
Transparent Anonymization:

Thwarting Adversaries Who Know the Algorithm

Xiaokui Xiao1 Yufei Tao2 Nick Koudas3

1Nanyang Technological University
2Chinese University of Hong Kong

3University of Toronto

Abstract

Numerous generalization techniques have been proposed for privacy preserving data publish-
ing. Most existing techniques, however, implicitly assume that the adversary knows little about
the anonymization algorithm adopted by the data publisher. Consequently, they cannot guard
against privacy attacks that exploit various characteristics of the anonymization mechanism.
This paper provides a practical solution to the above problem. First, we propose an analytical
model for evaluating disclosure risks, when an adversary knows everything in the anonymiza-
tion process, except the sensitive values. Based on this model, we develop a privacy principle,
transparent l-diversity, which ensures privacy protection against such powerful adversaries. We
identify three algorithms that achieve transparent l-diversity, and verify their effectiveness and
efficiency through extensive experiments with real data.

Accepted by ACM Transactions on Database Systems.

1

1 Introduction

Privacy protection is highly important in the publication of sensitive personal information (referred
to as microdata), such as census data and medical records. A common practice in anonymization is
to remove the identifiers (e.g., social security numbers or names) that uniquely determine entities of
interest. This, however, is not sufficient because an adversary may utilize the remaining attributes to
identify individuals [31]. For instance, consider that a hospital publishes the microdata in Table 1,
without disclosing the patient names. Utilizing the publicly-accessible voter registration list in
Table 2, an adversary can still discover Ann’s disease, by joining Tables 1 and 2. The joining
attributes {Age, Zipcode} are called the quasi-identifiers (QI).

Name Age Zipcode Disease
Ann 21 10000 dyspepsia
Bob 27 18000 flu
Cate 32 35000 gastritis
Don 32 35000 bronchitis
Ed 54 60000 gastritis

Fred 60 63000 flu
Gill 60 63000 dyspepsia
Hera 60 63000 diabetes

Table 1: Microdata T1

Name Age Zipcode
Ann 21 10000
Bob 27 18000

Bruce 29 19000
Cate 32 35000
Don 32 35000
Ed 54 60000

Fred 60 63000
Gill 60 63000
Hera 60 63000

Table 2: Voter List E1

Age Zipcode Disease
[21, 27] [10k, 18k] dyspepsia
[21, 27] [10k, 18k] flu

32 35000 gastritis
32 35000 bronchitis

[54, 60] [60k, 63k] gastritis
[54, 60] [60k, 63k] flu
[54, 60] [60k, 63k] dyspepsia
[54, 60] [60k, 63k] diabetes

Table 3: Generalization T ∗
2

Generalization [31] is a popular solution to the above problem. It works by first assigning tuples
to QI-groups, and then transforming the QI values in each group to an identical form. As an
example, Table 3 illustrates a generalized version of Table 1 with three QI-groups. Specifically, the
first, second, and third QI-groups contain the tuples {Ann, Bob}, {Cate, Don}, and {Ed, Fred,
Gill, Hera}, respectively. Even with the voter registration list in Table 2, an adversary still cannot
decide whether Ann owns the first or second tuple in Table 3, i.e., Ann’s disease cannot be inferred
with absolute certainty.

Generalizations can be divided into global recoding and local recoding [19]. The former demands that
if two tuples have identical QI values, they must be generalized to the same QI-group. Without
this constraint, the generalization is said to use local recoding. For instance, Table 3 obeys global
recoding. Notice that Cate and Don have equivalent QI-values in the microdata (Table 1), and
therefore must be included in the same QI-group. This is also true for Fred, Gill, and Hera.

The privacy-preservation power of generalization relies on the underlying privacy principle, which
determines what is a publishable QI-group. Numerous principles are available in the literature,
offering different degrees of privacy protection. One popular, intuitive and effective principle is
l-diversity [23]. It requires that, in each QI-group, at most 1/l of the tuples can have the same
sensitive value1. This ensures that an adversary can have at most 1/l confidence in inferring the
sensitive information of an individual. For example, Table 3 is 2-diverse. Thus, an adversary can
discover the disease of a person with at most 50% probability.

Interestingly, none of the existing privacy principles (except those in [36] and [42]) specifies any
requirement on the algorithm that produce the generalized tables. Instead, they impose constraints
only on the formation of the QI-groups (like l-diversity does), which, unfortunately, leaves open the

1There also exist other formulations of l-diversity, as will be discussed in Section 2.1

2

opportunity for an adversary to breach privacy by exploiting the characteristics of the generalization
algorithm. This problem is first pointed out by [36], who demonstrate a minimality attack2 that
(i) can compromise most existing generalization techniques, and (ii) requires only a small amount
of knowledge about the generalization algorithm. As a solution, they propose an anonymization
approach that can guard against minimality attacks.

The work by Wong et al. reveals an essential issue in publishing microdata: a generalization method
should preserve privacy, even against adversaries with knowledge of the anonymization algorithm.
Towards addressing this issue, the techniques in [36] establish the first step by dealing with minimal-
ity attacks, which, however, is still insufficient for privacy protection. Specifically, given information
about the anonymization method, an adversary can easily devise other types of attacks to circum-
vent a generalized table. To explain this, in the following we first clarify how minimality attacks
work, and then, elaborate the deficiencies of [36].

Minimality Attacks. Good generalization should keep the QI values as accurate as possible.
Towards this objective, the previous algorithms [6, 12, 14, 19, 20, 40] produce minimal general-
izations, where no QI-group can be divided into smaller groups without violating the underlying
privacy principle. For example, Table 3 is a minimal 2-diverse generalization of Table 1 under global
recoding. In particular, the first (second) QI-group in Table 3 cannot be divided, since any split of
the group results in two QI-groups with a single tuple, which apparently cannot be 2-diverse. On
the other hand, as Fred, Gill, and Hera have identical QI values, their tuples must be in the same
QI-group, as demanded by global recoding. Therefore, the only way to partition the third QI-group
is to break it into {Ed} and {Fred, Gill, Hera}, which also violate 2-diversity.

Minimal generalizations can lead to severe privacy breach. Consider that a hospital holds the
microdata in Table 4, and releases the 2-diverse Table 5, which is a minimal generalization under
global recoding. Assume that an adversary has access to the voter registration list in Table 2. Then,
s/he can easily identify the six individuals in the second QI-group G2 = {Cate, Don, Ed, Fred, Gill,
Hera} in Table 5. After that, the adversary can infer the diseases of Cate and Don by reasoning as
follows (i.e., a minimality attack). First, there exist only two tuples in G2 with the same disease,
which is gastritis. Second, since Table 5 is minimal, if we split G2 into two parts G3 = {Cate, Don}
and G4 = {Ed, Fred, Gill, Hera}, either G3 or G4 must violate 2-diversity. Assume that G4 is
not 2-diverse. In that case, at least three tuples in G4 should have an identical sensitive value,
contradicting the fact that, in G2, the maximum number of tuples with the same Disease value is 2.
It follows that G3 cannot be 2-diverse, indicating that both Cate and Don have the same disease,
which must be gastritis (as mentioned earlier, no other disease is possessed by two tuples in G2).

Motivation. [36] advance the other solutions by assuming that an adversary has one extra piece
of knowledge: whether the anonymization algorithm produces a minimal generalization (note: the
adversary is not allowed to have other details of the algorithm). Under this assumption, minimal-
ity attacks can be prevented using a simple solution — just deploy non-minimal generalizations.
Nevertheless, given knowledge of the algorithm, can the adversary employ other types of attacks
to compromise non-minimal generalizations? The answer, unfortunately, is positive, as can be
demonstrated in a simple example as follows.

2Note that minimality attack can be effective only when the microdata is anonymized with generalization or a
similar methodology called anatomy [38]. There exist other anonymization methods that are immune to attacks based
on knowledge of the anonymization algorithm, as will be discussed in Section 5.

3

Name Age Zipcode Disease
Ann 21 10000 dyspepsia
Bob 27 18000 flu
Cate 32 35000 gastritis
Don 32 35000 gastritis
Ed 54 60000 bronchitis

Fred 60 63000 flu
Gill 60 63000 dyspepsia
Hera 60 63000 diabetes

Table 4: Microdata T3

Age Zipcode Disease
[21, 27] [10k, 18k] dyspepsia
[21, 27] [10k, 18k] flu

[32, 60] [35k, 63k] gastritis
[32, 60] [35k, 63k] gastritis
[32, 60] [35k, 63k] bronchitis
[32, 60] [35k, 63k] flu
[32, 60] [35k, 63k] dyspepsia
[32, 60] [35k, 63k] diabetes

Table 5: Generalization T ∗
4

Algorithm Vul-Gen (T)
1. if T is the microdata T1 in Table 1

return the generalization T ∗
4 in Table 5

2. otherwise, return a generalization of T that is different from T ∗
4

Figure 1: The Vul-Gen algorithm

Example 1 Consider the conceptual anonymization algorithm Vul-Gen in Figure 1. The algorithm
takes as input a microdata table T , and generates a generalization T ∗ of T . In particular, Vul-Gen
outputs the generalization T ∗

4 in Table 5, if and only if T equals the microdata T1 in Table 1.
Notice that, T ∗

4 is not a minimal 2-diverse version of T1. This is because, the second QI-group of
T ∗
4 , including the tuples {Cate, Don, Ed, Fred, Gill, Hera}, can be divided into 2-diverse QI-groups

{Cate, Don} and {Ed, Fred, Gill, Hera}, which conform to global recoding.

Assume that a data publisher applies Vul-Gen on T1, and releases the resulting 2-diverse generaliza-
tion T ∗

4 . Since T ∗
4 is not minimal, it does not suffer from minimality attacks. However, imagine an

adversary who knows that Vul-Gen is the generalization algorithm adopted by the publisher. Once
T ∗
4 is released, the adversary immediately concludes that T1 is the microdata, because Vul-Gen

outputs T ∗
4 if and only if the input is T1. Hence, the adversary learns the exact disease of every

individual, i.e., releasing T ∗
4 causes a severe privacy breach. �

It is clear from the above discussion that preventing minimality attacks alone is insufficient for
privacy preservation, since an adversary (with understanding about the generalization algorithm)
may employ numerous other types of attacks to infer sensitive information. This leads to a challeng-
ing problem: how can we anonymize the microdata in a way that proactively prevents all privacy
attacks that may be launched based on knowledge of the algorithm?

[42] present the first theoretical study on the above problem. The core of their solution is a privacy
model in which the anonymization algorithm (adopted by the publisher) is assumed to be public
knowledge3. As will be discussed in Section 2.3, however, Zhang et al.’s privacy model is only
applicable on a small subset of anonymization algorithms that (i) are deterministic, (ii) adopt global
recoding generalization, and (iii) follow a particular algorithmic framework. This severely restricts
the design of new anonymization approaches under the model, and makes it impossible to verify
the privacy guarantees of existing randomized or local-recoding-based algorithms. Furthermore,

3This is reminiscent of Kerckhoffs’ principle (well adopted in cryptography): a cryptographic system should be
secure, even if everything about the system, except the key, is public knowledge.

4

the anonymization algorithms proposed by Zhang et al. have high time complexities: All but one
algorithm run in time exponential in the number n of tuples in the microdata, while the remaining
one has a time complexity that is polynomial in n and the total numberm of possible generalizations
of the microdata. Note that, in practice, m can be an exponential of n, since there may exist an
exponential number of ways to divide the tuples in the microdata into QI-groups. As a consequence,
the algorithms developed by Zhang et al. are rather inapplicable in practice.

Contributions. This paper develops a practical solution for data publishing against an adversary
who knows the anonymization algorithm. First, we propose a model for evaluating the degree of
privacy protection achieved by an anonymized table, assuming that the adversary has knowledge
of (i) the anonymization algorithm employed by the publisher, (ii) the algorithmic parameters
with which the anonymized table is computed, and (iii) the QI values of all individuals in the
microdata. Our model captures all deterministic and randomized generalization algorithms [1, 6,
12, 14, 19, 20, 21, 15, 35, 37, 40, 41, 36, 42], regardless of whether they adopt global recoding or
local recoding. The model is even applicable for anonymized tables produced from anatomy [38], a
popular anonymization methodology that will be clarified in Section 2.1. Based on this model, we
develop a new privacy principle called transparent l-diversity, which safeguards privacy against the
adversary we consider.

As a second step, we identify two sufficient conditions for transparent l-diversity, based on which we
propose three anonymization algorithms that achieve transparent l-diversity. None of these algo-
rithms could have been possible under Zhang et al.’s privacy model, as they are either randomized or
based on local recoding. We provide detailed analysis on the characteristics of each algorithm, and
show that they all run in O(n2 log n) time. In addition, we demonstrate the effectiveness and effi-
ciency of our algorithms through extensive experiments with real data. Compared with the existing
anonymization techniques that do not ensure transparent l-diversity, our solutions not only provide
stronger privacy protection, but also achieve satisfactory performance in terms of data utility and
computation overhead.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework that
underlies transparent l-diversity. Section 3 presents our generalization algorithms, which are ex-
perimentally evaluated in Section 4. Section 5 surveys the previous work related to ours. Finally,
Section 6 concludes the paper with directions for future research.

2 Privacy Model

This section presents our analytical model for assessing disclosure risks. In Section 2.1, we for-
malize several basic concepts. After that, Section 2.2 elaborates the derivation of disclosure risks.
Section 2.3 discusses the differences between our model and the methods in [36] and [42].

2.1 Preliminaries

Let T be a microdata table to be published. We assume that T contains d+ 2 attributes, namely,
(i) an identifier attribute Aid, which is the primary key of T , (ii) a sensitive attribute As, and (iii) d
QI attributes Aq

1, ..., A
q
d. As in most existing work, we require that As should be categorical, while

5

Age Zipcode Group ID
21 10000 1
27 18000 1

32 35000 2
32 35000 2

54 60000 3
60 63000 3
60 63000 3
60 63000 3

Group ID Disease
1 dyspepsia
1 flu

2 bronchitis
2 gastritis

3 diabetes
3 dyspepsia
3 flu
3 gastritis

(a) The QI table (b) The sensitive table

Table 6: An anonymization of Table 1 produced from anatomy

the other attributes can be either numerical or categorical.

For each tuple t in T , let t[A] be the value of t on the attribute A. We define a QI-group as a
set of tuples, and a partition of T as a set of disjoint QI-groups of T whose union equals T . We
say that two QI-groups G1 and G2 are isomorphic, if (i) G1 and G2 contain the same multi-set of
sensitive values, and (ii) every tuple t1 ∈ G1 shares the same identifier and QI values with a tuple
t2 ∈ G2, and vice versa. For instance, let G1 be a QI-group that contains the first two tuples in
Table 1. Suppose that we swap the sensitive values of Ann and Bob, such that Ann (Bob) has flu
(dyspepsia). Then, the resulting QI-group G2 is isomorphic to G1.

We formalize the anonymization of T as follows.

Definition 1 (Anonymization) An anonymization function f is a function that maps a QI-
group to another set of tuples, such that for any two isomorphic QI-groups G1 and G2, f(G1) =
f(G2) always holds. Given a partition P of T and an anonymization function f , a table T ∗ is an
anonymization of T decided by P and f , if and only if T ∗ =

⋃

G∈P f(G).

There exist two popular types of anonymization methodologies, namely, generalization [31] and
anatomy [38]. Specifically, generalization employs an anonymization function that maps a QI-group
G to a set G∗ of tuples, such that (i) for any tuple t∗ ∈ G∗, t∗[Aq

i] (i ∈ [1, d]) is an interval con-
taining all Aq

i values in G, and (ii) any two tuples in G∗ have the same QI values. Anatomy, on
the other hand, adopts an anonymization function that transforms a QI-group G to two separate
sets of tuples, such that first (second) set contains only the QI (sensitive) values in G. For ex-
ample, given a partition of Table 1 that contains three QI-groups {Ann, Bob}, {Cate, Don}, and
{Ed, Fred, Gill, Hera}, Table 6 illustrates an anonymization of Table 1 produced from anatomy.
Observe that Table 6a (6b) contains only the QI (sensitive) values in Table 1.

The techniques developed in this paper can be incorporated with any anonymization method that
conforms to Definition 1. For ease of exposition, in the rest of the paper we will adopt a specific
anonymization function, namely, the MBR (Minimum Bounding Rectangle) generalization function
[6, 14, 20, 40]. This function anonymizes a QI-group G by replacing each Aq

i (i ∈ [1, d]) value with
the tightest interval that contains all Aq

i values in G. For instance, Table 3 is obtained by applying
the MBR function to a partition of Table 1 with three QI-groups {Ann, Bob}, {Cate, Don}, and
{Ed, Fred, Gill, Hera}.

