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Range Aggregation with Set Selection
Yufei Tao, Cheng Sheng, Chin-Wan Chung, Jong-Ryul Lee

Abstract—In the classic range aggregation problem, we have a set S of objects such that, given an interval I, a query counts how

many objects of S are covered by I. Besides COUNT, the problem can also be defined with other aggregate functions, e.g., SUM, MIN,

MAX and AVERAGE.

This paper studies a novel variant of range aggregation, where an object can belong to multiple sets. A query (at runtime) picks any two

sets, and aggregates on their intersection. More formally, let S1, ..., Sm be m sets of objects. Given distinct set ids i, j and an interval

I, a query reports how many objects in Si ∩Sj are covered by I. We call this problem range aggregation with set selection (RASS). Its

hardness lies in that the pair (i, j) can have
(

m
2

)

choices, rendering effective indexing a non-trivial task. The RASS problem can also

be defined with other aggregate functions, and generalized so that a query chooses more than 2 sets.

We develop a system called RASS to power this type of queries. Our system has excellent efficiency in both theory and practice.

Theoretically, it consumes linear space, and achieves nearly-optimal query time. Practically, it outperforms existing solutions on real

datasets by a factor up to an order of magnitude. The paper also features a rigorous theoretical analysis on the hardness of the RASS

problem, which reveals invaluable insight into its characteristics.

Index Terms—Range Aggregation, Index, Theory.

✦

1 INTRODUCTION

Range aggregation, such as “find the number of employees

between 30 and 40 years old”, can be very well supported by

modern database systems. Queries like the previous one have

two common properties. First, they impose an interval I on a

certain attribute. Second, all entities are potential candidates

to qualify for the condition of I .

In this paper, we study a variant of range aggregation by

relaxing the second property. Let us consider the following

query about Facebook

Q : Find the number of male Facebook users in

California that are married, and are aged between

30 and 40.

Let Smale, SCA, and Smarried be the sets of users that are male,

reside in California, and are married, respectively. Then, Q is

equivalent to:

How many users in Smale ∩ SCA ∩ Smarried are

aged between 30 and 40?

Compared to traditional range aggregation, Q has a key

difference: not all objects (i.e., users) are candidates to qualify

for the age condition; only those in the set intersection are.

Many useful queries follow the same pattern, e.g., how many

users in Sfemale ∩ SNJ ∩ Ssingle are aged between 20 and 30?

Queries like Q report demographic statistics about Face-

book, and are important for several reasons. First, such statis-

tics provide valuable information into how successful a social-
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network site has grown (apparently, similar queries can also

be issued on Foursquare, Twitter, LinkedIn, etc.), and indeed

have long been the subject of active discussion in the Internet1.

Second, those statistics play a significant role in marketing,

because they allow an advertiser to understand the multitude

of the customers targeted. For this purpose, it is paramount

to return the answer efficiently regardless of the sets whose

intersection is concerned. The number of possible sets is

gigantic, e.g., the set of users having a particular occupation,

or education level, marital status, religion, hobby... Third, the

statistics even provide the ground truth for many types of

studies on social behavior. An example is association rule

mining, which aims at answering questions like: at Facebook,

of the male and married users aged between 30 and 40, what

is the most common education level?

Range aggregation on flexible set intersection is no easy

task. To explain, let us provide a quick problem definition

(a full-fledged version will appear in the next section). Let

S1, ..., Sm be m sets of objects. Note that these sets are not

disjoint, that is, an object can appear in multiple sets (e.g., a

user can belong to Smale, SCA, and Smarried at the same time).

Each object has an index value (e.g., age). Given a pair of

distinct set ids (i, j) and an interval I , a query reports how

many objects of Si ∩Sj have index values covered by I . We

refer to this problem as range aggregation with set selection

(RASS). The value of m can be very large. As mentioned

earlier, in the Facebook example, it equals the total number

of distinct values in all the categories, (e.g., gender, state of

residence, occupation, education level, marital status, etc.).

Extending the definition straightforwardly, a query can specify

d ≥ 2 set ids in general.

1. Querying a search engine with the keywords “facebook demographic
statistics” will return a long list of websites discussing a great variety of
observations/studies based on these statistics.
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The challenge of powering RASS queries is to examine the

fewest objects qualifying a query’s predicate. Put differently,

we aim at far better efficiency than enumerating all the

qualifying objects. Intuitively, retrieving all such objects is

a serious overkill when the query result is merely a single

value. Even for the lowest d, however, there are already
(

m
2

)

pairs of sets that can be chosen by the query, rendering it

unrealistic to index each pair separately – each object would

need to be duplicated a large number of times (as many

as
(

m
2

)

). Another natural approach to attack the problem

is to treat each of the
(

m
2

)

set pairs as a dimension, and

then, deploy a multidimensional aggregate index (e.g., the

aR-tree [12]) to manage the point set converted from the

original data. Unfortunately, even for moderately large m (say,

1000),
(

m
2

)

is already an exceedingly high dimensionality,

where multidimensional indexing is known to be notoriously

inefficient. It is worth noting that the popular locality sensitive

hashing [7] is not suitable here because it is designed for

nearest neighbor search, as opposed to range aggregation.

The RASS problem is well defined with many aggregate

functions. We have used COUNT as an example, while SUM,

AVERAGE, MAX, MIN (and so on) could have been deployed

as well. A good solution to the RASS problem should work

for all these functions. Furthermore, besides social networks,

RASS queries are useful in a great variety of contexts, e.g.,

“find the minimum price of 5-star hotels with free parking

and a gym whose distances to the beach are at most 10

miles”, “report the average salary of male, Professor, CA

tax payers that are between 30 and 50 years old”, “return

the most profitable action movie produced by an American

company during 1990 and 2012”, and so on. In each query,

every underlined keyword implies a set of objects.

