
20

Efficient and Accurate Nearest Neighbor and
Closest Pair Search in High-Dimensional
Space

YUFEI TAO
Chinese University of Hong Kong
KE YI
Hong Kong University of Science and Technology
CHENG SHENG
Chinese University of Hong Kong
and
PANOS KALNIS
King Abdullah University of Science and Technology

Nearest Neighbor (NN) search in high-dimensional space is an important problem in many appli-
cations. From the database perspective, a good solution needs to have two properties: (i) it can be
easily incorporated in a relational database, and (ii) its query cost should increase sublinearly with
the dataset size, regardless of the data and query distributions. Locality-Sensitive Hashing (LSH)
is a well-known methodology fulfilling both requirements, but its current implementations either
incur expensive space and query cost, or abandon its theoretical guarantee on the quality of query
results.

Motivated by this, we improve LSH by proposing an access method called the Locality-Sensitive
B-tree (LSB-tree) to enable fast, accurate, high-dimensional NN search in relational databases.
The combination of several LSB-trees forms a LSB-forest that has strong quality guarantees,
but improves dramatically the efficiency of the previous LSH implementation having the same
guarantees. In practice, the LSB-tree itself is also an effective index which consumes linear space,

Y. Tao and C. Sheng were supported by Grants GRF 4161/07, GRF 4173/08, and GRF 4169/09 from
HKRGC, and a direct grant (2050395) from CUHK. K. Yi was supported by a Hong Kong Direct
Allocation grant (DAG07/08).
Author’s addresses: Y. Tao, Department of Computer Science and Engineering, Chinese University
of Hong Kong, Sha Tin, Hong Kong; email: taoyf@cse.cuhk.edu.hk, K. Yi, Department of Computer
Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong; email: yike@cse.ust.hk, C. Sheng, Department of Computer Science and Engineering,
Chinese University of Hong Kong, Sha Tin, Hong Kong; email: csheng@cse.cuhk.edu.hk, P. Kalnis,
Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia; email: panos.kalnis@kaust.edu.sa.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial-
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0362-5915/2010/07-ART20 $10.00
DOI 10.1145/1806907.1806912 http://doi.acm.org/10.1145/1806907.1806912

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:2 • Y. Tao et al.

supports efficient updates, and provides accurate query results. In our experiments, the LSB-tree
was faster than: (i) iDistance (a famous technique for exact NN search) by two orders of magnitude,
and (ii) MedRank (a recent approximate method with nontrivial quality guarantees) by one order
of magnitude, and meanwhile returned much better results.

As a second step, we extend our LSB technique to solve another classic problem, called Closest
Pair (CP) search, in high-dimensional space. The long-term challenge for this problem has been to
achieve subquadratic running time at very high dimensionalities, which fails most of the existing
solutions. We show that, using a LSB-forest, CP search can be accomplished in (worst-case) time
significantly lower than the quadratic complexity, yet still ensuring very good quality. In practice,
accurate answers can be found using just two LSB-trees, thus giving a substantial reduction in the
space and running time. In our experiments, our technique was faster: (i) than distance browsing
(a well-known method for solving the problem exactly) by several orders of magnitude, and (ii)
than D-shift (an approximate approach with theoretical guarantees in low-dimensional space) by
one order of magnitude, and at the same time, outputs better results.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—Access
methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Locality-sensitive hashing, nearest neighbor search, closest
pair search

ACM Reference Format:
Tao, Y., Yi, K., Sheng, C., and Kalnis, P. 2010. Efficient and accurate nearest neighbor and closest
pair search in high-dimensional space. ACM Trans. Datab. Syst. 35, 3, Article 20 (July 2010), 46
pages. DOI = 10.1145/1806907.1806912 http://doi.acm.org/10.1145/1806907.1806912

1. INTRODUCTION

Nearest Neighbor (NN) search is a classic problem with tremendous impacts
on artificial intelligence, pattern recognition, information retrieval, and so on.
Let D be a set of points in d-dimensional space. Given a query point q, its NN is
the point o∗ ∈ D closest to q. Formally, there is no other point o ∈ D satisfying
‖o, q‖ < ‖o∗, q‖, where ‖, ‖ denotes the distance of two points.

In this article, we consider high-dimensional NN search. Some studies
[Beyer et al. 1999] argue that high-dimensional NN queries may not be mean-
ingful. On the other hand, there is also evidence [Bennett et al. 1999] that
such an argument is based on restrictive assumptions. Intuitively, a meaning-
ful query is one where the query point q is much closer to its NN than to most
data points. This is true in many applications involving high-dimensional data,
as supported by a large body of recent works [Andoni and Indyk 2006; Athit-
sos et al. 2008; Ciaccia and Patella 2000; Datar et al. 2004; Fagin et al. 2003;
Ferhatosmanoglu et al. 2001; Gionis et al. 1999; Goldstein and Ramakrishnan
2000; Har-Peled 2001; Houle and Sakuma 2005; Indyk and Motwani 1998; Li
et al. 2002; Lv et al. 2007; Panigrahy 2006].

Sequential scan trivially solves a NN query by examining the entire dataset
D, but its cost grows linearly with the cardinality of D. From the database
perspective, a good solution should satisfy two requirements: (i) it can be easily
implemented in a relational database, and (ii) its query cost should increase
sublinearly with the cardinality for all data and query distributions. Despite the
bulk of NN literature (see Section 8), with a single exception to be explained

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:3

shortly, we are not aware of any existing solution that is able to fulfill both
requirements at the same time. Specifically, a majority of them (e.g., those based
on new indexes [Arya et al. 1998; Goldstein and Ramakrishnan 2000; Har-
Peled 2001; Houle and Sakuma 2005; Lin et al. 1994]) demand nonrelational
features, and thus cannot be incorporated in a commercial system. There also
exist relational solutions (such as iDistance [Jagadish et al. 2005] and MedRank
[Fagin et al. 2003]) which are experimentally shown to perform well for some
datasets and queries. Their drawback is that they may incur expensive query
cost on other datasets.

Locality-Sensitive Hashing (LSH) is the only known solution that satisfies
both requirements (i) and (ii). It supports c-approximate NN search. Formally,
a point o is a c-approximate NN of q if its distance to q is at most c times the
distance from q to its exact NN o∗, namely, ‖o, q‖ ≤ c‖o∗, q‖, where c ≥ 1 is
the approximation ratio. It is widely recognized that approximate NNs already
fulfill the needs of many applications [Andoni and Indyk 2006; Arya et al. 1998;
Athitsos et al. 2008; Datar et al. 2004; Ferhatosmanoglu et al. 2001; Gionis et al.
1999; Har-Peled 2001; Houle and Sakuma 2005; Indyk and Motwani 1998;
Krauthgamer and Lee 2004; Li et al. 2002; Lv et al. 2007; Panigrahy 2006].
LSH was originally proposed as a theoretical method [Indyk and Motwani
1998] with attractive asymptotical space and query performance. As elaborated
in Section 3, its practical implementation can be either rigorous or ad hoc.
Specifically, rigorous-LSH ensures good quality of query results (i.e., small
approximation ratio c), but requires expensive space and query cost. Although
ad hoc-LSH is more efficient, it abandons quality control, that is, the neighbor
it outputs can be arbitrarily bad. In other words, no LSH implementation is
able to ensure both quality and efficiency simultaneously, which is a serious
problem severely limiting the applicability of LSH.

Motivated by this, we propose an access method called Locality-Sensitive
B-tree (LSB-tree) that enables fast high-dimensional NN search with excellent
quality. The combination of several LSB-trees leads to a structure called the
LSB-forest that combines the advantages of both rigorous- and ad hoc-LSH,
without sharing their shortcomings. Specifically, the LSB-forest has the fol-
lowing features. First, its space consumption is the same as ad hoc-LSH, and
significantly lower than rigorous-LSH, typically by a factor over an order of
magnitude. Second, it retains the approximation guarantee of rigorous-LSH
(recall that ad hoc-LSH has no such guarantee). Third, its query cost is sub-
stantially lower than ad hoc-LSH, and as an immediate corollary, sublinear to
the dataset size. Finally, the LSB-forest adopts purely relational technology,
and hence, can be easily incorporated in a commercial system.

All LSH implementations require replicating the database multiple times,
and therefore, entail large space consumption and update overhead. Many ap-
plications prefer an index that consumes only linear space, and supports inser-
tions/deletions efficiently. The LSB-tree itself meets all these requirements, by
storing every data point once in a conventional B-tree. Based on real datasets,
we experimentally compared the LSB-tree to iDistance [Jagadish et al. 2005],
which is a famous technique for exact NN search, and to MedRank [Fagin
et al. 2003], which is a recent approximate method with nontrivial quality

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:4 • Y. Tao et al.

guarantees. The LSB-tree outperformed iDistance by two orders of magni-
tude, well confirming the advantage of approximate retrieval. Compared to
MedRank, our technique was consistently superior in both query efficiency and
result quality. Specifically, the LSB-tree was faster by one order of magnitude,
and at the same time, returned neighbors with much better quality.

As a second step, we tackle another classic problem, called Closest Pair (CP)
search, in high-dimensional space. Here, given a set D of points, the goal is
to find two points whose distance is the smallest among all pairs of points
in D. This problem has abundant applications in geographic information sys-
tems, clustering, and numerous matching problems (such as stable marriage
[Wong et al. 2007]), and has been very well solved in low-dimensional space
[Corral et al. 2000; Hjaltason and Samet 1998; Lenhof and Smid 1992]. When
the dimensionality increases, the challenge has been to achieve subquadratic
running time, namely, faster than the naive approach that simply examines
each pair of points in D. Algorithms that work well in low-dimensional space
generally see their computation cost quickly climb to quadratic even at a mod-
erate dimensionality. The c-approximate version of the CP problem is to re-
turn a pair of points with distance at most c times the distance of the closest
pair. The dimensionality curse haunts this approximate version, too. For ex-
ample, when the dimensionality can be viewed as a constant, Lopez and Liao
[2000] propose an algorithm, which we call D-shift, with a constant approxi-
mation ratio (i.e., c = O(1)). As the dimensionality grows, however, their ap-
proximation ratio increases superlinearly, and thus becomes unattractive very
soon.

We conquer the preceding challenge in this article by giving an algorithm
that runs in time significantly lower than the quadratic complexity and mean-
while, gives a very good worst-case guarantee on the quality of results (approx-
imation ratio around 2), regardless of the dimensionality. As in the NN context,
although such nice theoretical performance demands a full LSB-forest, in prac-
tice only 2 LSB-trees are already sufficient to return accurate results, thus sub-
stantially reducing the space and query cost. In the experiments, we compared
the proposed algorithms against distance browsing [Corral et al. 2000], which
is a well-cited exact solution, and the D-shift algorithm mentioned earlier. Our
technique was faster than distance browsing by several orders of magnitude,
and than D-shift by one order of magnitude. Moreover, our solutions returned
much more accurate answers than D-shift.

The rest of the article is organized as follows. Section 2 presents the prob-
lem settings and our objectives. Section 3 points out the defects of the exist-
ing LSH implementations. Section 4 explains the construction and NN search
algorithms of the LSB-tree, and Section 5 establishes its performance guar-
antees. Section 6 extends the LSB-tree to provide additional trade-offs be-
tween space/query cost and the quality of query results. Section 7 explains
how to use LSB-trees for closest pair search. Section 8 reviews the previous
work directly related to ours. Section 9 contains an extensive experimental
evaluation. Finally, Section 10 concludes the article with a summary of our
findings.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:5

2. PROBLEM SETTINGS

Without loss of generality, we assume that each dimension has a range [0, t],
where t is an integer. Following the LSH literature [Datar et al. 2004; Gionis
et al. 1999; Indyk and Motwani 1998], in analyzing the quality of query results,
we assume that all coordinates are integers, so that we can put a lower bound
of 1 on the distance between two different points. In fact, this is not a harsh
assumption because, with proper scaling, we can convert the real numbers in
most applications to integers. In any case, this assumption is needed only in
theoretical analysis; neither the proposed structure nor our query algorithms
rely on it.

We consider that distances are measured by �p norm, which has extensive
applications in machine learning, physics, statistics, finance, and many other
disciplines. Moreover, as �p norm generalizes or approximates several other
metrics, our technique is directly applicable to those metrics as well. For ex-
ample, in case all dimensions are binary (i.e., having only 2 distinct values), �1

norm is exactly Hamming distance, which is widely employed in text retrieval,
time-series databases, etc. Hence, our technique can be immediately applied in
those applications, too.

The main problem studied is c-approximate NN search, where c is a positive
integer. As mentioned in Section 1, given a point q, such a query returns a point
o in the dataset D, such that the distance ‖o, q‖ between o and q is at most c
times the distance between q and its real NN o∗. We assume that q is not in D.
Otherwise, the NN problem becomes a lookup query which can be easily solved
by standard hashing. A direct extension of NN queries is kNN search, which
finds the k points in D closest to q. The c-approximate version of kNN search
aims at returning k points, where the ith (1 ≤ i ≤ k) one is a c-approximation
of the real ith nearest neighbor. Formally, let o∗

1, ..., o∗
k be the real k NNs in

ascending order of their distances to q. Then, a set of points o1, ..., ok (also
sorted in the same way) is a c-approximate answer if ‖oi, q‖ ≤ c‖o∗

i , q‖ for all
i ∈ [1, k].

We consider that the dataset D resides in external memory where each page
has B words. Furthermore, we follow the convention that every integer or real
number is represented with one word. Since a point has d coordinates, the
entire D occupies totally dn/B pages, where n is the cardinality of D. In other
words, all algorithms which do not have provable sublinear cost growth with n
incur I/O complexity �(dn/B). Our objective is to design a relational solution
beating this complexity.

The second problem solved in this article is c-approximate CP search. Specif-
ically, let us define the closest pair in D to be the pair of points (o∗

1, o∗
2) hav-

ing the minimum distance among all pairs of points in D. Then the goal of
c-approximate CP search is to return a pair of points (o1, o2) inD whose distance
is at most c times the distance of the closest pair, namely, ‖o1, o2‖ ≤ c‖o∗

1, o∗
2‖.

