbSQE is very close to the
lower bound.

7.4 Performance of random-probe algorithms

Tuning sample-and-sort. Recall that algorithm SS needs a parameatewhich is the
number of edges that are probed for each black vertex in timplgay phase. The next
set of experiments aims to decide a good value.offowards this, given a data graph
G = (B, W, F), we measure the cost of SS wheis set to 1, 2, ..., 50, respectively. Fig-
ure 14 shows the results when the inplis the power law graphs witlleg = 50 and3000
respectively, and the real grapR8AandActor. Clearly, the best value af (minimizing
the overhead of SS) is different for each dataset. Nevesseh common pattern is that SS
is expensive when is too small. Overall, a good choice ofs around 20, which achieves
reasonable efficiency in all cases. Therefore, we fix 20 in the following experiments.

Scalability with k. We proceed to compare SOE and SS4WMCV computation by in-
creasing: from 1 to 100. Figure 15 illustrates the results, as well adakver bounds, on
the same graphs in Figure 14. For benchmarking, remembieththavorst-case cost is 25

ACM Journal Name, Vol. V, No. N, Month 20YY.

33

SS 1 SOE LB —8

number of queries (million) number of queries (million)
25 T T T T T T T T T 25 T T T T T T T T T

20 2

15 15

10 1

5 05 |
0 i 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
k k
(a) Power law withdeg = 50 (b) Power law withdeg = 3000
number of queries (million) number of queries (million)
25 T T T T T T T T T 20 T T T T T T T T T

18
16
14
12
10

8

20

15

10

6
5 'y
2 -
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
k K
(c) NBA (d) Actor

Fig. 15. Performance vé. (random-probe class)

million for power-law graphs]67392 > 280 million for NBA and10000% = 100 million
for Actor.

The overhead of SS and SOE is always significantly lower thamfrst case (often by
orders of magnitude), especially for< 10. The only exception is in Figure 15a, when
k approaches 100. This is expected because a graphdajth= 50 is very sparse (on
average, a black vertex is connected to only 1% of the whitiéces), so most of the edges
must be probed to deal with a relatively largeln all the experiments, SOE consistently
outperforms SS, and its cost is only slightly higher thanltheer bounds.

7.5 Performance of deterministic-probe algorithms

The previous experiments focused on the random-probeitilgoclassAgan. This sub-
section evaluates SS and SOE when they are deployed astatgein the deterministic-
probe classdpgr. Recall that every algorithm islpgr probes the hidden edges of each
black vertex in the samgrobing sequencgénstead of a random order as.fx An) that is
prescribed by the underlying application (see Figure 4).

The following experiments have two objectives. The first mrte inspect the efficiency
of SS and SOE in the deterministic scenario. The secondapsernore interesting, objec-
tive is to understand how their efficiency is affected by theeoing of the white vertices in
the probing sequence. For this purpose, we considered tssgfuences that are controlled
by a parameter calledistortiond, which ranges from 0 to 1. Specifically, a sequence with

ACM Journal Name, Vol. V, No. N, Month 20YY.

34

dSS —+— dSOE SS —* SOE LB —&—

number of queries (million) number of queries (million)
5 T T T T 10 T T T T

6

3F i
4

2F B 21

1 1 1 1 O 1 1 1 1

0 20 40 60 80 100 0 20 40 60 80 100
distortion (percent) distortion (percent)
(a) NBA (b) Actor

Fig. 16. Effects of distortion (deterministic-probe class

distortion O ranks the white vertices in ascending ordeheirtdegrees (or equivalently, in
descending order of how many empty edges they have). Onlllee ettreme, a sequence
with distortion 1 is simply a random permutation of the whitgtices. In general, in a se-
guence with distortion, the positions ofim white vertices are randomly permutated (the
other white vertices remain in ascending order of their éeg), wheren is the number of
white vertices.