In spite of its vast importance in reality and fundamental

nature in database systems, surprisingly, the RASS problem

has not been studied before to our knowledge. Consequently,

statistics extraction must currently rely on ill-fitted mecha-

nisms adapted from conventional aggregation methods. Moti-

vated by this, we present the first work to address the RASS

problem. Our contributions can be summarized as follows:

• We develop a system called RASS to provide powerful

support to this new type of aggregate retrieval. The

technical core of RASS is a novel mechanism combining

binary search trees and a multidimensional array. The

mechanism is amenable to simple implementation, such

that RASS can be easily deployed as an extensional plug-

in to existing database systems. We believe that the

mechanism is of independent interest, and may be used

to attack other related problems.

• We prove rigorously that RASS has attractive theoretical

guarantees. It consumes space linear to the dataset size,

and answers any query efficiently even in the worst

case. This feature is especially important in environments

where it is crucial to impose a hard bound on the

maximum response time. Such a bound is impossible

for solutions with poor worst-case performance because

their running time must be inevitably long when given a

difficult input.

• We also investigate the hardness of the RASS problem.

Specifically, we present a sophisticated and insightful

analysis that establishes the best query time possible

when only linear space consumption is permitted (as

usual, a scalable solution needs to use only linear space).

The analysis significantly promotes our understanding of

the RASS problem, and paves a solid foundation for this

topic. Furthermore, our hardness result shows that the

proposed RASS system has already achieved the optimal

performance, up to only a very small factor.

• We demonstrate with extensive experiments that, on prac-

tical datasets, RASS is faster than existing solutions by a

factor up to an order of magnitude in query time.

The rest of the paper is organized as follows. Section 2

defines the RASS problem formally. Section 3 describes the

proposed system, and establishes its theoretical guarantees.

Section 4 discusses the hardness of the RASS problem, and

reveals the optimality of our solution. Section 5 surveys the

previous work related to ours. Section 6 validates the prac-

tical efficiency of our techniques with experiments. Finally,

Section 7 concludes the paper with a summary of findings.

2 PROBLEM DEFINITION

We now formally define the range aggregation with set

selection (RASS) problem. We are given m sets of objects:

S1, ..., Sm. Each object o is associated with two values in the

real domain R:

• an index value, denoted as val(o);
• a weight, denoted as weight(o).

In a query, index values are examined by a range condition,

whereas weights are aggregated according to an aggregate

function AGG.

Definition 1: Given distinct set ids i, j and an interval I ,

a 2-RASS query reports the result of applying AGG on the

weights of the objects in Si ∩Sj whose index values fall in I ,

or equivalently, the answer is:

AGG

o ∈ Si ∩Sj

and val(o) ∈ I

weight(o).

We support the entire distributive class of aggregate func-

tions. As defined in [9], AGG is distributive if it is decompos-

able. That is, to compute the aggregate value on a set R of

weights, we can arbitrarily divide R into disjoint subsets R1

and R2, calculate AGG(R1) and AGG(R2) respectively, and

then obtain AGG(R) from AGG(R1) and AGG(R2) in constant

time. Common functions such as COUNT, SUM, MAX, and

MIN are all distributive.

One may wonder at this point about AVERAGE, which is

not distributive, despite our claim in Section 1 that we can

support it. In fact, the ability of answering COUNT and SUM

queries implies that we can deal with AVERAGE at no extra

overhead but a single division. In general, aggregate functions

such as AVERAGE that can be computed in constant time from

distributive functions are classified as algebraic in [9]. Our

solutions apply to all algebraic functions as well.
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Define

n =

m
∑

i=1

|Si|. (1)

Trivially, a 2-RASS query can be answered in O(n) time. One

may say that an accurate bound ought to be O(|Si|+ |Sj|) for

a query that concerns sets Si and Sj . This is correct, but not

very helpful, because |Si|+ |Sj | can go up to Ω(n) if we are

not lucky.

The goal of the RASS problem is to answer every query in

time substantially shorter than O(n) – even in the worst case.

For practical scalability, a good solution ought to consume

only O(n) space, i.e., linear to the dataset size. Besides a

nice theoretical guarantee, the solution must perform well in

practice too.

We now generalize Definition 1:

Definition 2: Given d distinct set ids i1, ..., id and an inter-

val I , a d-RASS query reports the result of applying AGG on

the weights of the objects in Si1 ∩ ...∩Sid whose index values

fall in I , or equivalently, the answer is:

AGG

o ∈ Si1
∩ ...∩Sid

and val(o) ∈ I

weight(o).

We consider that d is at most a certain constant, that is,

we do not allow the query to specify a number of sets that is

sensitive to n (e.g., logn).

d = 1. Let us first get rid of this uninteresting case. We

can easily solve any 1-RASS query in O(log n) time with a

structure of O(n) space. Notice that the sets can be treated

independently when a query touches only one of them. Thus,

the problem degenerates into traditional range aggregation,

whose solution, e.g., the SB-tree [19], can be directly applied.

Specifically, we can create an SB-tree on each of S1, ..., Sm,

respectively. The total space is O(n) because the SB-tree on Si

requires only O(|Si|) space for each i ∈ [1,m]. Given a query,

we perform range aggregation on the SB-tree responsible for

the (only) set the query specifies. The query time is O(log n),
thanks to the SB-tree. In the remainder of the paper, we

consider d ≥ 2.