A naive solution examines all pairs of points, and thus, has time complexity
quadratic to n. Note that the CP problem has a bichromatic counterpart which
includes two datasets D1 and D2. Here, the exact answer (o∗

1, o∗
2) is the one with

the smallest distance in the Cartesian product D1 × D2, and a c-approximate

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:6 • Y. Tao et al.

Fig. 1. Illustration of ball cover queries.

answer is a pair (o1, o2) ∈ D1 × D2 such that ‖o1, o2‖ ≤ c‖o∗
1, o∗

2‖. These two CP
problems can also be extended to kCP search, whose c-approximate version can
be defined in the same fashion as c-approximate kNN.

We denote by M the amount of available memory, measured in number of
words. Unless specifically stated, M can be as small as 3B for our algorithms
to work (i.e., there are at least 3 memory pages). This, however, excludes the
memory needed to store the query results. Specifically, a set of kNN or kCP
result requires O(kd) extra words in memory, which we assume can be afforded.

Our theoretical analysis assumes that a point can fit in a constant number of
disk pages (i.e., d = O(B)), which is almost always true in reality. For instance,
we may set the constant to 10, thus comfortably supporting dimensionality up to
10B. Also, to simplify the resulting bounds, we assume that the dimensionality
d is at least log(n/B) (all the logarithms, unless explicitly stated, have base
2). This is reasonable because, for practical values of n and B, log(n/B) seldom
exceeds 20, whereas d = 20 is barely “high-dimensional.”

3. THE PRELIMINARIES

Our solutions leverage LSH as the building brick. In Sections 3.1 and 3.2,
we discuss the drawbacks of the existing LSH implementations, and further
motivate our methods. In Section 3.3, we present the technical details of LSH
that are necessary for our discussion.

3.1 Rigorous-LSH and Ball Cover

As a matter of fact, LSH does not solve c-approximate NN queries directly.
Instead, it is designed [Indyk and Motwani 1998] for a different problem called
c-approximate Ball Cover (BC). Let D be a set of points in d-dimensional space.
Denote by B(q, r) a ball that centers at the query point q and has radius r. A
c-approximate BC query returns the following result:

(1) If B(q, r) covers at least one point in D, return a point whose distance to q
is at most cr.

(2) If B(q, cr) covers no point in D, return nothing.
(3) Otherwise, the result is undefined.

Figure 1 shows an example where D has two points o1 and o2. Consider first
the 2-approximate BC query q1 (the left black point). The two circles centering
at q1 represent balls B(q1, r) and B(q1, 2r), respectively. Since B(q1, r) covers
a data point o1, the query will have to return a point, but it can be either o1

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:7

Fig. 2. The rationale of the reduction from nearest neighbor to ball cover queries.

or o2, as both of them fall in B(q1, 2r). Now, consider the 2-approximate BC
query q2. Since B(q2, 2r) does not cover any data point, the query must return
empty.

Interestingly, an approximate NN query can be reduced to a number of
approximate BC queries with different radii r [Har-Peled 2001; Indyk and
Motwani 1998]. The rationale is that: if ball B(q, r) is empty but B(q, cr) is not,
then any point in B(q, cr) is a c-approximate NN of q. Consider the query point
q in Figure 2. Here, ball B(q, r) is empty, but B(q, cr) is not. It follows that the
NN of q must have a distance between r and cr to q. Hence, any point in B(q, cr)
(i.e., either o1 or o2) is a c-approximate NN of q.

Based on this idea, Indyk and Motwani [1998] propose a structure that
supports c-approximate BC queries at r = 1, c, c2, c3,. . . , x respectively,
where x is the smallest power of c that is larger than or equal to td (recall
that t is the greatest coordinate on each dimension). They give an algorithm
[Indyk and Motwani 1998] to guarantee an approximation ratio of c2 for NN
search (in other words, we need a structure for

√
c-approximate BC queries to

support c-approximate NN retrieval). Their method, which we call rigorous-
LSH, consumes O((logc t + logc d) · (dn/B)1+1/c) space, and answers a query in
O((logc t + logc d) · (dn/B)1/c) I/Os. Note that t can be a large value, thus mak-
ing the space and query cost potentially very expensive. Our LSB-tree will
eliminate the factor logc t + logc d completely.

Finally, it is worth mentioning that there exist complicated NN-to-BC re-
ductions [Har-Peled 2001; Indyk and Motwani 1998] with better complexities.
However, those reductions are highly theoretical, and are difficult to implement
in relational databases.

3.2 Ad Hoc-LSH

Although rigorous-LSH is theoretically sound, its space and query cost is pro-
hibitively expensive in practice. The root of the problem is that it must support
BC queries at too many (i.e., logc t + logc d) radii. Gionis et al. [1999] remedy
this drawback with a heuristic approach which we refer to as ad hoc-LSH.
Given a NN query q, they return directly the output of the BC query that is at
location q and has radius rm, where rm is a “magic” radius predetermined by
the system. Since only one radius needs to be supported, ad hoc-LSH improves
rigorous-LSH by requiring only O((dn/B)1+1/c) space and O((dn/B)1/c) query
time.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:8 • Y. Tao et al.

Fig. 3. Drawbacks of ad hoc-LSH.

Fig. 4. No good rm exists if clusters have different densities.

Unfortunately, the cost saving of ad hoc-LSH trades away the quality control
on query results. To illustrate, consider Figure 3(a), where the dataset D has
7 points o1, o2, . . . , o7, and the black point is a NN query q. Suppose that ad
hoc-LSH is set to support 2-approximate BC queries at radius rm. Thus, it an-
swers the NN query q by finding a data point that satisfies the 2-approximate
BC query located at q with radius rm. The two circles in Figure 3(a) repre-
sent B(q, rm) and B(q, 2rm) respectively. As B(q, rm) covers some data of D, (by
the definition stated in the previous subsection) the BC query q may return
any of the 7 data points in B(q, 2rm). It is clear that no bounded approxi-
mation ratio can be ensured, as the real NN o1 of q can be arbitrarily close
to q.

The preceding problem is caused by an excessively large rm. Conversely, if rm

is too small, ad hoc-LSH may not return any result at all. To see this, consider
Figure 3(b). Again, the white points constitute the dataset D, and the two
circles are B(q, rm) and B(q, 2rm). As B(q, 2rm) is empty, the 2-approximate BC
query q must not return anything. As a result, ad hoc-LSH reports nothing too,
and is said to have missed the query [Gionis et al. 1999].

Ad hoc-LSH performs well if rm is roughly equivalent to the distance between
q and its exact NN, which is why ad hoc-LSH can be effective when given the
right rm. Unfortunately, finding such an rm is nontrivial. Even worse, such rm

may not exist at all because an rm good for some queries may be bad for others.
Figure 4 presents a dataset with two clusters whose densities are drastically
different. Apparently, if a NN query q falls in cluster 1, the distance from q to
its NN is significantly smaller than if q falls in cluster 2. Hence, it is impossible
to choose an rm that closely captures the NN distances of all queries. Note that
clusters with different densities are common in real datasets [Breunig et al.
2000].

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:9

Recently, Lv et al. [2007] present a variation of ad hoc-LSH with less space
consumption. This variation, however, suffers from the same drawback (i.e., no
quality control) as ad hoc-LSH, and entails higher query cost than ad hoc-LSH.

In summary, currently a practitioner, who wants to apply LSH, faces a
dilemma between space/query efficiency and approximation guarantee. If the
quality of the retrieved neighbor is crucial (as in security systems such as
finger-print verification), a huge amount of space is needed, and large query
cost must be paid. On the other hand, to meet a tight space budget or strin-
gent query time requirement, one would have to sacrifice the quality guar-
antee of LSH, which somewhat ironically is exactly the main strength of
LSH.

3.3 Details of Hash Functions

Let h(o) be a hash function that maps a d-dimensional point o to a one-
dimensional value. It is locality-sensitive if the chance of mapping two points
o1, o2 to the same value grows as their distance ‖o1, o2‖ decreases. Formally,
we have the following.

Definition 1 (LSH). Given a distance r, approximation ratio c, probability
values p1 and p2 such that p1 > p2, a hash function h(.) is (r, cr, p1, p2) locality-
sensitive if it satisfies both conditions that follow:

1. If ‖o1, o2‖ ≤ r, then Pr[h(o1) = h(o2)] ≥ p1;
2. If ‖o1, o2‖ > cr, then Pr[h(o1) = h(o2)] ≤ p2.

LSH functions are known for many distance metrics. For �p norm, a popular
LSH function is defined as follows [Datar et al. 2004].

h(o) =
⌊ 	a · 	o + b

w

⌋
(1)

Here, 	o represents the d-dimensional vector representation of a point o; 	a is
another d-dimensional vector where each component is drawn independently
from a so-called p-stable distribution [Datar et al. 2004]; 	a · 	o denotes the dot
product of these two vectors. w is a sufficiently large constant, and finally, b is
uniformly drawn from [0, w).

Eq. (1) has a simple geometric interpretation. To illustrate, let us consider
p = 2, that is, �p is Euclidean distance. In this case, a 2-stable distribution
can be just a normal distribution (mean 0, variance 1), and it suffices to set
w = 4 [Datar et al. 2004]. Assuming dimensionality d = 2, Figure 5 shows the
line that crosses the origin, and its slope coincides with the direction of 	a. For
convenience, assume that 	a has a unit norm, so that the dot product 	a · 	o is
the projection of point o onto line 	a, namely, point A in the figure. The effect of
	a · 	o+b is to shift A by a distance b (along the line) to a point B. Finally, imagine
we partition the line into intervals with length w; then, the hash value h(o) is
the ID of the interval covering B.

The intuition behind such a hash function is that, if two points are close to
each other, then with high probability their shifted projections (on line 	a) will
fall in the same interval. On the other hand, two faraway points are very likely

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:10 • Y. Tao et al.

Fig. 5. Geometric interpretation of LSH.

to be projected into different intervals. The following is proved in Datar et al.
[2004].

LEMMA 1 (PROVED IN DATAR ET AL. [2004]). Eq. (1) is (1, c, p1, p2) locality-
sensitive, where p1 and p2 are two constants satisfying ln 1/p1

ln 1/p2
≤ 1

c .

4. LSB-TREE

This section includes everything that a practitioner needs to know to apply
LSB-trees. Specifically, Section 4.1 explains how to build a LSB-tree, and
Section 4.2 gives its NN algorithm. We will leave all the theoretical analy-
sis to Section 5, including its space, query performance, and quality guarantee.
For simplicity, we will assume �2 norm but the extension to arbitrary �p norms
is straightforward.

4.1 Building a LSB-Tree

The construction of a LSB-tree is very simple. Given a d-dimensional dataset
D, we first convert each point o ∈ D to an m-dimensional point G(o), and then
obtain the Z-order value z(o) of G(o). Note that z(o) is just a simple number.
Hence, we can index all the resulting Z-order values with a conventional B-tree,
which is the LSB-tree. The coordinates of o are stored along with its leaf entry.
Next, we clarify the details of each step.

From o to G(o). We set the dimensionality m of G(o) as

m = log1/p2
(dn/B) (2)

where p2 is the constant given in Lemma 1 under c = 2, n is the size of dataset
D, and B is the page size. As explained in Section 5, this choice of m makes it
rather unlikely that the G(o1) and G(o2) of two faraway points o1, o2 are similar
on all m dimensions. Note that, the choice of c = 2 is not compulsory, and our
technique can be adapted to any integer c ≥ 2, as discussed in Section 6.

The derivation of G(o) is based on a family of hash functions.

H(o) = 	a · 	o + b∗ (3)

Here, 	a is a d-dimensional vector where each component is drawn indepen-
dently from the normal distribution (mean 0 and variance 1). Value b∗ is

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:11

Fig. 6. Illustration of data conversion.

uniformly distributed in [0, 2 f w), where w is any constant at least 4, and

f =
log d + log t�. (4)

Recall that t is the largest coordinate on each dimension. Note that while
	a and w are the same as in Eq. (1), b∗ is different, which is an important
design underlying the efficiency of the LSB-tree (as elaborated in Section 5
with Lemma 2).

We randomly select m functions H1(.), . . . , Hm(.) independently from the fam-
ily described by Eq. (3). Then, G(o) is the m-dimensional vector.

G(o) = 〈H1(o), H2(o), . . . , Hm(o)〉 (5)

From G(o) to z(o). Let U be the axis length of the m-dimensional space G(o)
falls in. As explained shortly, we will choose a value of U such that U/w is a
power of 2. Computation of a Z-order curve requires a hypergrid partitioning
the space. We impose a grid where each cell is a hypersquare with side length
w; therefore, there are U/w cells per dimension, and totally (U/w)m cells in
the whole grid. Given the grid, calculating the Z-order value z(o) of G(o) is a
standard process well-known in the literature [Gaede and Gunther 1998]. Let
u = log(U/w). Each z(o) is thus a binary string with um bits.

Example. To illustrate the conversion, assume that the dataset D consists
of 4 two-dimensional points o1, o2, ..., o4 as shown in Figure 6(a). Suppose that
we select m = 2 hash functions H1(.) and H2(.). Let 	a1 (a2) be the “	a-vector”
in function H1(.) (H2(.)). For simplicity, assume that both 	a1 and 	a2 have norm
1. In Figure 6(a), we slightly abuse notations by also using 	a1 (a2) to denote
the line that passes the origin, and coincides with the direction of vector 	a1

(a2).
Let us take o1 as an example. The first step of our conversion is to obtain

G(o1), which is a 2-dimensional vector with components H1(o1) and H2(o2). The
value of H1(o1) can be understood in the same way as explained in Figure 5.
Specifically, first project o1 onto line 	a1, and then move the projected point A

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:12 • Y. Tao et al.