To distinguish with the SS (SOE) in the random-probe cldgs n, we refer to the
version of SS (SOE) in the deterministic-probe cldss:t as dSS (dSOE). The parameter
s of dSS is also set to 20, after a tuning process similar torgigd. Concerning 10-MCV
computation orNBA, Figure 16a plots the performance of dSS and dSOE as a fanctio
of distortion, together with the theoretical lower boundsich are calculated by dividing
the cost of dSOE by + niolo, wheren is the number of black vertices). For referencing,
we also include the cost of SS and SOE so that comparison caathe between random-
and deterministic-probe solutions. In the same fashiogyiei 16b presents the 10-MCV
results orActor.

Clearly, dSS and dSOE benefit significantly from a sortedramde In particular, when
distortion is 0 (i.e., completely sorted), the cost of dS@meéarly 10 times lower than
its cost when distortion is 1 (i.e., completely random). &negral, the overhead of both
dSS and dSOE grows with distortion, and eventually (i.edjgtbrtion 1) reaches the cost
of SS and SOE. This phenomenon is not surprising at all. Whemwhite vertices with
more empty edges are probed first, many empty edges can lowelisd sooner for each
black vertex. As a result, the upper bounds of the degredsedilack vertices drop faster,
which enables earlier termination. The relative perforogaof dSS and dSOE is similar
to the random-probe class reported in Figure 15. Also, d3Q@aé¢e again nearly optimal,
leaving little room for further improvements. It is worthipting out that, the above results
do not imply the superiority of dSOE over SOE in all cases clvttian be easily disproved
by designing an adverse probing sequence that forces dS@iEsdover, for each non-
result vertex, many solid edges before empty edges. Cantsideexample in Figure 10,
on which the expected cost of SOE is approximatebm, as explained in Section 5.1.
If the probing sequence is such that all the solid edgdsarke probed before its empty
edges, then dSOE needs to probgl0 + 1+ m/2 = 0.6m + 1 edges ob, in order to find
1+ m/2 empty edges. As dSOE also checks all thedges ob*, the total overhead of

ACM Journal Name, Vol. V, No. N, Month 20YY.

35

dSOE isl.6m + 1 > 1.56m, i.e., more expensive than the expected cost of SOE.

7.6 Performance of AMCV

Having elaborated on the characteristics of our exact isoisit we now proceed to study
the behavior of the proposed algorithm AMCV for the approxiek-MCV problem. As
explained earlier, AMCV applies (24) to calculate the pagtarms, which as will be shown
shortly is much larger than necessary. Hence, the first ssqmdriments below is designed
to (i) measure how smakl can be without violating the precision constraints, anyl (i
examine the effectiveness of the heuristic in Section 7arésorts to (25). As the second
step, we compare the efficiency of AMCYV to our fastest exag@hm, namely, SOE.

Behavior of AMCYV in practice. Given a value of, let us usg¢]-AMCV to refer to the
algorithm that differs from AMCV only in that the value eofis set to bet/p. In other
words, AMCYV is essentialyneory|-AMCYV, whereas AMCV-H is[{neuristic]-AMCY,
With &ineory @NdEneuristic given in (24) and (25), respectively. Loweriggreduces the
execution cost of the algorithm, but on the other hand, emes the risk of being unable
to meet the precision guarantees as mandateddndo. Given a fixed pair ok andd
and a particular dataset, we defif)g;,, to be the minimung such tha{¢]-AMCV is able
to achieve the desired precision requirements on thatelat&sjuivalently, the minimum
value ofs for attaining those requirements equéls.. /p.

To measur€,,;,, we started with a largé and gradually decreased it. For egglwe
ran algorithm[¢]-AMCV (on the underlying dataset) 100 times, and recordedhitimber
2 of times the algorithm successfully returned a result thaggal under the definition of
e-approximate:-MCV. We say that the is acceptablef /100 > 1 — 4. Then,&,,;, took
the value of the smallest acceptableThe value oft was fixed to 10 in all the following
experiments, unless otherwise stated.