Membership test. Our techniques often need to test whether

an object o belongs to a set Si (1 ≤ i ≤ m). Call this a

membership test. It is rudimentary knowledge that each mem-

bership test can be completed in constant time, by indexing

each Si with a hash table. This hash table occupies O(|Si|)
space and can be constructed in O(|Si|) expected time. Hence,

the hash tables of S1, ..., Sm altogether occupy O(n) space.

Henceforth, we will use it as a fact that each membership test

takes constant time.

Remark. In practice (e.g., the Facebook example in Section 1),

demographic analysis is typically done on a sample set, as

opposed to the entire database (which is not only large in

volume but may also be distributed across numerous servers).

The memory of today’s machines can easily accommodate

a sizable sample set, thus enabling fast, I/O-free, statistical

exploration. A good system must have the ability of building

its access methods from scratch quickly, so that when a new

sample set is taken (e.g., on a daily basis), all the access

methods can be refreshed with minimum cost.

3 THE RASS SYSTEM

For simplicity, we will describe the system using COUNT

as the aggregate function AGG, because our discussion can

be easily extended to any distributive (and hence, algebraic)

function. Equivalently, one can regard all object weights as

1, and set AGG to SUM in Definitions 1 and 2. Sections 3.1

through 3.4 will present the access method in the RASS system,

the query and construction algorithms, and their analysis for

d = 2. Section 3.5 will discuss general values of d and several

extensional issues.

3.1 Structure

Intersection count. Recall that we are given m sets of objects

S1, ..., Sm, where each object o has an index value val(o).
For each Si (1 ≤ i ≤ m), we create a complete binary search

tree (BST)2 Ti on the index values of the objects in Si. In

particular, Ti stores all the index values at leaf nodes. Figure 1

shows an example with m = 3 sets and 9 distinct objects o1,

..., o9. Object o1, for example, has index value 20 and belongs

to S2 and S3. The figure also illustrates the BST Ti on each

Si (i = 1, 2, 3).

We now introduce a notion intersection count. Consider, for

example, nodes u4, u9 from T2, T3, respectively. Denote by

sub(u4) the set of objects in the subtree of u4. Let range(u4)
be the range of the index values of the objects in sub(u4),
namely, range(u4) = [90, 95], enclosing the index values of

o8 and o9. Similarly, range(u9) = [60, 95]. Since one object

(i.e., o9) is in both sub(u4) and sub(u9), the intersection count

of (u4, u9) is then defined as 1. In general, if u and v are

nodes from different BSTs, the intersection count of (u, v)
equals |sub(u)∩ sub(v)|.

Materialization of intersection counts is beneficial to query

processing. To explain, imagine that we have stored the

intersection count 1 of (u4, u9). Consider a 2-RASS query

that designates S2, S3, and an interval I . As long as

range(u4)∩ range(u9) = [90, 95] is covered by I , we can

assert that only a single object in sub(u4)∩ sub(u9) con-

tributes to the query answer, without traversing these subtrees.

Ideally, we would like to store the intersection counts of all

pairs of nodes in the BSTs. Unfortunately, there can be O(n2)
such pairs, such that the storage of all intersection counts

far exceeds our linear space budget. As we can afford to

materialize only O(n) intersection counts, the question is thus

to do so for which of them.

To answer the question, we need to understand if an

intersection count has not been pre-computed, how to obtain

it on the fly during a query. For this purpose, let us re-examine

the previous scenario, where the query picks S2, S3, and

2. In a complete BST, all but the last level are full, and the nodes at the
last level are as far left as possible.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

o1

20

o2

30

o3

40

o4

50

o5

60

o6

70

o8

90

o9

95

o7

80

S1 = {o2, o6}, S2 = {o1, o4, o6, o7, o8, o9}, S3 = {o1, o2, o3, o4, o5, o6, o7, o9}

index values

Fig. 1. Example dataset (m = 3)
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Fig. 2. The RASS-index for the example dataset (τ =
√
n = 4; double circled nodes are big, while the other nodes

are small.)

range(u4)∩ range(u9) is covered by I . This time, consider

that the intersection count 1 is not available, and needs to

be calculated. Since range(u9) = [60, 95], we can retrieve

all the objects in sub(u4) that fall in [60, 95]. The retrieval

fetches o8, o9 by simply traversing the entire sub(u4). Then,

for each of o8 and o9, perform a membership test to see

whether it belongs to S3.3 After this, we can confirm that

only o9 contributes to the query result, i.e., the intersection

count of (u4, u9) is 1. The total cost is O(|sub(u4)|), i.e., the

time of traversing sub(u4) and all the membership tests.

In general, let u and v be nodes from two different BSTs. If

an intersection count is unavailable for (u, v), we can obtain it

in O(min{|sub(u)|, |sub(v)|}) time during a query. Therefore,

if either sub(u) or sub(v) has a small size, it is not worthwhile

to store an intersection count for (u, v), because on-the-fly

computation is cheap. Below, we develop this rationale into a

concrete index.

RASS index. As mentioned earlier, there is a BST Ti on each

Si (1 ≤ i ≤ m). As before, if a node u belongs to Ti, sub(u)
is the set of objects in the subtree of u. Now, collect the nodes

of all BSTs T1, ..., Tm into a global set U (i.e., U includes the

nodes of all different trees). We classify the nodes of U into

two categories:

Definition 3: A node u ∈ U is big if |sub(u)| is at least τ
where

τ =
√
n. (2)

Otherwise, u is small.

In Figure 2 where n = 16 (Equation 1), we have

τ = 4. Among all the nodes of T1, T2, T3, only 5 are big:

u2, u3, u7, u8, u9. They are depicted with double circles.

We create an intersection array A as follows. Let (u, v) be

a pair of nodes satisfying:

• u 6= v, and they are both big.