Let T ∗ be the anonymization of T released by the publisher. T ∗ should satisfy l-diversity:

6

Definition 2 (l-Diversity [23]) A QI-group G is l-diverse, if and only if it contains at most
|G|/l tuples with the same sensitive value. A partition is l-diverse, if and only if each of its QI-
groups is l-diverse. An anonymization is l-diverse, if and only if it is produced from an l-diverse
partition.

It is noteworthy that there exist several different definitions of l-diversity [23]. For example, en-
tropy l-diversity requires that the entropy of sensitive values in each QI-group should be at least
ln l; recursive (c, l)-diversity demands that, even if we remove l − 2 arbitrary sensitive values in a
QI-group G, at most c fraction of the remaining tuples should have the same sensitive value. Defi-
nition 2 corresponds to a simplified version of recursive (c, l)-diversity, and has been widely adopted
previously [14, 38, 37, 36].

Let G be the anonymization algorithm adopted by the publisher. G can be either deterministic or
randomized, but it should be an l-diversity algorithm. That is, G should take as input any microdata
T ′ and any positive integer l, and output either ∅ or an l-diverse anonymization of T ′. In particular,
G may return ∅, when no l-diverse anonymization exists for T ′. For instance, given the microdata T1

in Table 1, no algorithm can generate a 10-diverse anonymization, since T1 contains only 8 tuples.

Consider an adversary who tries to infer sensitive information from T ∗. As demonstrated in Sec-
tion 1, the adversary may employ an external source (e.g., a voter registration list) to identify the
individuals involved in T ∗. More formally, we define an external source E as a table that contains
all attributes in T , except As. In addition, for each tuple t ∈ T , there should exist a unique record
e ∈ E, such that t and e coincide on all identifier and QI attributes. In other words, each individual
in T should appear in E, but not necessarily vice versa. For example, the external source E1 in
Table 2 involves all individuals in the microdata T1 in Table 1, but it also contains the information
of Bruce, who does not appear in T1.

In addition to E and T ∗, we also assume that the adversary knows the details of the anonymization
algorithm G and the value of l used by the publisher (in practice, l can be inferred from T ∗ [36]).
We quantify the disclosure risks incurred by the publication of T ∗ as:

Definition 3 (Disclosure Risk) For any individual o, the disclosure risk risk(o) of o in T ∗ is
the tight upper-bound of the adversary’s posterior belief in the event that “o appears in T and has a
sensitive value v”, given T ∗, any sensitive value v, the external source E, the algorithm G, and the
value of l:

risk(o) = max
v∈As

Pr
{

o appears in T and has a sensitive value v | T ∗ ∧ E ∧ G ∧ l
}

, (1)

where Pr{X | Y } denotes the conditional probability of event X given the occurrence of event Y .

2.2 Disclosure Risks in Anonymized Tables

Next, we present a detailed analysis of disclosure risks. Before examining T ∗, the adversary has no
information about (i) which individuals in the external source E appear in T , and (ii) what is the
sensitive value of each person. Thus, from the adversary’s perspective, there exist many possible
instances of the microdata. In particular, each instance T̂ may involve any individuals in E, and
each person in T̂ can have an arbitrary sensitive value. We formally define such instances as:

7

Name Age Zipcode Disease
Bruce 29 19000 bronchitis
Cate 32 35000 flu
Fred 60 63000 dyspepsia

Table 7: A Possible Microdata Instance Based on Table 2

Algorithm Opt-Gen (T , l)
1. Sp = a set containing all partitions P of T , such that P and the MBR function

decide an l-diverse global recoding generalization
2. if Sp = ∅ then return ∅
3. among all P ∈ Sp, select the one that minimizes

∑

G∈P |G|2

4. return the generalization determined by P and the MBR function

Figure 2: The Opt-Gen algorithm

Definition 4 (Possible Microdata Instance) Given an external source E, a possible micro-
data instance based on E is a microdata table T̂ that contains a subset of the individuals in E,
such that each of these individuals have the same QI values in E and T̂ (the sensitive value of each
individual in T̂ can be arbitrary).

For example, given the external source in Table 2, Table 7 is a possible microdata instance.
Note that, the microdata T itself is also a possible instance. In general, possible instances
may be completely different from T , e.g., Table 1 and Table 7 do not even have the same
cardinality. Nevertheless, it is reasonable to assume that, before inspecting T ∗, the adversary
considers each possible instance to be equally likely. This assumption is referred to as the
random worlds assumption [5], and is adopted by most existing work on data anonymization4

[7, 8, 18, 21, 22, 25, 27, 34, 37, 36, 39, 40, 43, 42].

Let S be the set of all possible microdata instances based on E. Now, consider that the adversary
has obtained T ∗, the anonymization algorithm G, and the parameter l. For simplicity, assume
for the moment that G is deterministic. The adversary can utilize the algorithm G to refine S.
Specifically, s/he can apply G on each instance T̂ ∈ S, and inspect the output of G. If T̂ leads to
an anonymization different from T ∗, the adversary asserts that, T̂ is not the real microdata T . Let
S′ be the set of instances that pass the sanity check, i.e., for each T̂ ∈ S′, G(T̂ , l) = T ∗ (apparently,
T ∈ S′).

The adversary then uses S′ to infer the sensitive information in T . As a special case, if an individual
o is associated with an As value v in all instances in S′, then v must be the As value of o in T . In
general, the probability that o has v in T depends on the portion of instances in S′ where o has v.
We refer to the above inference approach as a reverse engineering attack.

Example 2 Consider the l-diversity generalization algorithm Opt-Gen, as shown in Figure 2. In
a nutshell, Opt-Gen employs the MBR function, and returns l-diverse generalizations that (i) obey

4Recent research [17] shows that, when the random worlds assumption does not hold, some of the existing
anonymization methods are vulnerable to privacy attacks based on machine learning techniques. The treatment
of such privacy attacks is beyond of the scope of this paper.

8

global recoding, and (ii) minimize the discernability metric [6]. Specifically, the discernability of a
generalized table T ∗ equals

∑

G∈P |G|2, where P is the partition that decides T ∗.

Suppose that a publisher adopts Opt-Gen to anonymize the microdata T1 in Table 1, setting l to 2.
Table 3 illustrates the resulting generalization T ∗

2 . Assume that an adversary has the external source
E1 in Table 2, and knows Opt-Gen and l = 2. To launch a reverse engineering attack, s/he first
constructs the set S of all possible microdata instances based on E1 (e.g., Table 7 is one instance
in S). As a second step, the adversary invokes Opt-Gen on each T̂ ∈ S, and verifies whether the
output of Opt-Gen is T ∗

2 . Let S
′ be the maximal subset of S such that Opt-Gen(T̂ , 2)=T ∗

2 for each
T̂ ∈ S′. In the sequel, we will show that every T̂ ∈ S′ must associate Ed with gastritis. Namely,
based on T ∗

2 , E1, l=2, and the details of Opt-Gen, the adversary can infer the exact disease of Ed.

Let G1, G2, and G3 be the first, second, and third QI-group in T ∗
2 , respectively. Any T̂ ∈ S,

which can be generalized to T ∗
2 , must satisfy the following conditions. First, T̂ should not involve

Bruce, since his age 29 is not covered by any Age interval in T ∗
2 . Second, T̂ should either (i)

associate Ann with dyspepsia and Bob with flu, or (ii) conversely, associate Ann and Bob with flu
and dyspepsia, respectively. This is because, Ann and Bob are the only individuals whose ages fall
in the Age interval [21, 27] of G1, while G1 contains two sensitive values dyspepsia and flu. By the
same reasoning, T̂ should assign the diseases in G2 (G3) to Cate and Don (Ed, Fred, Gill, and
Hera).

We are now ready to prove that, any possible microdata instance in S′ must set the sensitive value
of Ed to gastritis. Assume, on the contrary, that this is not true in a T̂ ′ ∈ S′. Then, since Ed is
in G3, his disease in T̂ ′ must be one of {flu, diabetes, dyspepsia}, i.e., the sensitive values in G3

except gastritis. In that case, Ed’s disease in T̂ ′ must differ from those of Cate and Don (each of
whom suffers from either gastritis or bronchitis in T̂ ′). Hence, we can construct a 2-diverse QI-group
G′

2 ={Cate, Don, Ed}. The other tuples in T̂ ′ can also form two 2-diverse QI-groups G′
1 = {Ann,

Bob}, and G′
3 = {Fred, Gill, Hera}.

Let P ′ = {G′
1, G

′
2, G

′
3}, which decides a 2-diverse global recoding generalization. Let us refer to

that generalization as T ′∗. The discernability of T ′∗ is 22 + 32 + 32 = 22, which is smaller than the
discernability 24 of T ∗

2 . As Opt-Gen minimizes the discernability, given T̂ ′ as the input, it should
have output T ′∗ instead of T ∗

2 , leading to a contradiction. In conclusion, Ed must be assigned a
sensitive value gastritis in any T̂ ∈ S′. �

The above discussion motivates the following proposition for computing disclosure risks.

Proposition 1 Let o be any individual, E be an external source, and T ∗ be an anonymization of T
produced with an l-diversity algorithm G and a parameter l. Let S be the set of possible microdata
instances based on E. Let So,v be the maximal subset of S, such that each instance T̂ ∈ So,v includes
a tuple t, with t[Aid] = o and t[As] = v. Then,

risk(o) = max
v∈As

∑

T̂∈So,v
Pr

{

G(T̂ , l) = T ∗
}

∑

T̂∈S Pr
{

G(T̂ , l) = T ∗
} , (2)

where Pr
{

G(T̂ ,l)=T ∗
}

denotes the probability that, given T̂ and l, algorithm G outputs T ∗.

The proofs of all propositions, lemmas, and theorems can be found in the appendix. We are now
ready to introduce the transparent l-diversity principle, for protecting privacy when the anonymiza-

9

tion algorithm is “transparent” to adversaries.

Definition 5 (Transparent l-Diversity) An anonymization T ∗ of T is transparently l-
diverse if, given any external source, T ∗ ensures risk(o) ≤ 1/l for any individual o. An l-diversity
algorithm G is transparent, if and only if given any microdata T and any positive integer l, algo-
rithm G outputs either ∅ or a transparently l-diverse anonymization of T .

Intuitively, an l-diversity algorithm G is transparent, if and only if each output T ∗ of G can be
generated from a set S of possible microdata instances, such that each individual o is associated
with a diverse set of sensitive values in different instances. As the adversary cannot decide which
instance in S corresponds to the input microdata, s/he would not be able to infer the exact sensitive
value of o from T ∗. The fact that each instance in S can lead to T ∗ implies that the output of G
should not be highly dependent on the sensitive value of any particular individual. For instance,
the Opt-Gen algorithm fails in Example 2, because it outputs T ∗

2 (in Table 3) only if Ed has a
sensitive value gastritis. In general, a transparent algorithm should anonymize data in a manner
such that none of the steps of the anonymization process is uniquely decided by the sensitive value
of a particular tuple. In Section 3, we will present three transparent algorithms that are developed
according to the above principle.

2.3 Comparison with Previous Work

As explained in Section 1, [36] and [42] are the only previous works that do not assume adversaries
with no knowledge of the anonymization algorithm G. In this section, we elaborate the solutions in
[36] and [42], and point out how they differ from our solution.

Comparison with [36]. The privacy model in [36] assumes that (i) the anonymization algorithm
G is deterministic, and (ii) the adversary knows whether G produces minimal generalization. To
clarify the model, we begin by reviewing several concepts in [36].

Definition 6 (Child Partition) Let P1 and P2 be two partitions of T . P2 is a child of P1, if
and only if there exist G1 ∈ P1 and G2, G3 ∈ P2, such that (i) G1 = G2 ∪G3, and (ii) P1 −{G1} =
P2 − {G2, G3}.

Note that we can obtain a child of a partition P , by splitting a QI-group in P into two smaller
QI-groups.

Definition 7 (Minimal Generalization) Let f be a generalization function, P an l-diverse par-
tition, and T ∗ the generalization decided by f and P . T ∗ is a minimal l-diverse generalization
under global (local) recoding, if f and any child of P cannot decide an l-diverse generalization under
the same recoding.

For example, Table 3 is a minimal 2-diverse generalization of Table 1 with respect to the MBR
function and global recoding, as explained in Section 1. Given a generalization function f and
recoding scheme H, we say that an l-diversity algorithm is minimal, if it produces only minimal

10

generalizations under f and H. The subsequent discussion will focus on minimal algorithms G,
because the results of [36] are inapplicable to non-minimal algorithms (i.e., minimality attacks
cannot be performed if G is non-minimal).

In a similar fashion to Definition 1, [36] formulate the disclosure risks (referred to as credibilities in
[36]) as:

Definition 8 (Credibility) Let o be any individual, and V be a predefined subset of the values in
As. The credibility of o in T ∗ is the adversary’s maximum posterior belief in the event that “o
appears in T and has a sensitive value v”, given T ∗, an external source E, generalization function
f , recoding scheme H, value of l, and G being minimal:

cred(o) = max
v∈V

Pr
{

o has v in T | T ∗ ∧ E ∧ f ∧H ∧ l ∧ G is minimal
}

.

Note that the credibility model quantifies disclosure risks based only on a subset V of the As values.
To facilitate the comparison between the credibility model and our privacy model, we assume V = As

in the rest of the paper.

Credibilities can be derived as:

Proposition 2 ([36]) Let o, E, f , H, l be as introduced in Definition 8. Let S+ be the set including
any possible microdata instance T̂ based on E, such that T ∗ is a minimal l-diverse generalization
of T̂ with respect to f and H. Let S+

o,v be the maximal subset of S+, such that in each instance in
S+, o is associated with a sensitive value v. We have

cred(o) = max
v∈As

|S+
o,v|/|S

+|. (3)

The following analysis will confirm the intuition that credibilities underestimate the actual privacy
risks, when an adversary knows everything about G. Towards this, let us revisit the scenario in
Example 2, where the adversary can precisely find out Ed’s disease with a reverse engineering
attack, i.e, the disclosure risk of Ed equals the maximum value 1. In the sequel, we will show that
cred(Ed) = 1/4.

Lemma 1 The Opt-Gen algorithm (in Figure 2) is a minimal algorithm.

Example 3 Consider the settings in Example 2, where T =T1, T
∗=T ∗

2 , E=E1, G=Opt-Gen, l=2,
o= Ed. Since Opt-Gen is a minimal algorithm (see Lemma 1), by Proposition 2, the credibility of
Ed in T ∗

2 is calculated as maxv∈As |S+
o,v|/|S

+|, where S+ is the set of all possible microdata instances
that have T ∗

2 as a minimal generalization, and S+
o,v is the subset of instances in S+ that associate

Ed with a certain sensitive value v.

Let T̂ be any possible microdata instance based on E1. As demonstrated in Example 2, if T̂ can be
generalized to T ∗

2 , then T̂ must not involve Bruce. Furthermore, T̂ should assign the sensitive values
in the first, second, and third QI-groups in T ∗

2 to {Ann, Bob}, {Cate, Don}, and {Ed, Fred, Gill,
Hera}, respectively. Totally, there are 2!× 2!×4!=96 different combinations between the sensitive
values and individuals. This leads to a set Sm of 96 possible microdata instances. For any v =

11

gastritis, flu, dyspepsia, or diabetes, there exist 24 instances in Sm that associate Ed with v. Since
Sm includes all possible microdata instances that can be generalized to T ∗

2 , we have S+ ⊆ Sm.

Next, we will prove S+ = Sm. For this purpose, it suffices to establish that, for any instance T̂ ∈ Sm,
T ∗
2 is a minimal 2-diverse generalization with respect to global recoding and the MBR function f .

Let G1 = {Ann, Bob}, G2 = {Cate, Don}, G3 = {Ed, Fred, Gill, Hera}. The partition underlying
T ∗
2 is P1 = {G1, G2, G3}. Assume, on the contrary, that T ∗

2 is not minimal for some T̂ ∈ Sm. Then,
there exists a partition P2 of T̂ such that (i) P2 is a child of P1, and (ii) P2 and f decide a 2-diverse
global recoding generalization.

As P2 is a child of P1, by Definition 6, we can obtain P2 from P1 by splitting G1, G2, or G3. However,
it is impossible to split G1 (G2) into 2-diverse QI-groups, since it contains only two tuples. On the
other hand, G3 cannot be divided either. This is because, Fred, Gill, and Hera have identical
QI values, and thus, have to be in the same QI-group (due to global recoding); meanwhile, the
remaining tuple Ed itself does not make a 2-diverse QI-group. Hence, under global recoding, no
child of P1 can lead to a 2-diverse generalization of T̂ . It follows that T ∗

2 is a minimal generalization
of every T̂ ∈ Sm, i.e., S+ = Sm.

Finally, since (as mentioned earlier) there exist exactly 24 instances in Sm that assign the same
sensitive value to Ed, cred(Ed) = maxv∈As |S+

o,v|/|S
+| = 24/96 = 1/4. �

Since the credibility model cannot secure privacy against an adversary who knows the anonymization
algorithm, any method developed based on the model is susceptible to revere engineering attacks. To
demonstrate this, we exemplify in Appendix II an attack against Mask, an anonymization approach
devised in [36] under the credibility model.