(along the line) by a distance b∗
1 to a point B. H1(o1) is the distance from B to the

origin.1 H2(o2) is computed similarly on line 	a2 (note that the shifting distance
is b∗

2).
Treating H1(o1) and H2(o2) as coordinates, in the second step, we regard

G(o1) as a point in a data space as shown in Figure 6(b), and derive z(o1) as the
Z-order value of point G(o1) in this space. In Figure 6(b), the Z-order calculation
is based on a 8 × 8 grid. As G(o1) falls in a cell whose (binary) horizontal and
vertical labels are 010 and 110 respectively, z(o1) equals 011100 (in general,
a Z-order value interleaves the bits of the two labels, starting from the most
significant bits [Gaede and Gunther 1998]).

Choice of U. In practice, U can be any value making U/w a sufficiently large
power of 2. For theoretical reasoning, next we provide a specific choice for U.
Besides U/w being a power of 2, our choice fulfills another two conditions: (i)
U/w ≥ 2 f , and (ii) |Hi(o)| is confined to at most U/2 for any i ∈ [1, m].

In the form of Eq. (3), for each i ∈ [1, m], write Hi(o) = 	ai · 	o + b∗
i . Denote by

‖	ai‖1 the �1 norm2 of 	ai. Remember that o distributes in space [0, t]d, where t is
the largest coordinate on each dimension. Hence, |Hi(.)| is bounded by

Hmax = m
max

i=1
(‖	ai‖1 · t + b∗

i). (6)

We thus determine U by setting U/w to the smallest power of 2 that bounds
both 2 f and 2Hmax/w from above.

4.2 Nearest Neighbor Algorithm

In practice, a single LSB-tree already produces query results with very good
quality, as demonstrated in our experiments. To elevate the quality to a theo-
retical level, we may independently build a number l of trees. We choose

l =
√

dn/B. (7)

which, as analyzed in Section 5, ensures a high chance for nearby points o1, o2

to have close Z-order values in at least one tree.
Denote the l trees as T1, T2, . . . , Tl respectively, and call them collectively a

LSB-forest. Use zj(o) to represent the Z-order value of o in tree Tj (1 ≤ j ≤ l).
Without ambiguity, we also let zj(o) refer to the leaf entry of o in Tj . Remember
that the coordinates of o are stored in the leaf entry.

Given a NN query q, we first get its Z-order value zj(q) in each tree Tj

(1 ≤ j ≤ l). As with the Z-order values of data points, zj(q) is a binary string
with umbits. We denote by LLCP(zj(o), zj(q)) the Length of the Longest Common
Prefix (LLCP) of zj(o) and zj(q). For example, suppose zj(o) = 100101 and
zj(q) = 100001; then LLCP(zj(o), zj(q)) = 3. When q is clear from the context,
we may refer to LLCP(zj(o), zj(q)) simply as the LLCP of zj(o).

Figure 7 presents our nearest neighbor algorithm at a high level. The main
idea is to visit the leaf entries of all l trees in descending order of their LLCPs,

1Precisely speaking, it is |H1(o1)| that is equal to the distance. H1(o1) itself can be either positive
or negative, depending on which side of the origin B lies on.
2Given a d-dimensional vector 	a = 〈a[1], a[2], ..., a[d]〉, ‖	a‖1 = ∑d

i=1 |a[i]|.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:13

Fig. 7. The NN algorithm.

Fig. 8. Bidirectional expansion (um = 6, l = 3).

until either enough points have been seen, or we have found a point that is
close enough. Next, we explain the details of lines 2 and 3.

Finding the next greatest LLCP. This can be done by a synchronous bidirec-
tional expansion at the leaf levels of all trees. Specifically, recall that we have
obtained the Z-order value zj(q) in each tree Tj (1 ≤ j ≤ l). Search Tj to locate
the leaf entry e j� with the lowest Z-order value at least zj(q). Let e j� be the
leaf entry immediately preceding e j�. To illustrate, Figure 8 gives an example
where each Z-order value has um = 6 bits, and l = 3 LSB-trees are used. The
values of z1(q), z2(q), and z3(q) are given next to the corresponding trees. In
T1, for instance, z1(o1) = 011100 is the lowest among all the Z-order values at
least z1(q) = 001110. Hence, e1� is z1(o1), and e1� is the entry z1(o3) = 001100
preceding z1(o1).

The leaf entry with the greatest LLCP must be in the set S = {e1�, e1�, ...,
el�, el�}. Let e ∈ S be this entry. To determine the leaf entry with the next
greatest LLCP, we move e away from q by one position in the corresponding
tree, and then repeat the process. For example, in Figure 8, the leaf entry with
the maximum LLCP is e2� (whose LLCP is 5, as it shares the same first 5 bits
with z2(q)). Thus, we shift e2� to its left, that is, to z2(o1) = 010001. The entry
with the next largest LLCP can be found again in {e1�, e1�, ..., e3�, e3�}.

Terminating condition. Algorithm NN1 terminates when one of two events
E1 and E2 happens. The first event is:

E1: the total number of leaf entries accessed from all l LSB-trees has reached
4Bl/d.

Event E2 is based on the LLCP of the leaf entry just retrieved from line 2.
Denote the LLCP by v, which bounds from above the LLCP of all the leaf
entries that have not been processed.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:14 • Y. Tao et al.

E2: the nearest point found so far (from all the leaf entries already inspected)
has distance to q at most 2u−�v/m�+1.

Let us use again Figure 8 to illustrate algorithm NN1. Assume that the
dataset consists of points o1, o2, . . . , o4 in Figure 6(a), and the query is the
black point q. Notice that the Z-order values in tree T1 are obtained according
to the transformation in Figure 6(b) with u = 3 and m = 2. Suppose that
‖o3, q‖ = 3 and ‖o4, q‖ = 5.

As explained earlier, entry z2(o4) in Figure 8 has the largest LLCP v = 5,
and thus is processed first. NN1 obtains the object o4 associated with z2(o4),
and calculates its distance to q. Since ‖o4, q‖ = 5 > 2u−�v/m�+1 = 4, condition E2
does not hold. Assuming E1 is also violated (i.e., let 4Bl/d > 1), the algorithm
processes the entry with the next largest LLCP, which is z1(o3) in Figure 8
whose LLCP v = 4. In this entry, NN1 finds o3 which replaces o4 as the nearest
point so far. As now ‖o3, q‖ = 3 ≤ 2u−�v/m�+1 = 4, E2 holds, and NN1 terminates
by returning o3.

Retrieving k neighbors. Algorithm NN1 can be easily adapted to answer kNN
queries. Specifically, it suffices to modify E1 to “the total number of leaf entries
accessed from all l LSB-trees has reached (4Bl/d) + (k − 1)l”, and E2 to “q is
within distance 2u−�v/m�+1 to the k nearest points found so far.” Also, apparently
line 4 should return the k nearest points. Finally, the value of l in Eq. (7)
needs to be increased by O(log(n)) times. All these changes are to ensure strong
quality guarantees in theory for any k (as will be analyzed in the next section).
In practice, as long as k is small, only the change to E2 is needed, and E1 and l
can remain as they are for k = 1.

kNN search with a single tree. Maintaining a forest of l LSB-trees incurs large
space consumption and update overhead. In practice, we may prefer an index
that has linear space and supports fast data insertions/deletions. In this case,
we can build only one LSB-tree, and use it to process kNN queries. Accordingly,
we slightly modify the algorithm NN1 by simply ignoring event E1 in the
terminating condition (as this event is designed specifically for querying l trees).
Condition E2, however, is retained. As a trade-off for efficiency, querying only a
single tree loses the theoretical guarantees of the LSB-forest (as established in
the next section). Nevertheless, this approach is expected to return neighbors
with high quality, because the converted Z-order values adequately preserve
the proximity of the data points in the original data space.

5. THEORETICAL ANALYSIS

We now proceed to study the theoretical characteristics of the LSB-tree. Denote
by D the original d-dimensional space of the dataset D. Namely, D = [0, t]d,
where t is the maximum coordinate on each axis. Recall that, to construct a
LSB-tree, we convert each point o ∈ D to an m-dimensional point G(o) as in
Eq. (5). Denote by G the space where G(o) is distributed. By the way we select
U in Section 4.1, G = [−U/2,U/2]m.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:15

5.1 Quality Guarantee

We begin with an observation on the basic LSH in Eq. (1).

Observation 1. Given any integer x ≥ 1, define hash function

h′(o) =
⌊ 	a · 	o + bx

w

⌋
, (8)

where 	a, b, and w are the same as in Eq. (1). h′(.) is (1, c, p1, p2) locality-sensitive,
and ln 1/p1

ln 1/p2
≤ 1/c.

PROOF. We first point out a useful fact. Imagine a line that has been parti-
tioned into consecutive intervals of length w. Let A, B be two points on this line
with distance y ≤ w. Shift both points towards right by a distance uniformly
drawn from [0, wλ), where λ is any integer. After this, A and B fall in the same
interval with probability 1 − y/w, which is irrelevant to λ.

Consider the hash function h(o) in Eq. (1). Use 	a to denote also the line
passing the origin containing vector 	a. As explained in Section 3.3, 	a · 	o decides
a point in Line 	a, and 	a · 	o + b shifts the point away from the origin by distance
b along the line. Call it the shifted projection of o. Let us partition line 	a with
intervals of length w. By Eq. (1), two objects o1, o2 have the same hash value if
and only if their shifted projections fall in the same interval.

Now assume that we change the shifting distance from b to bx. Since b is
uniformly distributed in [0, w), bx is uniformly distributed in [0, wx). Hence,
the change does not alter the probability for the shifted projections of o1 and
o2 to fall in the same interval. This means that Eq. (8) is also (1, c, p1, p2)
locality-sensitive with the same p1 and p2 as Eq. (1).

For any s ∈ [0, f] with f given in Eq. (4), define

H∗(o, s) =
⌊ 	a · 	o + b∗

2sw

⌋
, (9)

where 	a, b∗, and w follow those in Eq. (3). We have the next lemma.

LEMMA 2. H∗(o, s) is (2s, 2s+1, p1, p2) locality-sensitive, where p1 and p2 sat-
isfy ln 1/p1

ln 1/p2
≤ 1/2.

PROOF. Create another space D
′ by dividing all coordinates of D by 2s. It is

easy to see that the distance of two points in D is 2s times the distance of their
converted points in D

′. Consider

h′′(o′) =
⌊

	a · 	o′ + (b∗/2 f w)(2 f −sw)
w

⌋
, (10)

where o′ is a point in D
′. As b∗/(2 f w) is uniformly distributed in [0, w), by Obser-

vation 1, h′′(.) is (1, 2, p1, p2) locality-sensitive in D
′ with (ln 1/p1)/(ln 1/p2) ≤

1/2. Let o be the corresponding point of o′ in D. Clearly, 	a · 	o′ = (a · 	o)/2s. Hence
h′′(o′) = H∗(o, s). The lemma thus holds.

As shown in Eq. (5), G(o) is composed of hash values H1(o), . . . , Hm(o). In
the way we obtain H∗(o, s) (Eq. (9)) from H(o) (Eq. (3)), let H∗

i (o, s) be the hash

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:16 • Y. Tao et al.

function corresponding to Hi(o) (1 ≤ i ≤ m). Also remember that z(o) is the
Z-order value of G(o) in space G, and function LLCP(., .) returns the length of
the longest common prefix of two Z-order values. Now we prove a crucial lemma
that is the key to the design of the LSB-tree.

LEMMA 3. Let o1, o2 be two arbitrary points in space D. A value s satisfies
s ≥ u−�LLCP(z(o1), z(o2))/m� if and only if H∗

i (o1, s) = H∗
i (o2, s) for all i ∈ [1, m].

PROOF. Recall that, for Z-order value calculation, we impose on G a grid
with 2u cells (each with side length w) per dimension. Refer to the entire G as
a level-u tile. In general, a level-s (2 ≤ s ≤ u) tile defines 2m level-(s − 1) tiles,
by cutting the level-s tile in half on every dimension. Thus, each cell in the grid
partitioning G is a level-0 tile.

As a property of the Z-order curve, G(o1) and G(o2) belong to a level-s tile,
if and only if their Z-order values share at least m(u − s) most significant bits
[Gaede and Gunther 1998], namely, LLCP(z(o1), z(o2)) ≥ m(u− s). On the other
hand, note that a level-s tile is a hypersquare with side length 2sw. This means
that G(o1) and G(o2) belong to a level-s tile, if and only if H∗

i (o1, s) = H∗
i (o2, s)

for all i ∈ [1, m]. Thus, the lemma follows.

Lemmas 2 and 3 allow us to rephrase the probabilistic guarantees of LSH
using LLCP.

COROLLARY 1. Let r be any power of 2 at most 2 f . Given a query point q and
a data point o, we have:

(1) If ‖q, o‖ ≤ r, then LLCP(z(q), z(o)) ≥ m(u − log r) with probability at least
pm

1 .
(2) If ‖q, o‖ > 2r, then LLCP(z(q), z(o)) ≥ m(u − log r) with probability at most

pm
2 .

Furthermore, ln 1/p1
ln 1/p2

≤ 1/2.

The previous result holds for any LSB-tree. Recall that, for NN search, we
need a forest of l trees T1, . . . , Tl built independently. Next, we will explain an
imperative property guaranteed by these trees. Let q be the query point, and
r be any power of 2 up to 2 f such that there is a point o∗ in the ball B(q, r).
Consider events P1 and P2.

P1: LLCP(zj(q), zj(o∗)) ≥ m(u − log r) in at least one tree Tj (1 ≤ j ≤ �).
P2: There are less than 4Bl/d leaf entries zj(o) from all trees Tj (1 ≤ j ≤ l)

such that: (i) LLCP(zj(q), zj(o)) ≥ m(u− log r), and (ii) o is outside B(q, 2r).

The property guaranteed by the l trees is the next lemma.

LEMMA 4. P1 and P2 hold at the same time with at least constant
probability.

PROOF. Equipped with Corollary 1, this proof is analogous to the standard
proof [Gionis et al. 1999] of the correctness of LSH.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:17

Now we establish an approximation ratio of 4 for algorithm NN1. In the next
section, we will extend the LSB-tree to achieve better approximation ratios.

THEOREM 1. Algorithm NN1 returns a 4-approximate NN with at least con-
stant probability.

