
Exact and Approximate Algorithms for the Most
Connected Vertex Problem

Cheng Sheng1, Yufei Tao1,2, Jianzhong Li3

1Chinese University of Hong Kong
2Korea Advanced Institute of Science and Technology
3Harbin Institute of Technology

An (edge) hidden graphis a graph whose edges are not explicitly given. Detecting the presence of an edge requires
an expensiveedge-probingquery. We consider thek most connected vertex(k-MCV) problem on hidden bipartite
graphs. Given a bipartite graphG with independent vertex setsB andW , the goal is to find thek vertices inB
with the largest degrees using the minimum number of queries. This problem can be regarded as a top-k extension
of semi-join, and is encountered in several applications inpractice.

If B andW haven andm vertices respectively, the number of queries needed to solve the problem isnm in
the worst case. This, however, is a pessimistic estimate on how many queries are necessary on practical data. In
fact, on some inputs, the problem may be settled with onlykm+n queries, which is significantly lower thannm
for k ≪ n. The huge difference betweenkm+ n andnm makes it interesting to design an adaptive algorithm
that is guaranteed to achieve the best possible performanceon every inputG. Fork ≤ n/2, we give an algorithm
that isinstance optimalamong a broad class of solutions. This means that, for anyG, our algorithm can perform
more queries than the optimal solution (which is unknown) byonly a constant factor, which can be shown to be
at most 2.

As a second step, we study anǫ-approximate version of thek-MCV problem, whereǫ is a parameter satisfying
0 < ǫ < 1. The goal is to returnk black verticesb1, ..., bk such that the degree ofbi (i ≤ k) can be smaller
thanti by a factor of at mostǫ, wheret1, ..., tk (in non-ascending order) are the degrees of thek most connected
black vertices. We give an efficient randomized algorithm that successfully finds the correct answer with high
probability. In particular, for a fixedǫ and a fixed success probability, our algorithm performso(nm) queries in
expectation fortk = ω(logn). In other words, whenevertk is greater thanlogn by more than a constant, our
algorithm beats theΩ(nm) lower bound for solving thek-MCV problem exactly. All the proposed algorithms,
despite the complication of their underlying theory, are simple enough for easy implementation in practice. Ex-
tensive experiments have confirmed that their performance in reality agrees with our theoretical findings very
well.
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Fig. 1. The 1-MCV result isb2

1. INTRODUCTION

An (edge) hidden graphis a graph whose edges are not explicitly available. Detecting
the presence of an edge between two vertices requires anedge-probing query, which is an
operation that incurs expensive cost. In recent years,learning hidden graphs[Goldreich
et al. 1998] has attracted considerable attention in the theory community [Alon and Shapira
2008a; Angluin and Chen 2008; Bogdanov et al. 2002; Goldreich et al. 1998]. The main
objective of the relevant research is to decide whether the graph has a certainproperty,
by probing the least number of edges. The underneath rationale is that, learning only a
property of the graph (e.g., whether it is bipartite) is easier than revealing the whole graph.
Therefore, the number of edges that need to be probed may be significantly smaller than
the total number of edges that may exist.

As will be reviewed in Section 2, the existing research on hidden graphs is mostly moti-
vated by biological and chemical applications. This paper focuses on the database context.
We consider thek most connected vertex(k-MCV) problem on hidden bipartite graphs.
Specifically, given a bipartite graphG between two setsB andW of vertices, the objective
is to find thek vertices inB having the maximum degrees. In Figure 1, for example,B has
vertices{b1, ..., b4}, andW is {w1, ..., w5}; the output of the 1-MCV problem isb2. The
challenge is to minimize the number of edge-probing queries. Next, we discuss several
applications of thek-MCV problem.

1.1 Motivation

Application 1 (semi-join aggregation with complex predicates). ConsiderB andW as
relational tables, and a join predicate betweenB andW . An edge-probing query in this
scenario examines whether a tuple ofB can be joined with a tuple ofW . The result of
thek-MCV problem is thek tuples inB that can be joined with the most tuples inW , as
described by the following pseudo-SQL statement:

SELECT b
FROM B b, W w
WHERE [a join predicate aboutb andw]
GROUP BY b
HAVING count(∗) ≥ the size of thek-th largest group

Notice that, if we remove the GROUP-BY and HAVING clauses, the statement becomes
a standardsemi-join. Hence,k-MCV can be regarded as atop-k extension of a semi-join,
which returns thek tuples of tableB having the strongest joining power with respect to
tableW . For example, suppose thatB is a list of hotels, andW is a list of tour attractions.
Setting an edge-probing query to check whether a hotelb and an attractionw are within 1

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 3

mile, the above statement is essentially atop-k spatial join [Zhu et al. 2005], which finds
thek hotels whose 1-mile vicinities cover the largest number of attractions.

The join predicate can be rather unfriendly to relational query optimization. For ex-
ample, the simple geometric condition given earlier (deciding whetherb andw are within
1 mile) is not well supported by a DBMS. This is especially true if the “1 mile” refers
to theroad networkdistance, in which case evaluating the join predicate may even need
to perform ashortest-pathsearch on a map. If effective optimization is impossible, the
DBMS may execute the statement by first performing a cartesian product betweenB and
W , followed by a group-by and selection of the largest groups.Such a strategy may incur
prohibitive cost.

A remedy in the above situation is a fast algorithm for solving thek-MCV problem,
which can improve efficiency dramatically by reducing the number of times that the join-
predicate is evaluated (i.e., the number of edges probed). Note that, to be incorporated in a
relational engine, such an algorithm must be general enoughto tackleany join predicate,
as opposed to only special queries. For this reason, the solutions of [Zhu et al. 2005] are
not appropriate for DBMS incorporation.

In fact, the concept of semi-join exists not only in relational databases, but is implicit in
the applications of other environments. As detailed below,thek-MCV problem finds use
in those applications as well.

Application 2 (frequent patterns). Assume that each vertexb ∈ B represents a candidate
pattern, and each vertexw ∈ W corresponds to a data item. Given a patternb ∈ B
and a data itemw ∈ W , an edge-probing query detects whetherb exists inw. In other
words, there is an edge inG betweenb andw if b is observed inw. Thek-MCV problem
returns thek patterns inB that are most commonly found in the items ofW . In some
environments, detecting the presence of a pattern can be rather expensive, such that the
overall computation time is dominated by the total cost of all queries.

As an example, the pharmaceutical industry has establisheda novel methodology of
discovering new drugs, calledfragment-based drug discovery[Kapoor 2000]. This is mo-
tivated by the frustration that“finding a new drug is like playing golf, where the target is
the pin” [Kapoor 2000]. The new methodology relieves the frustration by initiating a drug-
searching process from afragment, which is a basic chemical compound in the molecular
structures of drugs. Hence, an important problem is to identify the k fragments that are
most frequently present in a set of drugs. This is a typicalk-MCV problem, whereB in-
cludes all the fragments, andW is the set of drugs under screening. An edge-probing query
checks whether a fragmentb ∈ B exists in a drugw ∈ W . Since molecular structures are
graphs, the query essentially carries out asubgraph isomorphism test[Garey and Johnson
1979], which can be rather costly. Therefore, reducing the number of queries is the key to
efficiency.

In general, pattern detection is often achieved by evaluating the distance between a pat-
tern and a data item: a pattern is considered to exist if the distance is sufficiently small.
Some distance functions are expensive to evaluate, e.g.,dynamic time warping[Keogh
2002] and evenℓp norms inultra-high dimensional spaces[Houle and Sakuma 2005]. In
those cases, the cost of edge-probing queries may dominate the execution time, justifying
the need to minimize such queries.

Application 3 (querying by web service). Today, many websites provide convenient inter-
faces to allow the public to query their backend databases. Such services have significantly
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increased the amount of data that an ordinary user can access, by removing the need for the
user to store gigantic datasets locally. For instance, atCinema Freenet(www.cinfn.com),
people can input the name of an actor/actress and the title ofa movie; then the website
will return, among other information, whether the actor/actress played a role in the movie.
As another example, using the APIs ofGoogle Map, a program is able to obtain the road-
network distance between two addresses given in the text format, i.e., the coordinate infor-
mation of neither address is necessary.

These services can be leveraged to solvek-MCV problems in a way we callquerying
by web service. For example, assume thatB is a set of actors and actresses, andW is a
set of movies. Given an actor/actressb ∈ B and a moview ∈ W , an edge-probing query
contactsCinema Freenetto verify whetherb appeared inW . Thek-MCV result is thek
actors/actresses that participated in the largest number of movies. In a similar way,Google
Map can be employed to solve thetop-k spatial join problem mentioned in Application
1, withoutknowing the coordinates of the hotels and tour attractions at all. Given a hotel
b ∈ B and an attractionw ∈ W , a query connects toGoogle Mapto check if the distance
from b tow is within 1 mile. Then, the output ofk-MCV is thek hotels that have the most
attractions within their 1-mile neighborhoods. The performance bottleneck in the above
environments is the total network latency of the queries issued. Once again, minimizing
the number of queries should be the aim of ak-MCV algorithm.

1.2 Our main results

The first objective of this work is to design a generic algorithm for thek-MCV problem that
can be directly used as a black box in all the above applications. If the vertex setsB and
W have sizesn andm respectively, in the worst case, solving the problem demandsnm
edge-probing queries. However,nm is a very pessimistic estimate on how many queries
are needed on practical data. As we will see, on some inputs, the problem can be settled
with only km+ n queries, which is significantly lower thannm for k ≪ n.

The above discussion suggests that it is a wrong direction todesign aworst-case opti-
mal algorithm – virtuallyany correct algorithm is worst-case optimal. In fact, the wide
spectrum betweenkm+ n (good case) andnm (worst case) indicates that we should aim
at anadaptivealgorithm, which is guaranteed to achieve the lowest cost oneveryinput.
Intuitively, the cost of the algorithm ought to be a functionof the difficulty of the input.
Namely, when the input is “easy”, the algorithm must performfar less thannm queries.
As the input’s hardness increases, the cost of the algorithmis allowed to grow, but only to
the extent enough to tackle the additional difficulty.

This paper presents the first study on thek-MCV problem. Fork ≤ n/2, we propose
an algorithm with the properties described earlier, and prove that it is instance optimal
among a class of solutions (to be defined in the next section).Instance optimality [Fagin
et al. 2001] requires that, onanydata input, our algorithm should be as fast as the optimal
solution (which is unknown), up to only a constant factor. Weare able to show that the
constant is at most 2. In practice,k is usually very small (e.g., 10) compared to the sizen
of B, such that it can be regarded as a constant. In this case, we prove that our algorithm
can be slower than the optimal solution by only a tiny factor of 1 +O(1/n).

As a second step, we study anǫ-approximate version of thek-MCV problem whereǫ
is a constant satisfying0 < ǫ < 1. Denote byt1, ..., tk (in non-ascending order) the
degrees of thek most connected vertices inB. Then, theǫ-approximatek-MCV problem
returnsk vertices where thei-th (i ≤ k) vertex has a degree at leastti(1 − ǫ), that is,
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the degree of this vertex can be lower thanti by no more than a factor ofǫ. We give
a randomized algorithm that returns the correct answer withprobability at least1 − δ,
and performsO( 1

ǫ2
nm
tk

log n
δ ) queries in expectation. Note that, for fixedǫ and δ, the

cost of our algorithm is bounded byO(nmtk logn), thus beating the lower boundΩ(nm)

of the exactk-MCV problem whenevertk = ω(logn), namely, the degrees of all the
result vertices are greater thanlog2 n by more than a constant. In practice,log2 n is a
small value (e.g., forn being a million,log2 n is roughly 20). Hence, the finding suggests
that approximate algorithms may have a performance advantage over exact solutions in
the worst case. For example, our approximate algorithm is more superior insemi-join
aggregation (Application 1 of Section 1.1), when at leastk black tuples each match, say,
at least 1% of the white vertices. In such a case, the approximate solution incurs only
O(n log n) cost, as opposed to theO(nm) cost of the exact algorithm.

The rest of the paper is organized as follows. The next section defines the problem and
reviews the previous work related to ours. Then, Section 3 sets the stage for theoretical
analysis by defining the algorithm classes, and giving some basic probabilistic facts. Sec-
tion 4 explains the details of the proposed algorithms for the exactk-MCV problem, whose
performance is studied in Section 5. Section 6 is devoted to the ǫ-approximatek-MCV
problem, by giving our algorithmic solutions and analyzingtheir performance. Section 7
experimentally evaluates the efficiency of the proposed techniques. Finally, Section 8 con-
cludes the paper with directions for future work.