3. Even though o8, o9 must appear in S2 (since u2 is a node in T2), we
do not know whether they are in S3 yet.

• u and v are not in the same BST.

Store in A(u, v) the intersection count of (u, v). The inter-

section array A for our example dataset is given in Figure 2.

A(u3, u8), for example, equals 2 because objects o1, o4 are in

the subtrees of both u3 and u8. The array has no value for,

say, (u2, u3) because these two nodes belong to the same BST.

Also note that the array is symmetric, which is why only the

upper half is stored.

3.2 Query

Preliminary: Canonical partition. Let us first review a basic

property of BST. Consider a BST T on a set S of n values. T
has height O(log n), and stores all values of S at the leaves.

Given an interval I , denote by I ∩S the set of values in S
covered by I . We want to find a small set C of nodes to satisfy

all the following:

• for any nodes u 6= v in C, their subtrees sub(u) and

sub(v) have no overlap. Equivalently, neither u nor v is

an ancestor of the other.

• for each node u ∈ C, the entire sub(u) belongs to I ∩S.

• every value in I ∩S is in the subtree of exactly one node

in C.

C always exists – naively, simply collect all the leaves

corresponding to the values in I ∩S, but such a C can be too

large for a long I . In fact, for any I , a C of size O(log n) can

always be found in O(log n) time (see, e.g., [3] for details).

As an example, consider T3 in Figure 2. For I = [25, 85],
C = {v10, u11, u12, v15} is what we are looking for.

We refer to a C of size O(log n) as a canonical node set of

I . The subtrees of the nodes in C form a canonical partition

of I ∩S.

Answering a RASS query. Our attention now goes back to

the RASS problem. Given a query which specifies an interval

I and set ids i, j (1 ≤ i 6= j ≤ m), we answer it using BSTs

Ti, Tj , as well as the intersection array A. First, identify in

O(log n) time the canonical node sets Ci, Cj of I in Ti, Tj ,
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respectively. After initializing a temporary result r = 0, we

obtain the intersection count of each pair of nodes (u, v) ∈
Ci × Cj :

• if u and v are both big, A(u, v) stores the intersection

count directly.

• otherwise, assume |sub(u)| ≤ |sub(v)| without loss

of generality. We calculate the intersection count by

traversing sub(u), as explained in Section 3.1.

Now, increase r by the intersection count of (u, v). The final

r at the end of the algorithm is returned as the query answer.

No double counting can occur because, in processing (u, v),
r changes due to the objects in sub(u)∩ sub(v). The fact that

Ci and Cj are canonical, ensures that no object can contribute

to the query answer twice.

As an example, suppose that a query designates S2, S3, and

I = (−∞, 92] on the structure of Figure 2. The canonical node

sets are: C2 = {u3, v7} and C3 = {u8, u12, v15}. Hence, the

algorithm inspects 6 pairs of nodes in C2×C3. We will discuss

only two representative pairs. The first one is (u3, u8). Since

both nodes are big, r is increased by the intersection count

2 of (u3, u8), obtained directly from A. The second one is

(u3, u12). A has no entry for this pair because u12 is small.

Since |sub(u12)| < |sub(u3)|, we traverse sub(u12) to find

objects o5, o6. As only o6 is a member of S2 and falls in

range(u3) = [20, 80], the intersection count of (u3, u12) is 1,

which is thus added to r.

Traversing a subtree only once. The above algorithm has

an undesired feature: we may need to traverse the subtree

of a small node several times. Specifically, let u ∈ Ci be a

small node. It is possible that sub(u) is traversed in processing

(u, v) for every v ∈ Cj . As |Cj | = O(log n), all the traversals

of sub(u) would take up O(|sub(u)| logn) time, instead of

O(|sub(u)|). Next, we remedy this drawback, so that sub(u)
needs to be traversed only once.

For convenience, list out the nodes in Cj as v1, ..., vt
for some t = O(log n). Because Cj is canonical, the sub-

trees of v1, ..., vt are disjoint, and thus, so are their ranges:

range(v1), ..., range(vt). Hence, these ranges can be sorted

in ascending order; without loss of generality, let the order be

just range(v1), ..., range(vt).

Consider v1. Recall that, processing (u, v1) means finding

the number of objects in sub(u)∩ sub(v1), or equivalently,

|range(u)∩ range(v1)|. We enumerate the objects in sub(u)
in ascending order of their index values, and stop as soon

as the current object falls out of range(v1). So far we have

obtained |range(u)∩ range(v1)|. We then turn to process

(u, v2). Since range(v2) is strictly behind range(v1), it is

unnecessary to re-visit any of the objects already enumerated.

Instead, we continue from where we stopped, and repeat the

above until we are done processing (u, vt). In this way, sub(u)
has been traversed only once. The total time of processing

(u, v1), ..., (u, vt) is O(|sub(u)|).

3.3 Construction

Next, we explain how to build a RASS index. The construction

of T1, ..., Tm is straightforward. When this is done, we know

which nodes are big, and hence, can initialize the intersection

array A with all cells set to 0. What remains is to fill up the

cells of A.

For this purpose, we examine every object o again. Let Si

and Sj be two different sets that o belongs to. We identify

the leaf node ui (uj) in Ti (Tj) that corresponds to o. Let

Pi (Pj) be the root-to-leaf path from the root of Ti (Tj) to

ui (uj). For each pair of nodes (vi, vj) ∈ Pi × Pj , check

whether vi and vj are both big. If not, nothing needs to be

done; otherwise, we increase cell A(vi, vj) by 1. To illustrate,

consider o1 in Figure 2, which belongs to S2 and S3. Hence,

P2 = {u2, u3, u5, v3}, and P3 = {u7, u8, u10, v9}. P2 has

big nodes u2, u3, while P3 has big nodes u7, u8. Hence,

we increase each of A(u2, u7), A(u2, u8), A(u3, u7) and

A(u3, u8) by one.