PROOF. Let o∗ be the NN of query q, and r∗ = ‖o∗, q‖. Let r be the smallest
power of 2 bounding r∗ from above. Obviously r < 2r∗ and r ≤ 2 f (notice that
r∗ is at most td ≤ 2 f under any �p norm). If when NN1 finishes, it has already
found o∗ in any tree, apparently it will return o∗ which is optimal. Next, we
assume NN1 has not seen o∗ at termination.

We will show that when both P1 and P2 are true, the output of NN1 is
definitely 4-approximate. Denote by j∗ the j stated in P1. Recall that NN1 may
terminate due to the occurrence of either event E1 or E2. If it is due to E2, and
given the fact that NN1 visits leaf entries in descending order of their LLCP,
the LLCP v of the last fetched leaf entry is at least LLCP(zj∗ (q), zj∗ (o∗)) ≥
m(u− log r). It follows that �v/m� ≥ u− log r. E2 ensures that we return a point
o with ‖o, q‖ ≤ 2r < 4r∗.

In case the termination is due to E1, by P2, we know that NN1 has seen at
least one point o inside B(q, 2r). Hence, the point returned has distance to q at
most 2r < 4r∗. Finally, Lemma 4 indicates that P1 and P2 are true with at least
constant probability, thus completing the proof.

Also, the proof of Theorem 1 actually shows the next corollary.

COROLLARY 2. Let r∗ be the distance from q to its real NN. With at least
constant probability, NN1 returns a point within distance 2r to q, where r is the
lowest power of 2 bounding r∗ from above.

Remark 1. When defining the problem in Section 2, we restricted point coordi-
nates to integers. In fact, the preceding analysis holds also for real coordinates
as well, as long as the minimum distance between two points in D is at least 1.

Remark 2. As a standard trick in probabilistic algorithms, by repeating our
solution O(log(1/p)) times, we boost the success probability of algorithm NN1
from constant to at least 1 − p, for any arbitrarily low p > 0. In other words,
by repeating O(log n) times (namely, increasing l to O(log n

√
dn/B)), the failure

probability of NN1 can be lowered to at most 1/2n. Using the Union Bound
inequality (also called the Boole’s inequality), it is easy to show that the kNN
algorithm described in Section 4.2 gives a 4-approximate answer with at least
constant probability.

5.2 Space and Query Time

THEOREM 2. We can build a forest of l LSB-trees that consume totally
O((dn/B)1.5) space. Given these trees, algorithm NN1 answers a 4-approximate
NN query in O(E

√
dn/B) I/Os, where E is the height of a LSB-tree.

PROOF. Each leaf entry of a LSB-tree stores a Z-order value z(o) and the
coordinates of o. z(o) has um bits where u = O(f) = O(log d + log t) and m =
O(log(dn/B)). As log d+log t bits fit in 2 words, z(o) occupies O(log(dn/B)) words.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:18 • Y. Tao et al.

It takes d words to store the coordinates of o. Hence, overall a leaf entry is O(d)
words long. Hence, a LSB-tree consumes O((dn/B)) pages, and l = √

dn/B of
them require totally O((dn/B)1.5) space.

Algorithm NN1 (i) first accesses a single path in each LSB-tree, and then (ii)
fetches at most 4Bl/d leaf entries. The cost of (i) is bounded by O(lE). As a leaf
entry consumes O(d) words, 4Bl/d of them occupy at most O(l) pages.

By implementing each LSB-tree as a string B-tree [Ferragina and Grossi
1999], the height E is bounded by O(logB n), resulting in query complexity
O(

√
dn/B logB n).

5.3 Comparison with Rigorous-LSH

As discussed in Section 3, for 4-approximate NN search, rigorous-LSH con-
sumes O((log d + log t)(dn/B)1.5) space, and answers a query in O((log d +
log t)

√
dn/B) I/Os. Comparing these complexities with those in Theorem 2, it is

clear that the LSB-forest improves rigorous-LSH significantly in the following
ways.

First, the performance of the LSB-forest is not sensitive to t, the greatest
coordinate of a dimension. This is a crucial improvement because t can be
very large in practice. As a result, rigorous-LSH is suitable only when data
are confined to a relatively small space. The LSB-forest enjoys much higher
applicability by retaining the same efficiency regardless of the size of the data
space.

Second, the space consumption of a LSB-forest is lower than that of rigorous-
LSH by a factor of log d + log t. For practical values of d and t (e.g., d = 50 and
t = 10000), the space of a LSB-forest is lower than that of rigorous-LSH by
more than an order of magnitude. Furthermore, note that the LSB-forest is as
space efficient as ad hoc-LSH, even though the latter does not guarantee the
quality of query results at all.

Third, the LSB-forest promises higher query efficiency than rigorous-LSH.
As mentioned earlier, the height E can be strictly confined to O(logB n) by
resorting to the string B-tree. Even if we simply implement a LSB-tree as a
normal B-tree, the height E never grows beyond 6 in our experiments. This is
expected to be much smaller than log d + log t, rendering the query complexity
of the LSB-forest considerably lower than that of rigorous-LSH.

In summary, the LSB-forest outperforms rigorous-LSH significantly in ap-
plicability, space, and query efficiency. It therefore eliminates the reason for
resorting to the theoretically vulnerable approach of ad hoc-LSH. Finally, re-
member that the LSB-tree achieves all of its nice characteristics by leveraging
purely relational techniques.

6. EXTENSIONS

This section presents several interesting extensions to the LSB-tree, which are
easy to implement in a relational database, and extend the functionality of the
LSB-tree significantly.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:19

Fig. 9. The 3-approximate algorithm.

Supporting ball cover. A LSB-forest, which is a collection of l LSB-trees
as defined in Section 4.2, is able to support 2-approximate BC queries whose
radius r is any power of 2. Specifically, given such a query q, we run algorithm
NN1 (Figure 7) using the query point. Let o by the output of NN1. If ‖o, q‖ ≤ 2r,
we return o as the result of the BC query q. Otherwise, we return nothing. By
an argument similar to the proof of Theorem 1, it is easy to prove that the
previous strategy succeeds with high probability.

(2 + ε)-approximate nearest neighbors. A LSB-forest ensures an approxi-
mation ratio of 4 (Theorem 1). Next we will improve the ratio to 3 with
only 2 LSB-forests. As shown earlier, a LSB-forest can answer 2-approximate
BC queries with any r = 1, 2, 22, . . . , 2 f where f is given in Eq. (4). We
build another LSB-forest to handle 2-approximate BC queries with any r =
1.5, 1.5 × 2, 1.5 × 22, . . . , 1.5 × 2 f . For this purpose, we can create another
dataset D′ from D, by dividing all coordinates in D by 1.5. Then, a LSB-forest
on D′ is exactly what we need, noticing that the distance of two points in D′ is
1.5 times smaller than that of their original points in D. The only issue is that
the distance of two points in D′ may drop below 1, while our technique requires
a lower bound of 1 (see Remark 1 in Section 5.1). This can be easily fixed by
scaling up D first by a factor of 2 (i.e., doubling all the coordinates). Any two
points in the new D have distance at least 2, so any two points in D′ now have
distance at least 2/1.5 > 1.

Denote by F and F′ the LSB-forest on D and D′, respectively. Given a NN
query q, we answer it using simple the algorithm NN2 in Figure 9.

THEOREM 3. Algorithm NN2 returns a 3-approximate NN with at least con-
stant probability.

PROOF. Let D be the d-dimensional space of dataset D, and D
′ the space of

D′. Denote by r∗ the distance between q and its real NN o∗. Apparently, r∗ must
fall in either (2x, 1.5 × 2x] or (1.5 × 2x, 2x+1] for some x ∈ [0, f]. Refer to these
possibilities as Case 1 and 2, respectively.

For Case 1, the distance r∗′ between q and o∗ in space D
′ is between

(2x/1.5, 2x]. Hence, by Corollary 2, with at least constant probability the dis-
tance between o′ and q in D

′ is at most 2x+1, where o′ is the point output at
line 2 of NN2. It thus follows that o′ is within distance 1.5 × 2x+1 ≤ 3r∗ in D.
Similarly, for Case 2, we can show that o (output at line 1) is a 3-approximate
NN with at least constant probability.

The preceding idea can be easily extended to (2 + ε)-approximate NN search
for any 0 < ε < 2. Specifically, we can maintain 1 + �1/ log(1 + ε/2)� LSB-
forests, such that the ith forest (1 ≤ i ≤ 1 + �1/ log(1 + ε/2)�) supports

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:20 • Y. Tao et al.

Fig. 10. Computing Z-order values for the order-3 LSB-tree.

2-approximate BC queries at r = α, 2α, 22α, . . . , 2 f α, where α = (1 + ε/2)i−1.
Given a query q, we run algorithm NN1 on all the forests, and return the near-
est point found. By an argument similar to proving Theorem 3, we have the next
theorem.

THEOREM 4. For any 0 < ε < 2, we can build O(1
log(1+ε)) LSB-forests that

consume totally O((dn/B)1.5 1
log(1+ε)) space, and answer a (2 + ε)-approximate

NN query in O(E
√

dn/B 1
log(1+ε)) I/Os, where E is the height of a LSB-tree.

(c+ε)-approximate nearest neighbors. In practice, an application may be able
to tolerate an approximation ratio higher than that of the basic LSB-forest. In
this case, it is possible to further reduce the space and query cost. In the sequel,
we generalize the LSB-tree to offer any approximation ratio arbitrarily close
to c, for any integer c ≥ 3.

We make several changes in building a LSB-tree.

—Recall that m equals log1/p2
(dn/B) in Section 4.1. For c ≥ 3, the expression

for m remains identical, but p2 is the constant as given in the Lemma 1 for
the value of c we are considering.

—In Eq. (3), b∗ will be uniformly drawn from [0, c f w), where f , instead of
following Eq. (4), is set to
logc d + logc t�.

—We will decide U (i.e., the axis length of the m-dimensional space of G(o)) by
setting U/w to the smallest power of c that bounds both c f and 2Hmax/w from
above, where Hmax is given in Eq. (5).

The last change lies in the way a Z-order value z(o) is calculated from G(o).
Let us denote by G the m-dimensional space where G(o) is distributed. Impose
a hypergrid over G where each cell is a hypersquare with side length w. As
mentioned earlier, U/w is a power of c; therefore, the grid has totally xcm cells,
for some integer x. Figure 10 shows an example where G has m = 2 dimensions,
c = 3, and G is partitioned by a 32 × 32 grid.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:21

We utilize the grid to compute z(o) as follows. Recall that the grid partitions
each dimension of G into cx intervals. Number these intervals consecutively
using c-ary values. For instance, in Figure 10, each dimension of G is cut into
32 = 9 intervals, which are numbered from 00 to 22. Then, the Z-order value of
each cell in the grid is obtained by interleaving its c-ary digits on all dimensions.
For example, the grey cell in Figure 10 is numbered 02 and 10 on the horizontal
and vertical dimensions, respectively. Hence, its Z-order value is 0120, taking
the first digits of 02 and 10, then followed by their second digits. z(o) equals the
Z-order value of the cell that G(o) falls in. By the Z-order values thus calculated,
we impose an ordering of the cells as depicted by the zigzag line in the figure.

We call the adapted LSB-tree an order-c LSB-tree, and build a forest of
l = (dn/B)1/c such trees independently. Call it an order-c LSB-forest. The query
algorithm NN1 in Section 4.2 can be deployed directly on the forest, except
that the number 2u−�v/m�+1 in event E2 should be replaced by cu−�v/m�+1. By an
argument similar to the one in Section 5, we can show the next theorem.

THEOREM 5. We can build a set of order-c LSB-trees that consume totally
O((dn/B)1+1/c) space. Given a query, NN1 returns a c2-approximate NN in
O(E(dn/B)1/c) I/Os, where E is the height of an order-c LSB-tree.

Notice that the order-c LSB-forest captures the basic LSB-forest as a special
case with c = 2. Recall that a basic LSB-forest is able to answer 2-approximate
BC queries with r being powers of 2. Likewise, an order-c LSB-forest is able to
answer c-approximate BC queries with r = 1, c, c2, To lower the approxima-
tion ratio to c + ε, we can build 1 + � c

log(1+ε/c)� order-c LSB-forests. Specifically,
the ith (1 ≤ i ≤ 1 + � c

log(1+ε/c)�) forest is responsible for c-approximate BC
queries with radius r = α, cα, c2α, ..., where α = (1 + ε/c)i−1. Following the way
of establishing Theorem 4, we can prove the next theorem.

THEOREM 6. For any 0 < ε < c2 − c, we can build O(c
log(1+ε/c)) order-c LSB-

trees that consume totally O((dn/B)1+1/c c
log(1+ε/c)) space, and answer a (c + ε)-

approximate NN query in O(E(dn/B)1/c c
log(1+ε/c)) I/Os, where E is the height of

an order-c LSB-tree.

Note that, for c ≥ 3, the complexities in the previous theorem are strictly
smaller than those in Theorem 4 because the polynomials in Theorem 6 have
lower exponents.

7. CLOSEST PAIR SEARCH

In this section we will extend the LSB technique to solve the CP problem. There
is a straightforward solution. Specifically, assume that a LSB-forest has been
built on dataset D. First, for every point o ∈ D, run algorithm NN1 (Figure 7) to
find its NN o′. Then, among all such pairs (o, o′), report the one with the smallest
distance. This will give us a 4-approximate answer with high probability.

In main memory, the solution is quite efficient, requiring only O(n1.5 log(n))
time [Datar et al. 2004]. In external memory where an access unit is a page of
B words, the running time becomes O(n

√
dn/B logB n), which can be even worse

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:22 • Y. Tao et al.

Fig. 11. Illustration of the ball pair problem.

than the trivial bound O((dn/B)2). Next, we will propose a different approach
that requires only O((dn/B)1.5) I/Os. As will be clear shortly, the analysis of
this approach’s running time is drastically different from that in Datar et al.
[2004].

7.1 Ball Pair Search

As explained in Section 3.1, LSH approaches NN search with ball cover. Sim-
ilarly, we attack the CP problem with another problem we call Ball Pair (BP)
search, which can be regarded as the counterpart of ball cover in the CP con-
text. Formally, given a radius r, a c-approximate BP query on D returns the
following:

(1) If there is a pair of points in D with distance at most r, return a pair of
points in D with distance at most cr.