To examine how,,;, scales withe, we fixedé = 0.1 and measured,,;, ase varied
from 0.01 to 0.1. The results on the power-law graph with = 50 are presented in
Figure 17a, where the correspondifigeory andéneuristic are also given for comparison.
The results of the same experiment the power-law graphawigh= 3000, NBAandActor
are illustrated in Figure 17b, 17c and 17d, respectivelyis ktlear thats,,;, is always
lower than&ineory Dy Orders of magnitudes, confirming our earlier conjectbeg §neory
obtained from theoretical analysis is over pessimisticracpce. Furthermore, observe
that&yeuristic Presents itself as a nice fitting line &f,;,, .

In a similar experiment, we inspected the behaviog,gf, with respect taj, by fixing
€ to 0.05 while increasing from 0.05 to 0.5. Figure 18 demonstrates the results on the
same datasets as in Figure 17. Once agaif,, closely approximated b¥ycuristic, 1S
significantly smaller than its theoretical counter@aitory -

Efficiency of AMCV-H. Treating algorithm SOE as a benchmark, the subsequentiexper
ments evaluate the performance of AMCV-H, i.e., the prattiersion of AMCV param-
eterized by¢yc.ristic @S discussed in Section 7.2. We start by assessing how thefcos
the algorithms is affected by. Figure 19 plots the cost as a function/obn different
datasets, wheaandd are set td).05 and0.1, respectively. Recall that, due to its heuris-
tic nature, AMCV-H may not achieve the theoretical guarastprescribed by andJ.
Whenever this happens, in the diagrams of Figure 19, we prespercentage, .;yq; to
indicate that the output by AMCV-H is ad),...i-approximatek-MCV result according

to the failure probability designated By For example, in Figure 19a, the 6.2% means

ACM Journal Name, Vol. V, No. N, Month 20YY.

36

gtheory

102

1L ! ! ! ! ! ! » P
10
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

€ €
(a) Power law withdeg = 50 (b) Power law withdeg = 3000
107 F T T T T T T T T 7 10’ T T T T T T T T
10° | 10° F .
10° 10° | :

10° F %
10% o %

102

1L ! ! ! ! ! ! L
10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

€ €

(c) NBA (d) Actor

Fig- 17. &mins gtheoryr andfheuristic VS.€ ((S =0.1,k= 10)

that, fork = 7, AMCV-H achieves the precision level of 0.062-approximatelCV with
failure probabilityd = 0.1.

A general observation from Figure 19 is that AMCV-H signifitdg outperforms SOE
when the cost of SOE is large, i.e., the data input is “hard’heWthe input is “easy”,
both algorithms are very fast with AMCV-H sometimes beingrenexpensive. This is
consistent with the common understanding that probaigil@gorithms find their values
mainly in dealing with datasets that are costly to procedh @eterministic algorithms.
Another key observation is that the cost of AMCV-H is inséusito k&, while that of SOE
increases rapidly with this parameter. In fact, we can seeftr £ = 10, AMCV-H is
always better than SOE except on the easiest input (i.egrth in Figure 19b).

The next experiments inspect the influence ahdd, by fixing & to 10. Settingd = 0.1,
Figure 20 presents the results wheraries from0.01 to 0.1, while settinge = 0.05,
Figure 21 presents the results whemaries from0.05 to 0.5. We annotate all diagrams
with percentages that carry the same meanings as in Figurél®main observation in
Figure 20 is that AMCV-H is expensive whenis very low, i.e., an exceedingly small
error is targeted, such that in this case we would be bettdaya$§imply running the exact
algorithm SOE. However, AMCV-H quickly improves agcreases, and outperforms SOE
in all datasets starting from= 0.06. On the other hand, as shown in Figure 21, the cost
of AMCV-H is insensitive toj, which is expected becauseappears in a logarithm in the
running time (see Theorem 5).

ACM Journal Name, Vol. V, No. N, Month 20YY.