In general, if o belongs to f sets Si1 , ..., Sif , the extension

is straightforward. Following the above description, we are

now looking at f root-to-leaf paths. For each combination

(u, v) where u, v are big nodes on two different paths, increase

A(u, v) by 1.

3.4 Analysis

In this subsection, we will prove the worst-case space and

query complexities for the RASS index. In a BST, define the

level of a node as the number of edges from the root to that

node (i.e., root at level 0). In a complete BST, the i-th level has

2i nodes, except possibly the last level (recall that all BSTs

in RASS are complete). Let us start with a useful fact:

Lemma 1: There are O(
√
n) big nodes.

Proof: We will need the following rudimentary fact: in a

complete BST, if u and v are siblings (i.e., they have the same

parent), the subtree of u has at most twice as many leaves as

in the subtree of v. In other words, if sub(u) is the set of

leaves in the subtree of u, then |sub(u)| ≤ 2|sub(v)|.
To prove the lemma, we will artificially declare some small

nodes to be big, i.e., increasing the number of big nodes.

If, after the declaration, the number of big nodes is still

O(
√
n), then originally the number must also be O(

√
n). The

declaration goes as follows. If, by Definition 3, a node u is big

but its sibling v is not, we declare v big as well. Since |sub(u)|
is at least

√
n, we know |sub(v)| ≥ √n/2. For example, in

Figure 2, we declare u4 big because of u3.

Let Z be the set of big nodes u (after declaration) such that

no child of u is big. In Figure 2, Z = {u3, u4, u8, u9}. Nodes

in Z have disjoint subtrees. As mentioned earlier, sub(u)
covers at least

√
n/2 leaves. On the other hand, only n leaves

are available in all BSTs. We thus know that Z can have at

most n/
√
n
2 = 2

√
n nodes.

In each BST, the big nodes themselves form a binary tree,

whose leaves are in Z . Furthermore, each big node v /∈ Z has

the property that both child nodes of v are big (due to the

way we declared). Hence, the number of big nodes outside Z
cannot be more than |Z|. It follows that the number of big

nodes is at most 4
√
n.

Now we can bound the space and query complexities:
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Theorem 1: The RASS index uses O(n) space, and answers

a 2-RASS query in O(
√
n) time.

Proof: We focus on the query time because the space

complexity is obvious (note that by Lemma 1, the intersection

array A occupies O(n) space). Recall that our algorithm

obtains two canonical node sets Ci and Cj , each with O(log n)
nodes. Overall, the query time is dominated by the cost of (i)

reading O(log2 n) cells in A, and (ii) traversing the subtree of

each small node in C1 and C2. Next, we will show that it takes

O(
√
n) time to traverse the subtrees of all the small nodes in

C1. The same holds for C2 due to symmetry, from which the

lemma then follows because O(log2 n+
√
n) = O(

√
n).

Let Csmall be the set of small nodes in C1, and x be the

highest level of the nodes in Csmall. Since a level-x node

of a complete binary tree has O(n/2x) leaves, we know that

n/2x = O(
√
n) because the subtree of a small node has less

than
√
n leaves.

Csmall has at most two nodes at level i, for each i = x, x+
1, x+ 2, ... A level-i node has O(n/2i) leaves in its subtree.

Hence, the cost of traversing the subtrees of all the nodes in

Csmall is bounded by

O

(

n ·
( 1

2x
+

1

2x+1
+

1

2x+2
+ ...

)

)

= O(n/2x).

which, as mentioned earlier, is O(
√
n).

3.5 Extensions

Heuristic. We have shown that the RASS index guarantees

O(
√
n) search time. For some queries, it is easy to ensure

this bound. To explain, consider a query that picks Si and Sj .

If one of Si and Sj has size at most
√
n, say, |Si| ≤

√
n,

we can simply look at each object o ∈ Si, and perform a

membership test to see if it is in Sj . If so, we increase our

current answer by 1 (of course, one still needs to worry about

the query interval I , but this is trivial). This algorithm works

in O(|Si|) time.

This observation points to a hybrid solution: leverage the

RASS index only if both Si and Sj have sizes at least
√
n.

Otherwise, apply the simple algorithm described above. This

heuristic offers no help in improving the time complexity in

Theorem 1, but it allows us to avoid spending Ω(
√
n)-time

whenever possible.

d = 3 and up. Our solution can be straightforwardly extended

to higher d, as we will clarify next for d = 3. The major

change is the value of τ (Equation 2), which becomes τ =
n2/3. Furthermore, A is now 3-dimensional. Specifically, let

u, v, w be nodes from distinct BSTs. Their intersection count

A(u, v, w) equals |sub(u)∩ sub(v)∩ sub(w)|, i.e., how many

common objects sub(u), sub(v) and sub(w) have.

The query algorithm is also modified slightly. First, instead

of two, we obtain three canonical sets C1, C2, C3 of the query

interval I , each of which is in the BST of a different set des-

ignated by the query. For each node combination (u, v, w) ∈
C1 × C2 × C3, if u, v, w are all big, the intersection count

of (u, v, w) can be found in A(u, v, w) directly. Otherwise,

we compute it by first identifying the node (among u, v, w)

with the smallest subtree and traversing its subtree once. The

current answer r is then increased with the intersection count.