2. PROBLEM AND RELATED WORK

We first expand the discussion in Section 1 to formally define thek most-connected vertex
(k-MCV) problem and its approximate version. Then, we review the existing research on
the relevant problems.

The k-MCV problem. LetG = (B,W,E) be a bipartite graph, where the setE of edges
are between a setB of black vertices, and a setW of white vertices. G is ahidden graph,
meaning that none of the edges inE is explicitly given. To find out whether an edge
exists between a vertexb ∈ B and a vertexw ∈ W , we must perform anedge-probing
queryq(b, w), which returns a boolean answeryesor no. The edges ofG that have not
been probed are said to behidden. The goal of thek-MCV problem is to find thek black
vertices with the largest degrees, by minimizing the numberof queries, or equivalently, the
number of edges probed.

Two black vertices may have the same degree, namely, a tie. For the sake of fairness,
we adopt the policy that the vertices having a tie should receive the same treatment. That
is, either they are all reported, or none of them is reported.This means that sometimes the
result may have more thank vertices. Formally, denote bydeg(b) the degree of a black
vertexb ∈ B; thek-MCV result is theminimalsetR of black vertices satisfying:

(1) |R| ≥ k, and

(2) deg(b) > deg(b′) for anyb ∈ R andb′ ∈ B \R

where|R| denotes the size ofR, andB \R is the set difference betweenB andR.
The above definition aims to retrieve vertices with large degrees, whereas a symmetric

definition exists for extracting vertices with small degrees. Throughout the paper, we focus
on the former version because our solutions can be directly applied to the latter version by
working with the complement ofG, i.e., a bipartite graph̄G that hasB andW as the vertex
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sets, and has an edge betweenb ∈ B andw ∈ W if and only if there is no edge betweenb
andw in G.

Denote byn andm the numbers of vertices inB andW , respectively (i.e.,G can have
between 0 andnm edges). Imagine that we have ranked all the vertices ofB in non-
ascending order of their degrees, breaking ties arbitrarily. We refer to thei-th (1 ≤ i ≤ n)
vertex in the ranked list as thei-th most connected vertexin B.

We consider that the value ofk is an integer from 1 ton/2. In practice, users are usually
interested in thetop few(e.g., 10) black vertices with the maximum or minimum degrees.
This implies that ideally a good solution to thek-MCV problem should be especially effi-
cient fork = O(1).

The ǫ-approximatek-MCV problem. Besides the inputs in the exact version of problem,
we are given an extra parameterǫ satisfying0 < ǫ < 1 to control the relative precision.
Denote byt1, ..., tk the degrees of thek most connected black vertices inG. The ǫ-
approximatek-MCV problem aims at returningk black verticesb1, ...,bk such that for any
1 ≤ i ≤ k:

deg(bi) ≥ ti(1− ǫ)

namely, the degree ofbi is smaller thanti by at most a factor ofǫ.

Related work. Although graph databaseshave been extensively studied (see [Angles
and Gutiérrez 2008] for a recent survey), we are not aware ofany previous work dealing
with thek-MCV problem on hidden graphs. Traditionally, the edges of agraph are given
explicitly (e.g., in an adjacency matrix/list), so that accessing an edge incurs negligible
cost. In that scenario, finding thek vertices with the largest degrees is a trivial task. A
distinctive feature of ourk-MCV problem is that detecting an edge is costly, such that the
number of edge-probing queries determines the overall execution time.

Learning hidden graphs, also known asgraph testing, was first studied by Goldreich et
al. [1998]. At a high level, given a hidden graphG, the objective of learning is to either
confirmthatG has a certain property, ordenythe existence of the property inG. A fuzzy
answerdon’t-careis allowed whenG is closeto having such a property. For example, a
property that has been widely studied [Alon and Krivelevich2002; Bogdanov et al. 2002;
Goldreich et al. 1998] is whetherG is bipartite. Adon’t-careanswer is permitted whenG
can be converted to a bipartite graph by adding/removing only a small number of edges.
The learning of other properties has also been investigated; see, for example, [Alon and
Shapira 2008a; 2008b] for a summary.

In the original setup of [Goldreich et al. 1998], an edge-probing query is assumed to
detect an edge between only two vertices. In recent years, several authors [Alon et al. 2004;
Angluin and Chen 2008; Biedl et al. 2004] have consideredsuper queries, each of which
detects whether at least an edge exists among a set of vertices in the underlying graph. This
is motivated by biological and chemical applications. For example, consider areaction
graph, where each vertex is a chemical, and two vertices are connected if the corresponding
chemicals react with each other. Then, a super query can be understood as an experiment
of mixing several different chemicals, and observing if anyreaction happens. If yes, it
implies that at least two of the chemicals involved react with each other.

Our k-MCV problem differs from thegraph testingformulation of [Goldreich et al.
1998]. Specifically, we are not attempting to verify any general property. Instead, we aim
at identifying particular vertices in thegivengraph satisfying our degree requirements. This
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is analogous to retrieving the items of a dataset qualifyinga query condition, as opposed to
recognizing which distribution best describes the dataset. To our knowledge, thek-MCV
problem has not been addressed in the literature of graph testing.

Finding the vertex with the maximum degree is a basic operation in attacking several
problems on bipartite graphs. Our algorithms can be appliedas a building brick in those
problems, under the circumstances where detecting the presence of edges is expensive. An
important example is theminimum set cover(MSC) problem. In the context of a bipartite
graph between two vertex setsB andW , the MSC problem is to compute the minimum
subsetB′ ⊆ B such that every vertex inW is connected to at least one vertex inB′.
The problem is NP-hard but a good approximate solution can befound by a classic greedy
algorithm [Cormen et al. 2001], which requires solving multiple 1-MCV problems. Our
techniques can be immediately employed.

The concept of instance optimality was introduced by Fagin et al. [2001]. An earlier,
similar, concept iscompetitive analysis[Borodin and El-Yaniv 1998], whose differences
from instance optimality are nicely explained in [Fagin et al. 2001]. Instance optimal
algorithms have been designed for many other problems, for example, manipulating binary
search trees [Demaine et al. 2009], approximating the distance from a point to a curve
[Baran and Demaine 2005], computing the union/intersection of sorted lists [Demaine et al.
2000], finding the convex hull of polygons [Barbay and Chen 2008], to mention just a
few. Recently, a generic framework has been developed in [Afshani et al. 2009] to design
instance optimal algorithms for geometric problems.

Thek-MCV problem can be regarded as a variant of thetop-k problem, which has been
extensively studied in distributed systems [Fagin et al. 2001], relational databases [Ilyas
et al. 2008], uncertain data [Soliman et al. 2008], and so on.However, the solutions in
those works are specific to their own contexts, and cannot be adapted fork-MCV. Another
related problem in relational databases istop-k join [Ilyas et al. 2003; Natsev et al. 2001;
Schnaitter and Polyzotis 2008], which returns the top-k tuples from a join with the highest
scores. The score of a (joined) tuple is calculated from a monotone function based on the
tuple’s attributes. The ranking criteria ink-MCV, on the other hand, are not based on any
attribute, but instead, depend on thejoining powerof a tuple in a participating relation (i.e.,
it can be joined with how many tuples from the opposite relation).

A preliminary version of this work was published in [Tao et al. 2010]. While that short
version studies only the exactk-MCV problem, the current article also provides solutions
with theoretical guarantees to theǫ-approximatek-MCV problem (in Section 6), and ac-
cordingly, includes the extra empirical results (Section 7).

3. PRELIMINARIES

This section will first explain the classes of algorithms considered for the exactk-MCV
problem. Then, we will elaborate the concept of instance optimality, based on the frame-
work established by [Fagin et al. 2001]. Finally, we will review Chernoff bounds.

Classes of exact algorithms.We aim at designing generic algorithms that do not as-
sume any pre-knowledge of the underlying graphG. In other words, the algorithm obtains
information aboutG only from the problem input (i.e., the vertex setsB andW ), and
the results of the edge-probing queries already performed.To make our discussion more
specific, Figure 2 describes a high-level framework to capture k-MCV algorithms. The
framework describes two core operations performed repetitively by an algorithm:
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algorithm MCV
input : a hidden bipartite graph
output: thek-MCV result
1. repeat
2. b = pick-black
3. probe-next(b)
4. until it is safe to return the result

Fig. 2. An algorithmic framework

—pick-black, which returns the black vertexb on which the algorithm wants to probe a
hidden edge, according to the current status of the algorithm’s execution. Different
strategies can make a huge difference. This is the key of the algorithm design.

—probe-next(b), which reveals an edge ofb that is still hidden at this time. Specifically, it
selects a white vertexw whose edge withb has not been probed, and performs a query
q(b, w).

It would be ideal if we could implementprobe-next(b) in a way that canselectivelyprobe
an edge that is likely to be present or absent. This, however,implies that we must know
at least something aboutG, such as the correlations among the edges. Since our objective
is to propose a generic algorithm, it appears unjustified to favor a specific application by
leveraging its properties, since this will inevitably disfavor another application that does
not have such properties. Hence, we focus on two “neutral” versions ofprobe-next(b):

—Randomized.A randomizedprobe-next(b), as shown in Figure 3, probes any hidden
edge ofb with the same probability. This is reasonable when the algorithm cannot
predict the nature (i.e., present or not) of any hidden edge.

—Deterministic. Assume that them white vertices inW are arranged into a sequence
(w1, w2, ..., wm). A deterministicprobe-next(b), as shown in Figure 4, probes the next
hidden edge ofb according to the sequence. This is reasonable in scenarios where the
white vertices must be accessed sequentially due to a limitation on access pattern in the
underlying application. For example, in anair indexdescribed in [Imielinski et al. 1997],
a server periodically broadcasts the data objects in a roundrobin fashion, whereas a
client receives the objects in the order they appear in the broadcasting sequence. Another
advantage of deterministic implementation is that it removes the need of remembering
which edges have already been probed (such information mustbe maintained for the
random version ofprobe-next(b)).

Depending on which version ofprobe-next(b) is adopted, the algorithmic framework of
Figure 2 is specialized into two algorithm classes:ARAN andADET. Specifically,ARAN,
referred to as therandom-probe algorithm class, includes algorithms that apply the ran-
domized version;ADET, thedeterministic-probe algorithm class, contains algorithms that
apply the deterministic version. In each class, the algorithms differ in their implementa-
tions ofpick-black.

Instance optimality. In the worst case,nm edge-probing queries are needed to solve
thek-MCV problem. To prove this, consider an inputG with no edge at all, namely, no
black vertex is connected to any white vertex. Any algorithmcorrectly solving the 1-MCV
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algorithm probe-next(b)

/* for the random-probeclassARAN; an algorithm of this class probes the edges of a black vertex
in random order */

1. if b has no more hidden edgethen
2. return NULL
3. w = a random vertex ofW whose edge withb has not been probed.
4. return q(b, w)

Fig. 3. Randomizedprobe-next(b)

algorithm probe-next(b)

/* for the deterministic-probeclassADET; for every black vertex, an algorithm of this class probes
its edges by the same sequence of white vertices(w1, w2, . . . , wm) */

1. i = the number of edges ofb that have been probed
2. if i = m then return NULL
3. return q(b, wi+1)

Fig. 4. Deterministicprobe-next(b)

b*

m

Fig. 5. An easy input to 1-MCV

problem on this graph must probe the edge betweeneachpair of black and white vertices,
before it can conclude that all black vertices have degree 0.Skipping any edge, say between
b ∈ B andw ∈ W , leaves the risk thatb may have a degree of 1.

Worst case analysis often incurs the criticism of being overconservative in practice. In
our problem, the previous paragraph indicates that the worst-case cost of solvingk-MCV
is nm anyway. So by this yardstick, it does not even make sense to study the problem,
because all algorithms are equally bad. This, however, is a pessimistic judgment because
it is possible to do much better than the worst case on many inputs. To make our argument
solid, consider an inputG where one vertexb⋆ in B has degreem (i.e.,b⋆ has an edge with
every vertex inW ), and all the othern − 1 vertices inB have degree0 (see Figure 5). It
is easy to see that the 1-MCV problem can be solved by issuing less thanm + n queries.
Specifically, we can probe all the edges ofb⋆, and onlyoneedge for every other black
vertexb ∈ B, b 6= b⋆. The total number of queries ism + n − 1, but this is enough to
find out thatb⋆ has degreem, and that any other black vertexb has degree at mostm− 1.
Therefore,b⋆ must be the only vertex in the result.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 ·

Motivated by this, we turn our attention to designing an algorithm that guarantees the
best performance oneveryinput. Specifically, on difficult inputs that requirenm queries
anyway, our algorithm does not achieve any improvement. However, on easier inputs, our
algorithm incurs lower cost, actually so low that it is provably as fast as even the optimal
algorithm (which remains unknown currently), up to a small factor.