37

gmin gtheory gheuristic """""
108 F T T T T T T T T 7 108 T T T T T T T T
10° F 1 10°F
10* F 1 10*F .
10° ' — 103 F]
102 m 102F]
: 1 e
10' £ 1 w'f 1
o[! ! ! ! ! ! ! !] 0 ! ! ! ! ! ! ! !
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
S 3
(a) Power law withdeg = 50 (b) Power law withdeg = 3000
108 F T T T T T T T T 7 108 T T T T T T T T
10° F 1 10°F
10* F 1 10*F .
10° ' — 103 F]
wEo 1 ww?E.]
10t f 1 w0tk :
o[! ! ! ! ! ! ! !] 0 ! ! ! ! ! ! ! !
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
5 3
(c) NBA (d) Actor

Flg 18. §miny gthcoryr and&hcuristic vs.§ (E = 0057 k= 10)

In general, as long asis not excessively small, AMCV-H is efficient regardless of
the data input. This is a nice advantage over SOE, which cas leepensive as the naive
solution when the input is hard, as is evident from FigureH@&nce, AMCV-H is preferred
in scenarios where-approximate results suffice, and yet, the hardness of tiasefecannot
be reliably estimated. In fact, AMCV-H can even be used ada pin that serves as a
“hardness test”. Specifically, if the output of AMCV-H indites that the degree of theth
most connected black vertex is closeitqi.e., the number of white vertices), we can infer
that the dataset is easy, and invoke SOE to find the exact ans®a the other hand, if
the degree of thé-th most connected black vertex is far fran) we know that the dataset
is hard, in which case running SOE should be avoided becauosayiincur prohibitively
expensive overhead.

8. CONCLUSIONS

This paper studied the most connected vertgx-MCV) problem on ann x m hidden
bipartite graph such thdt < n/2. We presented an algorithm that is instance optimal in a
class of randomized algorithms, and a class of determgrafgiorithms. On any data input,
our solution can be more expensive than the optimal algordaheach class by a factor of
at most 2. We also proved that no algorithm in the determitsass can be optimal in all
cases. Currently, it remains open whether an optimal algarexists in the randomized
class.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38

AMCV-H SOE —=

number of queries (million) number of queries (million)
10 T T T T T T T T 08 T T T T T T T T

©

1 o7
1 os
1 ost i

0.4

11.1%| 03
02k o o o

7%

OFR,r NWAMA™OU O N 0

B 6.2% 9.7% 10.4%- 01
1 1 1

0 1 1 1 1 1 1 1 1
6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k k

(@) Power law withdeg = 50 (b) Power law withdeg = 3000

[N
N
w
IN
o

number of queries (million) number of queries (million)
4 T T T T T T T T 9 T T T T T T T T

N
\
1
OFR, NWhMOUON©

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(c) NBA (d) Actor

Fig. 19. Performance v&. (e = 0.05,6 = 0.1)

As a second step, we gave an algorithm for solving:-@pproximate version of the
k-MCV problem with probabilistic quality bounds. While thiper has concentrated on
bipartite graphs, our algorithm can be extended to work areg graphs, still ensuring
all the theoretical guarantees.

We believe thatjuery processing in hidden grapissa promising research direction. For
future work, one may consider generalizing thtMCV problem to multi-partite graphs,
namely, the topk version oft-ary semi-join withy > 2. It may also be interesting to re-visit
conventional graph problems on hidden graphs. The existiggrithms may not regard
edge-probing as a costly operation, and thus, can be ptivkigiexpensive if applied in a
straightforward manner.

Acknowledgements

This work was (i) supported by WCU (World Class Universitggram under the National
Research Foundation of Korea, and funded by the Ministry ddidation, Science and
Technology of Korea (Project No: R31-30007), (ii) suppdiite grants 4169/09, 4166/10,
4165/11 from HKRGC, and (iii) supported by National GranhBamental Research 973
Program of China (project No: 2012CB316200). We would lix¢éhtank the anonymous
reviewers for their insightful comments.

ACM Journal Name, Vol. V, No. N, Month 20YY.

AMCV-H

number of queries (million)

SOE =

number of queries (million)

40 3%I T T T T T T 14 T T T T T T T

35 . Iy

30 . al 4

25 R

20 . 3r i

15 24% 2+ 13%]

0,

10 4.0% - .