Following the same argument, Lemma 1 now states that

there are O(n1/3) big nodes (which ensures that A uses

linear space), whereas Theorem 1 becomes: space O(n) and

query time O(n2/3). Finally, for general d, τ should be set to

n1− 1

d . Accordingly, the RASS index consumes O(n) space,

and solves a query in O(n1− 1

d ) time.

4 HARDNESS OF THE RASS PROBLEM

This section aims at answering the question: can any structure

do better than O(
√
n) time to solve the RASS problem for

d = 2? The significance of the question is that it indicates to

what extent the RASS problem remains unexplored. If O(
√
n)

is already the end of theoretical improvement, further research

down this line should be devoted to heuristics! We will show,

unfortunately, that O(
√
n) is indeed nearly the end:

Theorem 2: If a structure of size O(n) works for all dis-

tributive aggregate functions, it must incur Ω(
√
n/ log3 n)

time in answering a 2-RASS query in the worst case.

In other words, nobody can design a structure with linear

space and query time O(n
1

2
−ǫ), no matter how small the

constant ǫ > 0 is, because n
1

2
−ǫ = o(

√
n/ log3 n) for any

ǫ. It thus follows that the RASS index is already optimal up

to only a small factor. The proof of Theorem 2 is rather non-

trivial, and constitutes the rest of the section.

Infinite-interval queries. We will limit our attention to a

special class of 2-RASS queries, namely, those whose search

intervals I = (−∞,∞). In other words, what matters is that

the set ids i, j chosen by the query. The query answer is the

result of applying the aggregate function AGG on Si ∩Sj .

Clearly, there are exactly
(

m
2

)

such infinite-interval queries.

We will show at least one of them demands the execution

time claimed in Theorem 2.

Behavior of a query algorithm. Let us recall what is a

distributive AGG. Let R be a set of objects, and {R1, R2}
a partition of R (i.e., R1 ∩R2 = ∅ but R1∪R2 = R), it must

hold that

AGG(R) = AGG(R1)⊕ AGG(R2)

where ⊕ is the operator used to combine AGG(R1) and

AGG(R2). For example, for SUM, ⊕ is addition, while for

MAX, ⊕ is simply max.

Even though various query algorithms may differ in many

details, they share a common pattern in how to obtain the

query answer r. At any time during the algorithm, r equals

the result of applying the aggregate function AGG to a certain

set R of objects. At the beginning, R = ∅, whereas at the end,

R must be equal to Si ∩Sj so that r can be correctly returned

(Si and Sj are the sets that the query concerns). Each update

of r takes place in the following way:

Given an aggregated value r′ = AGG(R′), the

algorithm performs r ← r⊕ r′, whose effect is to

union R′ into R.
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If R′ always contains only a single object, then clearly

the algorithm must carry out the update |Si ∩Sj | times to

obtain the final answer. However, a good index should have

stored pre-aggregates, each of which is a value r′ that may

have aggregated a set R′ of multiple objects. In the luckiest

scenario, there may be an R′ that equals exactly Si ∩Sj ,

in which case fetching the pre-aggregate r′ completes the

algorithm. In more common scenarios, R′ is only a proper

subset of Si ∩Sj , so that more updates are necessary.

In any case, in an update, R′ cannot contain any object,

say o, that does not belong to Si ∩Sj . If it does, then r′

has included the contribution of weight(o), in which case the

update will force r to contain the contribution of weight(o),
too. Such an r is contaminated because the aggregate function

AGG does not necessarily allow a way to eliminate the

contribution of weight(o) from r. As a result, the algorithm

can no longer ensure the correctness of the final r. This fact

is known as the faithfulness of a semi-group [4].

The crux of our proof is to argue that if a pre-aggregate

r′ is on a large set R′ of objects, r′ cannot be used to

answer many queries. On the other hand, we will force each

query to aggregate many objects. This, combined with the

earlier statement, helps us to show that at least one query

must use quite a number of “small” pre-aggregates, each of

which is applied to only a few objects. This query, therefore,

necessitates long running time. Of course, for the whole

argument to work, we need to craft a dataset to suit our needs,

as given below.

A hard dataset. The rest of the proof will utilize a dataset

carefully designed to make the RASS problem hard. Our

dataset has m sets S1, ..., Sm, in which each object is an

integer from 1 to D, where the values of m and D will be

determined as needed later. Define

L = log2(mD) (3)

The next lemma generalizes a result in [4]:

Lemma 2: For m and D satisfying m ≤ 2cD for some

constant c, we can find m subsets S1, ..., Sm of {1, ..., D}
to satisfy two conditions:

C1 : for any distinct i, j ∈ [1,m], |Si ∩ Sj | ≥ D/8 .

C2 : For any distinct integers i1, ..., iL ∈ [1,m],
|⋂L

j=1 Sij | ≤ L.

Proof: Our proof generalizes an argument in [4] that

proves a statement more restrictive than ours. We will deploy

the probabilistic method. This is a classic technique that

utilizes probabilistic arguments to prove the definite existence

of a certain property (see [11] for a systematic introduction).

In the current scenario, we want to prove the existence of sets

S1, ..., Sm satisfying both Conditions C1 and C2.

Let us construct each Si (1 ≤ i ≤ m) by adding each

integer of {1, ..., D} with probability 1/2. We will show that

with a non-zero probability, the m sets built this way will fulfill

both C1 and C2. The implication is thus that there must exist

S1, ..., Sm as demanded by the lemma (otherwise, how would

we get a non-zero probability?). This, therefore, will complete

the proof.

So for any 1 ≤ i 6= j ≤ m, an integer of {1, ..., D} is in

both Si and Sj with probability 1/4. Let x = |Si∩Sj |. Clearly,

x sums up D Bernoulli random variables, each of which has

success probability 1/4. An application of the Chernoff bound4

gives:

Pr[x < D/8] < (0.962)D.