(2) If no two points in D have distance at most cr, return nothing.
(3) Otherwise, the result is undefined.

For example, consider Figure 11 where D has 4 points. Let r be the distance
between o1 and o2. Then, a 2-approximate BP query must return a pair of points
within distance 2r. In our example, there are two such pairs: (o1, o2), (o1, o3),
either of which is a correct result. On the other hand, for any r < 1

2‖o1, o2‖, a
2-approximate BP query must not return anything at all.

Our discussion will focus on radius r that is a power of 2 between 1 and 2 f ,
where f is given in Eq. (4). In the sequel, let λ = log r. We will first target an
approximation ratio of c = 2, and then extend to other ratios later. For c = 2, we
need a LSB-forest with l trees built in exactly the way described in Section 4.1.
Next, we will first clarify the algorithm for BP search, and then analyze its
theoretical properties.

Algorithm. Let us first concentrate on a single LSB-tree T. Remember that
each leaf entry carries a Z-order value. Two points o1, o2 are said to be in
the same bucket if they share the first m(u − λ) bits in their Z-order values,
namely, LLCP(z(o1), z(o2)) ≥ m(u − λ); see the definitions of m, u, and LLCP(.)
in Section 4. Intuitively, a bucket is essentially a hypersquare with 2λm cells in
the grid partitioning the space G (that is used to define Z-values). For example,
(same as Figure 6(b)) Figure 12(a) shows a space G with m = 2 dimensions,
the coordinates of which are encoded with u = 3 bits. For λ = 1, there are 16
buckets, each with 2λm = 4 cells that share the same first m(u − λ) = 4 bits in
their Z-order values. Figure 12(b) demonstrates the case of λ = 2, where there

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:23

Fig. 12. Coverage of buckets in space G (m = 2, u = 3).

Fig. 13. Buckets at the leaf level of a LSB-tree.

are 4 buckets each with 16 cells. Note that a bucket of λ = 2 encloses 4 buckets
of λ = 1. This is true in general: every time λ grows by 1 (i.e., r doubles), a new
bucket covers 2m old buckets. Also notice that, in any case, the cells of a bucket
always have continuous Z-order values.

Let us divide the leaf entries of tree T based on the buckets they belong
to. Apparently, points of the same bucket must come together in adjacent leaf
nodes, as illustrated in Figure 13. Note that a bucket may span multiple leaf
nodes, but may also be so small that several buckets can fit in a single leaf. In
any case, the important fact is that by scanning the leaf level from the leftmost
node rightwards, we can easily determine the bucket boundaries, by comparing
the Z-order values of consecutive leaf entries.

Now, let us take back the entire forest of l trees, since we are ready to
elaborate the algorithm for BP search, which is fairly simple as presented in
Figure 14. For each tree, we scan its leaf level from left to right, starting from
the leftmost leaf. For every bucket I encountered during the scan, evaluate
the distances of all the pairs of points in I bruteforcely in O(
d|I|/B�2) I/Os.
Meanwhile, we keep track of the total number of pairs evaluated (from all trees)
so far, namely, the count increases by |I|(|I|−1) after processing a bucket I. The
algorithm terminates as soon as the count reaches 2Bnl/d (where n is the size
of D); this includes even the duplicate pairs discovered from different trees. At
termination, we return the closest pair (among all the pairs evaluated) if its
distance is at most 2r. Otherwise, we return nothing.

Analysis. Next we will first establish the quality guarantee of our algorithm
BP, and then analyze its running time.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:24 • Y. Tao et al.

Fig. 14. The BP algorithm.

LEMMA 5. BP returns a 2-approximate answer with at least constant prob-
ability.

PROOF. The proof is an adaptation of the standard LSH analytical frame-
work for NN search; we will focus on the differences in the CP context. Given
two points in a bucket of a tree, we say that they form a bad pair if their dis-
tance is larger than 2r. In the sequel, we will assume the existence of a pair
(o∗

1, o∗
2) within distance at most r (the proof is similar if such a pair does not

exist). Observe that BP finds a 2-approximate answer if both of the following
hold.

P′
1: There are less than 2Bnl/d bad pairs in all the l trees in the LSB-forest.

P′
2: (o∗

1, o∗
2) appear in at least one bucket of a LSB-tree.

The rest of the proof will show that they hold at the same time with at least
constant probability.

Recall that two points o1, o2 fall in the same bucket of some LSB-tree Tj

(1 ≤ j ≤ l) if and only if LLCP(z(o1), z(o2)) ≥ m(u − λ). By Corollary 1, if
‖o1, o2‖ > 2r, they form a bad pair in Tj with probability at most pm

2 . Hence, in
all l trees, the expected number of bad pairs is at most l · n(n − 1)pm

2 , which is
smaller than Bnl/d with the choice of m in Eq. (2). By Markov Inequality, the
probability for the total number of bad pairs in all l trees to be at least 2Bnl/d
is at most 1/2, that is, P ′

1 fails with probability at most 1/2.
By the same reasoning in the standard LSH framework, with the choice of

l in Eq. (7), P ′
2 fails with probability at most 1/e. Hence, the probability that

at least one of P ′
1 and P ′

2 fails is bounded by 1/2 + 1/e = 0.87 from above,
implying that they hold with probability at least 0.13.

Although the proof of quality generally follows the LSH framework, the
running time analysis is substantially different.

LEMMA 6. BP performs O((dn/B)1.5) I/Os.

PROOF. We consider only buckets with more than B/d points. Each bucket
with at most B/d points fits in at most 2 pages; so examining all pairs of points
in each of these buckets takes linear I/Os, namely O((dn/B)1.5) I/Os.

Without loss of generality, assume that at the time BP finishes, it has en-
countered J buckets in this order: I1, I2, ..., IJ (they may come from different
trees). Note that, except the last one IJ, all the other buckets have been fully

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:25

processed. Namely, if we denote by xi (1 ≤ i ≤ J − 1) the size of bucket Ii,
Ii contributed xi(xi − 1) pairs to the count BP is maintaining. As for the last
bucket IJ, assume that BP scanned xJ points in it. Hence, IJ contributed at
least (xJ − 1)(xJ − 2) to the count. It suffices to consider xJ ≥ 3 + B/d (other-
wise, we can ignore IJ but add only O(1) I/Os to the overall cost). As totally BP
evaluates no more than 2Bnl/d pairs, we have

(xJ − 1)(xJ − 2) +
J−1∑
i=1

xi(xi − 1) ≤ 2Bnl/d. (11)

Since xi ≥ 1 + B/d (1 ≤ i ≤ J − 1) and xJ ≥ 3 + B/d, inequality (11) implies

J∑
i=1

(xi · B/d) < (xJ − 1)(xJ − 2) +
J−1∑
i=1

xi(xi − 1) ≤ 2Bnl/d.

Hence,
J∑

i=1

xi ≤ 2Bnl/d
B/d

= O(nl). (12)

From inequalities (11) and (12), we have

J∑
i=1

x2
i ≤ 2Bnl/d + 3

J∑
i=1

xi = O(Bnl/d), (13)

where the last equality is due to d = O(B). Furthermore, J satisfies

J ≤
∑J

i=1 xi

B/d
= O(dnl/B). (14)

A bucket Ii (1 ≤ i ≤ J − 1) with size xi occupies at most O(
dxi/B�) pages.
Hence, brute-force examination of all pairs of points in Ii requires O(
dxi/B�2)
I/Os. Likewise, examining the last bucket IJ takes O(
dxJ/B�2) I/Os. Thus, the
total cost on all buckets is bounded by

O

(
J∑

i=1

dxi/B�2

)
= O

(
J∑

i=1

(dxi/B + 1)2

)

= O

(
J + d2

B2

J∑
i=1

x2
i + d

B

J∑
i=1

xi

)

which, by inequalities (12) through (14), is bounded by O(dnl/B) = O((dn/

B)1.5).

7.2 Solving the Closest Pair Problem

The closest pair problem can be reduced to BP search. A simple approach
is to invoke algorithm BP (Figure 14) with doubling radius r = 1, 2, 4, and
so on, until it returns a pair of points whose distance is at most twice the
current r. This procedure, referred to as algorithm CP1, is formally presented

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:26 • Y. Tao et al.

Fig. 15. The first CP algorithm.

Fig. 16. An improved CP algorithm.

in Figure 15, which can be easily shown to return a 4-approximate answer with
at least constant probability.

The drawback of CP1 is that its running time may be O((log d+log t)(dn/B)1.5)
in the worst case, where t is the maximum coordinate of a dimension. In the
sequel, we give an alternative algorithm that requires only O((dn/B)1.5) time,
that is, eliminating the log d + log t factor.

An improved algorithm. We refer to our new algorithm as CP2. Unlike CP1
that performs multiple BP search, CP2 first picks an appropriate value of r,
denoted as rgood, and then, performs at most two BP search at r = rgood/2 and
rgood, respectively. As shown later, rgood can be found in O((dn/B)1.5) I/Os, which
is the same cost of one BP search, thus making the overall cost O((dn/B)1.5) as
well. CP2 is presented in Figure 16. Next we will focus on explaining line 1.

Recall that, given a particular r, algorithm BP examines a number of point
pairs in D. Let us denote the number as C(r). Obviously, C(r) is always bounded
from above by 2Bnl/d, as it is the largest number of pairs evaluated by BP. It
is fairly simple to obtain the exact C(r) by reading (from left to right) the leaf
levels of all LSB-trees once as follows. First, set C(r) to 0, and start reading
the first tree. At any time, we keep a count x of how many points have been
seen in the current bucket being scanned. When the boundary of the bucket is
reached, we add x(x − 1) to C(r), and then, reset x to 0 for the next bucket. At
the time all trees have been scanned, C(r) becomes final. Since every leaf node
of each tree is read once, the total cost is O((dn/B)1.5) I/Os.

A nice feature of the preceding strategy is that it needs to store only two
values in memory at any time: C(r) and x. There are, however, merely f =

log d+log t� different values of r. Hence, we can compute the C(r) of all possible
r in a single pass. The memory size required is only one memory page (as the
reading buffer) plus 2 f integers! Then, rgood is decided as

rgood = min{r | C(r) ≥ 2Bnl/d}, (15)

namely, rgood is the lowest r such that C(r) ≥ 2Bnl/d.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:27

THEOREM 7. Algorithm CP2 returns a 4-approximate answer with at least
constant probability.

PROOF. We will make a claim X: every pair whose distance is evaluated by
CP1 is also evaluated by CP2. Under the claim, CP2 never returns a worse
answer than CP1, which will establish the theorem.

Assume that when CP1 finishes, the value of r is r′. Clearly, r′ ≤ rgood because
algorithm BP never evaluates more than 2Bnl/d pairs. If r′ = rgood, it means
that the best pair CP1 returns is found by the last BP search, namely, BP(r′).
Then, X is true because CP2 also needs to perform the same BP search BP(rgood)
(notice that line 4 of CP2 will definitely be executed, that is, the if-condition at
line 3 will fail).

Now consider r′ < rgood. The crucial fact is that, for any r1 < r2 < rgood where
r1 and r2 are powers of 2, the set of point pairs BP(r1) evaluates is always a
subset of the set BP(r2) evaluates, due to the selection of rgood. Hence, whatever
is evaluated by BP(r′) is also evaluated by BP(rgood/2). Hence, X also holds.

Thus, we arrive at the next theorem.

THEOREM 8. Given a LSB-forest, we can perform 4-approximate closest pair
search in O((dn/B)1.5) I/Os as long as the memory size M is at least max{3B, B+
2 f } words.

Note that the value of f is smaller than B in practice. As a reference, let
d = 1000 and t = 1010; in this case, f < 44, which means 2 f integers can
easily fit in a page of B = 1024 words. Thus, the memory size needed to run
CP2 is only 3 pages. In case the LSB-forest does not exist in advance, then
the total time increases by a factor of logM/B(dn), because building all the leaf
levels with external sort takes O((dn/B)1.5 logM/B(dn)) I/Os (the nonleaf levels
are unnecessary).

Extensions. In theory, kCP search can also be supported in a way similar to
how kNN is handled. First, we need to increase l to O(

√
dn/B log n). Second, the

limit on how many point pairs are evaluated by algorithm BP should be raised
to 2Bnl/d + (k− 1)l. In practice when k is small, no change is required, and we
can simply output the k closest pairs among all the pairs CP2 evaluates during
its execution.

So far we have been targeting an approximation ratio of 4, but the ratio
can be improved to arbitrarily close to 2 with only a constant blowup in the
computation cost. Conversely, one may also opt for a higher ratio as a trade-
off for lower running time. Using the methods explained in Section 6, for any
integer c ≥ 2 and arbitrary ε satisfying 0 < ε < c2 − c, we can find a (c + ε)-
approximate answer in O((dn/B)1+1/c c

log(1+ε/c)) I/Os. If the LSB-forests need to
be built on-the-fly, the cost is O(logM/B(dn)) times higher.

All the results can be extended to bichromatic CP search as well. In partic-
ular, for k = 1, a 4-approximate closest pair between D1 and D2 can be found

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:28 • Y. Tao et al.

Fig. 17. CP search with only one LSB-tree.

with at least constant probability in

O
(√

d
√

n1n2/B · ((dn1/B) logM/B(dn1) + (dn2/B) logM/B(dn2)
))

I/Os, where n1 and n2 are the cardinalities of the participating datasets D1 and
D2, respectively. Note that when n1 = n2 = n, this complexity degenerates into
the one obtained earlier for a single dataset.

Using a single LSB-tree. As mentioned in Section 4.2, a practical application
may choose to maintain only a single LSB-tree, because this consumes only
linear space and allows logarithmic update time. Before finishing this section,
we give an algorithm, referred to as CP3, which performs approximate kCP
search using only such a tree.