Comparison with [42]. [42] consider the publication of microdata using deterministic algorithms
that adopt global recoding. They model a global recoding generalization as a projection of the micro-
data into a “coarsened” multi-dimensional domain. For example, given the microdata T1 in Table 1,
we can coarsen the Age domain, so that it contains only seven values: “≤ 20”, “[21, 27]”, “(27, 32)”,
“32”, “(32, 54)”, “[54, 60]”, and “≥ 60”. Similarly, we can define a coarsened Zipcode domain that
has only seven values: “< 10k”, “[10k, 18k]”, “(18k, 35k)”, “35k”, “(35k, 60k)”, “[60k, 63k]”, and
“> 63k”. Accordingly, the global recoding generalization T ∗

2 in Table 3 can be regarded as the
projection of T1 into the three-dimensional domain spanned by Disease and the coarsened Age and
Zipcode. Let C be the set of all coarsened multi-dimensional domains that can be constructed from
the attributes in the microdata. Zhang et al. assume that the domains in C can be totally ordered
by their information loss, which measures the degree of coarseness of the domains. For example,
the information loss of a domain is (i) minimized if no coarsening is applied, and (ii) maximized if
every attribute is maximally coarsened.

Zhang et al. consider that the publisher adopts a deterministic generalization algorithm G as follows.
Given a microdata T and a privacy principle, G first examines the multi-dimensional domains in
C in ascending order of their information loss. For each domain D∗, G projects T into D∗, and
checks whether the resulting generalization satisfies the given privacy principle. If the principle is
satisfied, G returns the generalization and terminates; otherwise, G moves on to the next domain in
C. In other words, G always outputs the first generalization that conforms to the adopted privacy
principle. Alternatively, G may also traverse C in descending order of information loss, and returns
the last generalization on which the given principle is satisfied. The adversary is assumed to (i)

12

have an external source E that contains only the individuals in the microdata, and (ii) know the
privacy principle as well as the order in which G traverses C.

Under the above problem setting, Zhang et al. present a theoretical study on how G should be
designed to prevent the adversary from inferring private information. Let np be the total number of
possible microdata instances based on E. Zhang et al. first prove that it is NP-hard (with respect to
np) to compute a generalization that both ensures privacy and incurs the minimum information loss.
After that, they investigate three special cases of the problem by imposing various constraints on C
and the privacy principle. For each case, they show that the optimal generalization can be computed
in time polynomial in np and the size of C. Finally, they propose a generalization algorithm that
ensures entropy l-diversity (see Section 2.1), and prove that its time complexity is polynomial in
|C| and independent of np. Note that, in practice, both |C| and np are usually exponential in the
number n of tuples in the microdata.

Compared with the solution in [36], Zhang et al.’s techniques achieve a higher level of privacy
protection, as they can guard against an adversary who has full knowledge of the anonymization al-
gorithm. Nevertheless, Zhang et al.’s work has the following limitations. First, the privacy model in
[42] is restricted to a particular type of deterministic algorithms that adopt global recoding. Conse-
quently, the model cannot be used to evaluate the privacy guarantee of any existing anonymization
algorithm that is randomized or local-recoding-based, nor does it support the development of new
anonymization approaches of those kinds. Second, all algorithms proposed in [42] have time com-
plexities exponential in the number n of tuples in the microdata, and there is no experimental
evaluation included in [42] to demonstrate the effectiveness or efficiency of the algorithms. This
leaves open the question of whether or not the algorithms in [42] are applicable in practice.

Our work remedies the deficiencies of [42]. In particular, our privacy model captures all (determin-
istic or randomized) anonymization algorithms that adopt generalization or anatomy. This general
model enables us to design three transparent anonymization algorithms, all of which fall beyond
Zhang et al.’s model as they rely on random choices and/or local recoding. In addition, as will be
shown in Section 3, our algorithms run in O(n2 log n) time, which significantly improves over the
exponential time complexities of Zhang et al.’s techniques. Finally, we will present in Section 4
an extensive experimental study that demonstrates the practical performance of our algorithms in
terms of data utility and computation time.

3 Achieving Transparent l-Diversity

Equipped with the analytical model in Section 2, our next step is to develop transparent anonymiza-
tion algorithms for l-diversity. Ideally, an algorithm should produce anonymizations with minimum
information loss, according to a certain penalty metric h. Specifically, h is a function that, given
a QI-group G, calculates a penalty h(G) based on the tuples in G. Given h, the information loss
of an anonymization T ∗ is computed as

∑

G∈P h(G), where P is the partition underlying T ∗. For
example, the discernability metric deployed in Example 2 corresponds to a function hd such that
hd(G) = |G|2 for any QI-group G.

In the following, we will elaborate three transparent algorithms, each of which can be combined
with any penalty metric h, as long as the metric (i) does not rely on the sensitive values in the input
QI-group, and (ii) is superadditive, i.e., h(G1∪G2) ≥ h(G1)+h(G2) holds for any disjoint QI-groups

13

G1 and G2. For our discussion, we use the perimeter function hp [14, 15] as a representative:

hp(G) = |G| ·
d

∑

i=1

maxt∈G
{

t[Aq
i]
}

−mint∈G
{

t[Aq
i]
}

max
{

Aq
i

}

−min
{

Aq
i

} . (4)

Given a set SG of QI-groups, we refer to
∑

G∈SG
hp(G) as the perimeter of SG.

3.1 The Tailor Algorithm

3.1.1 Algorithm Description

This section presents a transparent algorithm, Tailor, which produces anonymized tables in a man-
ner similar to the construction of kd-trees [11]. Tailor requires the microdata T to be l-eligible.
That is, at most |T |/l tuples in T have the same sensitive value. If T is not l-eligible, Tailor returns
∅, since no l-diverse anonymization of T exists [23].

Given an l-eligible T , Tailor first creates a partition P with only one QI-group G0, which includes
all tuples in T . As a second step, Tailor tries to split G0 into two l-diverse subsets G1 and G2

subject to certain constraints to be clarified later. If splitting is possible, Tailor removes G0 from
P , and inserts G1 and G2 in P . This decreases the perimeter of P . After that, Tailor recursively
splits a QI-group in P , until no QI-group can be divided further, i.e., the perimeter of P has reached
a local minimum. Then, Tailor terminates, and outputs the anonymization decided by P and an
anonymization function (e.g., the MBR function).

Whenever Tailor divides a QI-group G into subsets Ga and Gb, {Ga, Gb} must be an l-cut:

Definition 9 (l-Cut) Let G be a QI-group, l be a positive integer, and c be the maximum number
of tuples in G with the same sensitive value. An l-cut of G on Aq

i (i ∈ [1, d]) is an ordered set
{Ga, Gb} of QI-groups, such that:

1. Ga ∪Gb = G, and Ga ∩Gb = ∅.

2. |Ga| ≥ l · c and |Gb| ≥ l · c.

3. For any ta ∈ Ga and tb ∈ Gb, either (i) ta[A
q
i] < tb[A

q
i], or (ii) ta[A

q
i] = tb[A

q
i] and ta[A

id] <
tb[A

id].

The perimeter of the l-cut is the total perimeter of Ga and Gb.

Condition 2 in Definition 9 implies that G (on which the l-cut is performed) is 2l-diverse. Condition
3 requires, intuitively, that all tuples in Ga must precede those in Gb, along the dimension Aq

i on
which G is divided.

Interestingly, as long as G is 2l-diverse, there exists at least one l-cut on any QI-attribute Aq
i

(i ∈ [1, d]). Such a cut can be found as follows. First, we sort the tuples in G in ascending order of
their Aq

i values. In case two tuples have the same value on Aq
i , the tuple with a smaller identifier

precedes the other. Then, we create Ga by including the first k tuples in the sorted sequence (for
any k ∈

[

l · c, |G| − l · c
]

), and construct Gb using the remaining tuples.

14

Algorithm Tailor (T , l)
1. if T is not l-eligible then return ∅
2. G0 = a QI-group containing all tuples in T , and P = {G0}
3. while there exists a 2l-diverse QI-group G in P
4. {Ga, Gb} = the canonical l-cut of G
5. P = P − {G}+ {Ga, Gb}
6. return the anonymization decided by P and an anonymization fucntion

Figure 3: The Tailor algorithm

The above strategy yields totally d · (|G| + 1 − 2l · c) different l-cuts. Among them, Tailor always
selects the canonical one:

Definition 10 (Canonical l-Cut) The canonical l-cut of a QI-group G is the l-cut with the
smallest perimeter. In case multiple l-cuts have the smallest parameter, the canonical l-cut {Ga, Gb}
is uniquely decided as follows. Assume {Ga, Gb} is on dimension Aq

i (i ∈ [1, d]); then:

1. No l-cut on any Aq
j (j < i) has the same perimeter as {Ga, Gb}.

2. For any l-cut {G′
a, G

′
b} on Aq

i , if {G′
a, G

′
b} and {Ga, Gb} have the same perimeter, it must

hold that |Ga| < |G′
a|.

Note that the canonical l-cut of a QI-group G is determined by (i) the identifiers and QI values in
G, as well as (ii) the maximum number c of tuples in G with the same sensitive value – all of this
information is independent of the concrete sensitive value of any particular tuple. This property is
the key to ensuring transparent l-diversity, as will be discussed in Section 3.1.2.

Figure 3 shows the pseudo-code of Tailor. We demonstrate the algorithm with an example, assuming
that the MBR function is adopted.

Example 4 Let us use Tailor to obtain a transparently 2-diverse generalization of the microdata
T5 in Table 8 (i.e., T = T5 and l = 2). Tailor first verifies that T5 is 2-eligible (Line 1 in Figure 3),
and then initializes a partition P = {G0}, where G0 = T5 (Line 2). The subsequent execution of
Tailor is in iterations (Lines 3-5). In each iteration, Tailor looks for a 4 (= 2l) diverse QI-group G
in P (Line 3). If G does not exist, Tailor terminates, and returns the generalization decided by P
(Line 6). Otherwise, Tailor splits G using its canonical l-cut (Lines 4-5), and replaces G with the
new QI-groups.

Specifically, in the first iteration, the only QI-group G0 in P is 4-diverse, and hence, is chosen to be
split. Tailor identifies c = 2, which, as in Definition 9, is the largest number of tuples in G0 having
the same sensitive value. Then, Tailor proceeds to find the canonical 2-cut of G0. For this purpose,
it needs to obtain the best 2-cut (with the smallest perimeter) along every dimension. Dealing with
Age first, Tailor sorts the tuples in G0 by their Age values, and tries all possibilities of dividing the
sorted list into two parts, each with at least 4 (= 2c) tuples (required by condition 2 in Definition 9).
There is only possibility: {G2, G3}, where G2 = {Ann, Bob, Cate, Don}, and G3 = {Ed, Fred, Gill,
Hera}. Hence, {G2, G3} is the best 2-cut on Age. Switching to dimension Zipcode, Tailor sorts the
tuples in G0 by their Zipcode values, and again, attempts all division possibilities. Again, {G2, G3}

15

Name Age Zipcode Disease
Ann 21 10000 dyspepsia
Bob 27 18000 flu
Cate 32 35000 gastritis
Don 32 35000 gastritis
Ed 54 60000 flu

Fred 60 63000 bronchitis
Gill 60 63000 dyspepsia
Hera 60 63000 diabetes

Table 8: Microdata T5

Age Zipcode Disease
[21, 32] [10k, 35k] dyspepsia
[21, 32] [10k, 35k] flu
[21, 32] [10k, 35k] gastritis
[21, 32] [10k, 35k] gastritis

[54, 60] [60k, 63k] flu
[54, 60] [60k, 63k] bronchitis

60 63000 dyspepsia
60 63000 diabetes

Table 9: Generalization T ∗
6

is the only possibility, and hence, is also the best 2-cut on Zipcode. Hence, {G2, G3} is the canonical
2-cut. Tailor thus replaces G0 with G2 and G3 in P .

In the second iteration, P = {G2, G3}. As G2 is not 4-diverse, it cannot be split. But G3 is 4-diverse,
and thus, is split using its canonical cut {G4, G5}, where G4 = {Ed, Fred} and G5 = {Gill, Hera}.
Now, P becomes {G2, G4, G5}. Since no QI-group is 4-diverse, Tailor returns the generalization T ∗

6

determined by P , as shown in Table 9. �

Tailor is deterministic, i.e., for any T , l, and T ∗, Pr{Tailor(T, l) = T ∗} (see Proposition 1) equals
either 0 or 1. In addition, Tailor has an O(n2 log n) time complexity, where n is the number of
tuples in T . This follows from the facts that (i) Tailor performs at most n/l l-cuts on T , and (ii)
each l-cut takes O(n log n) time.

3.1.2 Proof of Transparent l-Diversity

In this section, we will prove that Tailor ensures transparent l-diversity. The core of our proof is an
analysis on the set S of all possible microdata instances based on the adversary’s external source
E. We will show that S can be divided into several subsets, such that for each subset Ssub, (i)
all instances in Ssub can be transformed to the same anonymization T ∗ by Tailor, and (ii) each
individual in E is assigned many different sensitive values in different instances in Ssub. Intuitively,
when the adversary observes T ∗, s/he would not be able to infer which instance in Ssub is the real
microdata, and hence, the sensitive value of each individual can be concealed.

More specifically, our analysis exploits the isomorphism between partitions. We say that a partition
P1 of a possible microdata instance is isomorphic to a partition P2 of another instance, if and only
if each QI-group in P1 is isomorphic to a QI-group in P2, and vice versa (see Section 2.1 for the
definition of QI-group isomorphism).

Example 5 Consider the partition P of T5 (in Table 8) generated by Tailor in Example 4. P
contains three QI-groups, namely, G2= {Ann, Bob, Cate, Don}, G4 = {Ed, Fred}, and G5 = {Gill,
Hera}. The sensitive values of Ed and Fred are flu and bronchitis, respectively. Suppose that we
modify the two tuples in G4 by swapping their Disease values, such that Ed has bronchitis and
Fred has flu. The resulting QI-group G′

4 is isomorphic to G4, while the partition P ′ = {G2, G
′
4, G5}

isomorphic to P . Note that P ′ is not a partition of T5, but is in fact a partition of the microdata
T3 in Table 4 (this will be useful in demonstrating Lemma 3 later). �

16

Recall that, for any anonymization function f and any two isomorphic QI-groups G1 and G2, we
have f(G1) = f(G2) (see Definition 1). Therefore, once f is fixed, isomorphic partitions always lead
to the same anonymization. For instance, consider the partitions P and P ′ in Example 5. Notice
that, P ′ and the MBR function decide T ∗

6 (in Table 9), which is determined by P and the MBR
function as well. In addition, isomorphic QI-groups have a crucial property:

Lemma 2 Let G and G′ be two isomorphic QI-groups, and {G1, G2} ({G′
1, G

′
2}) be the canonical

l-cut of G (G′). Then, G1 and G′
1 (G2 and G′

2) must involve the same set of individuals.

The above lemma is fairly intuitive. Recall that, the canonical l-cut of a QI-group G depends only
on the identifiers and QI values in G, and is independent of the sensitive values. Since isomorphic
QI-groups contain equivalent identifiers and QI values, their canonical l-cuts divide them in the
same way, and thus Lemma 2 holds. Based on Lemma 2, we derive the following result, which
shows an important characteristic of Tailor.

Lemma 3 Let T1 be a microdata table, l be an integer, and T ∗ = Tailor(T1, l). Let P1 be the
partition of T1 that decides T ∗, P2 be a partition isomorphic to P1, and T2 =

⋃

G∈P2
G. Then,

Tailor(T2, l) = T ∗, and P2 is the partition of T2 that decides T ∗.

For instance, consider the microdata T3, T5 and the partitions P , P ′ in Example 5. We have shown
in Example 4 that Tailor(T5, 2) = T ∗

6 , where T ∗
6 is decided by P . Recall that P ′ is isomorphic to

P , and T3 =
⋃

G∈P ′ G. According to Lemma 3, we have Tailor(T3, 2) = T ∗
6 , i.e., given l = 2, Tailor

transforms both T3 and T5 into T ∗
6 .

The following theorem shows a sufficient condition for transparent l-diversity.

Theorem 1 An l-diversity algorithm G is transparent if it satisfies the following condition: For
any microdata T1 such that G(T1, l) = T ∗, we have G(T2, l) = T ∗ for a microdata table T2, if T2 has
a partition isomorphic to the partition of T1 that decides T ∗.

By Lemma 3, Tailor satisfies the sufficient condition in Theorem 1, which proves that Tailor is a
transparent algorithm.

3.2 The Ace Algorithm

This section discusses another algorithm, Ace (assign and slice), which first appeared in [40] as part
of a solution to anonymizing dynamic datasets. Here, we present non-trivial proofs on the privacy
guarantee of Ace against adversaries who have full knowledge of the algorithm.