Let ǫ be a positive real value less than 1/2. When

D ≥
log 1

1/2−ǫ + 2 logm

0.055
(4)

it holds that: (0.962)D ≤ (1/2 − ǫ)/m2. As there are less

than m2 pairs of (i, j), by the union bound, Condition C1 is

satisfied with probability at least 1/2+ǫ. Note that Inequality 4

essentially requires m ≤ 2cD for some constant c.

Now consider a set of distinct i1, ..., iL ∈ [1,m]. Each inte-

ger of {1, ..., D} simultaneously belongs to all of Si1 , ..., SiL

with probability 1/2L. Let y = |⋂L
j=1 Sij |. The expectation

of y is D/2L. As L = log2(mD) > log2 D, an application of

the Chernoff bound gives:

Pr[y > L] <
eL

(L2L/D)L

Using the fact
(

m
L

)

≤ (em/L)L, the right hand side of the

above is bounded from above by (1/2− ǫ)/
(

m
L

)

when

e2L(mD)L ≤ (1/2− ǫ)L2L(2L)L

⇔ 2L log2 e + L log2(mD) ≤ log2(1/2− ǫ) +

2L log2 L+ L2

⇔ 2L log2 e+ L2 ≤ log2(1/2− ǫ) +

2L log2 L+ L2

where the last step applied L = log2(mD). The final inequal-

ity is true as long as mD is greater than a certain constant.

As there are
(

m
L

)

sets of {i1, ..., iL}, by the union bound,

Condition C2 in the lemma holds with probability at least

1/2 + ǫ.

In summary, when m ≤ 2cD for some constant c, Condi-

tions C1 and C2 are satisfied simultaneously with probability

at least 2ǫ (applying union bound), i.e., a non-zero probability.

We thus have concluded the proof.

Our dataset contains exactly the S1, ..., Sm in the above

lemma. Note that Condition C1 implies that each of S1, ..., Sm

must have at least D/8 objects. Hence, n =
∑m

i=1 |Si| =
Ω(mD).

Tradeoff between space and query time. As mentioned

earlier, an index may store pre-aggregates r′ = AGG(R′)
where R′ is a set of objects. We say that r′ is heavy if

|R′| > L. The lemma below gives the relationship between

the space and query time:

4. Let x1, ..., xm be independent Bernoulli random variables, each of
which has success probability p. Set X =

∑m
i=1

xi. The Chernoff bound
says that, for any δ > 0, (i) Pr[X < (1 − δ)mp] < exp(δ(mp)2/2) and
(ii) Pr[X > (1 + δ)mp] < (exp(δ)/(1 + δ)1+δ)mp .
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Lemma 3: Assuming D > L, if every query must be

answered within α time, the number s of heavy pre-aggregates

stored in the structure must satisfy

s ≥ (D/8− αL)m2

2(D − L)L2
.

Proof: We first establish a fact about heavy pre-

aggregates:

Lemma 4: A heavy pre-aggregate can be used by less

than (L− 1)2 infinite-interval queries.

Proof: Consider a query that specifies Si, Sj . If the

algorithm uses a heavy pre-aggregate r′ = AGG(R′) to

answer the query, it implies that R′ must belong to Si ∩
Sj , namely, R′ is a subset of both Si and Sj . Since |R′| >
L, by Condition C2 of Lemma 2, R′ can belong to at

most L − 1 sets among S1, ..., Sm (otherwise, we have

found L sets among them with an intersection of more

than L objects, violating C2). L− 1 sets can only define

(L− 1)(L− 2) < (L− 1)2 infinite-interval queries.

Now we resume the proof of Lemma 3. Set M =
(

m
2

)

,

namely, the number of possible (infinite-interval) queries.

Suppose that, in answering the i-th (1 ≤ i ≤ M ) query,

the algorithm uses xi heavy pre-aggregates. Hence, at most

α−xi non-heavy pre-aggregates can have been used to answer

the query (otherwise, the query time would exceed α). By

Condition C1 of Lemma 2, each query must aggregate at least

D/8 objects. On the other hand, by definition, a non-heavy

pre-aggregate can aggregate at most L−1 objects. So, even if

each heavy pre-aggregate is used to aggregate D objects, we

still have:

L(α− xi) +Dxi > D/8.

As the above holds for each i, we have

M
∑

i=1

(

L(α− xi) +Dxi

)

> DM/8

⇒ αLM + (D − L)

M
∑

i=1

xi > DM/8. (5)

By Lemma 4, a heavy pre-aggregate can be used to process

less than L2 queries. As there are s heavy pre-aggregates, we

know

M
∑

i=1

xi < sL2.

With the above, Inequality 5 gives

αLM + (D − L)sL2 > DM/8

⇒ s >
(D/8− αL)M

(D − L)L2
.

The lemma then follows from the fact that M = m(m− 1) ≥
m2/2 for m ≥ 2.

The previous lemma indicates

α ≥ m2D − 16sL2(D − L)

8m2L
. (6)

Finally, we fix the parameters s,m,D,L to obtain a tradeoff

good enough to prove Theorem 2. As the space consumption

must be linear, we let s = cn for some constant c > 0.

Accordingly, set:

m =
√
n log22 n

D =
√
n/ log22 n

L = log2 n

Inequality 6 gives (all logarithms have base 2):

α ≥
n
√
n log2 n− 16cn log2 n

( √
n

log2 n
− logn

)

8 logn · n log4 n

=

√
n− 16c

( √
n

log2 n
− logn

)

8 log3 n
>

√
n

9 log3 n

when n is large enough. This completes the proof of Theo-

rem 2.