5F 8.2% 129 150 179 \- 7.1%9.1% 11%
 SAPETTah 1996 17%6 18% 2196 i — — ——

€

(a) Power law withdeg = 50

number of queries (million)

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

€

(b) Power law withdeg = 3000

number of queries (million)

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

39

50 X T T T T T T T 30 T T T T T T T
1F 1 25 i
2t 1 ol i
10} .
sl |l st .

L | 16%
6 1§% 0F 58 —8—8 8 —8—8-\4
A5 5 >g 85 B8 B B85 —B5\1

5 - -
2r 8.3%11% 15% \(7.2%9.3% 13% 14%
O 1 1 1 1 1 1 O 1 1 1 2 4
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
€ €
(c) NBA (d) Actor

Fig. 20. Performance vs.(k = 10,0 = 0.1)

REFERENCES
AFSHANI, P., BARBAY, J.,AND CHAN, T. M. 2009. Instance-optimal geometric algorithms Phoceedings of
Annual IEEE Symposium on Foundations of Computer Scieo€§j 129-138.

ALON, N., BEIGEL, R., KASIF, S., RUDICH, S.,AND SUDAKOV, B. 2004. Learning a hidden matchin§IAM
Journal of Computing 32, 487-501.

ALON, N. AND KRIVELEVICH, M. 2002. Testing k-colorabilitySIAM Journal of Computing 12, 211-227.

ALON, N. AND SHAPIRA, A. 2008a. A characterization of the (natural) graph proegtestable with one-sided
error. SIAM Journal of Computing 3B, 1703-1727.

ALON, N. AND SHAPIRA, A. 2008b. Every monotone graph property is testat3&AM Journal of Comput-
ing 38,2, 505-522.

ANGLES, R.AND GUTIERREZ C. 2008. Survey of graph database modaiSM Computing Surveys 40,

ANGLUIN, D. AND CHEN, J. 2008. Learning a hidden graph using O(logn) queries gge.eJournal of
Computer and System Sciences (JCSS)},/846-556.

BARAN, |. AND DEMAINE, E. D. 2005. Optimal adaptive algorithms for finding the esaiand farthest point
on a parametric black-box curvint. J. Comput. Geometry Appl. 15, 327-350.

BARBAY, J. AND CHEN, E. Y. 2008. Convex hull of the union of convex objects in thanp: an adaptive
analysis. InProceedings of the Canadian Conference on Computationah@é&y (CCCG)

BiepL, T. C., BREJOVA, B., DEMAINE, E. D., HAMEL, A. M., LOPEZORTIZ, A., AND VINAR, T. 2004.
Finding hidden independent sets in interval grapftseor. Comput. Sci. 31Q;3, 287-307.

BOGDANOV, A., OBATA, K., AND TREVISAN, L. 2002. A lower bound for testing 3-colorability in bourttie
degree graphs. IRroceedings of Annual IEEE Symposium on Foundations of @tncience (FOCS)
93-102.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40

AMCV-H SOE =

number of queries (million) number of queries (million)

10 — —— - — T —; —— 0.6 L

9 - -

sl h 05 B
r 1 o4t b
6 - .

i [13% 78| O3 T
3 _/ i 0.2 i
2 12% 11% 11% 10% 10% 10% 9.7% 7.9% 0.1 7

1} 4

O 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

1) 1)
(a) Power law withdeg = 50 (b) Power law withdeg = 3000

number of queries (million) number of queries (million)

AT T T T T T T T . S S S S——
35 =) =) = = £ £ & &] 8 | 4
3t g r 1
25 . : I T
2 -

M 4 + .

15 T 3+ -

1r B 2L 4
05 | i 1

O 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

1) 1)
(c) NBA (d) Actor

Fig. 21. Performance v8.(k = 10, e = 0.05)

BORODIN, A. AND EL-YANIV, R. 1998.0nline Computation and Competitive Analysambridge University
Press.

CHAN, C. Y., AGADISH, H. V., TAaN, K.-L., TUNG, A. K. H., AND ZHANG, Z. 2006. Finding k-dominant
skylines in high dimensional space. Pnoceedings of ACM Management of Data (SIGMO&)3-514.