3.2.1 Algorithm Description

Let us first introduce several concepts. Given a QI-group B, we define the signature of B as the
set of sensitive values in B. A column of B refers to a maximal set of tuples in B with the same

17

Ann Bob
Gill Ed

dyspepsia flu

B1

Don Fred
gastritis bronchitis

B2

Hera Cate
diabetes gastritis

B3

Figure 4: Bucket Partition U1

sensitive value. B is a bucket, if all of its columns contain an equal number of tuples. A partition
U is a bucket partition, if each QI-group in U is a bucket.

For example, consider a QI-group B1 of the microdata T5 in Table 8, where B1 = {Ann, Bob, Ed,
Gill}. The signature of B1 is {dyspepsia, flu}. B1 contains two columns, L1 = {Ann, Gill} and
L2 = {Bob, Ed}, where all tuples in L1 (L2) have sensitive value dyspepsia (flu). Since |L1| = |L2|,
B1 is a bucket. Let B2 and B3 be another two QI-groups of T5, such that B2 = {Don, Fred} and
B3 = {Cate, Hera}. It can be verified that, B2 and B3 are also buckets. Therefore, the partition
U1 = {B1, B2, B3} is a bucket partition of T5. Figure 4 illustrates U1.

Apparently, U1 is 2-diverse. Suppose that we divide B1 into two smaller buckets, B4 = {Ann, Bob}
and B5 = {Gill, Ed}, both having the same signature as B1. The partition U ′

1 = {B2, B3, B4, B5} is
also 2-diverse, and has a lower perimeter than U1. In general, given any l-diverse bucket partition
U , we may reduce its perimeter by splitting the buckets in U , without violating l-diversity. This
strategy is adopted by Ace. In particular, whenever Ace splits a bucket B, the resulting sub-buckets
always constitute a division of B, as defined below:

Definition 11 (Division) A division of a bucket B on Aq
i (i∈ [1, d]) is an ordered set {Ba, Bb}

of buckets, such that:

1. Ba ∪Bb = B, and Ba ∩Bb = ∅.

2. B, Ba and Bb have an identical signature.

3. For any two tuples ta ∈ Ba and tb ∈ Bb with the same sensitive value, we have either (i)
ta[A

q
i] < tb[A

q
i], or (ii) ta[A

q
i] = tb[A

q
i] and ta[A

id] < tb[A
id].

The perimeter of the division equals the perimeter of {Ba, Bb}. A bucket is divisible, if each of
its columns has at least two tuples.

Given a bucket B with x columns, we can obtain a division {Ba, Bb} of B on Aq
i (i ∈ [1, d]) as follows.

First, we sort the tuples in each column of B in ascending order of their Aq
i values. Whenever two

tuples have an identical value on Aq
i , the tuple with a smaller identifier precedes the other. This

results in x sorted sequences. To construct Ba, we can remove an equal number of tuples from the
top of each sequence, and insert them into Ba. After that, Bb can be formed using the remaining
tuples.

A bucket may have multiple divisions. In a way similar to canonical l-cuts, we formulate canonical
division as:

Definition 12 (Canonical Division) The canonical division of a bucket B is the division with
the smallest perimeter. In case multiple divisions have the smallest perimeter, the canonical division
{Ba, Bb} is uniquely decided as follows. Assume {Ba, Bb} is on dimension Aq

i (i ∈ [1, d]); then:

18

Algorithm Ace (T , l)
1. if T is not l-eligible then return ∅
2. U = Assign(T, l)
3. U ′ = Slice(U)
4. return the generalization decided by U ′ and an anonymization function

Figure 5: The Ace algorithm

1. No division on any Aq
j (j < i) has the same perimeter as {Ba, Bb}.

2. For any division {B′
a, B

′
b} on Aq

i , if {Ba, Bb} and {B′
a, B

′
b} have the same perimeter, it must

hold that |Ba| < |B′
a|.

As with canonical l-cuts, the canonical division of a bucket B is irrelevant to the sensitive values in
B. Instead, it is decided only by the identifiers and QI values in each column. In Section 3.2.2, we
will exploit this property to prove that Ace is transparent.

Figure 5 illustrates the pseudo-code of Ace. Given a microdata T and a positive integer l, Ace first
verifies whether T is l-eligible. After that, it invokes a subroutine Assign (in Figure 6) to construct
an l-diverse bucket partition U of T . Next, Ace employs the Slice algorithm (in Figure 8) to split
the buckets in U , and obtains a refined partition U ′ of T . In particular, the construction of U is
performed without inspecting the QI values of the tuples, while the split of each bucket in U is based
on canonical divisions, which are independent of the sensitive value in each column of the bucket.
In other words, Assign and Slice do not rely on the correlations between the QI and sensitive values,
which helps achieve transparent l-diversity. Finally, Ace returns the generalization decided by U ′.
In the following, we explain the details of Ace with an example, assuming that the MBR function
is adopted.

Example 6 Assume that we apply Ace on the microdata T5 in Table 8, with l = 2. Ace begins by
checking whether T5 is l-eligible. Since T5 is 2-eligible, Ace invokes Assign to construct a bucket
partition U of T5.

Assign first sets U = ∅, and creates a set St containing all tuples in T5 (Lines 1-3 in Figure 6).
After that, Assign iteratively removes tuples from St to construct buckets in U , until St is empty
(Lines 4-13). In each iteration, Assign first counts the frequency of each sensitive value in St (Lines
5-6), and then builds a bucket B, such that (i) the signature of B consists of the β most frequent
sensitive values in St, and (ii) each column of B contains α tuples in St. The values of α and β
are decided in Lines 7-10, which, as explained in [40], guarantee that (i) β ≥ l, (ii) α ≥ 1, and (iii)
Assign always terminates5. For our discussion, it suffices to know that, α and β depend only on the
size of St and the sensitive values in St. Since β ≥ l, any bucket B created by Assign is l-diverse.

In the first iteration, St = T5, and α = β = 2 (calculated by Lines 7-10). Figure 7(a) illustrates the
tuples in St. Assign first creates a bucket B1 whose signature consists of the β = 2 most frequent
sensitive values in St. As shown in Figure 7(a), there exist three sensitive values in St, dyspepsia,

5Intuitively, Assign always terminates, because (i) each iteration of Assign removes α · β > 0 tuples from St, and
hence, (ii) St will become empty after a certain number of iterations, in which case Assign stops by returning the
bucket partition U it constructs (see Lines 3 and 13 in Figure 6).

19

Algorithm Assign (T , l)
1. initialize a partition U = ∅
2. w = the number of distinct As value in T
3. St = T

/∗ The tuples in St will be iteratively removed to construct buckets in U ∗/
4. while St 6= ∅

/∗ Lines 5-12 create a new bucket in U using tuples from St ∗/
5. let vi (i ∈ [1, w]) be the i-th most frequent As value in the current St

/∗ Ties are resolved by a total ordering on As (see Example 6) ∗/
6. let ni (i ∈ [1, w]) be the number of tuples in St with sensitive value vi
7. β = l

/∗ the new bucket’s signature will contain the β most frequent As values in St ∗/
8. α = the largest positive integer satisfying three inequalities:

α ≤ nβ, n1 − α ≤ |St|−α·β
l

, and nβ+1 ≤ |St|−α·β
l

/∗ the new bucket will contain α tuples for each sensitive value in its signature ∗/
8. if α does not exist
9. β = β + 1; goto Line 7
10. create in U a bucket B with a signature {v1, ..., vβ}
11. for i = 1 to β
12. from St, randomly remove α tuples whose sensitive values equal vi, and insert

those tuples into B
13. return U

Figure 6: The Assign algorithm

flu, and gastritis, that have the same highest frequency. To pick two of the three diseases, Assign
resorts to a total ordering. In general, any total ordering works, but for our illustration, we use the
alphabetic order, in which case the signature of B1 is selected as {dyspepsia, flu}. Next, for each
disease in the signature, Assign adds α = 2 tuples to B1. As a consequence, B1 contains four tuples
{Ann, Bob, Gill, Ed}, as illustrated in Figure 4. The tuples in B1 are then removed from St.

In the second iteration, St contains four tuples, as shown in Figure 7(b). This time, α = 1 and
β = 2. Hence, Assign yields a bucket B2 with signature {gastritis, bronchitis} (gastritis is picked
as it has the highest frequency in St; bronchitis is chosen because it alphabetically ranks before
diabetes). Accordingly, Assign inserts two tuples into B2: one with a sensitive value gastritis, and
the other one with bronchitis. As there are two tuples having bronchitis, the one to appear in B2

is randomly chosen; suppose that we pick Don. This leads to B2 = {Don, Fred}, as illustrated in
Figure 4. Don and Fred are then evicted from St, as shown in Figure 7(c).

Similarly, the third iteration constructs a bucket B3 = {Hera, Cate} (see Figure 4). Then, St

becomes empty, and hence, Assign terminates with a bucket partition U={B1, B2, B3}.

As the second step, Ace applies Slice to divide the buckets in U into smaller QI-groups. Slice also
runs in iterations. In each iteration, it first identifies a divisible bucket B in U (Line 1 in Figure 8),
and then, splits B using its canonical division {Ba, Bb}. This is repeated until no bucket in U is
divisible.

In our example, the input to Slice is the bucket partition U = {B1, B2, B3} in Figure 4. B1 is the
only divisible bucket. To determine the canonical division of B1, Slice finds the best division on each
dimension (with the lowest perimeter). It turns out that, on both dimensions Age and Zipcode, the

20

Tuples in St

Fred (bronchitis)
Hera (diabetes)
Ann, Gill (dyspepsia)
Bob, Ed (flu)
Cate, Don (gastritis)

(a) Before B1 Is
Constructed

Tuples in St

Fred (bronchitis)
Hera (diabetes)

Cate, Don (gastritis)

(b) Before B2 Is
Constructed

Tuples in St

Hera (diabetes)

Cate (gastritis)

(c) Before B3 Is
Constructed

Figure 7: Changes in St During the Execution of Assign in Example 6

Algorithm Slice (U)
1. while there exists a divisible bucket B in U
2. {Ba, Bb} = the canonical division of B
3. U = U − {B}+ {Ba, Bb}
4. return U

Figure 8: The Slice algorithm

best division is {B4, B5}, where B4 = {Ann, Bob} and B5 = {Gill, Ed}. Thus, {B4, B5} becomes
the canonical division. Therefore, Slice removes B1 from U , and inserts B4 and B5 instead, leading
to U = {B2, B3, B4, B5}. As no bucket in U is divisible, Slice returns U to Ace. Finally, Ace reports
the generalization T ∗

7 (in Table 10) decided by U . �

Ace is a randomized algorithm, due to the randomness in its component Assign. Furthermore,
Ace has an O(n2 log n) time complexity, where n is the number of tuples in T . To understand
this, observe that Assign runs in O(n) time (we regard the number of distinct As values in T as
a constant). On the other hand, Slice has an O(n2 log n) time complexity, since (i) each bucket
B generated from Assign is divided by Slice exactly |B|/l times, (ii) each division of B incurs
O(|B| log |B|) overhead, and (iii) the sizes of all buckets add up to n. Since Ace is a composition of
Assign and Slice, its time complexity is O(n2 log n).

3.2.2 Proof of Transparent l-Diversity

This section proves that Ace achieves transparent l-diversity. Our analysis utilizes a crucial concept,
the symmetry between buckets.

Definition 13 (Symmetry) Two buckets B1 and B2 are symmetric, if and only if (i) B1 and
B2 have the same signature, and (ii) for any column L1 ⊆ B1, there exists a column L2 ⊆ B2, such
that L1 and L2 involve the same set of individuals. Two bucket partitions U1 and U2 are symmetric,
if each bucket in U1 is symmetric to a bucket in U2, and vice versa.

Consider, for example, the bucket partition U1 in Figure 4. Bucket B1 ∈ U1 contains two columns
L1 = {Ann, Gill} and L2 = {Bob, Ed}. Suppose that we exchange the sensitive values between L1

and L2, by setting the sensitive values of the tuples in L1 (L2) to flu (dyspepsia). Then, we obtain
a bucket B′

1 symmetric to B1, as shown in Figure 9. The bucket partition U2 = {B′
1, B2, B3} is

21

Age Zipcode Disease
[21, 27] [10k, 18k] dyspepsia
[21, 27] [10k, 18k] flu

[54, 60] [60k, 63k] dyspepsia
[54, 60] [60k, 63k] flu

[32, 60] [35k, 63k] gastritis
[32, 60] [35k, 63k] bronchitis
[32, 60] [35k, 63k] diabetes
[32, 60] [35k, 63k] gastritis

Table 10: Generalization T ∗
7

Name Age Zipcode Disease
Ann 21 10000 flu
Bob 27 18000 dyspepsia
Cate 32 35000 gastritis
Don 32 35000 gastritis
Ed 54 60000 dyspepsia

Fred 60 63000 bronchitis
Gill 60 63000 flu
Hera 60 63000 diabetes

Table 11: Microdata T8

Bob Ann
Ed Gill

dyspepsia flu

B′
1

Don Fred
gastritis bronchitis

B2

Hera Cate
diabetes gastritis

B3

Figure 9: Bucket partition U2

symmetric to U1. In general, we can obtain any symmetric counterpart of a bucket B, by swapping
the sensitive values between different columns of B.

Interestingly, the canonical division of a symmetric bucket always results in symmetric sub-buckets:

Lemma 4 Let B and B′ be two symmetric buckets, and {B1, B2} ({B′
1, B

′
2}) be the canonical

division of B (B′). Then, B1 and B′
1 (B2 and B′

2) are symmetric.

The rationale behind Lemma 4 is similar to that of Lemma 2. Specifically, since B and B′ are
symmetric, each column L in B can be mapped to a column L′ in B′, such that L and L′ involve
an identical set of identifiers and QI values. Recall that the canonical division of a bucket depends
only on identifiers and QI-values, and is irrelevant to sensitive values. Hence, the canonical division
of B has the same effect as that of B′, thus establishing Lemma 4. The lemma naturally leads to
the following result.

Lemma 5 Let U1 and U2 be two symmetric bucket partitions. Let U ′
1 = Slice(U1) and U ′

2 =
Slice(U2). Then, U ′

1 and U ′
2 are symmetric.

Assign also has an interesting property related to symmetric buckets:

Lemma 6 Let T1 be a microdata table, l an integer, and U1 a possible output of Assign(T1, l). Let
U2 be a bucket partition symmetric to U1, and T2 =

⋃

B∈U2
B. Then, Pr

{

Assign(T1, l) = U1

}

=

Pr
{

Assign(T2, l)=U2

}

.

For instance, consider the symmetric bucket partitions U1 and U2 in Figures 4 and 9, respectively.
U1 (U2) is a partition of the microdata T5 in Table 8 (T8 in Table 11). By Lemma 6, the probability
that Assign(T5, 2) returns U1 equals the probability that Assign(T8, 2) outputs U2.

We prove that Ace ensures transparent l-diversity by combining Lemmas 5 and 6 with the following
theorem, which states a sufficient condition for transparent l-diversity.

22

Theorem 2 Let GA and GB be two algorithms as follows:

1. GA takes as input a microdata table T1 and a positive integer l, and outputs a bucket partition
U1 of T1, such that for any bucket partition U2 symmetric to U1, we have Pr

{

GA(T1, l) = U1

}

= Pr
{

GA(T2, l)=U2

}

, where T2 =
⋃

B∈U2
B.

2. GB is a deterministic algorithm that takes as input a bucket partition U and outputs another
bucket partition, such that for any bucket partition U ′ symmetric to U , GB(U) is always
symmetric to GB(U

′).

Let G be an l-diversity algorithm that first applies GA on the input microdata, then invokes GB on
the bucket partition output from GA, and finally returns the anonymization decided by the bucket
partition generated from GB. G is transparent.

By Lemma 6 (Lemma 5), Assign (Slice) satisfies the requirements for GA (GB) stated in Theorem 2;
therefore, Ace (as a combination of Assign and Slice) is a transparent algorithm.

3.3 The Hybrid Algorithm

This section develops a new algorithm Hybrid that combines Tailor and Ace. Hybrid is motivated
by, and overcomes the drawbacks of, Tailor and Ace. We will first explain those drawbacks, and
then, elaborate the details of Hybrid.

Given a microdata T and an integer l, Tailor initiates a partition P = {T}, and then iteratively
refines P , by splitting the QI-groups of P into smaller ones. However, once a QI-group violates
2l-diversity, it is ignored by Tailor, even if it can be further divided. As a result, Tailor sometimes
spawns QI-groups with many tuples, entailing high information loss. For example, consider the 2-
diverse generalization T ∗

6 (Table 9), which is produced by Tailor in Example 4. The first QI-group
G1 in T ∗

6 has four tuples {Ann, Bob, Cate, Don} in T5 (Table 8). In fact, G1 can be further split
into 2-diverse QI-groups {Ann, Cate} and {Bob, Don}. Tailor fails to see the split because G1 is
not 4-diverse.