Next, we formalize the above discussion using the concept ofinstance optimalityintro-
duced by [Fagin et al. 2001]. This concept requires an algorithm to be optimal on every
data input, and is thus stronger than worst-case optimality. In general, letA be a class of
algorithms, andD a family of datasets. Denote bycost(A,D) the cost of algorithmA ∈ A
on datasetD ∈ D. Then, an algorithmA⋆ ∈ A is instance optimaloverA andD if there
is a constantr satisfying

cost(A⋆, D) ≤ r · cost(A,D) (1)

for anyA ∈ A and anyD ∈ D.
In our context,A is eitherARAN orADET, andD includes all the bipartite graphs. Note

that while all the algorithms inARAN must be randomized, those inADET can be either
randomized or deterministic, depending on their implementations ofpick-black. In any
case, we definecost(A,G) to be theexpected costof an algorithmA (in ARAN orADET)
on the input graphG ∈ D, where cost is measured by the number of edge-probing queries
performed byA. This definition trivially applies to a deterministicA, whosecost(A,G) is
simply its single-execution cost onG.

Our objective is to find anA⋆ in each algorithm class that makes (1) hold. Furthermore,
it is important to keep the constantr as small as possible. In particular, a much stronger
result is obtained ifr can be shown todecreasewith the size of the input. For example,
if an algorithm achieves anr = 1 + 1/n, then the algorithm is not only instance optimal
(notice that1+ 1/n is at most2), but is nearly optimal in the absolute sense for largen (in
which caser is very close to 1).

Chernoff bounds. The essence of Chernoff bounds is that the summation of independent
random variables often does not deviate much from the summation of their respective ex-
pectations. Actually, we need only a special case, where allthose variables follow the
Bernoulli distribution. Specifically, letX1, ...,Xs be independent Bernoulli variables, all
with success probabilityp. In other words,Xi equals 1 with probabilityp, and 0 with
probability1 − p. Note that the sum ofX1, ...,Xs equalssp in expectation. The standard
Chernoff bounds [Hagerup and Rub 1990] state that, for anyα > 0:

Pr

[

s
∑

i=1

Xi ≥ (1 + α)sp

]

≤

(

eα

(1 + α)(1+α)

)sp

(2)

and forα satisfying0 < α < 1:

Pr

[

s
∑

i=1

Xi ≤ (1− α)sp

]

≤

(

eα

(1 + α)(1+α)

)sp

(3)

The above inequalities are a bit complex, and may not be convenient to apply. The
proposition below gives some simpler but weaker alternatives.

PROPOSITION 1. Let X1, ..., Xs be s independent Bernoulli variables with success
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probabilityp. It holds that:

Pr

[

s
∑

i=1

Xi ≥ (1 + α)sp

]

≤ exp

(

−spα2

3

)

, when0 < α < 1 (4)

Pr

[

s
∑

i=1

Xi ≥ (1 + α)sp

]

≤ exp

(

−(1 + α)sp

6

)

, whenα ≥ 1 (5)

Pr

[

s
∑

i=1

Xi ≥ (1 + α)sp

]

≤

(

e

1 + α

)(1+α)sp

, whenα > 0 (6)

Pr

[

s
∑

i=1

Xi ≤ (1− α)sp

]

≤ exp

(

−spα2

3

)

, when0 < α < 1 (7)

PROOF. The proofs of (4) and (7) can be found in [Hagerup and Rub 1990]. To prove
(5) and (6), first notice that

(

eα

(1 + α)(1+α)

)sp

=

(

eα/(1+α)

1 + α

)(1+α)sp

.

Thus, (6) follows immediately from (2) and the fact thateα/(1+α) < e. Now, define:

f(α) =
eα/(1+α)

1 + α

which is monotonically decreasing, becaused
dα (ln f) = (1 + α)−2 − (1 + α)−1 < 0. As

a result,f(α) ≤ f(1) ≈ 0.824 < e−1/6 whenα ≥ 1. This, together with (2), establishes
(5).

The inequalities of the above proposition are useful in establishing the theoretical guar-
antees of the proposed solutions to the approximatek-MCV problem. As discussed in
Section 6, our algorithms probe the edges of the input graph in a random fashion. As far as
a black vertex is concerned, if we randomly pick one of its edges, the event that the edge
is solid happens with a fixed probability, namely, the event can be described by a Bernoulli
random variable. The Chernoff bound will then be used to estimate the number of solid
edges among its edges that have been probed.

4. EXACT ALGORITHMS

In this section, we give two algorithms for solving the (exact) k-MCV problem. The first
one, calledsample-sort, is based on a simple sampling idea. It is included because, in
general, it is good practice todisprovethe efficiency of straightforward solutions, before
moving to more complex methods. Indeed, we give an argument in the next section show-
ing thatsample-sortfails to be instance optimal. Our second algorithm, calledswitch-on-
empty, is less intuitive, but turns out to be instance optimal.

Notations and basic strategy.Let us first introduce some key notations and explain a
basic bounding strategy. Recall that,deg(b) denotes the degree of a black vertexb ∈ B.
LetR ⊆ B be the set of black vertices that an algorithmA decides to return. As mentioned
in Section 2,A must have evidence showing:

for anyb ∈ R andb′ /∈ R, deg(b) > deg(b′).
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algorithm sample-sort(s)

/* for eachb ∈ B, solid(b) andempty(b) are dynamically maintained throughout the
algorithm */

1. for each black vertexb
2. callprobe-next(b) s times
3. sort all black verticesb by solid(b) in descending order, breaking ties randomly;

let L be the sorted order
4. maintaint = thek-th largestsolid(b) of all b ∈ B in the rest of the algorithm
5. for each black vertexb by the ordering inL
6. repeat
7. probe-next(b)
8. until all edges ofb have been probedor empty(b) ≥ m− t+ 1
9. return thek black vertices with the largest degrees (handle ties if necessary)

Fig. 6. Algorithmsample-sort

This, however, does not imply that the algorithm needs to have the exactdeg(b) and
deg(b′). It suffices to show that a lower bound ofdeg(b) is greater than an upper bound of
deg(b′).

If b ∈ B does not have an edge withw ∈ W in G, we say thatb has anempty edge
with w; otherwise,b has asolid edgewith w. Hence,deg(b) equals the number of solid
edges ofb. Moreover, the total number of empty and solid edges ofb equalsm (= |W |).
Each time when an edge-probing query is performed, the outcome reveals that the edge is
either empty or solid. Denote byempty(b) the number of empty edges ofb that have been
probed, and similarly, letsolid(b) be the number of its solid edges probed. It immediately
follows that:

solid(b) ≤ deg(b) ≤ m− empty(b). (8)

For eachb ∈ B, algorithmA maintains, at all times, an upper boundm− empty(b) of
deg(b), as well as a lower boundsolid(b). It terminates as soon as it is able to conclude on
the final resultR based on these bounds, in the way explained earlier.

Algorithm sample-sort (SS).Next, we explain our first algorithm. It aims at quickly dis-
coveringk black vertices with large degrees. After this is done, letx be the smallest degree
of the vertices identified. Then, we can prune any black vertex b oncem − x + 1 of its
empty edges have been found. Apparently, a higherx gives stronger pruning power.

But how do we know which vertices are likely to have large degrees? The idea of sam-
pling naturally kicks in. Specifically, algorithm SS has twophases. The firstsampling
phaserandomly probess edges of every black vertex, wheres is a parameter of the algo-
rithm. At the end of this phase, all the black verticesb are sorted in descending order of
solid(b). Denote the sorted list asL. As m

s solid(b) is an unbiased estimate ofdeg(b), L
essentially ranks all black vertices in descending order oftheir estimated degrees.

The second,refinement phase, processes the black vertices by their sorted order inL.
For each black vertexb, SS keeps probing its hidden edges until all of its edges havebeen
probed (at which point, the exactdeg(b) is available) orb can be pruned. To enable pruning,
at all times, the algorithm maintains a thresholdt, which equals thek-th largestsolid(b′)
of all b′ ∈ B (t may change continuously as more edges are probed). Thus,b is pruned
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onceempty(b) ≥ m− t+ 1.
The overall algorithm is presented in Figure 6. Its main drawback is the reliance on

parameters, for which careful tuning is needed to obtain good efficiency. This motivates
the next algorithm, which does not require any parameter.

Algorithm switch-on-empty (SOE). The algorithm works inrounds, where each round
finds exactlyoneempty edge for every black vertex. Rounds continue until thealgorithm
is able to conclude the result setR of black vertices. Each round works as follows. For
every black vertexb, we keep probing its hidden edges, and stop (i)as soon asan empty
edge ofb is found, or (ii) whenb has no more edge to probe. In either case, we switch to
another black vertex (hence the nameswitch-on-empty), and repeat the same. The round
finishes when all the black vertices inB have been processed like this.

Before starting the next round, the algorithm checks whether some black vertices can be
safely put into the resultR and thus removed fromB. Specifically, a vertexb ∈ B is added
toR if it satisfies two conditions:

(1) All its m edges have been probed.

(2) empty(b) is the lowest among all the vertices still inB (remember that the vertices in
R are already removed fromB).

To see why, note that Condition 1 implies that we have obtained the exactdeg(b), and
Condition 2 ensures thatdeg(b) = m − empty(b) ≥ m − empty(b′) ≥ deg(b′) for any
b′ ∈ B, b′ 6= b, namely,b has the largest degree among all vertices inB.

SOE terminates when (i)R has at leastk vertices, and (ii) the remaining vertices inB
definitely have lower degrees than those inR (namely, for each vertexb ∈ B, we have
found at leastm− t + 1 of its empty edges, wheret is the smallest degree of the vertices
in R). Figure 7 formally summarizes the algorithm.

LEMMA 1. SOE returns thek-MCV result correctly.

PROOF. As mentioned before, a black vertex entersR only if its exact degree is (i) al-
ready known, and (ii) guaranteed to be the maximum among the remaining vertices inB.
This ensures that vertices are added toR in non-ascending order of their degrees, and that
the minimum degree inR is at least the maximum degree inB. Therefore,t becomes the
the degree of thek-th most connected vertex inB at the moment|R| first reachesk. After
that,R is guaranteed to be a subset of thek-MCV result since no vertex with degree less
thant can be appended toR. Finally,R is also a superset of thek-MCV result, because the
terminating condition will be triggered only after all vertices with degrees at leastt have
been removed fromB (equivalently, put intoR).

Example.We illustrate SOE using the input graph in Figure 8 whereB andW have 2 and
5 vertices, respectively. Assume thatk = 1 and that the algorithm class considered is the
random-probe classARAN (the case of the deterministic-probe classADET is similar). At
the beginning, all the edges are hidden; so for each black vertex, SOE initializes an upper
bound of|W | = 5 on its degree.

Then, SOE executes its rounds, each of which keeps probing a black vertex’s hidden
edges until encountering an empty edge or the vertex has no more hidden edge. In round
1, for b1, suppose that SOE probes first its edge withw2, which turns out to be solid.
Hence, the algorithm probes another edge ofb1, for example, its edge withw5. As the
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algorithm switch-on-empty

/* for eachb ∈ B, solid(b) andempty(b) are dynamically maintained throughout the
algorithm */

1. R = ∅ /* the result set */
2. maintaint = the smallest degree of the vertices inR in the rest of the algorithm

(t = −∞ if |R| < k)
3. maintainemin = the smallestempty(b) of all verticesb still in B
4. repeat
5. perform-a-round/* see below */
6. Bdone = {the vertices inB with no more hidden edge}
7. Bmin = {the vertices inBdone with degreem− emin}
8. if Bmin 6= ∅ andm− emin ≥ t
9. addBmin toR, and removeBmin from B

/* this may change the values oft andemin */
10.until all vertices still inB have a degree upper bound smaller thant,

namely,m− emin ≤ t− 1
11. returnR

algorithm perform-a-round
1. for eachb ∈ B
2. repeat
3. probe-next(b)
4. until an empty edge is foundor b has no more hidden edge

Fig. 7. Algorithmswitch-on-empty

b� b�

w� w� w� w� w	

Fig. 8. An example to illustrate SOE

edge is empty, SOE is done withb1 in this round. Forb2, suppose that SOE first probes its
edge withw3, (since it is solid) then its edge withw4, and (since an empty edge is found)
stops. The first round finishes at this point. No result can be confirmed, because each
black vertex still has hidden edges. Nevertheless, the algorithm knows that the degree of
each black vertex can be at most 4 because one empty edge has been found forb1 andb2,
respectively.