The rationale behind CP3 is that a LSB-tree generally captures the proximity
of the points in the original space. Namely, if points o1 and o2 are close, they
tend to have similar Z-values Z(o1) and Z(o2). Hence, for each leaf entry, we
will evaluate its distances only to its nearby leaf entries. More specifically, at
any time, we pinpoint a leaf node N in memory. After computing the distances
of all pairs of points in N, we use another memory page N′ to scan forward
the subsequent leaf pages one by one. Every point in N′ has its distances to all
points in N computed. This continues until the Z-order value of an entry in N′

is “sufficiently faraway” (to be elaborated shortly) from that of the rightmost
entry in N (see Figure 17). When this happens, we move N to the leaf node
on its right, and repeat the process. The first N pinpointed is the leftmost leaf
node.

It remains to clarify what we mean by “two entries Z(o1) and Z(o2) are
faraway.” We adopt a heuristic similar to the one used in Section 4.2 for kNN
search. Specifically, let dist be the distance of the kth closest pair of points CP3
has discovered so far. We rule that Z(o1) and Z(o2) are faraway if

dist ≤ 2u−�LLCP(Z(o1),Z(o2))/m�+1,

where u, m, and LLCP(., .) are as defined in Section 4. The algorithm CP3 is
formally presented in Figure 18.

8. RELATED WORK

NN search is well understood in low-dimensional space [Hjaltason and Samet
1999; Roussopoulos et al. 1995]. This problem, however, becomes much more
difficult in high-dimensional space. Many algorithms (e.g., those based on data
or space partitioning indexes [Gaede and Gunther 1998]) that perform nicely

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:29

Fig. 18. A CP algorithm using only a single LSB-tree.

on low-dimensional data, deteriorate rapidly as the dimensionality increases
[Bohm 2000; Weber et al. 1998], and are eventually outperformed even by
sequential scan.

Research on high-dimensional NN search can be divided into exact and ap-
proximate retrieval. In the exact category, Lin et al. [1994] propose the TV-tree
which improves conventional R-trees [Beckmann et al. 1990; Guttman 1984]
by creating MBRs only in selected subspaces. Weber et al. [1998] design the
VA-file, which compresses the dataset to minimize the cost of sequential scan.
Also based on the idea of compression, Berchtold et al. [2000] develop the IQ-
tree, combining features of the R-tree and VA-file. Chaudhuri and Gravano
[1999] perform NN search by converting it to range queries. In Berchtold et al.
[2000] Berchtold et al. provide a solution leveraging high-dimensional Voronoi
diagrams, whereas Korn et al. [2001] tackle the problem by utilizing the frac-
tal dimensionality of the dataset. Koudas et al. [2004] give a bitmap-based
approach. The state of the art is due to Jagadish et al. [2005]. They develop the
iDistance technique that converts high-dimensional points to 1D values, which
are indexed using a B-tree for NN processing. We will compare our solution to
iDistance experimentally.

In exact search, a majority of the query cost is spent on verifying a point
as a real NN [Bennett et al. 1999; Ciaccia and Patella 2000]. Approximate re-
trieval improves efficiency by relaxing the precision of verification. Goldstein
and Ramakrishnan [2000] assume that the query distribution is known, and
leverage the knowledge to balance the efficiency and result quality. Ferhatos-
manoglu et al. [2001] find NNs by examining only the interesting subspaces.
Chen and Ling [2002] combine sampling with a reduction [Chaudhuri and Gra-
vano 1999] to range search. Li et al. [2002] first partition the dataset into clus-
ters, and then prune the irrelevant clusters according to their radii. Houle and
Sakuma [2005] develop SASH which is designed for memory-resident data, but
is not suitable for disk-oriented data due to severe I/O thrashing. Fagin et al.
[2003] develop the MedRank technique that converts the dataset to several
sorted lists by projecting the data onto different vectors. To answer a query,

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:30 • Y. Tao et al.

MedRank traverses these lists in a way similar to the threshold algorithm
[Fagin et al. 2001] for top-k search. We will also evaluate MedRank in the
experiments.

None of the aforementioned solutions ensures sublinear growth of query
cost in the worst case. How to achieve this has been carefully studied in the
theory community (see, for example, Har-Peled [2001] and Krauthgamer and
Lee [2004] and the references therein). Almost all the results there, however,
are excessively complex for practical implementation, except LSH. This tech-
nique is invented by Indyk and Motwani [1998] for in-memory data. Gionis
et al. [1999] adapt it to external memory, but as discussed in Section 3.2, their
method loses the guarantee on the approximation ratio. The locality-sensitive
hash functions for lp norms are discovered by Datar et al. [2004]. Bawa et al.
[2005] propose a method to tune the parameters of LSH automatically. Their
method, however, no longer ensures the same query performance as LSH unless
the adopted hash function has a so-called “(ε, f (ε)) property” [Bawa et al. 2005].
Unfortunately, no existing hash function for �p norms is known to possess this
property. Charikar [2002] investigates LSH for several distance metrics dif-
ferent from �p norms. LSH has also received other theoretical improvements
[Andoni and Indyk 2006; Panigrahy 2006] which cannot be implemented in
relational databases. Furthermore, several heuristic variations of LSH have
also been suggested. For example, Lv et al. [2007] reduce space consumption
by probing more data in answering a query, while recently Athitsos et al. [2008]
introduce the notion of distance-based hashing. The solutions of Athitsos et al.
[2008], and Lv et al. [2007] guarantee neither sublinear cost nor good approxi-
mation ratios.

CP search is also one of the oldest problems studied in computational ge-
ometry. In two-dimensional space, Shamos and Hoey [1975] give an optimal
algorithm that runs in O(n log n) time. Interestingly, for any fixed dimensional-
ity d, the problem can also be settled optimally in O(n log n) time, as discovered
by Lenhof and Smid [1992]. The optimality of the aforesaid algorithms, how-
ever, assumes that d is a constant; when it is not, their running time increases
exponentially with d. Avoiding such exponential growth turns out to be a hard
problem. Recently, by resorting to matrix multiplication, Indyk et al. [2004]
give several algorithms with nontrivial bounds that are applicable to �1 and
�∞ norms, but not to the other �p norms. The methods mentioned earlier are
rather theoretical. On the practical side, Hjaltason and Samet [1998] give a
solution, called distance browsing, that utilizes R-trees to report point pairs in
ascending order of their distances. Following the same idea, Corral et al. [2000]
propose an enhanced algorithm with smaller cost which will be evaluated in
the experiments.

The preceding solutions aim at solving the CP problem exactly. There have
been attempts to address the approximate version, but most of those algorithms
require running time that is quadratic to the cardinality n (albeit faster than
dn2); see for example Kleinberg [1997]. Based on the LSH technique, Datar
et al. [2004] propose an algorithm with subquadratic time, but their analysis
targets internal memory only. Our discussion in Section 7.1 can in fact also
be applied to LSH, and shows that the case of external memory requires a

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:31

more elaborate reasoning approach. Furthermore, our result in Section 7.2 is
actually better (by a logarithmic factor) than the obvious bound adapted from
Datar et al. [2004] (which corresponds to the performance of algorithm CP1
in Figure 15). Another algorithm worth mentioning is due to Lopez and Liao
[2000]. When d is regarded as a constant, their algorithm, which we call D-shift,
guarantees an answer with constant approximation ratio. Their algorithm can
be incorporated in relational databases, and will be compared to our solutions
in the experiments.

Finally, it is worth pointing out that this article substantially extends its
preliminary version [Tao et al. 2009] in the following ways. First, in Section 6,
we have shown how to modify our NN techniques to achieve approximation c+ε

for any integer c ≥ 3 (only c = 2 is discussed in Tao et al. [2009]), thus giving
a stronger trade-off between the result quality and the query/space efficiency.
Second, while the preliminary work concentrates on NN search, the current
version contains a full set of results on the CP problem (Section 7), together
with the corresponding experiment in the next section.

9. EXPERIMENTS

Next we experimentally evaluate the performance of LSB-trees, using the ex-
isting methods as benchmarks. Section 9.1 describes the datasets and queries.
Sections 9.2 and 9.3 list the techniques to be examined for NN and CP search,
respectively. Section 9.4 explains the computing environments as well as the
assessment metrics. Section 9.5 demonstrates the superiority of the LSB-forest
over alternative LSH implementations. Then, Section 9.6 (9.7) shows that our
techniques significantly outperform the previous methods, in both exact and
approximate NN (CP) search.

9.1 Data and Queries

We experimented with both synthetic and real datasets. Synthetic data were
generated according to a varden distribution to be clarified shortly. As for real
data, we deployed datasets color and mnist, which were also used in the papers
Fagin et al. [2003] and Jagadish et al. [2005] where MedRank and iDistance
are invented, respectively (both methods were included in our experiments).
For all datasets, the universe was normalized to have domain [0, 10000] on
each dimension.

The distance metric employed was Euclidean distance. Each NN workload
contained 50 query points that followed the same distribution as the underlying
dataset. CP search takes no query point; it simply finds the k closest pairs in a
dataset.

The details of varden, color, and mnist are as follows.

Varden. This distribution contains two clusters with drastically different
densities. The sparse cluster has 10 points, whereas all the other points belong
to the dense cluster. Furthermore, the dense cluster has the shape of a ring,
whose radius is comparable to the average mutual distance of the points in
the sparse cluster. The two clusters are well separated. Figure 19 illustrates

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:32 • Y. Tao et al.

Fig. 19. The varden distribution.

the idea with a 2D example. We varied the cardinality of a varden dataset
from 10k to 100k, and its dimensionality from 25 to 100. In the sequel, we will
denote a d-dimensional varden dataset with cardinality n by varden-nd. The
corresponding workload of a varden dataset had 10 and 40 query points that
fell in the areas of the sparse and dense clusters, respectively. No query point
coincided with any data point.

Color. This is a 32-dimensional dataset3 with 67,967 points, where each point
describes the color histogram of an image in the Corel collection [Jagadish et al.
2005]. We randomly removed 50 points to form a query set. As a result, our
color dataset has cardinality 67,917.

Mnist. The original mnist dataset4 is a set of 60,000 points. Each point is 784-
dimensional, capturing the pixel values of a 28×28 image. Since, however, most
pixels are insignificant, we reduced dimensionality by taking the 50 dimensions
with the largest variances. After this, we got two identical points so one of
them was removed, rendering the final cardinality to be 59,999. The mnist
collection also contains a test set of 10,000 points [Fagin et al. 2003], among
which we randomly picked 50 to form our workload. Obviously, each query point
was also projected onto the same 50 dimensions output by the dimensionality
reduction.

9.2 Competitors for Nearest Neighbor Search

Sequential scan (SeqScan). The brute-force approach is included because it is
known to be a strong competitor in high-dimensional NN retrieval. Further-
more, the relative performance with respect to SeqScan serves as a reliable
way to compare against methods that are reported elsewhere but not in our
experiments.

LSB-forest. As discussed in Section 4.2, this method takes l LSB-trees
(l given by Eq. (7)), and applies algorithm NN1 (Figure 7) for query process-
ing. For kNN queries with k > 1, LSB-forest still uses the same l (i.e., no in-
crease in the number of trees) and query algorithm, except that the terminating
condition E2 is modified in the way explained in Section 4.2.

3http://kdd.ics.uci.edu/databases/CorelFeatures/.
4http://yann.lecun.com/exdb/mnist.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:33

LSB-noE2. Same as LSB-forest except that it disables condition E2 in algo-
rithm NN1. In other words, LSB-noE2 terminates on condition E1 only. LSB-
noE2 is applied only for k = 1.

LSB-tree. This method deploys a single LSB-tree (as opposed to l in LSB-
forest), and hence, requires only linear space and can be updated efficiently. As
mentioned at the end of Section 4.2, it disables condition E1, and terminates
on E2 only (again, E2 needs to be modified for k > 1).

Rigorous- [Indyk and Motwani 1998] and ad hoc-LSH [Gionis et al. 1999].
They are the existing LSH-implementations as reviewed in Sections 3.1 and
3.2, respectively. Recall that both methods are designed for c-approximate BC
search. We set c to 2 to match the guarantee of the LSB-forest (see Section 6).
Ad hoc-LSH requires a set of l hash tables, which is used to perform BC queries
at a magic radius (to be tuned experimentally later), where l is the same as
in Eq. (7). Rigorous-LSH can be regarded as combining multiple versions of ad
hoc-LSH, one for every radius supported.

iDistance [Jagadish et al. 2005]. This is a famous approach for exact NN
search. As mentioned in Section 8, it indexes a dataset using a single B-tree
after converting all points to 1D values. As with LSB-tree, it consumes linear
space and supports data insertions and deletions efficiently.

MedRank [Fagin et al. 2003]. This is a recently proposed method for ap-
proximate NN search with a nontrivial quality guarantee. Given a dataset,
MedRank creates several sorted lists, such that every data point has an entry
in each list. More specifically, an entry has the form (id, key), where id uniquely
identifies a point, and key is its sorting key (a point has various keys in differ-
ent lists). Each list is indexed by a B-tree on the keys. Point coordinates are
stored in a separate hash table to facilitate probing by id. The number of lists
equals log n (following Theorem 4 in Fagin et al. [2003]), where n is the dataset
cardinality. It should be noted that MedRank is not friendly to updates, because
a single point insertion/deletion requires updating all the log n lists.

9.3 Competitors for Closest Pair Search

Quadratic. This is the naive approach that examines all pairs of points. It
serves as a benchmark for comparison with other solutions to the CP problem
not included in our experiments.

LSB-forest. This method uses l LSB-trees, where l is given by Eq. (7), and
applies algorithm CP2 (Figure 16). The same l and algorithm are also used for
kCP search with k > 1, except that CP2 needs to report the k best pairs (instead
of 1).

2LSB-tree. The method uses two LSB-trees; it applies algorithm CP3
(Figure 18) on each tree separately, and returns the k best pairs after com-
bining the outputs from both trees. Here we are using one more tree than
the LSB-tree method in the previous subsection, in order to outperform the

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:34 • Y. Tao et al.

competitor D-shift (to be introduced later) in result quality. Note that using
2 trees does not increase the space and update-time complexities. Namely,
2LSB-tree still occupies linear space and can be updated in logarithmic
time.