Ace does not suffer from the above defect, but its random nature may occasionally create poor
QI-groups. Recall that, Ace employs Assign to obtain an l-diverse bucket partition U of T . Let us
revisit the way Assign builds a bucket B in U : Assign first decides the signature of B, and then
determines each column in B, using tuples randomly selected from T . The distribution of QI values
in each column of B may vary significantly. For instance, in Example 6, Assign generates a bucket
B3 with signature {diabetes, gastritis}. Diabetes usually affects people over 40, while gastritis is
common for all ages. Therefore, when Assign constructs the diabetes column, the random samples
from T are likely to have large Age values. In contrast, the gastritis column may contain individuals
with any ages.

This (QI-distribution) difference becomes problematic in Slice, which Ace deploys to refine the
bucket partition U output by Assign. As explained in Section 3.2.1, Slice splits each bucket B ∈ U
into non-divisible buckets (a.k.a QI-groups), each of which has exactly one tuple from every column
of B. If the columns of B have diverse QI-distributions, the tuples in a final non-divisible QI-group
may have dissimilar QI values. After anonymization, such a QI-group would incur large information
loss.

23

Algorithm Hybrid (T , l)
1. if T is not l-eligible then return ∅
2. G0 = a QI-group containing all tuples in T , and P = {G0}
3. while there exists a 2l-diverse QI-group G in P
4. {Ga, Gb} = the canonical l-cut of G
5. P = P − {G}+ {Ga, Gb}
6. T ∗ = ∅
7. for each QI-group Gi ∈ P
8. T ∗

i = Ace(Gi, l)
9. T ∗ = T ∗ ∪ T ∗

i

10. return T ∗

Figure 10: The Hybrid algorithm

Hybrid, as in Figure 10, remedies the deficiencies of Tailor and Ace by running the two algorithms
consecutively. Specifically, Hybrid first computes a partition P of T using Tailor. In particular,
Lines 1-5 in Figure 10 are identical to Lines 1-5 in Figure 3. As the second step, Hybrid treats each
QI-group in P as a tiny microdata table, and invokes Ace to generalize the QI-group (Lines 6-10).

By employing Ace to refine P , Hybrid outputs QI-groups with (much) fewer tuples than Tailor,
thus avoiding the defect of Tailor. Meanwhile, compared to Ace, Hybrid incurs lower information
loss, by executing Ace on each QI-group in P , where tuples already have similar QI values. The
following theorem shows that Hybrid is transparent.

Theorem 3 Let T be a microdata table, l be a positive integer, and T ∗ be any possible output of
Hybrid(T, l). Given any external source E for T , we have risk(o) ≤ 1/l for any individual o.

Finally, we point out that Hybrid has an O(n2 log n) time complexity, where n is the number of
tuples in T . This follows from the O(n2 log n) complexity of both Tailor and Ace.

4 Experiments

In the earlier sections, we have proved the privacy guarantees of our transparent algorithms. A
natural question is, how do they compare with the existing solutions in terms of data utility and
computation overhead (remember that no previous solution is transparent, i.e., it does not ensures
anonymity, when an adversary knows the algorithm details)? In the sequel, we answer this question
with empirical evidence that validates the effectiveness and efficiency of our algorithms. First,
Section 4.1 clarifies the experiment settings, and then Sections 4.2 and 4.3 present detailed results.

4.1 Experimental Setting

Following previous work [14, 40], we employ two real-world datasets, OCC and SAL, extracted
from the Integrated Public Use Microdata Series [30]. Both datasets consist of 600k tuples, each
containing the information of an American adult. OCC has a sensitive attribute Occupation, and
four QI attributes, Age, Gender, Education, and Birthplace. SAL has the same QI attributes, but

24

Age Gender Education Birthplace Occupation Income
Size 79 2 17 57 50 50

Table 12: Attribute domain sizes

Parameter Values
l 6, 7, 8, 9, 10

Query dimensionality qd 2, 3, 4, 5
Expected selectivity s 2%, 4%, 6%, 8%, 10%

Table 13: Parameters and Tested Values

a different sensitive attribute Income. All attributes have integer domains. Table 12 presents their
domain sizes.

We compare our techniques (adopting the MBR function) against two l-diversity generalization
algorithms, Mondrian [20] and Mask [36]. The former is a popular technique in the literature [7,
21, 27, 29], due to its simplicity and effectiveness. Mask, on the other hand, is an existing approach
that does not assume adversaries with zero algorithm knowledge (nevertheless, as explained in
Sections 1 and 2.3, Mask is not transparent, as it can prevent only minimality attacks). We apply
each algorithm to compute l-diverse generalizations of OCC and SAL, using various values of l6.
Note that the generalizations produced by our solutions are guaranteed to be transparent l-diverse,
whereas those by the other methods are not.

In accordance with [14, 36, 40], we evaluate the utility of a generalized table T ∗ by using it to
answer count queries about the underlying microdata T . Each query has the form:

SELECT COUNT(*) FROM T
WHERE pred(Aq

1) AND ... AND pred(Aq
4) AND pred(As)

where pred(A) denotes a predicate on A. Predicates are generated based on two parameters: query
dimensionality qd and expected selectivity s. Specifically, given qd∈ [2, 5] and s∈ (0, 1), we create
a set SA that contains the sensitive attribute As of T , and qd−1 QI attributes randomly selected.
Then, for each A ∈ SA, we set pred(A) to “A ∈ I”, where I is a random interval on A, enclosing
a fraction s1/qd of the values in A. Finally, for each A′ /∈ SA, pred(A

′) is “A′ = ∗”. By requiring
qd ≥ 2 and As∈SA, we aim to examine how well T ∗ preserves the correlation between the QI and
sensitive attributes.

On each generalized table, we process several query workloads, each of which contains 1000 queries
with identical qd and s. We gauge the utility of T ∗ by the average workload error computed as
follows. For each query, we derive its exact result act from T , and compute an estimated answer
est from T ∗ using the approximation technique in [20]. The error of est is defined as |act−est|

max{act,δ} ,

where δ is set to 0.5% of the dataset cardinality. Then, the workload error equals the average error
of all queries in the workload. Note that δ is introduced to prevent the workload error from being
dominated by queries with exceedingly small results (similar approaches are adopted in [13, 33]).

Table 13 summarizes the experiment parameters. Unless otherwise specified, we always set the

6Mask requires two parameters k and l (k ≥ l) to generate an l-diverse table. We set k = l in our experiments,
since a smaller k leads to a generalized table with higher utility, as shown in [36].

25

HybridTailor Ace MondrianMask

0%

10%

20%

30%

40%

50%

109876
l

average relative error

0%

10%

20%

30%

40%

50%

109876
l

average relative error

(a) OCC (b) SAL

Figure 11: Query Accuracy vs. l

Age Gender Education Birthplace
Occupation 0.49 0.62 0.28 0.38
Income 0.71 0.87 0.41 0.50

Table 14: Correlation Ratio between Attributes

parameters to their default values, i.e., the bold numbers in Table 13. All experiments are performed
on a computer with a 1.8GHz CPU and 1GB memory.

4.2 Utility of Generalization

The first set of experiments evaluates the information loss incurred by each algorithm. Figure 11
illustrates the results as a function of l. As expected, the error of all methods escalates with l,
since a larger l implies a more stringent anonymity requirement, which, in turn, demands more
aggressive generalization. Hybrid and Mondrian have the best overall performance. This is a strong
evidence indicating that the heuristics of Hybrid are highly effective. In particular, even though
Hybrid must guarantee transparency, it still offers almost the same utility compared to Mondrian
(which is non-transparent).

Tailor and Ace exhibit worse performance than Hybrid. This is not surprising because, as mentioned
in Section 3.3, Hybrid is designed to overcome the shortcomings of Tailor and Ace. Mask incurs
larger error than Hybrid in all cases, even though the former is vulnerable to adversaries with full
algorithm knowledge (recall that Mask prevents only minimality attacks).

Each algorithm demonstrates similar behavior regardless of the dataset, except that Ace performs
worse on SAL than on OCC. To explain this, we observe that the incomes depend heavily on people’s
ages and education. Hence, when Ace employs Assign to create a partition U of SAL, each bucket
in U contains tuples with very different QI values, due to the reason explained in Section 3.3. As
a result, the QI-groups returned by Ace have long generalized intervals, rendering low data utility.
The above phenomenon does not exist on OCC because occupation is much less correlated to the
QI-attributes. To support our analysis, Table 14 shows the correlation ratios [16] between the QI
and sensitive attributes of OCC and SAL. A larger ratio indicates stronger correlation.

To study the influence of query dimensionality qd, Figure 12 plots the workload error as a function
of qd. The relative performance of alternative algorithms remains the same as in Figure 11. In

26

HybridTailor Ace MondrianMask

0%

10%

20%

30%

40%

50%

60%

5432
query dimensionality qd

average relative error

0%
10%
20%
30%
40%
50%
60%
70%
80%

5432
query dimensionality qd

average relative error

(a) OCC (b) SAL

Figure 12: Query Accuracy vs. Query Dimensionality qd

HybridTailor Ace MondrianMask

0%
10%
20%
30%
40%
50%
60%
70%

10%8%6%4%2%
expected selectivity s

average relative error

0%
10%
20%
30%
40%
50%
60%
70%

10%8%6%4%2%
expected selectivity s

average relative error

(a) OCC (b) SAL

Figure 13: Query Accuracy vs. Expected Selectivity s

particular, Hybrid and Mondrian permit highly accurate counting analysis; their maximum error
is less than 10%. Each algorithm has better query precision when the query dimensionality qd
is higher. To understand this, recall that each query predicate either includes the whole domain
of an attribute, or is an interval covering s1/qd of the domain. When s is fixed but qd increases,
s1/qd becomes greater, implying wider query intervals, which lead to smaller error, as explained in
[38]. Figure 13 shows the error when the expected selectivity s grows from 2% to 10%. Again, the
relative superiority of different algorithms is the same. Their error decreases when s increases, as
is consistent with the experiment results in [14, 36, 40].

In summary, Hybrid and Mondrian produce generalizations with similar data utility, and both
significantly outperform Tailor, Ace, and Mask. Therefore, overall Hybrid is the best anonymization
technique, since it promises much stronger privacy guarantee than Mondrian.

4.3 Computation Overhead

Having examined the effectiveness of the proposed solutions, we proceed to evaluate their efficiency.
In order to inspect their scalability with the dataset cardinality, based on OCC (SAL), we generate
microdata tables with various cardinalities. Specifically, given a multiple n of 600k, a table with n
tuples is synthesized by including n/600k copies of OCC (SAL). Figure 14 shows the generalization
time of each method, as a function of n. The running time of Mask exhibits a superlinear increase
with n, while the other algorithms scale almost linearly. Hybrid requires slightly higher overhead

27

HybridTailor Ace MondrianMask

10

100

1000

9.64.82.41.20.6
dataset cardinality n (× 106)

computation time (sec)

10

100

1000

9.64.82.41.20.6
dataset cardinality n (× 106)

computation time (sec)

(a) OCC (b) SAL

Figure 14: Computation Time vs. Dataset Cardinality n

HybridTailor Ace MondrianMask

0
2
4
6
8

10
12
14
16

109876
l

computation time (sec)

0
2
4
6
8

10
12
14
16
18

109876
l

computation time (sec)

(a) OCC (b) SAL

Figure 15: Computation Time vs. l

than Mondrian. This is not a serious disadvantage because (i) the difference is not large, (ii)
the disadvantage is the compensated by the transparency of Hybrid, and (iii) anonymization is an
offline process, so it is reasonable to spend a little more time preparing a publication that safeguards
privacy better.

Utilizing the 600k datasets, in Figure 15, we inspect the computation overhead as a function of l.
The running time of Ace, Mondrian, and Mask is insensitive to l. In contrast, the processing cost
of Tailor and Hybrid decreases rapidly as l grows. Recall that, Tailor works by iteratively dividing
QI-groups, until all QI-groups violate 2l-diversity. As l increases, fewer 2l-diverse QI-groups exist;
hence Tailor terminates earlier. Hybrid has similar behavior because it deploys Tailor as the first
step.

In summary, Hybrid is ideal for practical applications because its computation cost enjoys linear
scalability to the dataset cardinality. In particular, it anonymizes a dataset with nearly 10 million
tuples within 5 minutes (see Figure 14).

5 Related Work

The works closest to ours are due to [36] and [42]. Since they has been discussed extensively
in Sections 1 and 2.3, the following review concentrates on the rest of the literature on privacy
preserving data publishing.

28

A bulk of the literature focuses on designing privacy principles. The earliest principle, k-anonymity
[31], requires that every QI-group should contain at least k tuples. [23] point out that a k-anonymous
table may still incur privacy breach, unless each QI-group includes sufficiently diverse sensitive
values. This observation leads to the concept of l-diversity, which has several instantiations, e.g.,
entropy l-diversity, recursive (c, l)-diversity, as discussed in Section 2.1. Besides k-anonymity and
l-diversity, numerous other privacy principles [7, 8, 18, 21, 22, 25, 27, 34, 37, 39, 40, 36, 43, 42]
have been developed to offer different flavors of privacy protection, by placing various constraints
on the contents of QI-groups. Our transparent l-diversity principle distinguishes itself from all the
previous principles, in that it guarantees privacy even when the anonymization process is public
knowledge.

Generalization algorithms is another well-explored topic [1, 6, 12, 14, 19, 20, 21, 15, 35, 37, 40, 41, 36,
42]. These solutions aim at minimizing the information loss, according to different anonymization
constraints (e.g., global/local recoding) and measurements of loss (e.g., discernibility). Many of
them are initially devised for k-anonymity, but can be modified to support l-diversity and other
principles, as explained in [23]. However, except the algorithms proposed in [40, 42], none of these
algorithms is transparent. In other words, they can no longer ensure the privacy guarantee of the
underlying principle, when an adversary is aware of the details of the algorithm.

Other problems related to generalization have also attracted considerable research efforts. Specif-
ically, optimal k-anonymous generalization has been shown to be NP-hard in [3, 26, 28], which
also develop approximation algorithms with provable worst-case quality guarantees. [2] shows that
when the number of QI attributes is large, it is simply impossible to achieve k-anonymity with-
out substantial information loss (even when k is small). [38] develop anatomy as an alternative
anonymization technique that achieves higher data utility than generalization does.

In addition, there exist several anonymization techniques [4, 9, 10, 24, 32] that do not adopt gen-
eralization. Instead, they anonymize microdata by adding random “noise” into the data, i.e., by
replacing a fraction of tuples in the microdata with randomly generated tuples [4, 10, 32], or by
deriving the tuple distribution in the microdata and then publishing a noisy version of the distri-
bution [9, 24]. These techniques are designed by assuming that the process for generating random
“noise” is known to the public, and hence, they do not suffer from reverse engineering attacks.

6 Conclusions

Most existing anonymization techniques fail to protect privacy against adversaries with full knowl-
edge of the anonymization mechanism. In this paper, we remedy the problem with two important
contributions. First, we provide a thorough analysis on the disclosure risks in the anonymized ta-
bles, assuming that the anonymization algorithm is public knowledge. This analysis leads to the
formulation of transparent l-diversity, which ensures small disclosure risks in an anonymized table,
even if everything involved in the anonymization process, except the microdata, is revealed to the
public. Second, we identify three anonymized algorithms that can enforce transparent l-diversity,
and demonstrate their practical usefulness through extensive experiments.

This work also lays down a solid foundation for future research. First, our analysis focuses on l-
diversity due to its popularity in the literature. However, the concept of transparent anonymization
is general, and can be integrated with any other principle (e.g., t-closeness [22], δ-presence [27]).

29

It is an interesting direction to design transparent generalization algorithms for those principles.
Second, the proposed solutions are heuristic in nature, and do not have attractive asymptotical per-
formance guarantees. It is a challenging problem to study theoretical transparent algorithms. Note
that the existing findings (including the complexity results, approximation algorithms, etc.) were
derived for conventional generalization, and hence, are not immediately applicable to transparent
anonymization.

Acknowledgements

This work was supported by the Nanyang Technological University under SUG Grant M58020016
and an AcRF Tier 1 Grant, and by the Hong Kong Research Grants Council under GRF Grants
4169/09, 4173/08, and 4161/07.

References

[1] C. Aggarwal, J. Pei, and B. Zhang. On privacy preservation against adversarial data mining.
In SIGKDD, pages 510–516, 2006.

[2] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB, pages 901–909,
2005.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu.
Anonymizing tables. In ICDT, pages 246–258, 2005.

[4] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving OLAP. In SIGMOD, pages
251–262, 2005.

[5] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to
degrees of belief. Artif. Intell., 87(1-2):75–143, 1996.

[6] R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE, pages
217–228, 2005.

[7] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization for incremental datasets.
In Secure Data Management, pages 48–63, 2006.