In the second round, as all the hidden edges ofb1 are solid, SOE probes all of them
before processing the next black vertex. Forb2, suppose that SOE probes (among its
hidden edges) its edge withw1, which is empty. Thus, the algorithm finishes the second
round. At this time, SOE sees thatdeg(b1) equals 4, anddeg(b2) is at most 3 (as 2 empty
edges ofb2 have been identified). Therefore, it terminates by reporting b1 as the result.
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Remark. Algorithm SOE simultaneously belongs to both the random-probe algorithm
classARAN and the deterministic-probe algorithm classADET, depending on which ver-
sion ofprobe-next(b) (Figure 3 or 4) is plugged in. Although the same is true for algorithm
SS, it is better suited forARAN. The reason is that, in the context ofADET, the sampling
phase can no longer guarantee probing a set of random edges for each black vertex, because
the sequence of white vertices in Figure 4 may not be a random sequence.

5. THEORETICAL ANALYSIS OF THE EXACT ALGORITHMS

In this section, we analyze the performance of algorithms SSand SOE. Section 5.1 first es-
tablishes their theoretical guarantees inARAN, and then, Section 5.2 extends the discussion
toADET.

5.1 The randomized algorithm class

Let us start with a property of all the algorithmsA ∈ ARAN. Consider any black vertex
b ∈ B. Assume, without loss of generality, thatb hasml empty edges in the input graphG,
wherel is a value between 0 and 1. In other words,b is connected tom(1−l)white vertices
in G. LetQ(u) be the expected number of edge-probing queries thatA must perform for
b, in order to findu empty edges ofb. We have:

PROPOSITION 2. Q(u) = u(m+ 1)/(ml+ 1).

PROOF. Consider a set ofx balls, among whichy are black. Keep randomly removing
balls from the set without replacement untilz ≤ y black balls have been removed. The
total number of balls that are removed follows thenegative hypergeometric distribution
with expectationz(x+ 1)/(y + 1) [Matuszewski 1962].

LetX be the random variable that equals the number of queries thatA must perform on
b before seeingu empty edges ofb. Then,x, y, z correspond tom, ml, u, respectively.
Therefore, the expectation ofX , namelyQ(u), equalsu(m+ 1)/(ml + 1).

Equipped with the proposition, next we discuss algorithms SS and SOE separately.

Sample-sort. Recall that SS has a parameters, which specifies the number of edges to
probe for each black vertex in the sampling phase. In general, s can be a function ofn and
m, that is, SS may decides after obtaining the sizes ofB andW .

As shown in the experiments, with a suitables, SS can be fairly efficient, but such an
s appears to heavily depend on the dataset. Because of this, weare interested in knowing
whether there is a “universal” choice ofs that makes SS instance optimal. A positive
answer would allow us to get rid of this parameter. Unfortunately, we ended up proving:

THEOREM 1. If s is already determined prior to running the first query, SS cannot be
instance optimal.

PROOF. We will find two families of bipartite graphsG1 andG2, such that (i) for any
sufficiently largen andm satisfyingn > m, there is a graphG1(n,m) in G1 and a graph
G2(n,m) in G2, both of which haven (m) black (white) vertices, and (ii) they demand
conflicting ways to sets so that algorithm SS can be instance optimal. Since (without
probing any edge) SS cannot tell whether the input is fromG1 or G2, it is not able to set
s correctly, and thus, fails to be instance optimal. For the above purpose, we focus on
k = 1. Given a pair ofn andm, next we explain how to constructG1(n,m) andG2(n,m)
respectively.
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G1(n,m) is exactly the graph illustrated in Figure 5, where a unique black vertex has
degreem, and the other black vertices all have degree 0. In Section 4,we have shown that
algorithm SOE solves the problem withn+m−1 = O(n) queries. As for SS, its sampling
phase already probesO(sn) edges; sos must beO(1) if SS needs to be instance optimal.
In the sequel, we assumes ≤ λ, whereλ is a constant.

cm

m
 n/8

. . . . . .

b*

Fig. 9. Illustration ofG2(n,m)

G2(n,m) is such that one black vertexb⋆ has degreem, and the other black vertices all
have degreecm, where constantc ∈ (0, 1) will be determined later. Figure 9 illustrates
G2(n,m) by using the height of a column to represent a black vertex’s degree. Consider
the sampling phase of SS onG2(n,m). LetS be the set of black verticesb ∈ B such that
all thes edges ofb probed by SS are solid (notice thatb⋆ is definitely inS). The choice
of c will make sure that|S| ≥ n/4 with probability at least1/2 (later we will argue that
suchc always exists). Assuming|S| ≥ n/4, let us look at the refinement phase of SS,
where the black verticesb are processed in descending order ofsolid(b), i.e., how many
solid edges ofb were found in the sampling phase. Since all vertices inS have the same
solid(b), their ordering is random. Hence, with probability at least1/4,n/8 of the vertices
in S rank beforeb⋆. For each such vertexb, SS needs to probe all of itsm edges; hence, at
leastnm/8 edges are probed in total. Therefore, the expected cost onG2(n,m) is at least
(1/4) · (nm/8) = Ω(nm).

The 1-MCV problem onG2(n,m) can be solved by algorithm SOE withO(n) queries
in expectation. Specifically, when SOE terminates, it has found exactly one empty edge
of eachb ∈ B, b 6= b⋆, plus all them edges ofb⋆. By Proposition 2, in expectation, SOE
probes m+1

m(1−c)+1 = O(1) edges ofb. Hence, the expected cost of SOE isO(n− 1+m) =

O(n), meaning that SS is worse by a factor ofΩ(m).
It remains to show that thec we need always exists. LetX be a random variable that

equals the size ofS after SS finishes its sampling phase.X follows a Binomial distribution
B(n − 1, p), wherep is the probability that all thes edges probed for ab ∈ B, b 6= b⋆

are solid. More precisely,p is the success probability of the followingsampling-without-
replacementoperation: imagine a bag withm balls in whichcm are red, and the others
blue; we samples balls from the bag without replacement, and call it asuccessif all of
them are red. Whenm is large enough,p can be approximated with arbitrarily small error
by the success probabilitycs of the correspondingsampling-with-replacementoperation.
So, conservatively, assumep ≥ cs − ǫ ≥ cλ − ǫ, whereǫ > 0 is an arbitrarily small
constant. By Hoeffding’s inequality1, X ≥ (n − 1)/2 > n/4 with probability at least
1 − exp(−2(n − 1)(p − 0.5)2), which is at least 0.5 ifp ≥ ( ln

√
2

n−1 )
0.5 + 0.5. To ensure

1In general, ifX obeysB(n, p), thenPr[X ≤ x] ≤ exp(−2(np − x)2/n) for all x ≤ np.
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this, it suffices to guaranteecλ ≥ ( ln
√
2

n−1 )
0.5 + 0.5 + ǫ. Hence, for largen, we can setc to

0.61/λ.
We have shown, for a specificλ, there is always ac that makes SS worse than SOE by

a factor ofΩ(m) on G2(n,m) (implying SS cannot be instance optimal). To break the
argument,λ cannot exist which, by the definition ofλ, means thats cannot be a constant.
This, however, conflicts with the requirement ofs onG1(n,m).

The theorem indicates that, while sampling is a natural ideato attack thek-MCV prob-
lem, it is non-trivial to decide the proper sample size. In particular, straightforward strate-
gies such as “sample a certain percentage of the edges of eachb ∈ B” does not work. In
other words, the correct sample size needs to be chosenadaptively, based on the degree
distributions of the black vertices. This is consistent with the design of algorithm SOE,
since it proceeds by continuously monitoring the edges found on all the black vertices.

Switch-on-empty.In the sequel, we denote byR the set of black vertices in the result. Let
t⋆ be the lowest degree of the vertices inR, or formally:

t⋆ = min
b∈R

deg(b) (9)

Denote byRtail ⊆ R the set of vertices inR having degreet⋆. Let k⋆ = |R|. Apparently,
k⋆ ≥ k; furthermore, ifk⋆ > k, thenRtail must contain at leastk⋆ − k + 1 vertices.

We first point out two more properties of all algorithmsA ∈ ARAN. The first one con-
cerns the status ofA when it finishes. For eachb ∈ B, let solidA(b) andemptyA(b) be the
numbers of solid and empty edges thatA has found onb at its termination, respectively. De-
note bytA the minimumsolidA(b) of all verticesb ∈ R, namely,tA = minb∈R solidA(b).
We have:

LEMMA 2. At termination, for each non-result black vertexb ∈ B \ R, it holds that
emptyA(b) ≥ m− tA + 1.

PROOF. Obvious because otherwiseA cannot have concluded thatb has a smaller de-
gree than the vertices inR.

The second property concerns the scenario wherek⋆ > k:

LEMMA 3. If k⋆ > k, at termination,A has probed all them edges of at leastk⋆−k+1
black vertices inRtail.

PROOF. LetS ⊆ Rtail be the set of vertices inRtail such that, for any black vertex in
S, algorithmA did not probe all of its edges. Letg = |Rtail| − (k⋆ − k). Note thatg is
always positive because|Rtail| is at leastk⋆ − k + 1, as mentioned earlier.

A crucial observation is that|S| must be at mostg. Otherwise, assume|S| ≥ g; then
consider anyg vertices, sayb1, ..., bg, in S, and useS′ to denote the set of those vertices.
Since eachbi has at least 1 hidden edge, it is possible that all thoseg hidden edges (one
for eachbi) turn out to be solid, and at the same time, the black verticesin S \ S′ have no
more hidden solid edge. In this case,Rtail \ S

′ must be eliminated from the result, which
contradicts the fact thatA was able to terminate safely.

Therefore,A must have probed all them edges of at least|Rtail| − |S| ≥ |Rtail| − (g−
1) = k⋆ − k + 1 vertices.

The next lemma states a property of algorithm SOE:
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LEMMA 4. SOE probes all them edges of each vertex inR. For each vertexb ∈ B \R,
it finds exactlym − t⋆ + 1 of its empty edges. Furthermore, the last edge ofb probed by
SOE is empty.

PROOF. The lemma follows directly from the algorithm descriptionin Figure 7.

Let us label then− k⋆ black verticesnot in the resultR as

bk⋆+1, bk⋆+2, ..., bn,

respectively (ordering unimportant). For eachi ∈ [k⋆ + 1, n], let

li = 1− deg(bi)/m.

Equivalently,mli is the number of empty edges ofbi. Furthermore, defineQi(u) as the
expected number of edges ofbi that must be probed by an algorithm inARAN, in order
to find u empty edges ofbi. Qi(u) is calculated as in Proposition 2. By Lemma 4, the
expected cost of SOE can be written as

cost(SOE,G) = mk⋆ +

n
∑

i=k⋆+1

Qi(m− t⋆ + 1). (10)

Denote byAopt the fastest algorithm inARAN for solving thek-MCV problem on the
input graphG. Namely,

Aopt = argmin
A∈ARAN

{cost(A,G)}.

Next, we proceed to show that SOE is optimal up to a small factor 1 + k
n−k , by discussing

casesk⋆ = k andk⋆ > k separately. Fork⋆ = k, we have:

LEMMA 5. If k⋆ = k, cost(SOE,G)/cost(Aopt, G) ≤ 1 + k
n−k .

PROOF. Define a random variable:

topt = min
b∈R

solidopt(b). (11)

where, for eachb ∈ R, solidopt(b) is the number of solid edges ofb ∈ R found byAopt at
termination. In the sequel, we fix an integerx, and focus on the event

Ξx : topt = x,

i.e., the event thatAopt terminates withtopt = x. As solidopt(b) ≤ deg(b) for eachb ∈ R,
it holds that:

x = min
b∈R

solidopt(b) ≤ min
b∈R

deg(b) = t⋆

Define functionC(x) to be the expected cost ofAopt conditioned onΞx. The rest of the
proof will show thatr = cost(SOE,G)/C(x) ≤ 1 + k/(n− k) for anyx. This, together
with cost(Aopt, G) =

∑

x C(x) · Pr[Ξx], will establish the lemma.
By Lemma 2,Aopt needs to find at leastm− x+1 empty edges of each black vertexbi

(k⋆ +1 ≤ i ≤ n), meaning that it is expected to performQi(m− x+1) probes onbi. For
every other black vertex,Aopt has to discover at leastx solid edges. Therefore,

C(x) ≥ xk +
n
∑

i=k⋆+1

Qi(m− x+ 1).
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Combining the above with (10), we know

r ≤
mk⋆ +

∑n
i=k⋆+1 Qi(m− t⋆ + 1)

xk +
∑n

i=k⋆+1 Qi(m− x+ 1)
⇒ (applyingx ≤ t⋆)

r ≤
mk⋆ +

∑n
i=k⋆+1 Qi(m− x+ 1)

xk +
∑n

i=k⋆+1 Qi(m− x+ 1)
⇒

r − 1 ≤
(m− x)k⋆

xk⋆ +
∑n

i=k⋆+1 Qi(m− x+ 1)
.