Distance browsing (DistBrowsing) [Corral et al. 2000]. This is an extensively-
cited solution to exact kCP search. Similar to Hjaltason and Samet [1998], it
leverages an R-tree on the underlying dataset to enumerate point pairs in
ascending order of distances.

Diagonal shift (D-shift) [Lopez and Liao 2000]. This is an approximate al-
gorithm with a nontrivial quality guarantee. Given a d-dimensional dataset, it
creates d copies of the dataset, where each copy is obtained by shifting the orig-
inal dataset along the direction of the main diagonal by a different offset (hence
the name D-shift). Then, the closest pairs are found by sorting and scanning
each list once.

9.4 Computing Environments and Assessment Metrics

The page size was fixed to 4,096 bytes. All the experiments were run on a com-
puter equipped with a 3 GHz CPU. A memory buffer of 50 pages was adopted in
all cases. Under such settings, the running time of all (NN and CP) algorithms
was dominated by their I/O overhead. Therefore, we will report the number of
I/Os as the computation cost.

Quality of NN search. We evaluate the quality of a kNN result by how many
times farther a reported neighbor is than the real NN. Formally, let o1, o2, ...,
ok be the k neighbors that a method retrieves for a query q, in ascending order
of their distances to q. Let o∗

1, o∗
2 ..., o∗

k be the actual first, second, ..., kth NNs
of q, respectively. For any i ∈ [1, k], we define the rank-i (approximation) ratio,
denoted by Ri(q), as

Ri(q) = ‖oi, q‖/‖o∗
i , q‖. (16)

The overall (approximation) ratio is the mean of the ratios of all ranks, namely,
(
∑k

i=1 Ri(q))/k. When a query result is exact, all ratios are 1.
Given a workload W, define its average overall ratio as the mean of the

overall ratios of all queries in W. This metric reflects the general quality of
all k neighbors, and was used in most experiments. Sometimes we needed
to scrutinize the quality of neighbors at individual ranks. In that case, we
measured the average rank-i ratio (1 ≤ i ≤ k), which is the mean of the rank-i
ratios of all queries in W, namely, (

∑
∀q∈W Ri(q))/|W|.

Quality of CP search. This is also assessed based on rank-i ratio and overall
ratio, both of which are extended from the earlier definitions in a straightfor-
ward manner.

9.5 Behavior of LSH Implementations

This section explores the characteristic behavior of LSB-forest, LSB-noE2,
rigorous-LSH, and ad hoc-LSH. For this purpose, we focused on k = 1

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:35

Fig. 20. Magic radius tuning for ad hoc-LSH (varden-10k50d).

because the LSH methodology was originally designed in the context of sin-
gle NN retrieval. Note that when k = 1, the overall ratio of a query is identical
to its rank-1 ratio. The data distribution examined was varden, as it allowed us
to adjust the dimensionality and cardinality. Unless otherwise stated, a varden
dataset had a default cardinality n = 10k and dimensionality d = 50.

Recall that ad hoc-LSH answers a NN query by processing instead a BC
query with a magic radius rm. As argued in Section 3.2, there may not exist an
rm good for all NN queries. To demonstrate this, Figure 20(a) shows the average
overall ratio of ad hoc-LSH as rm varied from 22 to 222. For small rm, the ratio
is ∞, implying that ad hoc-LSH missed at least one query in the workload,
namely, returning nothing at all. The ratio improved suddenly to 66 when rm

reached 214, and stabilized as rm grew further. It is thus clear that, given any
rm, the result of ad hoc-LSH was at least 66 times worse than the real NN on
average!

As discussed in Section 3.2, if rm is considerably smaller than the NN-
distance of a query, ad hoc-LSH may return an empty result. Conversely, if
rm is considerably larger, ad hoc-LSH may output a point much worse than the
real NN. We performed an experiment to verify this. Recall that a workload
for varden has queries in both the sparse and dense clusters. Let us call the
former the sparse queries, and the latter the dense queries. We observed that
the average NN distance of a sparse (dense) query was around 12,000 (15).
The phenomenon in Figure 20(a) occurred because the values of rm good for
sparse queries were bad for dense queries, and vice versa. To support the claim,
Figure 20(b) plots the average overall ratios of sparse and dense queries sep-
arately. When rm was smaller than or equal to 213 = 8,192, it was much lower
than the NN-distances of sparse queries; hence, ad hoc-LSH returned nothing
for them, as is why the sparse curve in Figure 20 (b) stays at ∞ for all rm ≤ 213.
As rm climbed to 212, ad hoc-LSH started to return bad results for many dense
queries. The situation was worse for larger rm, so the dense curve Figure 20(b)
increases continuously from 212. In all the following experiments, we fixed rm

to the optimal value 214.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:36 • Y. Tao et al.

Table I. Result Quality on varden Data

d 25 50 75 100

rigorous-LSH 1
adhoc-LSH 43 66.4 87 104.2
LSB-forest 1.02 1.02 1.02 1.01
LSB-noE2 1

(a) Average overall ratio vs. dimensionality d (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 1
adhoc-LSH 66.4 68.1 70.3 76.5 87.1
LSB-forest 1.02 1.02 1.03 1.02 1.02
LSB-noE2 1
(b) Average overall ratio vs. cardinality n (d = 50)

Fig. 21. Query efficiency on varden data.

The next experiment compares the result quality of rigorous-LSH, ad hoc-
LSH, LSB-forest, and LSB-noE2. Table I(a) and (I(b)) shows their average over-
all ratios under different dimensionalities (cardinalities). Both rigorous-LSH
and LSB-noE2 achieved perfect quality, namely, they successfully returned the
exact NN for all queries. LSB-forest incurred slightly higher error because
in general it accesses fewer points than LSB-noE2, and thus, has a lower
chance of encountering the real NN. Ad hoc-LSH was by far the worst method,
and its effectiveness deteriorated rapidly as the dimensionality or cardinality
increased.

To evaluate the query efficiency of the four methods, Figure 21(a) (21(b))
plots their I/O cost as a function of dimensionality d (cardinality n). LSB-forest
considerably outperformed its competitors in all cases. Notice that while LSB-
noE2 was slightly more costly than ad hoc-LSH, LSB-forest entailed only a
fraction of the overhead of ad hoc-LSH. This phenomenon reveals the impor-
tance of having terminating condition E2 in the NN1 algorithm. Rigorous-LSH
was much more expensive than the other approaches, which is consistent with
its vast asymptotical complexity.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:37

Table II. Space Consumption on varden Data in Megabytes

d 25 50 75 100

rigorous-LSH 382 896 1,563 2,436
adhoc-LSH 24 57 101 159
LSB-forest 24 57 101 159

(a) space vs. dimensionality d (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 895 3,624 10,323 18,892 29,016
adhoc-LSH 57 231 660 1,208 1,855
LSB-forest 57 231 660 1,208 1,855

(b) space vs. cardinality n (d = 50)

Tables II(a) and II(b) show the space consumption (in megabytes) of each
solution as a function of d and n, respectively. LSB-noE2 is not included be-
cause it differs from LSB-forest only in the query algorithm, and thus had
the same space cost as LSB-forest. Furthermore, ad hoc-LSH also occupied
as much space as LSB-forest, because a hash table of the former stores the
same information as a LSB-tree of the latter. As predicted by their space com-
plexities, rigorous-LSH required more space than LSB-forest by a factor of
log d+log t, where t (the largest coordinate on each dimension) was 10,000 in our
experiments.

It is evident that LSB-forest is overall the best technique in the preceding
experiments. It retains the query accuracy of rigorous-LSH, consumes the same
space as ad hoc-LSH, and incurs significantly smaller query cost than both.

9.6 Comparison of NN Solutions

Having verified the correctness of our theoretical analysis, in the sequel we as-
sess the practical performance of SeqScan, LSB-tree, LSB-forest, ad hoc-LSH,
MedRank, and iDistance. Rigorous-LSH and LSB-noE2 are omitted because
the former incurs gigantic space/query cost, and the latter is merely an aux-
iliary method for demonstrating the importance of condition E2. Remember
that SeqScan and iDistance return exact NNs, whereas the other methods are
approximate.

Only real datasets color and mnist were adopted in the subsequent evalua-
tion. The workload on color (mnist) had an average NN distance of 833 (11,422).
We set the magic radius of ad hoc-LSH to the smallest power of 2 that bounds
the average NN distance from above, namely, 1,024 and 16,384 for color and
mnist, respectively. The number k of retrieved neighbors varied from 1 to 100.

Let us start with query efficiency. Figure 22(a) (22(b)) illustrates the average
cost of a kNN query on dataset color (mnist) as a function of k. LSB-tree was
by far the fastest method, and outperformed all the other approaches by a
factor of at least an order of magnitude. In particular, on mnist, LSB-tree even
achieved a speedup of two orders of magnitude over iDistance, justifying the
advantages of approximate retrieval. LSB-forest was also much faster than
iDistance, MedRank, and ad hoc-LSH, especially in returning a large number
of neighbors.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:38 • Y. Tao et al.

Fig. 22. Efficiency of kNN search.

The next experiment inspects the result quality of the approximate tech-
niques. Focusing on color (mnist), Figure 23(a) (23(b)) plots the average over-
all ratios of MedRank, LSB-forest, and LSB-tree as a function of k. Since ad
hoc-LSH may miss a query (i.e., unable to return k neighbors), we present
its results as a table in Figure 23(c), where each cell contains two numbers.
The number in the bracket indicates how many queries were missed (out of
50), and the number outside is the average overall ratio of the queries that
were answered properly. No ratio is reported if ad hoc-LSH missed more than
30 queries.

LSB-forest incurred low error in all cases (maximum ratio below 1.5), owing
to its nice theoretical properties. LSB-tree also had good precision (maximum
ratio 2), indicating that the proposed conversion (from a d-dimensional point
to a Z-order value) adequately preserved the spatial proximity of data points.
MedRank, in contrast, exhibited much worse precision than the proposed solu-
tions. In particular, observe that MedRank was not effective in the important
case of single NN search (k = 1), for which its average overall ratio was over 4.
Finally, ad hoc-LSH was clearly unreliable due to the large number of queries
it missed.

The average overall ratio reflects the general quality of all k neighbors re-
ported. It does not, however, indicate how good the neighbors are at individual
ranks. To find out, we set k to 10, and measured the average rank-i ratios
at each i ∈ [1, 10]. Figures 24(a) and 24(b) demonstrate the results on color
and mnist, respectively (ad hoc-LSH is not included because it missed many
queries). Apparently, both LSB-forest and LSB-tree provided results signifi-
cantly better than MedRank at all ranks. Observe that the quality of MedRank
deteriorated considerably at high ranks, whereas our solutions returned fairly
good neighbors even at the highest rank. Note that the results in Figure 24

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:39

Fig. 23. Average overall ratio vs. k.

Fig. 24. Average ratios at individual ranks for 10NN queries.

should not be confused with those of Figure 23. For example, the average rank-1
ratio (of k = 10) is different from the overall average ratio of k = 1.5

Table III compares the space consumption of different methods. LSB-
tree required slightly less space than iDistance and MedRank. We, however,
ought to point out that, at least in theory, LSB-tree needs to store more
information than iDistance, so the latter should be more space economical.

5The average rank-1 ratio is lower because processing a query with k = 10 needs to access more
data than a query with k = 1, and therefore has a better chance of encountering the nearest
neighbor.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:40 • Y. Tao et al.

Table III. Space Consumption on Real Data in Megabytes

iDistance MedRank adhoc-LSH LSB-forest LSB-tree

color 14 17 573 573 13
mnist 18 19 874 874 16

Fig. 25. Benefits of using multiple LSB-trees (k = 10).

However, the actual space consumption may contain some extra overhead de-
pending on the concrete implementation. The implementation of iDistance
we deployed was exactly the one written by the authors of Jagadish et al.
[2005]. Also note that our implementations of LSB-tree, LSB-forest, and ad
hoc-LSH have been improved compared to those in the preliminary version
[Tao et al. 2009].

Recall that LSB-forest utilizes a large number l of LSB-trees, where the
number l was 47 and 55 for color and mnist, respectively. LSB-tree represents
the other extreme that uses only a single tree. Next, we explore the compromise
of these two extremes, by using multiple, but less than l, trees. The query
algorithm is the same as the one adopted by LSB-tree. In general, leveraging
x trees increases the query, space, and update cost by a factor of x. The benefit,
however, is that a larger x also improves the quality of results. To explore this
trade-off, Figure 25 shows the average overall ratio of 10NN queries on the
two real datasets, when x grew from 1 to the corresponding l of LSB-forest.
Interestingly, the precision improved dramatically with just a small number
of trees. In other words, we can obtain much better results without increasing
the space or query overhead considerably, which is especially appealing for
datasets that are not updated frequently.

In summary, our experiment results suggest that an exact solution such
as iDistance often requires excessively long query response time in practice,
confirming the motivation to study approximate solutions. The most serious
drawback of ad hoc-LSH is that it may fail to report enough neighbors for many
queries. In any case, its query overhead is still too high to provide fast response
time. MedRank is even more expensive than ad hoc-LSH; furthermore, its
result quality is relatively low (i.e., the answers it returns are quite far from
the real k NNs). LSB-forest is the only (approximate) method that guarantees

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:41

Fig. 26. Cost of kCP search.

high result quality and sublinear query cost in all cases. However, as with ad
hoc-LSH and MedRank, it is not friendly to updates. Overall the best solution
is LSB-tree: it demands only linear space, supports fast updates, returns very
accurate results, and is extremely efficient in query processing.

9.7 Comparison of CP Solutions

We now proceed to study the methods for closest pair search, using again
the real datasets color and mnist. The first experiment compares their effi-
ciency of finding k closest pair from scratch. Namely, we do not assume any
precomputation; if a method requires an index (e.g., an R-tree or LSB-trees),
it must construct it on-the-fly, with the construction time added into its total
cost.