[8] B.-C. Chen, R. Ramakrishnan, and K. LeFevre. Privacy skyline: Privacy with multidimensional
adversarial knowledge. In VLDB, pages 770–781, 2007.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. pages 265–284, 2006.

[10] A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving
data mining. In PODS, pages 211–222, 2003.

[11] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. TOMS, 3(3):209–226, 1977.

30

[12] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy
preservation. In ICDE, pages 205–216, 2005.

[13] M. N. Garofalakis and A. Kumar. Wavelet synopses for general error metrics. TODS, 30(4):888–
928, 2005.

[14] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with low infor-
mation loss. In VLDB, pages 758–769, 2007.

[15] V. Iyengar. Transforming data to satisfy privacy constraints. In SIGKDD, pages 279–288,
2002.

[16] M. Kendall and A. Stuart. The Advanced Theory of Statistics. MacMillan, New York, 4th
edition, 1979.

[17] D. Kifer. Attacks on privacy and definetti’s theorem. In SIGMOD, pages 127–138, 2009.

[18] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In SIGMOD, pages 217–228,
2006.

[19] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity.
In SIGMOD, pages 49–60, 2005.

[20] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In ICDE, 2006.

[21] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymization. In KDD,
pages 277–286, 2006.

[22] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-
diversity. In ICDE, pages 106–115, 2007.

[23] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy
beyond k-anonymity. TKDD, 1(1), 2007.

[24] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory
meets practice on the map. In ICDE, pages 277–286, 2008.

[25] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Y. Halpern. Worst-case back-
ground knowledge for privacy-preserving data publishing. In ICDE, pages 126–135, 2007.

[26] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, pages
223–228, 2004.

[27] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of individuals from shared
databases. In SIGMOD, pages 665–676, 2007.

[28] H. Park and K. Shim. Approximate algorithms for k-anonymity. In SIGMOD, pages 67–78,
2007.

[29] J. Pei, J. Xu, Z. Wang, W. Wang, and K. Wang. Maintaining k-anonymity against incremental
updates. In SSDBM, 2007.

31

[30] S. Ruggles, M. Sobek, T. Alexander, C. A. Fitch, R. Goeken, P. K. Hall, M. King, and C. Ron-
nander. Integrated public use microdata series: Version 3.0 [machine-readable database]. 2004.
http://ipums.org.

[31] P. Samarati. Protecting respondents’ identities in microdata release. TKDE, 13(6):1010–1027,
2001.

[32] Y. Tao, X. Xiao, J. Li, and D. Zhang. On anti-corruption privacy preserving publication. In
ICDE, pages 725–734, 2008.

[33] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse
data using wavelets. In SIGMOD, pages 193–204, 1999.

[34] K. Wang and B. C. M. Fung. Anonymizing sequential releases. In SIGKDD, pages 414–423,
2006.

[35] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: a data mining solution to
privacy protection. In ICDM, pages 249–256, 2004.

[36] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving
data publishing. In VLDB, pages 543–554, 2007.

[37] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α, k)-anonymity: an enhanced k-anonymity
model for privacy preserving data publishing. In SIGKDD, pages 754–759, 2006.

[38] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In VLDB, pages
139–150, 2006.

[39] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, pages 229–240, 2006.

[40] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-publication of dynamic
datasets. In SIGMOD, pages 689–700, 2007.

[41] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based anonymization using
local recoding. In SIGKDD, pages 785–790, 2006.

[42] L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure under realistic assumptions:
privacy versus optimality. In CCS, pages 573–583, 2007.

[43] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query answering on anonymized
tables. In ICDE, pages 116–125, 2007.

APPENDIX I: Detailed proofs

Proof of Proposition 1. Observe that, the adversary’s knowledge about the external source E
can be expressed as T ∈ S, since S consists of all microdata tables that involve the individuals in

32

E. Furthermore, if T ∈ So,v, then o has a sensitive value v in T , and vice versa. Hence,

risk(o) = max
v∈As

Pr
{

o has v in T | E ∧ G ∧ T ∗ ∧ l}

= max
v∈As

Pr
{

T ∈ So,v | T ∈ S ∧ G ∧ T ∗ ∧ l}

= max
v∈As

Pr
{

T ∈ So,v | T ∈ S ∧ G(T, l) = T ∗}

= max
v∈As

Pr
{

T ∈ So,v ∧ T ∈ S ∧ G(T, l) = T ∗}

Pr
{

T ∈ S ∧ G(T, l) = T ∗}

= max
v∈As

Pr
{

T ∈ So,v ∧ G(T, l) = T ∗}

Pr
{

T ∈ S ∧ G(T, l) = T ∗}
(since So,v ⊆ S)

= max
v∈As

∑

T̂∈So,v

(

Pr
{

T = T̂
}

· Pr
{

G(T̂ , l) = T ∗
})

∑

T̂∈S

(

Pr
{

T = T̂
}

· Pr
{

G(T̂ , l) = T ∗
}) .

Recall that, each possible microdata instance in S is equally likely for the adversary, before s/he
observes T ∗. That is, for any T̂1, T̂2 ∈ S, we have Pr

{

T = T̂1

}

= Pr
{

T = T̂2

}

. Thus,

risk(o) = max
v∈As

∑

T̂∈So,v

(

Pr
{

T = T̂
}

· Pr
{

G(T̂ , l) = T ∗
})

∑

T̂∈S

(

Pr
{

T = T̂
}

· Pr
{

G(T̂ , l) = T ∗
})

= max
v∈As

∑

T̂∈So,v
Pr{G(T̂ , l) = T ∗}

∑

T̂∈S Pr{G(T̂ , l) = T ∗}
,

which completes the proof. �

Proof of Lemma 1. Assume by contradiction that Opt-Gen is not a minimal algorithm. Then,
there exists a microdata table T and a positive integer l, such that T ∗

1 = Opt-Gen(T, l) is not a
minimal l-diverse generalization of T , with respect to the MBR function f and the global recoding
scheme. Let P1 be the partition of T that decides T ∗

1 . By Definition 7, there should be a child P2

of P1, such that P2 and f decide a generalization T ∗
2 that conforms to the global recoding scheme.

According to Definition 6, (i) there exists a unique QI-group G1 in P that does not appear in P2,
and (ii) P2 contains only two QI-groups G2 and G3 that are not included in P1. Furthermore, since
G1 = G2 ∪G3 and G2 ∩G3 = ∅, we have |G1| = |G2|+ |G3|. Thus,

∑

G∈P1

|G|2 = |G1|
2 +

∑

G∈P1−{G1}

|G|2

≥ |G2|
2 + |G3|

2 +
∑

G∈P1−{G1}

|G|2

=
∑

G∈P1−{G1}+{G2,G3}

|G|2

=
∑

G∈P2

|G|2,

which contradicts the fact that Opt-Gen minimizes the discernability of the generalized tables.
Hence, the lemma is proved. �

33

Proof of Lemma 2. Let G′
3 (G′

4) be the set of tuples in G′, such that G′
3 and G1 (G′

4 and G2)
involve the same set of individuals. To prove the lemma, it suffices to show that {G′

3, G
′
4} is the

canonical l-cut of G′.

Without loss of generality, assume that {G1, G2} is an l-cut of G on Aq
i (i ∈ [1, d]). We will first prove

that {G′
3, G

′
4} is an l-cut of G′ on Aq

i , i.e., {G
′
3, G

′
4} satisfies the three conditions in Definition 9.

Observe that the first condition trivially holds. Let v be the most frequent As value in G, and c be
the number of tuples in G with a sensitive value v. Since G and G′ are isomorphic, they contain
the same multi-set of As values. Therefore, c is also the maximum number of tuples in G′ with an
identical sensitive value. Since |G′

3| = |G1| ≥ c · l and |G′
4| = |G2| ≥ c · l, {G′

3, G
′
4} fulfills the second

condition in Definition 9.

Assume by contradiction that, {G′
3, G

′
4} violates the third condition in Definition 9. There should

exist t′3 ∈ G′
3 and t′4 ∈ G′

4, such that (i) t′3[A
q
i] > t′4[A

q
i], or (ii) t

′
3[A

q
i] = t′4[A

q
i] and t′3[A

id] = t′4[A
id].

Let t1 (t2) be the tuple in G1 (G2), such that t1 and t3 (t2 and t4) concern the same individual. Then,
t1 and t′3 (t2 and t′4) should have the same QI values. As a result, we have either (i) t1[A

q
i] > t2[A

q
i],

or (ii) t1[A
q
i] = t2[A

q
i] and t1[A

id] > t2[A
id]. This contradicts the assumption that {G1, G2} is an

l-cut of G. Therefore, {G′
3, G

′
4} is an l-cut of G′ on Aq

i .

Next, we will show that {G′
3, G

′
4} is canonical. Assume that this is not true. Then, by Definition 10,

at least one of the following three conditions must hold:

1. Among the l-cuts of G′, the perimeter of {G′
3, G

′
4} is not the smallest.

2. There exists an l-cut {G′
5, G

′
6} of G′ on Aq

j (j < i), such that hp(G
′
5) + hp(G

′
6) = hp(G

′
3) +

hp(G
′
4).

3. There exists an l-cut {G′
5, G

′
6} of G′ on Aq

i , such that |G′
5| < |G′

3|, and hp(G
′
5) + hp(G

′
6) =

hp(G
′
3) + hp(G

′
4).

Consider that Condition 3 is satisfied. Let G5 (G6) be the set of tuples in G, such that G5 and G′
5

(G6 and G′
6) contain the same set of individuals. It can be verified that {G5, G6} is an l-cut of G

on Aq
i , and hp(G5) + hp(G6) = hp(G

′
5) + hp(G

′
6). Then,

hp(G5) + hp(G6) = hp(G
′
5) + hp(G

′
6) = hp(G

′
3) + hp(G

′
4) = hp(G1) + hp(G2).

Furthermore, |G5| = |G′
5| < |G′

3| = |G1|. This contradicts the assumption that {G1, G2} is the
canonical l-cut of G.

Similarly, it can be shown that when Condition 1 or 2 holds, {G1, G2} cannot be the canonical
l-cut of G, leading to a contradiction. Thus, {G′

3, G
′
4} should be the canonical l-cut of G′, which

completes the proof. �

Proof of Lemma 3. Let T ∗
2 = Tailor(T2, l), and P3 be the partition of T2 that decides T ∗

2 . We
will prove the lemma, by showing that (i) P1 and P3 are isomorphic, and (ii) P2 = P3. The former
guarantees that T ∗

2 = T ∗, since isomorphic partitions always lead to the same anonymization.

To facilitate our proof, we construct a binary tree R1 of QI-groups as follows. First, we set the
root of R1 to T1. Then, we apply Tailor on T1 with the given l value, and monitor the execution of
Tailor. As shown in Figure 3, Tailor will first construct a partition P = {G0}, with G0 = T1. Then,

34

each time Tailor computes the canonical l-cut {G1, G2} of QI-group G ∈ P , we insert G1 and G2

(into R) as the child nodes of G. As such, after Tailor terminates, each leaf of R1 is a QI-group in
P1, and vice versa. We refer to R1 as the split history of T1. Following the same methodology, we
also construct the split history R2 of T2, such that the leaves of R2 constitute P3.

Next, we will prove that P1 is isomorphic to P3, by showing that each leaf of R1 is isomorphic to a
leaf of R2, and vice versa. Our proof is by induction. For the base case, let us consider the roots of
R1 and R2. Let G1 (G2) denote the root of R1 (R2). We have G1 = T1 and G2 = T2. Since P1 and
P2 are isomorphic, T1 and T2 should also be isomorphic, because T1 =

⋃

G∈P1
G and T1 =

⋃

G∈P2
G.

Therefore, G1 is isomorphic to G2.

As a second step, assume that two nodes G3 ∈ R1 and G4 ∈ R2 are isomorphic. We will establish
two propositions:

• Proposition 1. G3 is a leaf of R1, if and only if G4 is a leaf of R2.

• Proposition 2. If G3 is not a leaf, then each child of G3 is isomorphic to a child of G4.

Observe that, G3 (G4) is a leaf of R1 (R2), if and only if it is not 2l-diverse, otherwise it would have
been divided into smaller parts by Tailor. Since G3 and G4 are isomorphic, if G3 is not 2l-diverse,
G4 must violate 2l-diversity, and vice versa. Therefore, Proposition 1 holds.

Now assume that G3 is not a leaf. Let {Ga, Gb} and {G′
a, G

′
b} be the canonical l-cuts of G3 and G4,

respectively. By Lemma 2, Ga and G′
a (Gb and G′

b) contain the same set of individuals. We will
show that Ga (Gb) is isomorphic to G′

a (G′
b).

Consider the set Sa of leaves under the subtree of Ga. We have
⋃

G∈Sa
G = Ga. Since P1 and

P2 are isomorphic, there exists a subset S′
a of P2, such that each G ∈ Sa is isomorphic to some

G′ ∈ S′
a, and vice versa. Let G5 =

⋃

G′∈S′

a
G′. Then, G5 is isomorphic to Ga, which indicates that

G5 and Ga involve the same set of individuals. Recall that Ga and G′
a also contain an identical set

of individuals. Hence, each individual in G′
a appears in G5, and vice versa. Because both G′

a and
G5 are subsets of T2, we have G′

a = G5. Consequently, G
′
a is isomorphic to Ga. Similarly, it can be

verified that the Gb and G′
b are isomorphic. Thus, Proposition 2 is valid. By induction, each leave

of R1 is isomorphic to a leaf of R2, and vice versa. Hence, P1 is isomorphic to P3.

To complete the proof, it remains to show that P2 = P3. Since both P2 and P3 are isomorphic to
P1, P2 must be isomorphic to P3. Therefore, for each QI-group G ∈ P2, there exists G′ ∈ P3, such
that G and G′ involve the same set of individuals. This indicates that G = G′, since the both G
and G′ are subsets of T2. Therefore, P2 = P3, which proves the lemma. �

Proof of Theorem 1. Let T be any microdata table, l be any positive integer, and T ∗ = G(T, l).
Let E be any external source, and C be the set of possible microdata instances based on E, such
that G(T̂ , l) = T ∗ for any T̂ ∈ C. Let o be any individual, v be an arbitrary sensitive value, and
C ′ the subset of C, such that each T̂ ∈ C ′ contains a tuple t with t[Aid] = o and t[As] = v. By
Proposition 1, we can prove Theorem 1 by showing that

|C ′|

|C|
≤

1

l
. (5)

For each T̂ ∈ C, we define the essential partition of T̂ , as the partition of T̂ generated by G, when
taking T̂ and l as input. We divide C into disjoint clusters, such that each cluster is a maximal

35

set of instances (in C) whose essential partitions are isomorphic. Let n be the total number of
clusters in C, and Cj (j ∈ [1, n]) the j-th cluster. Let C ′

j be a set containing the instances in Cj

that associate o with v. In the following, we will show that |C ′
j |/|Cj | ≤ 1/l for any j ∈ [1, n], which

will prove the theorem, as it leads to

|C ′|

|C|
=

∑n
j=1 |C

′
j |

∑n
j=1 |Cj |

≤

∑n
j=1 |Cj|/l

∑n
j=1 |Cj |

=
1

l
. (6)

Consider any T̂ ∈ Cj for some j ∈ [1, n]. Let P̂ be the essential partition of T̂ , m = |P̂ |, and Gk

(k ∈ [1,m]) the k-th QI-group in P̂ . Let P̂ ′ be a partition isomorphic to P̂ , and T̂ ′ =
⋃

G′∈P̂ ′ . Since

T̂ ′ and T̂ involve the same set of individuals, T̂ ′ is a possible microdata instance based on E. By
the assumption on G, we have G(T̂ ′, l) = T ∗. Therefore, T̂ ′ ∈ Cj. In other words, for any partition
P̂ ′ isomorphic to P̂ , the microdata corresponding to P̂ ′ is contained in Cj. Then, by the definition
of Cj , |Cj| should equal the total number of distinct partitions isomorphic to P̂ , including P̂ itself.
According to the definition of partition isomorphism, we can obtain any partition isomorphic to
P̂ , by replacing any QI-groups in P̂ with their isomorphic counterparts. Let ak be the number of
distinct QI-groups isomorphic to Gk. Then, the total number of partitions isomorphic to P̂ should
be

∏m
k=1 ak. That is, |Cj | =

∏m
k=1 ak.

Next, we will derive the value of |C ′
j |. Without loss of generality, assume that o appears in the first

QI-group G1 of Pi. Among the QI-groups isomorphic to G1, let a
′
1 be the number of QI-groups that

associate o with a sensitive value v. Then, we have |C ′
j| = a′1 ·

∏m
k=2 ak. Therefore, |C

′
j |/|Cj | = a′1/a1.