By Proposition 2,Qi(m− x+ 1) = (m− x+ 1) m+1
mli+1 . Hence:

r − 1 <
(m− x)k⋆

xk⋆ + a(m− x)

where

a =
n
∑

i=k⋆+1

m+ 1

mli + 1
. (12)

If x = m, thenr = 1, trivially satisfyingr ≤ 1+ k/(n− k). Forx < m, equipped with
a ≥ n− k⋆ = n− k, we have

r − 1 ≤
(m− x)k

(n− k)(m− x)
=

k

n− k
.

This completes the proof.

The following lemma covers the other casek⋆ > k:

LEMMA 6. If k⋆ > k, cost(SOE,G)/cost(Aopt, G) ≤ 1 + k
n−k .

PROOF. According to Lemma 3, at termination,Aopt must have probed all the edges
of at leastk⋆ − k + 1 > 1 vertex inRtail. Hence,topt, as defined in (11), equalst⋆.
Consequently,Aopt probes

—Qi(m− t⋆ +1) edges in expectation for each non-result vertexbi (k⋆ + 1 ≤ i ≤ n), by
Lemma 2 and the definition ofQi;

—all them edges ofk⋆ − k + 1 result vertices, by Lemma 3;

—at leastt⋆ solid edges for each of the remainingk− 1 result vertices, in order to confirm
that their degrees are at leastt⋆.

Therefore,

cost(Aopt, G) ≥ t⋆(k − 1) +m(k⋆ − k + 1) +
n
∑

i=k⋆+1

Qi(m− t⋆ + 1)

Setr = cost(SOE,G)/cost(Aopt, G). Combining the above formula with (10) gives:

r ≤
mk⋆ +

∑n
i=k⋆+1 Qi(m− t⋆ + 1)

t⋆(k − 1) +m(k⋆ − k + 1) +
∑n

i=k⋆+1 Qi(m− t⋆ + 1)

(ast⋆ ≤ m) ≤
mk⋆ +

∑n
i=k⋆+1 Qi(m− t⋆ + 1)

mk⋆ +
∑n

i=k⋆+1 Qi(m− t⋆ + 1)− k(m− t⋆)
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m

m/2

m/10

b* b

Fig. 10. Why SOE is not strictly optimal

Hence, applying Proposition 2, we have:

r − 1 ≤
k(m− t⋆)

mk⋆ + a(m− t⋆ + 1)− k(m− t⋆)

wherea is given in (12). Again, ift⋆ = m, thenr = 1 < 1 + k/(n − k). Otherwise,
knowinga ≥ n− k⋆, we derive:

r − 1 ≤
k(m− t⋆)

mk⋆ + (n− k⋆)(m− t⋆)− k(m− t⋆)

≤
k(m− t⋆)

n(m− t⋆)− k(m− t⋆)
=

k

n− k
.

This establishes the lemma.

Combining the above two lemmas, we have proved the followingtheorem:

THEOREM 2. The expected cost of SOE is at mostr·cost(Aopt, G), wherer = 1+ k
n−k .

There are two interesting corollaries:

—For anyk ≤ n/2, the value ofr is always lower than 2, that is, SOE is instance optimal.

—When k = O(1), r = 1 + O(1/n), namely, SOE isnearly as fast as the optimal
algorithmin finding thetop few(e.g., 10) black vertices having the maximum degrees.

We close the subsection with a note on why SOE is notstrictly better than all other
algorithms inARAN. Imagine a simpleG whoseB has only 2 verticesb⋆ and b with
degreesm/2 andm/10, respectively. Figure 10 illustrates this by using the height of a
column to represent the degree of a node. Consider the 1-MCV problem on suchG. By
Lemma 4, SOE probes allm edges ofb⋆, and enough edges ofb until seeing1 + m/2
empty edges. Hence, by Proposition 2, the expected cost of SOE ism + (1 + 1

2m)(m +
1)/( 9

10m + 1) ≈ 1.56m. An alternative solution is to probe all edges ofb, and enough
edges ofb⋆ until seeing1 +m/10 solid edges. This strategy’s expected cost ism + (1 +
1
10m)(m+ 1)/(1 + 1

2m) ≈ 1.2m.

5.2 The deterministic algorithm class

Next, we extend the analysis of the previous subsection to the algorithm classADET.
We focus on only SOE because the instance optimality of SS inADET can be disproved
using an argument similar to, but much simpler than, the proof of Theorem 1. ForADET,
Proposition 2 obviously is not applicable; Lemmas 2-4, however, are still correct. Define
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Aopt as the fastest algorithm inADET for solving thek-MCV problem on the inputG.
Namely:

Aopt = argmin
A∈ADET

{cost(A,G)}.

We first give a theorem that is the counterpart of Theorem 2.

THEOREM 3. The cost of SOE is at most(1 + k
n−k ) · cost(Aopt, G).

PROOF. The proof is similar to that of Theorem 2 (called theold proof in the sequel).
Refer to the sequence(w1, w2, ..., wm) in Figure 3 as theprobing sequence. Let k⋆, t⋆, bi
(k⋆ + 1 ≤ i ≤ n) retain their meanings in the old proof.

Let τi (k⋆+1 ≤ i ≤ n) be the number of edges ofbi that SOE has probed at termination.
τi equals the position of the(m − t⋆ + 1)-th white vertex (in the probing sequence) that
has an empty edge withbi. By Lemma 4,cost(SOE,G) = mk⋆ +

∑n
i=k⋆+1 τi. Define

topt, solidopt(b), C(x) in the same way as in the old proof. Letτ⋆i be the number of edges
thatAopt probes forbi, conditioned ontopt = x. Sincex = topt ≤ t⋆, by Lemma 2,Aopt

must have seen at leastm− x+ 1 ≥ m− t⋆ + 1 empty edges ofbi. In other words,Aopt

probes all the edges ofbi that SOE needs to probe; hence:

τi ≤ τ⋆i . (13)

Setr = cost(SOE,G)/C(x) anda =
∑n

i=k⋆+1 τ
⋆
i . As explained earlier,Aopt probes

at leastm− x+ 1 edges for each ofbk⋆+1, ..., bn, indicating

a ≥ (n− k⋆)(m− x+ 1). (14)

Next, we establish the counterpart of Lemma 5. Whenk⋆ = k, it holds thatC(x) ≥
xk⋆ +

∑n
i=k⋆+1 τ

⋆
i . Hence

r ≤
mk⋆ +

∑n
i=k⋆+1 τi

xk⋆ +
∑n

i=k⋆+1 τ
⋆
i

≤
mk⋆ + a

xk⋆ + a
.

where the last inequality used (13). Ifx = m, thenr = 1, and the lemma is trivially true.
Forx < m:

r − 1 ≤
(m− x)k⋆

xk⋆ + a
≤

(m− x)k⋆

a

(by (14)) ≤
(m− x)k⋆

(n− k⋆)(m− x)
=

k⋆

n− k⋆
=

k

n− k
.

We now prove the counterpart of Lemma 6. Whenk⋆ > k, an argument similar to that
of Lemma 6 showsC(x) ≥ t⋆(k − 1) +m(k⋆ − k + 1) +

∑n
i=k⋆+1 τ

⋆
i . Thus,

r ≤
mk⋆ +

∑n
i=k⋆+1 τi

t⋆(k − 1) +m(k⋆ − k + 1) +
∑n

i=k⋆+1 τ
⋆
i

(by (13) andt∗ ≤ m) ≤
mk⋆ + a

mk⋆ + a− k(m− t⋆)
⇒

r − 1 ≤
k(m− t⋆)

mk⋆ + a− k(m− t⋆)
(15)
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Fig. 11. No algorithm is strictly optimal inADET

If t⋆ = m, thenr = 1, in which case the lemma is trivially true. Fort⋆ < m, by (14) and
(15), we have:

r − 1 ≤
k(m− t⋆)

mk⋆ + (n− k⋆)(m− t⋆ + 1)− k(m− t⋆)

≤
k(m− t⋆)

n(m− t⋆)− k(m− t⋆)
=

k

n− k
,

which completes the proof.

The same conclusions inARAN can be drawn about SOE inADET. Specifically, for
k ≤ n/2, SOE is also instance optimal inADET. Furthermore, whenk = O(1), SOE can
be more expensive than the optimal algorithm inADET only by a factor of1 +O(1/n).

Absence of a strictly optimal algorithm. We conclude the section by proving thatno
algorithm in ADET can be strictly optimal. We will use two input graphsG3 andG4

as illustrated in Figure 11. ForG3, order the white vertices so that the first twoprobe-
next(b2) returnemptyandsolid, respectively. Similarly, forG4, impose an ordering for the
first two probe-next(b1) to returnsolid andempty, respectively. Observe that, for each of
G3 andG4, there is an algorithm that can settle the 1-MCV problem withm+ 1 queries.
Specifically, to achieve this forG3, the algorithm can probe a single edge ofb2 and all the
edges ofb1, whereas the algorithm forG4 can probe a single edge ofb1 and all the edges of
b2. We will prove, however, that no algorithm can guarantee finishing with at mostm+ 1
queries onbothgraphs, which essentially means that no algorithm is optimal in all cases.

Following the notations before, given an algorithmA ∈ ADET and a graphG, we
denote bysolidA(b) the number of solid edges thatA probes on a black vertexb of G, and
by emptyA(b) the corresponding number on the empty edges ofb. We have:

LEMMA 7. For any algorithmA ∈ ADET, max{cost(A,G3), cost(A,G4)} > m+1.

PROOF. We will use an adversary argument, the rationale of which isnot to permitA
to distinguish betweenG3 andG4 until we are sure that it must probe at leastm + 2
edges. First, note that, to conclude ondeg(b1) > deg(b2), A needs to showsolidA(b1) >
m− emptyA(b2), or equivalently:

solidA(b1) + emptyA(b2) ≥ m+ 1. (16)

Hence, if the input isG3 (G4) and two edges ofb2 (b1) have been probed, the cost ofA
must be at leastm+ 2. To see this forG3, recall that one of the first two edges probed on
b2 is solid. This edge is not counted by the left hand side of (16), thus making the total cost
at leastm+ 2. The reason forG4 is similar.
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Next, we describe the strategy that the adversary follows toforceA to probe at least
m+ 2 edges. Letbi be the first vertex selected bypick-black. Since the firstprobe-nextof
b1 (b2) must besolid (empty) no matter the input graph isG3 or G4, A cannot distinguish
between the two graphs after the first query. Denote bybj the vertex chosen by the second
pick-black. We enumerate all the possible cases:

—bi = bj = b1: We fix the input to beG4. By the earlier discussion,A costs at leastm+2
as it has probed two edges ofb1.

—bi = bj = b2: We fix the input asG3. A costs at leastm+ 2 as it has probed two edges
of b2.

—bi 6= bj : In this case, one solid edge ofb1 and one empty edge ofb2 are found. The
algorithm is still unable to decide whether the input graph isG3 or G4. We then fix the
input according to the vertexbz chosen by the thirdpick-black. If bz = b1, let the input
beG4; if bz = b2, let the input beG3. In either case, (again, by our earlier discussion)
A requires at leastm+ 2 queries.

This establishes the lemma.

6. APPROXIMATE ALGORITHMS AND THEIR ANALYSIS

We proceed to study theǫ-approximate version of thek-MCV problem. Section 6.1 first
presents an algorithm for solving the problem whenk = 1, and establishes its performance
guarantees. Then, Section 6.2 extends our solution and analysis to generalk > 1. Given a
constantδ ∈ (0, 1), our algorithms succeed with probability at least1 − δ and guarantee
good efficiency in expectation.