CORMEN, T. H., LEISERSON C. E., RVEST, R. L.,AND STEIN, C. 2001.Introduction to Algorithms, Second
Edition. The MIT Press.

DEMAINE, E. D., HARMON, D., IACONO, J., KANE, D.,AND PATRASCU, M. 2009. The geometry of binary
search trees. IRroceedings of the Annual ACM-SIAM Symposium on Discreferéthms (SODA)496-505.

DEMAINE, E. D., LOPEZORTIZ, A., AND MUNRO, J. |. 2000. Adaptive set intersections, unions, and differ
ences. IrProceedings of the Annual ACM-SIAM Symposium on Discreferitthms (SODA)743-752.

FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middlewarePtoceedings
of ACM Symposium on Principles of Database Systems (PODS)

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
CompletenessW. H. Freeman.

GOLDREICH, O., GOLDWASSER, S.,AND RON, D. 1998. Property testing and its connection to learningdy an
approximation.Journal of the ACM (JACM) 454, 653-750.

HAGERUP, T. AND RuB, C. 1990. A guided tour of chernoff boundaformation Processing Letters (IPL) 38,
305-308.

HOULE, M. E. AND SAKUMA , J. 2005. Fast approximate similarity search in extremaf-dimensional data
sets. InProceedings of International Conference on Data Engineg(iCDE). 619-630.

ILyas, I. F., AREF, W. G.,AND ELMAGARMID, A. K. 2003. Supporting top-k join queries in relational
databases. IRroceedings of Very Large Data Bases (VLDBj4—-765.

ACM Journal Name, Vol. V, No. N, Month 20YY.

41

ILYAS, |. F., BESKALES, G.,AND SOLIMAN, M. A. 2008. A survey of tope query processing techniques in
relational database system®CM Computing Surveys 40,

IMIELINSKI, T., VISWANATHAN, S.,AND BADRINATH, B. R. 1997. Data on air: Organization and access.
IEEE Transactions on Knowledge and Data Engineering (TKBB), 353-372.

KAPOOR, S. 2000. Dynamic maintenance of maxima of 2-d point s&M Journal of Computing 2%,
1858-1877.

KEOGH, E. J. 2002. Exact indexing of dynamic time warpingPhoceedings of Very Large Data Bases (VLDB)
406-417.

MATUSZEWSKI, T. |. 1962. Some properties of pascal distribution for éimibpulation Journal of the American
Statistical Association 5297, 172-174.

NATSEV, A., CHANG, Y.-C., SMITH, J. R., U, C.-S.,AND VITTER, J. S. 2001. Supporting incremental join
queries on ranked inputs. Proceedings of Very Large Data Bases (VLDBJ1-290.

PaPADIAS, D., TAO, Y., Fu, G.,AND SEEGER B. 2005. Progressive skyline computation in databasemsst
ACM Transactions on Database Systems (TODS})301-82.

SCHNAITTER, K. AND POLYZOTIS, N. 2008. Evaluating rank joins with optimal cost. Pnoceedings of ACM
Symposium on Principles of Database Systems (POL3Sh2.

SINGLA, P.AND RICHARDSON, M. 2008. Yes, there is a correlation: - from social netwddkgersonal behavior
on the web. IrProceedings of International World Wide Web Conferenced/\M) 655-664.

SOLIMAN, M. A., ILYAS, |. F.,AND CHANG, K. C.-C. 2008. Probabilistic tog-and ranking-aggregate queries.
ACM Transactions on Database Systems (TODS333,

TAO, Y., SHENG, C.,AND L1, J. 2010. Finding maximum degrees in hidden bipartite ggaptProceedings of
ACM Management of Data (SIGMOLCg§91-902.

Yiu, M. L. AND MAMOULIS, N. 2009. Multi-dimensional top- dominating querieghe VLDB Journal 183,
695-718.

ZHU, M., PAPADIAS, D., ZHANG, J.,AND LEE, D. L. 2005. Top-k spatial joins.IEEE Transactions on
Knowledge and Data Engineering (TKDE) 47,567-579.

ACM Journal Name, Vol. V, No. N, Month 20YY.