If v does not appear in G1, then a′1 = 0. Otherwise, assume that G1 contains x sensitive values
v1, v2, ..., vx, such that v1 = v. Further assume that, there exist bi (i ∈ [1, x]) tuples in G1 with

a sensitive value vi. Then, there are |G1|!∑x
i=1

(bi!)
different combinations between the sensitive values

and the individuals in G1. Since each combination corresponds to a QI-group isomorphic to G1, we
have

a1 =
|G1|!

∑x
i=1(bi!)

. (7)

Observe that, among the a1 combinations, there exist (|G1|−1)!∑x
i=2

(bi!)
combinations that assigns a sensitive

value v1 to o. Therefore,

a′1 =
(|G1| − 1)!
∑x

i=2(bi!)
. (8)

Hence, we have
|C ′

j |

|Cj |
=

a′1
a1

=
(|G1| − 1)!/

∑x
i=2(bi!)

(|G1|!)/
∑x

i=1(bi!)
=

b1
|G1|

. (9)

Since G1 is l-diverse, we have b1/|G1| ≤ 1/l. Consequently, |C ′
j |/|Cj | ≤ 1/l, which completes the

proof. �

Proof of Lemma 4. Given any two sets St and S′
t of tuples, we say that they are cousins, if St

and S′
t involve the same set of individuals. To prove the lemma, we first establish the following

proposition:

36

• Proposition 3. Let B and B′ be two symmetric buckets, and {Ba, Bb} be a division of B on
Aq

i (i ∈ [1, d]). Let B′
a (B′

b) be the subset of B
′, such that Ba and B′

a (Bb and B′
b) are cousins.

Then, {B′
a, B

′
b} is a division of B′ on Aq

i . Furthermore, B′
a and Ba (B′

b and Bb) are symmetric.

Let V be the signature of B, and x = |V |. Since B and B′ are symmetric, V should also be the
signature of B′. Because B′

a and B′
b are subsets of B′, their signatures should be subsets of V . In

the following, we will first show that B′
a is a bucket with a signature V . Assume that this is not

true. Then, there must exist a column L′
1 of B′

a, such that |L′
1| ≥ |B′

a|/x. Let L1 be the subset of
Ba, such that L1 and L′

1 are cousins. Because B and B′ are symmetric, if any two individuals have
the same sensitive value in B′, they should also have an identical As value in B. This indicates that
all tuples in L1 share the same As value. Since |L1| ≥ |Ba|/x, Ba should have a column with more
than |Ba|/x tuples. This contradicts the assumption that Ba is a bucket. Therefore, B′

a must be a
bucket with a signature V . By the same reasoning, it can be proved that B′

b is also a bucket with
a signature V .

Assume by contradiction that, {B′
a, B

′
b} is not a division of B′ on Aq

i . Then, by Definition 11, there
must exist two tuples t′a ∈ B′

a and t′b ∈ B′
b, such that (i) t′a[A

q
i] > t′b[A

q
i], or (ii) t

′
a[A

q
i] = t′b[A

q
i] and

t′a[A
id] > t′b[A

id]. Let ta and tb be the tuples in Ba, such that ta and t′a (tb and t′b) concern the same
individual. Then, we have either (i) ta[A

q
i] > tb[A

q
i], or (ii) ta[A

q
i] = tb[A

q
i] and ta[A

id] > tb[A
id]. In

that case, {Ba, Bb} is not a division of B, leading to a contradiction. Hence, {B′
a, B

′
b} must be a

division of B′.

To prove Proposition 3, it remains to show that B′
a and Ba (B′

b and Bb) are symmetric. Consider
any column L2 ∈ Ba. We have |L2| = |Ba|/x = |B′

a|/x. Let L′
2 be the cousin of L2 in B′

a. Then,
|L′

2| = |L2| = |B′
a|/x. Since B and B′ are symmetric, for any individuals with the same sensitive

value in B, they should also share an identical As value in B′. Therefore, all tuples in L′
2 have the

same sensitive value. Observe that, each column in B′
a should contain exactly |B′

a|/x tuples, which
indicates that L′

2 is a column in B′
a. In summary, for any column L2 in Ba, there exists a column

L′
2 in B′

a, such that L2 and L′
2 involve an identical set of individuals. Hence, B′

a is symmetric to
Ba. Similarly, it can be shown that B′

b and Bb are symmetric. Thus, Proposition 3 holds.

Now we are ready to prove the lemma. Without loss of generality, assume that {B1, B2} is a division
of B on Aq

i (i ∈ [1, d]). Let B′
3 (B′

4) be the subset of B′, such that B′
3 and B1 (B′

4 and B2) are
cousins. By Proposition 3, {B′

3, B
′
4} is a division of B′ on Aq

i , and B′
3 (B

′
4) is symmetric to B1 (B2).

To establish the lemma, it suffice to show that {B′
3, B

′
4} is the canonical division of B′. Assume,

on the contrary, that {B′
3, B

′
4} is not canonical. Then, by Definition 12, {B′

3, B
′
4} should satisfy at

least one of the following three conditions:

1. {B′
3, B

′
4} is not a division of G′ with the smallest perimeter.

2. There exists a division {B′
5, B

′
6} of G′ on Aq

j (j < i), such that hp(B
′
5) + hp(B

′
6) = hp(B

′
3) +

hp(B
′
4).

3. There exists a division {B′
5, B

′
6} of G′ on Aq

i , such that hp(B
′
5) + hp(B

′
6) = hp(B

′
3) + hp(B

′
4).

Assume that {B′
3, B

′
4} fulfills Condition 3. Let B5 (B6) be subset of B, such that B5 and B′

5 (B6

and B′
6) are cousins. By Proposition 3, {B5, B6} is a division of B on Aq

i . Then, |B5| = |B′
5| <

|B′
3| = |B1|. Since each individual has the same QI values in B and B′,

hp(B5) + hp(B6) = hp(B
′
5) + hp(B

′
6) = hp(B

′
3) + hp(B

′
4) = hp(B1) + hp(B2).

37

In that case, {B1, B2} cannot be the canonical division of B (due to the existence of {B5, B6}),
leading to a contradiction. Therefore, {B′

3, B
′
4} must violate Condition 3. Similarly, it can be

verified that {B′
3, B

′
4} must also violate Conditions 1 and 2, i.e., {B′

3, B
′
4} should be the canonical

division of B′. Thus, the lemma is proved. �

Proof of Lemma 5. Consider that we apply Slice on U1, with the given l value. As shown in
Figure 8, Slice will iteratively retrieve a bucket B ∈ U1, compute the canonical division {Ba, Bb} of
B, and then replace B with Ba and Bb. This process is carried on, until the bucket partition U ′

1 is
obtained. Let Q1 be the union of the canonical divisions computed by Slice in each iteration, and
Q′

1 = Q1 ∪ U1. We organize the buckets in Q′
1 into |U1| binary trees as follows:

1. For the i-th (i ∈ [1, |U1|]) binary tree Ri, the root of Ri is the i-th bucket Bi in U1.

2. For any three buckets B1, B2, B3 ∈ Q′, B2 and B3 are the child nodes of B1, if and only if
{B2, B3} is a division of B1.

We refer to Ri as the split history of Bi. Notice that, U ′
1 equals the union of the leaves of each

Ri (i ∈ [1, |U1|]). Next, assume that we apply Slice on U2. Let B′
i denote the bucket in U2 that

is symmetric to Bi (i ∈ [1, |U1|]). Following the way Ri is generated, we also construct the split
history R′

i of B
′
i. Then, the leaves of all R′

i (i ∈ [1, |U1|]) constitute U ′
2. To prove the lemma, it

suffices to show that, for any i ∈ [1, |U1|], each leaf of Ri is symmetric to a leaf of R′
i, and vice versa.

Our proof is by induction. For the base case, the root Bi of Ri is symmetric to the root B′
i of R

′
i.

Next, assume that two nodes B ∈ Ri and B′ ∈ R′
i are symmetric. We will show that (i) B is a leaf

of Ri, if and only if B′ is a leaf of R′
i; (ii) if B is not a leaf, then each child node of B is symmetric

to a child node of B′.

As shown in Figure 8, a bucket in Ri or R′
i is a leaf, if and only if it is not divisible, otherwise

it would have been split into two smaller buckets by Slice. Because B and B′ are symmetric, all
columns in B and B′ have an equal size. Thus, B is not divisible, if and only if B′ is not divisible.
Hence, B is a leaf, if and only if B′ is a leaf.

Next, consider that B is not a leaf. Let {Ba, Bb} and {B′
a, B

′
b} be the canonical divisions of B and

B′, respectively. By Lemma 4, Ba and B′
a (Bb and B′

b) must be symmetric. Therefore, each child
node of B is symmetric to a child node of B′. By induction, it can be shown that each leaf of Ri is
symmetric to a leaf of R′

i, and vice versa. Hence, the lemma is proved. �

Proof of Lemma 6. Consider that we apply Assign on T1 with the given l value. As shown in
Figure 6, Assign first initializes a set St = T1, and then iteratively creates buckets using tuples in
St. Let U be the partition returned by Assign at the end, Bi the bucket constructed in the i-th
iteration, and Si the set of tuples in St right before the i-th iteration. Next, assume that we run
Assign on T2. Let U

′ be the partition of T2 generated by Assign, B′
i the bucket created in the i-th

iteration, and S′
i the set of tuples in St prior to the i-th iteration. For simplicity, we say that two

buckets are siblings, if and only if they have the same size and the same signature. In the following,
we will first prove a proposition:

• Proposition 4. for any i ∈ [1, |U |], Bi and B′
i are siblings.

38

Consider that i = 1. By Lines 4-12 in Figure 6, the signature of B1 should contain the β most
frequent sensitive values in St, and |B1| = α · β, where the values of α and β are decided by |S1|
and the frequencies of sensitive values in S1. The above statement still holds, if we change B1 to
B′

1, and S1 to S′
1. Recall that S1 = T1 =

⋃

B∈U1
B and S′

1 = T2 =
⋃

B′∈U2
B′. Since U1 and U2

are symmetric, S1 and S′
1 should have the same size, and include an identical multi-set of sensitive

values. Therefore, Assign should employ the same α and β values to construct B1 and B′
1. Thus,

B1 and B′
1 are siblings. Furthermore, because S2 = S1 − B1 and S′

2 = S′
1 − B′

1, S2 and S′
2 should

have an equal size, and contain the same multi-set of sensitive values. In turn, this indicates that,
Assign should use identical α and β values to generate B2 and B′

2, i.e., B2 and B′
2 are also siblings.

By an induction on i, it can be shown that Proposition 4 holds.

To prove the lemma, we regard U and U ′ as random variables, and show that Pr
{

U = U1

}

=
Pr

{

U ′ =U2

}

. Let us derive Pr
{

U =U1

}

first. Recall that each bucket in U is constructed using
tuples randomly selected from T1. Therefore, Pr

{

U =U1

}

should equal 1/m, where m is the total
number of possible ways to assign the tuples in T1 into the buckets in U . Assume that T1 contains
w sensitive values v1, v2, ..., vw. Let nj (j ∈ [1, w]) be the frequency of vj in in T1. Let dij denote
the number of tuples in Bi with sensitive value vj . For simplicity, define 0! = 1. We have

m =

∏w
j=1(nj!)

∏|U |
i=1

∏w
j=1(dij !)

. (10)

Next, we will calculate Pr
{

U ′ = U2

}

. Since T1 and T2 contain the same multi-set of sensitive
values, for any j ∈ [1, w], the frequency of vj in T2 is also nj. Furthermore, because Bi and B′

i

(i ∈ [1, |U |]) are siblings, there should exist dij tuples in B′
i that have a sensitive value vj . As a

result, there are also m distinct ways to assign the tuples in T2 to the buckets in U ′. Therefore,
Pr

{

U ′=U2

}

= 1/m = Pr
{

U=U1

}

, which completes the proof. �

Proof of Theorem 2. Let T be any microdata, l be any positive integer, and T ∗ be a possible
output of G. Let E be any external source, and S be the set of possible microdata instances based
on E. Let o be any individual, v be an arbitrary sensitive value, and So,v be the subset of S, such
that each T̂ ∈ So,v associates o with v. According to Proposition 1, we can prove Theorem 2 by
showing that

∑

T̂∈So,v
Pr{G(T̂ , l) = T ∗}

∑

T̂∈S Pr{G(T̂ , l) = T ∗}
≤

1

l
. (11)

We say that a bucket partition U is a valid partition, if T ∗ can be decided by the partition U ′ =
GB(U). Let M be the set of all valid partitions, such that for each U ∈ M , we have Pr{GA(T̂ , l) =
U} > 0 for some T̂ ∈ S. Then,

∑

T̂∈So,v
Pr{G(T̂ , l) = T ∗}

∑

T̂∈S Pr{G(T̂ , l) = T ∗}
=

∑

T̂∈So,v

∑

U∈M Pr{GA(T̂ , l) = U}
∑

T̂∈S

∑

U∈M Pr{GA(T̂ , l) = U}
. (12)

We define a bucket partition U ∈ M as a breaching partition, if any QI-group G ∈ U contains a
tuple t, such that t[Aid] = o and t[As] = v. Observe that, for any T̂ ∈ So,v, if U is not a breaching
partition, then Pr{GA(T̂ , l)=U} = 0. We divide M into disjoint clusters, such that each cluster is

39

a maximal subset of symmetric bucket partitions in M . Let n be the total number of clusters in M ,
and Mj (j ∈ [1, n]) be the j-th cluster. Let M ′

j be the set of breaching partitions in Mj . We have

∑

T̂∈So,v
Pr{G(T̂ , l) = T ∗}

∑

T̂∈S Pr{G(T̂ , l) = T ∗}
=

∑n
j=1

∑

U∈M ′

j

∑

T̂∈So,v
Pr{GA(T̂ , l) = U}

∑n
j=1

∑

U∈Mj

∑

T̂∈S Pr{GA(T̂ , l) = U}
. (13)

For simplicity, let p(U, T̂) denote Pr{GA(T̂ , l)=U}, and q(M,S) denote
∑

U∈M

∑

T̂∈S p(U, T̂). We
will show that q(M ′

j , So,v)/q(Mj , S) ≤ 1/l for any j ∈ [1, n]. This will lead to

∑

T̂∈So,v
Pr{G(T̂ , l) = T ∗}

∑

T̂∈S Pr{G(T̂ , l) = T ∗}
=

∑n
j=1 q(M

′
j , So,v)

∑n
j=1 q(Mj , S)

≤

∑n
j=1 q(Mj , S)/l

∑n
j=1 q(Mj, S)

=
1

l
, (14)

which proves the theorem.

Without loss of generality, consider that j = 1. Let Uk be the k-th (k ∈ [1, |M1|]) partition in M1,
and Tk =

⋃

B∈Uk
B. For any microdata T̂ different from Tk, we have p(Uk, T̂) = 0, since Uk is

not a partition of T̂ . Therefore, Tk ∈ S should hold, otherwise p(Uk, T̂) = 0 for all T̂ ∈ S, which
contradicts the assumption that Uk ∈ M . Thus,

∑

T̂∈S p(Uk, T̂) = p(Uk, Tk). By our assumption
on GA, for any k1, k2 ∈ [1, |M1|], we have p(Uk1 , Tk1) = p(Uk2 , Tk2). Hence,

q(M1, S) =

|M1|
∑

j=1

∑

T̂∈S

p(Uj , T̂) =

|M1|
∑

j=1

p(Uj , Tj) = |M1| · p(Uk, Tk).

Similarly, it can be verified that q(M ′
1, So,v) = |M ′

1| · p(Uk, Tk). Therefore, q(M ′
j , So,v)/q(Mj , S) =

|M ′
1|/|M1|.

Next, we will derive the value of |M1|. Let Us be any partition symmetric to Uk, and Ts =
⋃

B∈Us
B.

Then, Ts and Tk should contain the same set of individuals. Hence, Ts ∈ S. Since Us and Uk are
symmetric, p(Us, Ts) = p(Uk, Tk) > 0 holds. Therefore, Us is a valid partition. Let U ′

s = GB(Us),
and U ′

k = GB(Uk). By our assumption on GB , U
′
s and U ′

k are symmetric. Observe that symmetric
partitions are isomorphic, and thus, they always lead to the same anonymization. Since U ′

k and f
decides T ∗, U ′

s and f should also determine T ∗, which indicates that Us ∈ M . In other words, any
bucket symmetric to Uk should be contained in M . Consequently, by the definition of M1, |M1|
equals the total number of partitions symmetric to Uk.

By Definition 13, we can obtain any partition symmetric to Uk, by substituting any buckets in Uk

with their symmetric counterparts. Let Bi be the i-th (i ∈ [1, |Uk|]) bucket in Uk, and αi be the

number of buckets symmetric to Bi. Then, |M1| =
∏|Uk|

i=1 αi. Without loss of generality, assume that
o appears in B1. Among all buckets symmetric to B1, let α

′
1 be the number of them that contain a

tuple t, with t[Aid] = o and t[As] = v. We have |M1| = α′
1 ·
∏|Uk|

i=2 αi. Therefore, |M
′
1|/|M1| = α′

1/α1.