6.1 1-MCV

Algorithm. The basic component of our method is a procedure callednaive-sampling
(NS) which, as given in Figure 12, is similar to the SS algorithm in Section 4. NS is
given a parameterp, which is used to determine the numbers of edges probed for each
black vertex (Line 1). Each of these edges is randomly sampled from all the possible
edges ofb. We perform the sampling in awith-replacementmanner, namely, each edge
is chosen independently of the previous edges probed. Occasionally, we may waste some
work by probing the same edge more than once, but allowing such redundancy facilitates
the analysis considerably, as will be clear later. NS returns the black vertex having the
largest number of solid edges sampled.

Our algorithm fork = 1, called AMCV (see Figure 12), invokes NS repetitively with
doubly decreasingp. Specifically, the first invocation usesp = 1, whereas every subse-
quent invocation halves the previousp. Assume that, in the current invocation, NS returns
a black vertexb. AMCV terminates withb as the result ifsolid(b) is large enough (see
Line 3); otherwise, another invocation is performed.

Analysis. Next, we analyze the behavior of AMCV, and by doing so, revealthe rationales
behind its design. For each black vertexb, define:

p(b) = deg(b)/m. (17)

Denote byb⋆ the black vertex with the maximum degree. Sett⋆ = deg(b⋆) andp⋆ = p(b⋆).
The next lemma shows that, if the input parameterp of NS is set top⋆, then NS returns a
correct answer with high probability:
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algorithm naive-sampling(p)

1. s = 12
p

1

ǫ2
ln 3n

δ

2. for each black vertexb
3. sample with replacements edges ofb
4. solid(b) = the number of solid edges ofb sampled

(counting the same edge once more each time it is sampled)
5. return (bret, solid(bret)), wherebret is the black vertexb with the largestsolid(b)

(breaking ties arbitrarily)

algorithm AMCV

1. for p = 1, 1/2, 1/4, 1/8, ...
2. (b, solid(b)) = naive-sampling(p)
3. if solid(b) ≥ 2ps then return b

/* s is given at Line 1 ofnaive-sampling*/

Fig. 12. Algorithm for solving theǫ-approximate 1-MCV problem

LEMMA 8. When executed onp = p⋆, NS returns a correct answer for theǫ-approximate
1-MCV problem with probability at least1− δ/3.

PROOF. Consider the following two conditions:

(1) solid(b⋆) > (1− ǫ/2)sp⋆.

(2) for everyb such thatdeg(b) < (1 − ǫ)t⋆ (that is, b cannot be used as an answer),
solid(b) < (1− ǫ/2)sp⋆.

If both conditions are satisfied, NS returns a correct result(for the approximate 1-MCV
problem) because for any vertexb that is an illegal result, it must hold thatsolid(b) <
(1− ǫ/2)sp⋆ < solid(b⋆), meaning thatb cannot be selected by Line 5 of algorithmnaive-
sampling(Figure 12). Next, we show that the two conditions hold simultaneously with
high probability.

For any black vertexb, solid(b) follows a binomial distribution, measuring the number
of successes ins trials, each of which succeeds with probabilityp(b). Hence,solid(b) has
expectationsp(b). By settingα = ǫ/2 andp = p⋆ in (7), we know that the probability for
Condition 1 to fail is bounded above byexp(−sp⋆ǫ2/12) which equalsδ/(3n) given our
choice ofs.

In the rest of the proof, considerb as a vertex described in Condition 2. Setα = p⋆

p(b) (1−

ǫ/2) − 1 to ensure(1 − ǫ/2)p⋆ = (1 + α)p(b). Thus,Pr[solid(b) ≥ (1 − ǫ/2)sp⋆] =
Pr[solid(b) ≥ (1 + α)sp(b)]. We then distinguish two possibilities:

—If α ≥ 1, apply (5) withp = p(b), which gives:

Pr[solid(b) ≥ (1 + α)sp(b)] ≤ exp(−(1− ǫ/2)sp⋆/6) < δ/(3n),

where the last inequality used the fact that1− ǫ/2 > 1/2.

—If α < 1, apply (4) withp = p(b), which gives:

Pr[solid(b) ≥ (1 + α)sp(b)] ≤ exp(−sp(b)α2/3) = exp(−sp⋆β/3) (18)
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whereβ = (1− ǫ/2)α2/(1 + α). Note thatdeg(b) < (1 − ǫ)t⋆ implies that

α > (1− ǫ/2)/(1− ǫ)− 1 = ǫ/(2− 2ǫ).

As β monotonically increases withα whenα > 0, it holds that

β >
(1− ǫ/2)(ǫ/(2− 2ǫ))2

1 + ǫ/(2− 2ǫ)
=

ǫ2

4− 4ǫ
> ǫ2/4.

Plugging this into (18) shows thatPr[solid(b) ≥ (1 + α)sp(b)] ≤ exp(−sp⋆ǫ2/12) =
δ/(3n).

As there can be at mostn− 1 such verticesb, by the union bound (a.k.a., Boole’s inequal-
ity), the probability that at least one suchb satisfiessolid(b) ≥ (1 − ǫ/2)sp⋆ is at most
n−1
n

δ
3 , which is also the probability for Condition 2 to fail.

Again, by the union bound, the probability that either Condition 1 or 2 fails is bounded
above byδ/3. Hence, they hold at the same time with probability at least1− δ/3.

The previous lemma suggests that, ifp⋆ was known in advance, we could easily settle
the ǫ-approximation 1-MCV problem by NS. Of course, in realityp⋆ is not necessarily
available. AMCV deals with this by usingp to approachp⋆ gradually. Even without
knowingp⋆, we still hope that AMCV can terminate with a correct answer whenp has
eventually fallen into the range[p⋆/8, p⋆]. The reasons are two-fold. First, using ap ≤ p⋆

essentially tells NS to sample more edges than necessary, and hence, guarantees at least
the same success probability as in Lemma 8. Second, ensuringthatp is not much smaller
thanp⋆ (we choosep ≥ p⋆/8) prevents NS from sampling excessively, so that we can still
control the overall cost to be at mostO(1) times greater than the cost of running NS with
p⋆. The next lemma shows that our hope as described earlier willcome true with high
probability.

LEMMA 9. With probability at least1− δ, both of the following happen:

(1) AMCV terminates with a correct answer for theǫ-approximate 1-MCV problem;

(2) at termination,p ∈ [p⋆/8, p⋆].

PROOF. The proof considersn ≥ 2 because the lemma is trivially correct forn = 1. If
either of the two conditions stated in the lemma is violated,exactly one of the following
events must have occurred:

—Premature: AMCV terminates whenp > p⋆.

—Overdue: AMCV does not terminate after invoking NS with ap < p⋆/4.

—Wrong-result: AMCV terminates whenp ∈ [p⋆/8, p⋆], but returns an incorrect result.

We will show that with high probability, none of these eventsoccurs. The same argument
in the proof of Lemma 8 can be used to show thatWrong-resulthappens with probability
at mostδ/3. Notice that forp < p⋆, the value ofs is even greater than that in the proof of
Lemma 8, i.e., we are using more samples than needed to guarantee Conditions 1 and 2.
Next, we show that the same is true for bothPrematureandOverdue, which will complete
the proof with the union bound.

Bounding the probability of Premature.Let us focus on a single invocation of NS. Denote
by ν the ratio between the currentp andp⋆, namely,ν = p/p⋆. Let bret be the vertex
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returned by NS, andsolid(bret) the number of solid edges ofbret found in this invocation.
We will prove

Pr[solid(bret) ≥ 2sp] ≤ (δ/3)/(2ν) (19)

which is equivalent to saying that AMCV terminates after this invocation with probability
at most(δ/3)/(2ν). We will give a stronger fact that, for each black vertexb, it holds that

Pr[solid(b) ≥ 2sp] ≤ (δ/3)/(2nν) (20)

which validates (19) with the union bound.
To prove (20), setα = 2 p

p(b) − 1, which makes(1 + α)p(b) = 2p. Applying (5) and (6)
with thisα yields, respectively:

Pr[solid(b) ≥ 2sp] ≤ exp(−2sp/6) (21)

Pr[solid(b) ≥ 2sp] ≤

(

e

2p/p(b)

)2sp

≤
( e

2ν

)2sp

(22)

where the last inequality used the fact thatp/p(b) ≥ ν. Our choice ofs leads to

exp(−2sp/6) = ((δ/3)/n)4/ǫ
2

≤ (δ/3)/4n

where the last inequality is true for anyn ≥ 2. This, together with (21), proves (20) for
ν ≤ 2. On the other hand,

(e/2ν)2sp = (2/ν)2sp(e/4)2sp ≤ (2/ν)2sp exp(−2sp/6) ≤ (2/ν)((δ/3)/4n)

where the first inequality used the fact thate/4 < e−1/6. The above, when combined with
(22), proves (20) forν > 2.

Now that we have (19), the probability ofPrematurecan be bounded above by the sum
of the(δ/3)/(2ν) of all p > p⋆ deployed by AMCV to invoke NS. Letpmin be the smallest
of thosep; and setνmin = pmin/p

⋆. Thus, the probability ofPrematureis at most

δ/3

2νmin
+

δ/3

2νmin · 2
+

δ/3

2νmin · 4
+ ... ≤

δ/3

νmin
≤ δ/3.

Bounding the probability of Overdue.It suffices to prove that, when invoked with ap <
p⋆/4, NS fails to terminate with probability at mostδ/3. In fact, if NS does not terminate,
it must be thatsolid(b⋆) ≤ 2sp ≤ sp⋆/2 ≤ (1 − ǫ/2)sp⋆. The probability ofOverdue
does not exceed

Pr[solid(b⋆) ≤ 2sp] ≤ Pr[solid(b⋆) ≤ (1 − ǫ/2)p⋆] ≤ (δ/3)/n

where the last inequality has been established in the proof of Lemma 8.

Now it remains to bound the running time of AMCV.

LEMMA 10. AMCV probesO( 1
ǫ2

nm
t⋆ log n

δ ) edges in expectation.

PROOF. It is easy to see that the cost of NS with input parameterp isO(sn) = O(np
1
ǫ2 log

n
δ ).

Note that this cost is proportional to1/p. Starting from the second invocation of NS,p is
half of thep of the previous invocation. Hence, the cost of an invocationdoubles each
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time. Until p drops belowp⋆/8, the total cost spent on NS is bounded by that of the last
invocation, which in turn is bounded above byO( n

p⋆

1
ǫ2 log

n
δ ) = O( 1

ǫ2
nm
t⋆ log n

δ ).
We use the termlate phaseto refer to the execution of AMCV withp < p⋆/8. Letλ be

the cost of the entire late phase. Next, we bound the expectation of λ. Let λi (i ≥ 1) be
the cost of thei-th invocation of NS in the late phase. It follows thatλ1 = O( n

p⋆

1
ǫ2 log

n
δ ),

andλi = 2λi−1 for i ≥ 2. As shown in the proof of Lemma 9, the probability that AMCV
needs to go into the late phase is at mostδ/3 because anOverdueevent must have occurred.
Furthermore, if NS needs to be executedi times in the late phase, it means that the previous
i − 1 invocations in the late phase have all generated anOverdueevent, respectively. In
other words, thei-th invocation of NS in the late phase occurs with probability at most
(δ/3)i. It follows that:

E[λ] ≤ λ1
δ

3
+ λ2

(

δ

3

)2

+ λ3

(

δ

3

)3

+ ... = λ1
δ

3

(

1 +
2δ

3
+

(

2δ

3

)2

+ ...

)

which is bounded byO(λ1δ/3).

So we conclude:

THEOREM 4. For anyδ ∈ (0, 1), there is an algorithm that solves theǫ-approximate
1-MCV problem with probability at least1 − δ, and probesO( 1

ǫ2
nm
t⋆ log n

δ ) edges in ex-
pectation, wheret⋆ is the maximum degree of the black vertices.

6.2 k-MCV

Algorithm. The algorithm in Figure 12 can be easily modified to supportk > 1:

—In NS (naive-sampling), Line 1 setss = 24
p

1
ǫ2 ln

3n
δ , namely, twice as large as the

original value.
—For each black vertexb, as before, letsolid(b) be the number of solid edges ofb found.

NS returns thek verticesb having the greatestsolid(b) (breaking ties arbitrarily), to-
gether with theirsolid(b) values.

—In AMCV, let b1, ..., bk be the vertices obtained from NS at Line 2, sorted in such a way
thatsolid(bi) ≥ solid(bj) for 1 ≤ i < j ≤ k. At Line 3, AMCV returns these vertices
if solid(bk) ≥ 2ps.