Figure 26(a) (26(b)) shows the I/O cost of each method on dataset color
(mnist), as the number k of pairs retrieved changed from 1 to 100. 2LSB-tree
was by far the most efficient, and outperformed D-shift and LSB-forest by
more than an order of magnitude. As expected, LSB-forest was slower than
D-shift because the former’s time complexity is superlinear with respect to
the dataset cardinality n, whereas the latter’s is linear [Lopez and Liao 2000].
Nevertheless, as shown shortly, the advantage of LSB-forest is that it returned
much more accurate answers than D-shift. DistBrowsing was as expensive as
the naive algorithm quadratic. This is not surprising because the effective-
ness of spatial access methods (particular, R-trees) deteriorates seriously in
high-dimensional space such that they hardly offer any pruning in distance
browsing. The deficiency of exact solutions, once again, confirms the impor-
tance of approximate methods. The parameter k, in the tested range of values,
did not affect the efficiency of any method. The percentages on the curves of
2LSB-tree and LSB-forest indicate how much of the overall cost was spent on
on-the-fly index construction. In other words, if the LSB-trees already existed
before the CP search, the costs of 2LSB-tree and LSB-forest would be 60% and

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:42 • Y. Tao et al.

Fig. 27. Quality of kCP search.

Fig. 28. Quality of individual pairs returned (minst, k = 100).

75% less expensive. Note that stripping 75% from the cost of LSB-forest would
make it even faster than D-shift.

To assess the quality of results, Figure 27(a) (27(b)) compares the overall ra-
tios of the three approximate methods in the experiment of Figure 26(a) (26(b)).
Recall that the overall ratio indicates the average quality of all k pairs re-
turned by a method. LSB-forest achieved an overall ratio of 1 on both datasets,
meaning that it found the exact 100 k closest pairs in both cases. 2LSB-tree
also produced perfectly accurate answers on color; on mnist, on average the
answers it found were worse than the exact ones by merely 10%. The quality
of D-shift was clearly much worse, thus leaving its expensive computation cost
unjustified (see Figure 26).

To zoom into the quality of individual closest pairs, Figure 28 plots the
rank-i ratios for all i ∈ [1, 100], of the results returned by 2LSB-tree and
D-shift in performing 100CP on mnist. Recall that the rank-i ratio measures
how much times worse the ith pair found by a method is, compared to the

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:43

Fig. 29. Benefits of using multiple trees (k = 100).

exact ith closest pair. LSB-forest is omitted because, as mentioned earlier,
it produced perfect answers. Similarly, we also omit the results on color be-
cause even 2LSB-tree was able to achieve perfect accuracy on that dataset. In
Figure 28, we can see that all the pairs found by 2LSB-tree were fairly accurate,
whereas the quality of the “high-rank” pairs returned by D-shift was rather
poor.

We have seen in Section 9.2 that, for NN retrieval, there exists a graceful
trade-off between the result quality and the number of LSB-trees used for query
processing. The last experiment aims at identifying a similar phenomenon for
CP search. For this purpose, we generalized the strategy of 2LSB-tree; namely,
given x LSB-trees, we ran algorithm CP3 on each of them, and then reported
the k best pairs among the outputs from all trees. Apparently, the result quality
should improve as x increases, but it is most interesting to identify when the
quality would improve to perfection, that is, an overall ratio of 1! The results
on color and mnist are plotted in Figure 29 for k = 100. Clearly, the growth of
x brought dramatic improvements on the result quality. On mnist, only 7 trees
were necessary to attain perfect precision (the number was 2 for color, as we
already knew from Figure 27(a)).

In summary, our experiments show that an exact solution to CP search
such as DistBrowsing is not suitable in high-dimensional space due to their
prohibitive running time. D-shift has the drawbacks that it: (i) still entails
expensive overhead, and (ii) cannot guarantee accurate answers, especially
at high ranks. Same as in NN search, LSB-forest is the only (approximate)
method able to guarantee excellent result quality in any case. Nevertheless,
it still cannot escape the trap of costly execution time. The best approach is
to perform CP search using a small (e.g., 2) number of LSB-trees, which is
significantly faster than all the other methods (over an order of magnitude),
and returns close-to-exact answers in most cases.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:44 • Y. Tao et al.

10. CONCLUSIONS

Nearest neighbor search in high-dimensional space finds numerous applica-
tions in a large number of disciplines. This article develops an access method
called the LSB-tree to enable fast NN search with excellent result quality.
Our discovery carries both theoretical and practical significance. In theory, by
combining several LSB-trees, we dramatically improve the (asymptotical and
actual) space and query efficiency of the previous LSH implementations, with-
out compromising the result quality. In practice, by using a single LSB-tree, we
give an effective indexing scheme that can be easily incorporated in a relational
database, consumes linear space, supports logarithmic-time updates, and can
be used to answer NN queries accurately and efficiently.

As a second step, we have extended our LSB-technique to attack the closest
pair problem in high-dimensional space, which is another classic problem with
many applications. Our contributions on this topic also have important val-
ues in both theory and reality. In particular, we have shown that, in external
memory, the closest pair problem can be solved in time strictly lower than the
quadratic complexity, regardless of the dimensionality. In practice, our purely-
relational solutions can be immediately applied in a commercial system. Fur-
thermore, these solutions can directly leverage the indexing scheme mentioned
earlier for NN search. This is a fairly attractive feature because, with only a
single structure, one is able to adequately tackle two difficult problems at the
same time.

REFERENCES

ANDONI, A. AND INDYK, P. 2006. Near-Optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. In Proceedings of the Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06). 459–468.

ARYA, S., MOUNT, D. M., NETANYAHU, N. S., SILVERMAN, R., AND WU, A. Y. 1998. An optimal al-
gorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45, 6, 891–
923.

ATHITSOS, V., POTAMIAS, M., PAPAPETROU, P., AND KOLLIOS, G. 2008. Nearest neighbor retrieval using
distance-based hashing. In Proceedings of the International Conference on Data Engineering
(ICDE’08). 327–336.

BAWA, M., CONDIE, T., AND GANESAN, P. 2005. Lsh forest: Self-Tuning indexes for similarity search.
In Proceedings of the International World Wide Web Conference (WWW’05). 651–660.

BECKMANN, N., KRIEGEL, H., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient and ro-
bust access method for points and rectangles. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 322–331.

BENNETT, K. P., FAYYAD, U., AND GEIGER, D. 1999. Density-Based indexing for approximate nearest-
neighbor queries. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 233–243.

BERCHTOLD, S., BOHM, C., JAGADISH, H. V., KRIEGEL, H.-P., AND SANDER, J. 2000. Independent quan-
tization: An index compression technique for high-dimensional data spaces. In Proceedings of
the International Conference on Data Engineering (ICDE’00). 577–588.

BERCHTOLD, S., KEIM, D. A., KRIEGEL, H.-P., AND SEIDL, T. 2000. Indexing the solution space: A
new technique for nearest neighbor search in high-dimensional space. IEEE Trans. Knowl. Data
Engin. 12, 1, 45–57.

BEYER, K. S., GOLDSTEIN, J., RAMAKRISHNAN, R., AND SHAFT, U. 1999. When is “nearest neighbor”
meaningful? In Proceedings of the International Conference on Database Theory (ICDT’99). 217–
235.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

Efficient and Accurate Nearest Neighbor and Closest Pair Search • 20:45

BOHM, C. 2000. A cost model for query processing in high dimensional data spaces. ACM Trans.
Datab. Syst. 25, 2, 129–178.

BREUNIG, M. M., KRIEGEL, H.-P., NG, R. T., AND SANDER, J. 2000. Lof: Identifying density-based
local outliers. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 93–104.

CHARIKAR, M. 2002. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Annual ACM Symposium on Theory of Computing (STOC’02).

CHAUDHURI, S. AND GRAVANO, L. 1999. Evaluating top-k selection queries. In Proceedings of the
International Conference on Very Large Databases (VLDB’99). 397–410.

CHEN, C.-M. AND LING, Y. 2002. A sampling-based estimator for top-k query. In Proceedings of the
Interational Conference on Data Engineering (ICDE’02). 617–627.

CIACCIA, P. AND PATELLA, M. 2000. Pac nearest neighbor queries: Approximate and controlled
search in high-dimensional and metric spaces. In Proceedings of the International Conference on
Data Engineering (ICDE’00). 244–255.

CORRAL, A., MANOLOPOULOS, Y., THEODORIDIS, Y., AND VASSILAKOPOULOS, M. 2000. Closest pair queries
in spatial databases. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. 189–200.

DATAR, M., IMMORLICA, N., INDYK, P., AND MIRROKNI, V. S. 2004. Locality-Sensitive hashing scheme
based on p-stable distributions. In Proceedings of the Annual ACM Symposium on Computational
Geometry (SoCG’04). 253–262.

FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Efficient similarity search and classification via
rank aggregation. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 301–312.

FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. In Pro-
ceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS’01). 102–113.

FERHATOSMANOGLU, H., TUNCEL, E., AGRAWAL, D., AND ABBADI, A. E. 2001. Approximate nearest
neighbor searching in multimedia databases. In Proceedings of the International Conference on
Data Engineering (ICDE’01). 503–511.

FERRAGINA, P. AND GROSSI, R. 1999. The String B-tree: A new data structure for string search in
external memory and its applications. J. ACM 46, 2, 236–280.

GAEDE, V. AND GUNTHER, O. 1998. Multidimensional access methods. ACM Comput. Surv. 30, 2,
170–231.

GIONIS, A., INDYK, P., AND MOTWANI, R. 1999. Similarity search in high dimensions via hash-
ing. In Proceedings of the International Conference on Very Large Databases (VLDB’99). 518–
529.

GOLDSTEIN, J. AND RAMAKRISHNAN, R. 2000. Contrast plots and p-sphere trees: Space vs. time
in nearest neighbour searches. In Proceedings of the International Conference on Very Large
Databases (VLDB’00). 429–440.

GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 47–57.

HAR-PELED, S. 2001. A replacement for voronoi diagrams of near linear size. In Proceedings of
the Annual IEEE Symposium on Foundations of Computer Science (FOCS’01). 94–103.

HJALTASON, G. R. AND SAMET, H. 1998. Incremental distance join algorithms for spatial databases.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. 237–248.

HJALTASON, G. R. AND SAMET, H. 1999. Distance browsing in spatial databases. ACM Trans. Datab.
Syst. 24, 2, 265–318.

HOULE, M. E. AND SAKUMA, J. 2005. Fast approximate similarity search in extremely high- dimen-
sional data sets. In Proceedings of the International Conference on Data Engineering (ICDE’05).
619–630.

INDYK, P., LEWENSTEIN, M., LIPSKY, O., AND PORAT, E. 2004. Closest pair problems in very high
dimensions. In Proceedings of the International Colloquium on Automata, Languages and Pro-
gramming (ICALP’04). 782–792.

INDYK, P. AND MOTWANI, R. 1998. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Annual ACM Symposium on Theory of Computing
(STOC’98). 604–613.

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

20:46 • Y. Tao et al.

JAGADISH, H. V., OOI, B. C., TAN, K.-L., YU, C., AND ZHANG, R. 2005. idistance: An adaptive b+-
tree based indexing method for nearest neighbor search. ACM Trans. Datab. Syst. 30, 2, 364–
397.

KLEINBERG, J. M. 1997. Two algorithms for nearest-neighbor search in high dimensions. In Pro-
ceedings of the Annual ACM Symposium on Theory of Computing (STOC’97). 599–608.

KORN, F., PAGEL, B.-U., AND FALOUTSOS, C. 2001. On the ‘dimensionality curse’ and the ‘self-
similarity blessing’. IEEE Trans. Knowl. Data Engin. 13, 1, 96–111.

KOUDAS, N., OOI, B. C., SHEN, H. T., AND TUNG, A. K. H. 2004. Ldc: Enabling search by partial
distance in a hyper-dimensional space. In Proceedings of the International Conference on Data
Engineering (ICDE’04). 6–17.

KRAUTHGAMER, R. AND LEE, J. R. 2004. Navigating nets: Simple algorithms for proximity search. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04). 798–807.

LENHOF, H.-P. AND SMID, M. 1992. Enumerating the k closest pairs optimally. In Proceedings of
the Annual IEEE Symposium on Foundations of Computer Science (FOCS’92). 380–386.

LI, C., CHANG, E. Y., GARCIA-MOLINA, H., AND WIEDERHOLD, G. 2002. Clustering for approximate
similarity search in high-dimensional spaces. IEEE Trans. Knowl. Data Engin. 14, 4, 792–808.

LIN, K.-I., JAGADISH, H. V., AND FALOUTSOS, C. 1994. The tv-tree: An index structure for high-
dimensional data. VLDB J. 3, 4, 517–542.

LOPEZ, M. A. AND LIAO, S. 2000. Finding k-closest-pairs efficiently for high dimensional data. In
Proceedings of the Canadian Conference on Computational Geometry (CCCG’00). 197–204.

LV, Q., JOSEPHSON, W., WANG, Z., CHARIKAR, M., AND LI, K. 2007. Multi-Probe lsh: Efficient indexing
for high-dimensional similarity search. In Proceedings of the International Conference on Very
Large Databases (VLDB’07). 950–961.

PANIGRAHY, R. 2006. Entropy based nearest neighbor search in high dimensions. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06). 1186–1195.

ROUSSOPOULOS, N., KELLEY, S., AND VINCENT, F. 1995. Nearest neighbor queries. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 71–79.

SHAMOS, M. I. AND HOEY, D. 1975. Closest-point problems. In Proceedings of the Annual IEEE
Symposium on Foundations of Computer Science (FOCS’75). 151–162.

TAO, Y., YI, K., SHENG, C., AND KALNIS, P. 2009. Quality and efficiency in high dimensional nearest
neighbor search. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 563–576.

WEBER, R., SCHEK, H.-J., AND BLOTT, S. 1998. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proceedings of the International
Conference on Very Large Databases (VLDB’98). 194–205.

WONG, R. C.-W., TAO, Y., FU, A. W.-C., AND XIAO, X. 2007. On efficient spatial matching. In Pro-
ceedings of the International Conference on Very Large Databases (VLDB’07). 579–590.

Received September 2009; accepted February 2010

ACM Transactions on Database Systems, Vol. 35, No. 3, Article 20, Publication date: July 2010.