Assume B1 has a signature V with x sensitive values. If v /∈ V , then α′
1 = 0. Consider that v ∈ V .

Recall that, we can transform B1 into any bucket symmetric to B1, by swapping the sensitive values
between different columns of B1. Totally, there are x! distinct ways to assign x sensitive values to

40

the x columns of B1. Because each of these assignment corresponds to bucket symmetric to B1,
we have α1 = x!. Next, consider that we assign an As value v to the column that o appears. The
other x− 1 sensitive values can be assigned in (x− 1)! different manner, i.e., α′

1 = (x− 1)!. Hence,
α′
1/α1 = 1/x. According to the way Assign constructs each bucket, we have x ≥ l. Therefore,

|M ′
1|/|M1| = α′

1/α1 ≤ 1/l, which completes the proof. �

Proof of Theorem 3. Let S the set of possible microdata instances based on E, and v be an
arbitrary sensitive value. Let So,v be the subset of S, such that each T̂ ∈ So,v involves o, and sets
v as the As value of o. By Proposition 1, Theorem 3 holds if and only if

∑

T̂∈So,v
Pr{Hybrid(T̂ , l) = T ∗}

∑

T̂∈S Pr{Hybrid(T̂ , l) = T ∗}
≤

1

l
. (15)

Consider that we apply Hybrid on any T̂ ∈ S, with the given l value. Hybrid first employs Tailor
to obtain a partition P of T̂ . We define P as the essential partition of T̂ , and use Gj to denote
the j-th (j ∈ [1, |P |]) QI-group in P . Then, Hybrid invokes Ace to transform each Gj ∈ P into a
set T ∗

j of anonymized tuples. We define the ordered set {T ∗
1 , T

∗
2 , ..., T

∗
|P |} as a decomposition of P .

Since Ace is a randomized algorithm, there may exist multiple decompositions of P . At last, Hybrid
returns the union T ∗ of all T ∗

j . We use γ(P, T ∗) to denote the probability that Hybrid transforms
P into T ∗.

Let Q (Q′) be a set that includes the essential partition of any T̂ ∈ S (T̂ ∈ So,v). We divide Q into
several clusters, such that each cluster is a maximal set of isomorphic partitions in Q. Let n be the
total number of clusters in Q, and Ck (k ∈ [1, n]) be the k-th cluster. Let C ′

k = Ck ∩Q′. Then, we
have

∑

T̂∈So,v
Pr{Hybrid(T̂ , l) = T ∗}

∑

T̂∈S Pr{Hybrid(T̂ , l) = T ∗}
=

∑n
j=1

∑

P∈C′

k
γ(P, T ∗)

∑n
k=1

∑

P∈Ck
γ(P, T ∗)

. (16)

We will prove that, for any k ∈ [1, n],

∑

P∈C′

k
γ(P, T ∗)

∑

P∈Ck
γ(P, T ∗)

≤
1

l
. (17)

This will establish the Theorem, since it ensures that

∑

T̂∈So,v
Pr{Hybrid(T̂ , l) = T ∗}

∑

T̂∈S Pr{Hybrid(T̂ , l) = T ∗}
=

∑n
j=1

∑

P∈C′

k
γ(P, T ∗)

∑n
k=1

∑

P∈Ck
γ(P, T ∗)

≤

∑n
j=1

∑

P∈Ck
γ(P, T ∗)/l

∑n
k=1

∑

P∈Ck
γ(P, T ∗)

=
1

l
.

Without loss of generality, consider that k = 1. Let P be an arbitrary partition in C1, and Gj the
j-th QI-group in P . Assume that o is involved in G1. Further assume that, for any P ′ ∈ C1, the
j-th (j ∈ [1, |P |]) QI-group in P ′ is isomorphic to Gj . Then, for any P ′ ∈ C1, o should appear in
the first QI-group of P ′. We split C1 into sub-clusters, such that for any two partitions in the same
sub-cluster, they coincide on all but the first QI-group. Let n′ be the number of sub-clusters in

41

C1, Di (i ∈ [1, n′]) be the i-th sub-cluster, and D′
i = Di ∩Q′. To prove that Equation 17 holds for

k = 1, it suffices to show that, for any i ∈ [1, n′],

∑

P∈D′

i
γ(P, T ∗)

∑

P∈Di
γ(P, T ∗)

≤
1

l
. (18)

This is because, once the above inequality is established, we have

∑

P∈C′

1

γ(P, T ∗)
∑

P∈C1
γ(P, T ∗)

=

∑n′

i=1

∑

P∈D′

i
γ(P, T ∗)

∑n′

i=1

∑

P∈Di
γ(P, T ∗)

≤

∑n′

i=1

∑

P∈Di
γ(P, T ∗)/l

∑n′

i=1

∑

P∈Di
γ(P, T ∗)

=
1

l
. (19)

Assume, without loss of generality, that i = 1. Let Px (x ∈ [1, |D1|]) be x-th partition in D1, and
Gxm be the m-th (m ∈ [1, |Px|]) QI-group in Px. Let Sd be a set containing any decomposition of
any Px ∈ D1, and Ω be the subset of Sd, such that each decomposition W ∈ Ω leads to T ∗, i.e.,
⋃

T ∗

s ∈W
T ∗
s = T ∗. Let Wj be the j-th decomposition in Ω, and T ∗

jm the m-th set of anonymized
tuples in Wj . Observe that |Wj| = |Px| for any j ∈ [1, |Ω|] and any x ∈ [1, |D1|]. By the definition
of γ(Px, T

∗), we have

γ(Px, T
∗) =

|Ω|
∑

j=1

|Px|
∏

m=1

Pr
{

Ace(Gxm, l) = T ∗
jm

}

(20)

For simplicity, we denote
∏|Px|

m=1 Pr
{

Ace(Gxm, l) = T ∗
jm

}

as p(Px,Wj). Then,

∑

P∈D′

1

γ(P, T ∗)
∑

P∈D1
γ(P, T ∗)

=

∑

Px∈D′

1

∑|Ω|
j=1 p(Px,Wj)

∑

Px∈D1

∑|Ω|
j=1 p(Px,Wj)

. (21)

To prove that Equation 18 is valid when i = 1, we will show that

∑

Px∈D′

1

p(Px,Wj)
∑

Px∈D1
p(Px,Wj)

≤
1

l
, (22)

for any j ∈ [1, |Ω|]. In particular, the above inequality ensures that

∑

P∈D′

1

γ(P, T ∗)
∑

P∈Di
γ(P, T ∗)

=

∑

Px∈D′

1

∑|Ω|
j=1p(Px,Wj)

∑

Px∈D1

∑|Ω|
j=1p(Px,Wj)

(by Equation 21)

≤

∑|Ω|
j=1

∑

Px∈D1
p(Px,Wj)/l

∑|Ω|
j=1

∑

Px∈D1
p(Px,Wj)

=
1

l
(23)

Let q(Gxm, T ∗
jm) denote Pr

{

Ace(Gxm, l) = T ∗
jm

}

. Recall that any two partitions in D1 coincide
on all but the first QI-group. Therefore, given any m ∈ [2, |Px|] and any j ∈ [1, |Ω|], the value of

42

q(Gxm, T ∗
jm) is fixed for all Px ∈ D1. Let rj denote

∏|Px|
k=2 q(Gxm, T ∗

jm). Then,

p(Px,Wj) =

|Px|
∏

m=1

Pr
{

Ace(Gxm, l) = T ∗
jm

}

=

|Px|
∏

m=1

q(Gxm, T ∗
jm)

= rj · q(Gx1, T
∗
j1). (24)

Therefore, for any j ∈ [1, |Ω|],

∑

Px∈D′

1

p(Px,Wj)
∑

Px∈D1
p(Px,Wj)

=

∑

Px∈D′

1

(

rj · q(Gx1, T
∗
j1)

)

∑

P∈D1

(

rj · q(Gx1, T
∗
j1)

)

=

∑

Px∈D′

1

q(Gx1, T
∗
j1)

∑

Px∈D1
q(Gx1, T ∗

j1)
. (25)

Consequently, to prove Equation 22, it suffices to show that
∑

Px∈D′

1

q(Gx1, T
∗
j1)

∑

Px∈D1
q(Gx1, T ∗

j1)
≤

1

l
, (26)

for any j ∈ [1, |Ω|].

Let S1 be a set containing all Gx1 (x ∈ [1, |D1|]), and S′
1 the maximal subset of S1, such that each

G ∈ S′
1 contains a tuple t with t[Aid] = o and t[As] = v. Then,

∑

Px∈D′

1

q(Gx1, T
∗
j1)

∑

Px∈D1
q(Gx1, T ∗

j1)
=

∑

G∈S′

1

q(G,T ∗
j1)

∑

G∈S1
q(G,T ∗

j1)
. (27)

By the definition of D1, all QI-groups in S1 are isomorphic. Therefore, all QI-groups in S1 have the
same projection on the identifier and QI attributes. Denote this projection as E. If we regard each
QI-group Gx1 ∈ S1 as a tiny microdata table, then E can be deemed as an external source for Gx1.
Let S2 be the set of all possible instances based on E. Let S′

2 be the set of instances in S2 that
contain a tuple t, with t[Aid] = o and t[As] = v. By Theorem 2, given E as the external source, any
T ∗
j1 (j ∈ [1, |Ω|]) ensures that the disclosure risk of o is at most 1/l, i.e.,

∑

G∈S′

2

q(G,T ∗
j1)

∑

G∈S2
q(G,T ∗

j1)
≤

1

l
. (28)

By Equations 27 and 28, we can establish Equation 26 by showing that
∑

G∈S′

1

q(G,T ∗
j1)

∑

G∈S1
q(G,T ∗

j1)
=

∑

G∈S′

2

q(G,T ∗
j1)

∑

G∈S2
q(G,T ∗

j1)
. (29)

For this purpose, it suffices to prove that q(G,T ∗
j1) = 0, for any G ∈ (S1 − S2) ∪ (S2 − S1) and any

G ∈ (S′
1 − S′

2) ∪ (S′
2 − S′

1).

43

Since S2 contains all microdata instances based on E, we have Gx1 ∈ S1 for any x ∈ [1, |D1|].
Therefore, S1 ⊆ S2, which indicates that S′

1 ⊆ S′
2. Hence, S1−S2 = S′

1−S′
2 = ∅. Now consider any

Px ∈ D1 (x ∈ [1, |D1|]). Assume that we construct a partition P ′
x from Px, by replacing Gx1 with

any of its isomorphic counterparts. Then, P ′
x should be isomorphic to Px. By Lemma 3, P ′

x is an
essential partition of some T̂ ∈ S, i.e., P ′

x ∈ Q. Since P ′
x and Px are isomorphic, and coincide on all

but the first QI-group, P ′
x ∈ D1 holds. In other words, for any G isomorphic to Gx1, there exists a

partition Pi ∈ D1 (i ∈ [1, |D1|]), such that G = Gi1. Hence, S1 contains any QI-group isomorphic
to Gx1.

Recall that, any T ∗
j1 (j ∈ [1, |Ω|]) is a anonymization of a certain QI-group in S1. Since all QI-

groups in S1 are isomorphic, they contain the same multi-set of sensitive values. This indicates
that any T ∗

j1 and any Gx1 (x ∈ [1, |D1|]) have an identical multi-set of sensitive values. Let G′ be
a QI-group, such that G′ ∈ S2 − S1. Then, G′ and Gx1 are not isomorphic, but involve the same
set of individuals. Therefore, G′ and Gx1 must contain distinct multi-sets of As values. Hence,
for any j ∈ [1, |Ω|], the multi-sets of sensitive values in G′ and T ∗

j are different, i.e., G′ cannot be
anonymized to T ∗

j . Therefore, q(G,T ∗
j1) = 0, for any G ∈ S1 − S2. Similarly, it can be shown that

q(G,T ∗
j1) = 0, for any G ∈ S′

2 − S′
1. Thus, Equation 29 is valid. In turn, this establishes Equations

29, 26, 22, 18, and 17. Hence, the theorem is proved. �

Appendix II: Privacy attack on Mask

Next, we exemplify an attack against theMask algorithm [36], which is designed under the credibility
model [36]. Figure 16 illustrates the pseudo-code of Mask. The algorithm takes as input a microdata
table T , two positive integers k and l, and a subset V of the As values. It aims to ensure that,
for any individual o and any sensitive value v ∈ V , the adversary would have at most 1/l posterior
belief in the event that “o appears in T and has a sensitive value v”. We will explain the details of
Mask using an example.

Example 7 Suppose that we apply Mask on the microdata T9 in Table 15, by setting k = l = 2 and
V = {dyspepsia}. Mask first generates a k-anonymous partition P of T9, using any of the existing
k-anonymity algorithms (Line 1 in Figure 16). Assume that P contains three QI-groups, namely,
{Ann, Bob}, {Cate, Don}, and {Ed, Fred, Gill}. Next, Mask divides P into two disjoint subsets
P1 and P2 (Lines 2-6). In particular, P1 contains all the QI-groups G in P , such that at least one
sensitive value in V appears more than |G|/l times in G. Meanwhile, P2 = P −P1. In our example,
P1 contains only one QI-group G′ = {Ann, Bob}.

After that, Mask randomly chooses a QI-group G+ from P2, and then modifies the sensitive values
in G′, so that G′ and G+ have the same sensitive value distribution (Lines 7-9). Assume that
G+ = {Cate, Don}. Then, G′ will be modified in a way, such that 50% of tuples in G′ would have a
sensitive value flu, and the other 50% would have dyspepsia. Table 16 illustrates a possible result of
the modification. Finally, Mask returns the anonymization decided by the modified partition and
an anonymization function (say, the MBR function), as illustrated in Table 17. �

As T ∗
10 (in Table 17) is produced by Mask with l = 2, under the credibility model, an adversary

has at most 1/2 posterior belief in the event that “Ann has dyspepsia in the microdata”. In the

44

Algorithm Mask (T , k, l, V)
1. generate a k-anonymous partition P of T
2. P1 = P2 = ∅
3. for each QI-group G ∈ P
4. if one of the sensitive value in V appears more than |G|/l times in G
5. insert G into P1

6. else insert G into P2

7. for each QI-group G′ ∈ P1

8. randomly choose a QI-group G+ ∈ P2

9. modify the sensitive values in G′, such that the distribution of sensitive values in
G′ becomes the same as that in G+

10. return the anonymization decided by P1 ∪ P2 and an anonymization function

Figure 16: The Mask algorithm

Name Age Disease
Ann 21 dyspepsia
Bob 27 dyspepsia

Cate 32 dyspepsia
Don 32 flu

Ed 54 flu
Fred 60 flu
Gill 60 flu

Table 15: Microdata T9

Name Age Disease
Ann 21 flu
Bob 27 dyspepsia

Cate 32 dyspepsia
Don 32 flu

Ed 54 flu
Fred 60 flu
Gill 60 flu

Table 16: Partition P ′

Age Disease
[21, 27] flu
[21, 27] dyspepsia

32 dyspepsia
32 flu

[54, 60] flu
[54, 60] flu
[54, 60] flu

Table 17: Generaliza-
tion T ∗

10

following, however, we will show that the posterior belief of the adversary can be boosted to 5/8,
if s/he has (i) the details of Mask, (ii) the parameters k, l, and V with which T ∗

10 is computed, and
(iii) an external source that contains only the seven individuals in T9.

Upon observing T ∗
10, the adversary knows that T ∗

10 is generated from a partition P with three QI-
groups G1 = {Ann, Bob}, G2 = {Cate, Don}, and G3 = {Ed, Fred, Gill}. In addition, the adversary
can infer that all sensitive values in G3 must have not been modified by Mask. Otherwise, the
distribution of sensitive values in G3 must be adopted from another QI-group in Table 16, which is
impossible since neither G1 nor G2 has the same sensitive value distribution as G3. On the other
hand, the sensitive values in G1 and G2 may or may not have been modified by Mask. This leads
to three different cases:

1. Both G1 and G2 have been modified. This case is impossible; otherwise, the distributions of
sensitive values in G1 and G2 should have been transformed to the same as in G3, which is
the only QI-group in P that satisfies 2-diversity.

2. Either G1 or G2 has been modified. In this case, one of G1 and G2 should contain two dyspepsia
before modification (since dyspepsia is the only value in V), while the other one should have
one flu and one dyspepsia. This results in 4 possible microdata instances, 3 of which assign
dyspepsia to Ann.

45

3. Neither G1 nor G2 has been modified. This leads to 4 possible microdata instances, 2 of which
associate Ann with dyspepsia.

In summary, from the adversary’s perspective, there exist 8 possible microdata instances that can
be generalized into T ∗

10, among which 5 instances associate Ann with dyspepsia. Therefore, the
adversary has 5/8 posterior belief in the event that “Ann has dyspepsia”.

46