In the sequel, all occurrences of NS and AMCV refer to the above adapted algorithms,
which capture the ones in Figure 12 as special cases.

Analysis. Denote byb⋆1, ...,b⋆k thek black vertices with the maximum degrees (ties broken
arbitrarily) such thatdeg(b⋆i ) ≥ deg(b⋆j) for 1 ≤ i < j ≤ k. Define t⋆i = deg(b⋆i )
andp⋆i = p(b⋆i ), where functionp(.) is as given in (17). The next two lemmas are the
counterparts of Lemmas 8 and 9. As the new proofs are based on the ideas already clarified
in Section 6.1, we will focus on explaining only the differences.

LEMMA 11. When executed onp = p⋆k, NS returns a correct answer for theǫ-approximate
k-MCV problem with probability at least1− δ/3.

PROOF. Given ani ≤ k and a black vertexb, we say thatb fails on i in either of the
following cases:

—deg(b) ≥ t⋆i whereassolid(b) ≤ (1 − ǫ/2)sp⋆i ;
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—deg(b) < (1 − ǫ)t⋆i whereassolid(b) ≥ (1− ǫ/2)sp⋆i .

Observe that NS returns a correct answer if no vertex fails onanyi ≤ k.
With an argument similar to the proof of Lemma 8, we can show that each vertexb fails

on ani ≤ k with probability at most((δ/3)/n)2. Here, the square comes from the fact
that we are using ans twice larger than that in Figure 12. Hence, with probabilityat least
1− nk((δ/3)/n)2 > 1− δ/3, no vertex fails on anyi ≤ k.

LEMMA 12. With probability at least1− δ, both of the following happen:

(1) AMCV terminates with a correct answer for theǫ-approximatek-MCV problem;
(2) at termination,p ∈ [p⋆/8, p⋆].

PROOF. Below we redefine the three events in the proof of Lemma 9 (referred to as the
old proof in the sequel) and bound their occurrence probabilities:

—Premature: AMCV terminates whenp > p⋆k. Whenp > p⋆k, the argument in the old
proof shows that, with probability at least1 − δ/3, no vertexb ∈ B \ {b⋆1, ..., b

⋆
k−1}

satisfiessolid(b) ≥ 2sp. Hence,Prematureoccurs with probability at mostδ/3.
—Overdue: AMCV does not terminate after invoking NS with ap < p⋆k/4. The argument

in the old proof can be used to prove that, whenp < p⋆k/4,

Pr[solid(b⋆i ) ≤ 2sp] ≤ (δ/3)/n

for all i ≤ k. As a result, the probability thatsolid(b⋆i ) > 2sp for all i ≤ k is at least
1 − δ/3 by the union bound. In other words,Overdueoccurs with probability at most
δ/3.

—Wrong-result:AMCV terminates whenp ∈ [p⋆/8, p⋆], but returns an incorrect result.
The occurrence probability of this event is bounded above byδ/3 due to Lemma 11.

If either of the two conditions stated in the lemma is violated, one of these events must
have occurred. Hence, with the union bound, the above discussion completes the proof.

The proof of Lemma 10 applies to the adapted AMCV directly, after changingt⋆ to t⋆k.
Therefore, we arrive at:

THEOREM 5. For anyδ ∈ (0, 1), there is an algorithm that solves theǫ-approximate
k-MCV problem with probability at least1 − δ, and probesO( 1

ǫ2
nm
t⋆
k

log n
δ ) edges in ex-

pectation, wheret⋆k is the degree of thek-th most connected black vertex.

Remark. For fixedǫ andδ, the cost of our AMCV algorithm beats theΩ(nm) lower bound
of solving the exactk-MCV problem as long ast⋆k = ω(logn). As another interesting case,
whent⋆k = Ω(m), AMCV probes onlyO(n log n) edges.

7. EXPERIMENTS

In the sequel, we experimentally evaluate the performance of the proposed algorithms.
Section 7.1 describes the data employed in our experimentation, and Section 7.2 clarifies
the alternative methods to be examined. Sections 7.3-7.5 present the results on the exact
k-MCV problem. Specifically, Section 7.3 explores under which environments can the
problem be settled much faster than the naive solution that simply probes all edges. Sec-
tions 7.4 and 7.5 evaluate the proposed techniques in the random-probe and deterministic-
probe algorithm classes, respectively. Finally, Section 7.6 is devoted to the approximate
k-MCV problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 29

7.1 Datasets

Our experiments are based on synthetic and real data which are explained in the sequel:

Power-law graphs. This is a family of synthetic graphs where the degrees of black vertices
follow a power lawdistribution. Each graph is generated as follows. It has 5000 black and
white vertices, respectively (i.e.,|B| = |W | = 5000). For each black vertexb ∈ B, its
degreedeg(b) equalsd (0 ≤ d ≤ 5000) with probability

c(d+ 1)−γ (23)

whereγ is a parameter of the power law, andc is a normalizing constant chosen to make
∑5000

d=0 c(d+ 1)−γ equivalent to 1 (i.e.,c = 1/
∑5000

d=0 (d+1)−γ). Oncedeg(b) is decided,
thedeg(b) white vertices connected tob are selected randomly.

As will be clear in the next section, we often need to control theaverage degreedeg of
the black vertices in a power-law graph. Hence, we need to setthe parameterγ to generate
a graph with the desireddeg. This is achieved by utilizing the fact that the expectationof
the power law in (23) is:

5000
∑

d=0

(

cd(d+ 1)−γ
)

Therefore, we can solveγ by equating the above formula todeg.

NBA. This is a real graph selected to assess the benefits of the proposed algorithms when
they are incorporated into the execution engine of a relational DBMS. The original data
(fromwww.nba.com) consists of 16739 NBA players in history. For each player, the dataset
contains his performance statistics in 13 aspects, such as the numbers of points scored,
rebounds, assists, etc. We define adominating relationshipbetween players based on the
concept ofk-dominance[Chan et al. 2006]. Specifically, a playerp1 7-dominatesanother
playerp2 if p1 has better statistics thanp2 in at least 7 aspects (i.e., a majority of the total
13 aspects). We want to find thek players that 7-dominate the largest number of players,
as given by the following pseudo-SQL statement2:

SELECT p1 FROM PLAYER p1, PLAYER p2
WHERE p1 7-dominatesp2
GROUP BY p1
HAVING count(∗) ≥ the size of thek-th largest group

where PLAYER is a table with 13 attributes, and one row for each player. The entire table
occupies less than 1 mega bytes, and can be comfortably kept in main memory. Therefore,
the total overhead is determined by the number of times the join predicate is evaluated. As
explained in Section 1.1, evaluating the above statement isak-MCV problem on a bipartite
graphG = (B,W,E), where each of the vertex setsB andW includes all the players, and
the edge setE has an edge between two playersb ∈ B andw ∈ W if b 7-dominatesw.
The optimization goal is to minimize the number of edges probed.

2This statement is essentially atop-k dominating query, which has been studied in [Papadias et al. 2005; Yiu and
Mamoulis 2009]. However, the solutions in [Papadias et al. 2005; Yiu and Mamoulis 2009] are designed for a
different dominance definition, where an itemp1 dominates anotherp2 if and only if p1 is better thanp2 in all
aspects. Those solutions heavily rely ontransitivity, namely, the fact thatp1 dominatesp2 andp2 dominatesp1
implies thatp1 dominatesp3. As shown in [Chan et al. 2006], transitivity doesnot hold onk-dominance.
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Actor. This is a real graph chosen to evaluate our algorithms in aquerying-by-web-service
environment (introduced in Section 1.1). The underlying data, which is publicly available
at IMDB (www.imdb.com), is a social network between a set of actors, where two actors
have an edge if they collaborated in a movie before. We extracted the 10000 most “active”
actors that have the largest number of collaborators, and focused on studying their2-hop
relationships. Specifically, an actora1 has a 2-hop relationship with another actora2 if
eithera1 is a collaborator ofa2, or they have a common collaborator (i.e.,a1 is at most two
hops away froma2 in the social network). Note that 2-hop relationships are animportant
type of characteristics of a social network, as pointed out in [Singla and Richardson 2008].

We aimed at finding thek actors that have the largest number of 2-hop relationships.
This is ak-MCV problem on a graphG = (B,W,E), where each ofB andW contains
all the actors, andE has an edge between two actorsb ∈ B andw ∈ W if b has a 2-hop
relationship withw. Detecting a 2-hop relationship betweenb andw can be accomplished
by submitting the names ofb andw to the websiteCinema Freenet(see Section 1.1) and
obtaining its reply. The overall cost is dominated by the network latency, which in turn
is decided by the total number of relationships checked (i.e., the number of edges inE
probed).

7.2 Methods

Exact k-MCV. Since no previous solution is known for thek-MCV problem, we con-
centrate on comparing the proposed algorithmssample-and-sort(SS) andswitch-on-empty
(SOE), both of which were presented in Section 4. The value ofk will be varied from 1 to
100. Since the black vertex setB in all our data graphs have at leastn = 5000 vertices,
the conditionk ≤ n/2 always holds.

The cost of an algorithm is measured in the number of edge-probing queries issued (if
the algorithm is randomized, the cost reported is the average of 5 runs). Sometimes we
will also give a theoreticallower bound(LB) of the cost of any algorithm on the same data
input. The lower bound is derived using the fact that the costof SOE can be greater than
that of the optimal algorithm by a factor of at most1 + k/(n − k) (see Theorems 2 and
3 and applyk ≤ n/2). Therefore, if SOE needs to probex edges, we will report a lower
bound of x

1+k/(n−k) .
In Sections 7.3 and 7.4, we study the random-probe algorithmclassARAN, where an

algorithm deploys theprobe-nextimplementation in Figure 3. Section 7.5 investigates the
deterministic-probe algorithm classADET, where an algorithm applies theprobe-nextin
Figure 4.

Approximate k-MCV. We will focus on the AMCV algorithm proposed in Section 6,
which is the sole known solution to the approximatek-MCV problem. As before, the cost
of AMCV is gauged as the average number of probed edges in 5 runs, unless otherwise
stated. Recall that, the building block of AMCV is thenaive-sampling(NS) algorithm,
where the numbers of samples per black vertex is determined ass = 24

p
1
ǫ2 ln

3n
δ (see

Figure 12 and the adaptations in Section 6.2). For convenience, we writes to be equivalent
to ξtheory/p, where

ξtheory =
24

ǫ2
ln

3n

δ
(24)

which remains fixed in all the invocations of NS in AMCV. This parameter is crucial to the
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Fig. 13. Impact of the average degree of black vertices

efficiency of AMCV.
As with most randomized algorithms, the theoretical analysis of AMCV is rather pes-

simistic, which in our context means that the value ofs as computed withξtheory is typ-
ically unnecessarily larger than what is needed in practiceby a wide margin. The main
cause is the extensive use of the union bound, which is known to be, albeit helpful for
theoretical analysis, almost always excessively loose in reality. The implication is that,
in practice, there is hope for utilizing a much smallers to achieve the desired precision
requirements.

To give a simple heuristic of settings for practical use, we aim at replacingξtheory with
a good, much lower,ξ so that we can calculates to beξ/p. With a tuning process to be
presented in Section 7.6, we observed that

ξheuristic = ξtheory/2000 (25)

turns out to be a nice choice. The resulting version of AMCV, which is the same as the
theoretical version but applies the above equation to decide s, is referred to as AMCV-H
(standing for heuristic AMCV).

7.3 How pessimistic is the worst case?

If B andW haven andm edges respectively, solving ak-MCV problem requires probing
nm edges in the worst case. The objective of this subsection is to find out when it is
possible to achieve cost (much) lower thannm. For this purpose, we generated a series
of power-law graphs whosedeg (i.e., the average degree of black vertices) ranges from
the minimum 0 to the maximum 5000. Then, we measured the performance of SOE (the
version inARAN) in settling the 10-MCV problem on each of these graphs.

Figure 13 plots the cost of SOE and the lower bounds as a function of deg (notice that
the vertical axis is in log scale). Recall that bothn andm are 5000 in every power-law
graph, so the value ofnm equals 25 million. Whendeg is close to the extreme value 0 or
5000, SOE needs to probe all the edges, and thus, incurs the worst-case cost. However, its
efficiency improves dramatically soon afterdeg moves away from the extreme values. For
example, whendeg equals 250 (i.e., on average, a black vertex is connected to 5% of the
white vertices), SOE probes around 2 million edges, which issmaller than the worst case
by a factor over an order of magnitude. The minimum overhead of SOE is observed when
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Fig. 14. Tuning the parameters of algorithm SS

deg is close to the middle value 2500; in this case, SOE needs to probe only less than half
million edges.

It is clear that the worst-case cost can occuronly in a highly sparse or dense graph. For
other graphs, the cost can be substantially reduced. The efficiency of SOE is built exactly
on this observation. In fact, as shown in Figure 13, the cost of SOE is very close to the
lower bound.

7.4 Performance of random-probe algorithms

Tuning sample-and-sort. Recall that algorithm SS needs a parameters, which is the
number of edges that are probed for each black vertex in the sampling phase. The next
set of experiments aims to decide a good value ofs. Towards this, given a data graph
G = (B,W,E), we measure the cost of SS whens is set to 1, 2, ..., 50, respectively. Fig-
ure 14 shows the results when the inputG is the power law graphs withdeg = 50 and3000
respectively, and the real graphsNBAandActor. Clearly, the best value ofs (minimizing
the overhead of SS) is different for each dataset. Nevertheless, a common pattern is that SS
is expensive whens is too small. Overall, a good choice ofs is around 20, which achieves
reasonable efficiency in all cases. Therefore, we fixs to 20 in the following experiments.

Scalability with k. We proceed to compare SOE and SS ink-MCV computation by in-
creasingk from 1 to 100. Figure 15 illustrates the results, as well as the lower bounds, on
the same graphs in Figure 14. For benchmarking, remember that the worst-case cost is 25
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Fig. 15. Performance vs.k (random-probe class)

million for power-law graphs,167392 > 280 million for NBA, and100002 = 100 million
for Actor.

The overhead of SS and SOE is always significantly lower than the worst case (often by
orders of magnitude), especially fork ≤ 10. The only exception is in Figure 15a, when
k approaches 100. This is expected because a graph withdeg = 50 is very sparse (on
average, a black vertex is connected to only 1% of the white vertices), so most of the edges
must be probed to deal with a relatively largek. In all the experiments, SOE consistently
outperforms SS, and its cost is only slightly higher than thelower bounds.

7.5 Performance of deterministic-probe algorithms

The previous experiments focused on the random-probe algorithm classARAN. This sub-
section evaluates SS and SOE when they are deployed as algorithms in the deterministic-
probe classADET. Recall that every algorithm inADET probes the hidden edges of each
black vertex in the sameprobing sequence(instead of a random order as inARAN) that is
prescribed by the underlying application (see Figure 4).

The following experiments have two objectives. The first oneis to inspect the efficiency
of SS and SOE in the deterministic scenario. The second, perhaps more interesting, objec-
tive is to understand how their efficiency is affected by the ordering of the white vertices in
the probing sequence. For this purpose, we considered a set of sequences that are controlled
by a parameter calleddistortiond, which ranges from 0 to 1. Specifically, a sequence with
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distortion 0 ranks the white vertices in ascending order of their degrees (or equivalently, in
descending order of how many empty edges they have). On the other extreme, a sequence
with distortion 1 is simply a random permutation of the whitevertices. In general, in a se-
quence with distortiond, the positions ofdm white vertices are randomly permutated (the
other white vertices remain in ascending order of their degrees), wherem is the number of
white vertices.

To distinguish with the SS (SOE) in the random-probe classARAN, we refer to the
version of SS (SOE) in the deterministic-probe classADET as dSS (dSOE). The parameter
s of dSS is also set to 20, after a tuning process similar to Figure 14. Concerning 10-MCV
computation onNBA, Figure 16a plots the performance of dSS and dSOE as a function
of distortion, together with the theoretical lower bounds (which are calculated by dividing
the cost of dSOE by1 + 10

n−10 , wheren is the number of black vertices). For referencing,
we also include the cost of SS and SOE so that comparison can bemade between random-
and deterministic-probe solutions. In the same fashion, Figure 16b presents the 10-MCV
results onActor.

Clearly, dSS and dSOE benefit significantly from a sorted ordering. In particular, when
distortion is 0 (i.e., completely sorted), the cost of dSOE is nearly 10 times lower than
its cost when distortion is 1 (i.e., completely random). In general, the overhead of both
dSS and dSOE grows with distortion, and eventually (i.e., atdistortion 1) reaches the cost
of SS and SOE. This phenomenon is not surprising at all. When the white vertices with
more empty edges are probed first, many empty edges can be discovered sooner for each
black vertex. As a result, the upper bounds of the degrees of the black vertices drop faster,
which enables earlier termination. The relative performance of dSS and dSOE is similar
to the random-probe class reported in Figure 15. Also, dSOE is once again nearly optimal,
leaving little room for further improvements. It is worth pointing out that, the above results
do not imply the superiority of dSOE over SOE in all cases, which can be easily disproved
by designing an adverse probing sequence that forces dSOE todiscover, for each non-
result vertex, many solid edges before empty edges. Consider the example in Figure 10,
on which the expected cost of SOE is approximately1.56m, as explained in Section 5.1.
If the probing sequence is such that all the solid edges ofb are probed before its empty
edges, then dSOE needs to probem/10+1+m/2 = 0.6m+1 edges ofb, in order to find
1 +m/2 empty edges. As dSOE also checks all them edges ofb⋆, the total overhead of
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dSOE is1.6m+ 1 > 1.56m, i.e., more expensive than the expected cost of SOE.

7.6 Performance of AMCV

Having elaborated on the characteristics of our exact solutions, we now proceed to study
the behavior of the proposed algorithm AMCV for the approximatek-MCV problem. As
explained earlier, AMCV applies (24) to calculate the parameters, which as will be shown
shortly is much larger than necessary. Hence, the first set ofexperiments below is designed
to (i) measure how smalls can be without violating the precision constraints, and (ii)
examine the effectiveness of the heuristic in Section 7.2 that resorts to (25). As the second
step, we compare the efficiency of AMCV to our fastest exact algorithm, namely, SOE.

Behavior of AMCV in practice. Given a value ofξ, let us use[ξ]-AMCV to refer to the
algorithm that differs from AMCV only in that the value ofs is set to beξ/p. In other
words, AMCV is essentially[ξtheory]-AMCV, whereas AMCV-H is[ξheuristic]-AMCV,
with ξtheory andξheuristic given in (24) and (25), respectively. Loweringξ reduces the
execution cost of the algorithm, but on the other hand, increases the risk of being unable
to meet the precision guarantees as mandated byǫ andδ. Given a fixed pair ofǫ andδ
and a particular dataset, we defineξmin to be the minimumξ such that[ξ]-AMCV is able
to achieve the desired precision requirements on that dataset. Equivalently, the minimum
value ofs for attaining those requirements equalsξmin/p.

To measureξmin, we started with a largeξ and gradually decreased it. For eachξ, we
ran algorithm[ξ]-AMCV (on the underlying dataset) 100 times, and recorded the number
x of times the algorithm successfully returned a result that is legal under the definition of
ǫ-approximatek-MCV. We say that theξ is acceptableif x/100 ≥ 1− δ. Then,ξmin took
the value of the smallest acceptableξ. The value ofk was fixed to 10 in all the following
experiments, unless otherwise stated.

To examine howξmin scales withǫ, we fixedδ = 0.1 and measuredξmin asǫ varied
from 0.01 to 0.1. The results on the power-law graph withdeg = 50 are presented in
Figure 17a, where the correspondingξtheory andξheuristic are also given for comparison.
The results of the same experiment the power-law graph withdeg = 3000, NBAandActor
are illustrated in Figure 17b, 17c and 17d, respectively. Itis clear thatξmin is always
lower thanξtheory by orders of magnitudes, confirming our earlier conjecture thatξtheory
obtained from theoretical analysis is over pessimistic in practice. Furthermore, observe
thatξheuristic presents itself as a nice fitting line ofξmin.

In a similar experiment, we inspected the behavior ofξmin with respect toδ, by fixing
ǫ to 0.05 while increasingδ from 0.05 to 0.5. Figure 18 demonstrates the results on the
same datasets as in Figure 17. Once again,ξmin, closely approximated byξheuristic, is
significantly smaller than its theoretical counterpartξtheory.

Efficiency of AMCV-H. Treating algorithm SOE as a benchmark, the subsequent experi-
ments evaluate the performance of AMCV-H, i.e., the practical version of AMCV param-
eterized byξheuristic as discussed in Section 7.2. We start by assessing how the cost of
the algorithms is affected byk. Figure 19 plots the cost as a function ofk on different
datasets, whenǫ andδ are set to0.05 and0.1, respectively. Recall that, due to its heuris-
tic nature, AMCV-H may not achieve the theoretical guarantees prescribed byǫ andδ.
Whenever this happens, in the diagrams of Figure 19, we present a percentageǫactual to
indicate that the output by AMCV-H is anǫactual-approximatek-MCV result according
to the failure probability designated byδ. For example, in Figure 19a, the 6.2% means
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Fig. 17. ξmin, ξtheory, andξheuristic vs.ǫ (δ = 0.1, k = 10)

that, fork = 7, AMCV-H achieves the precision level of 0.062-approximatek-MCV with
failure probabilityδ = 0.1.

A general observation from Figure 19 is that AMCV-H significantly outperforms SOE
when the cost of SOE is large, i.e., the data input is “hard”. When the input is “easy”,
both algorithms are very fast with AMCV-H sometimes being more expensive. This is
consistent with the common understanding that probabilistic algorithms find their values
mainly in dealing with datasets that are costly to process with deterministic algorithms.
Another key observation is that the cost of AMCV-H is insensitive tok, while that of SOE
increases rapidly with this parameter. In fact, we can see that for k = 10, AMCV-H is
always better than SOE except on the easiest input (i.e., thegraph in Figure 19b).

The next experiments inspect the influence ofǫ andδ, by fixingk to 10. Settingδ = 0.1,
Figure 20 presents the results whenǫ varies from0.01 to 0.1, while settingǫ = 0.05,
Figure 21 presents the results whenδ varies from0.05 to 0.5. We annotate all diagrams
with percentages that carry the same meanings as in Figure 19. The main observation in
Figure 20 is that AMCV-H is expensive whenǫ is very low, i.e., an exceedingly small
error is targeted, such that in this case we would be better off by simply running the exact
algorithm SOE. However, AMCV-H quickly improves asǫ increases, and outperforms SOE
in all datasets starting fromǫ = 0.06. On the other hand, as shown in Figure 21, the cost
of AMCV-H is insensitive toδ, which is expected becauseδ appears in a logarithm in the
running time (see Theorem 5).
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Fig. 18. ξmin, ξtheory, andξheuristic vs.δ (ǫ = 0.05, k = 10)

In general, as long asǫ is not excessively small, AMCV-H is efficient regardless of
the data input. This is a nice advantage over SOE, which can beas expensive as the naive
solution when the input is hard, as is evident from Figure 13.Hence, AMCV-H is preferred
in scenarios whereǫ-approximate results suffice, and yet, the hardness of the dataset cannot
be reliably estimated. In fact, AMCV-H can even be used as a pilot run that serves as a
“hardness test”. Specifically, if the output of AMCV-H indicates that the degree of thek-th
most connected black vertex is close tom (i.e., the number of white vertices), we can infer
that the dataset is easy, and invoke SOE to find the exact answers. On the other hand, if
the degree of thek-th most connected black vertex is far fromm, we know that the dataset
is hard, in which case running SOE should be avoided because it may incur prohibitively
expensive overhead.

8. CONCLUSIONS

This paper studied thek most connected vertex(k-MCV) problem on ann × m hidden
bipartite graph such thatk ≤ n/2. We presented an algorithm that is instance optimal in a
class of randomized algorithms, and a class of deterministic algorithms. On any data input,
our solution can be more expensive than the optimal algorithm of each class by a factor of
at most 2. We also proved that no algorithm in the deterministic class can be optimal in all
cases. Currently, it remains open whether an optimal algorithm exists in the randomized
class.
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Fig. 19. Performance vs.k (ǫ = 0.05, δ = 0.1)

As a second step, we gave an algorithm for solving anǫ-approximate version of the
k-MCV problem with probabilistic quality bounds. While thispaper has concentrated on
bipartite graphs, our algorithm can be extended to work on general graphs, still ensuring
all the theoretical guarantees.

We believe thatquery processing in hidden graphsis a promising research direction. For
future work, one may consider generalizing thek-MCV problem to multi-partite graphs,
namely, the top-k version oft-ary semi-join witht > 2. It may also be interesting to re-visit
conventional graph problems on hidden graphs. The existingalgorithms may not regard
edge-probing as a costly operation, and thus, can be prohibitively expensive if applied in a
straightforward manner.
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