5 RELATED WORK

Range aggregation is a classic topic in the database area, and

has been studied in a large variety of contexts: relational [19],

temporal [15], [21], spatial databases [8], [12], [14], OLAP [9],

[10], [13], etc. Towards enabling this fundamental operation

in a new context, the proposed RASS problem permits a query

to intersect a number of sets that are arbitrarily selected from

a large collection of candidate sets. Currently, no system is

able to support RASS queries effectively, which has been a

serious problem due to their vast importance in practice.

The work of [4], [20] considers a special instance of the

RASS problem where objects have no index values, and a

query’s interval I is thus irrelevant. Hence, the solutions in

[4], [20] are inapplicable to RASS queries, whereas all our

algorithms and analysis (including the lower bound result)

apply to the specialized problem of [4], [20]. It is also worth

noting that, the focus of [4], [20] is on the tradeoff between

query and update costs, while our emphasis rests on the

tradeoff between space and query time.

Range aggregation is always accompanied by range report-

ing. In the reporting version of the RASS problem, the data

input is still m sets S1, ..., Sm of objects, where each object

has an index value. Given an interval I and set ids i, j, a

query reports all the objects in Si ∩Sj whose index values

are covered by I . A RASS query can be answered by first

retrieving all the objects satisfying the corresponding reporting

query, and then aggregating those objects. The reporting

version of RASS is essentially the one-dimensional variant

of spatial keyword search [1], [6]. Furthermore, if the goal

is to return only Si ∩Sj (i.e., ignoring objects’ index values

and the query interval I), the problem degenerates into set

intersection, which is a well-studied problem with numerous

interesting solutions [2], [5], [22].

In general, although range aggregation can be supported by

range reporting, performance can be significantly improved by

deploying a technique specially designed for aggregation. This

is because the specialized technique typically computes the
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final answer directly, without fetching the aggregated objects.

As shown in the next section, our RASS system considerably

outperforms alternative solutions adapted from methods of the

reporting problem.

Finally, query processing on sets has been actively inves-

tigated in the database community. The previous work has

addressed numerous problems such as similarity selection on

a single collection of sets [18], similarity join on multiple

collections [17], set containment search [16], to mention just

a few. The solutions under those topics, however, are specific

to their own contexts, and cannot be adapted for the problem

considered in this paper.

6 EXPERIMENTS

We now proceed to experimentally evaluate the proposed

solutions, and compare their efficiency against alternative

methods for RASS queries. All our experiments were carried

out on a machine running an Intel Core 2 Duo CPU at 3GHz

with 8 GB memory. The operating system was 64-bit Linux.

Datasets. We deployed two real datasets:

• Flickr. Flickr (www.flickr.com) is a website where people

share photos they have taken. After uploading a picture,

a user can associate it with labels (e.g., European,

landscape, summer, etc.) to describe the picture. Our

dataset contains 28.1 million pictures (i.e., objects). They

belong to m = 1000 sets, where each set includes all

the pictures having a specific label (i.e., there are 1000

distinct labels). Each picture has an upload timestamp

that serves as its index value. The total size of all the

sets equals n = 48.3 million. The dataset occupies 1.3

GB.

A d-RASS query has the semantics of counting the

number of pictures that were uploaded during a period of

time (i.e., interval I), and carry all the d labels designated

by the query. An example with d = 2 is: find the number

of pictures uploaded during 1 Jun 2006 and 31 Aug 2006,

and having labels European and landscape.

• Delicious. Delicious (delicious.com) is a website where

people publish their Internet bookmarks, and thereby

share the online resources they have found. For example,

a user can create a bookmark referencing a painting of

Leonardo da Vinci in the Internet, and label the bookmark

with art, design and history. Our dataset has

n = 5.8 million bookmarks (i.e., objects). They belong to

m = 1000 sets, where each set contains all the bookmarks

having a specific label (i.e., 1000 distinct labels). Each

object has an index value that is the creation timestamp

of the corresponding bookmark. The total size of all the

sets equals n = 16.1 million. The dataset occupies 411
MB.

A d-RASS query has the semantics of counting the

number of bookmarks that were created during a period

of time, and carry all the d labels designated by the query.

An example with d = 2 is: find the number of bookmarks

created during 1 Jan 2004 and 31 Dec 2004, and having

labels art and design.

Competitors. We examined the following methods:

• RASS: The proposed system.

• Inverted-index: This method adapts a querying mecha-

nism commonly found in search engines [22]. We explain

how it works for d = 2 because the generalization to

higher d is straightforward. In preprocessing, the objects

of each set Si (1 ≤ i ≤ m) are sorted by their ids. Given

a query designating an interval I and distinct set ids i, j,

the query algorithm computes Si ∩Sj by synchronously

scanning Si and Sj once. An object in Si ∩Sj contributes

1 to the query answer if its index value falls in I .

• Value-filter: This method first obtains (using a binary

search tree) all the objects whose index values are covered

by the query’s interval I . Then, for each object fetched,

perform membership tests to check whether it belongs to

all the sets specified by the query.

• IR-tree: This is a well-known structure [6] for spatial

keyword search, which captures the reporting version of

the RASS problem as a special case (see the previous

section). The query answer is then obtained by counting

the number of objects reported.

• kd-tree: This method is included to show that the RASS

problem cannot be efficiently solved using a multidimen-

sional index. Each object o is regarded as an (m + 1)-
dimensional point p. Specifically, the i-th (1 ≤ i ≤ m)

coordinate of p is 1 if o ∈ Si, or 0 otherwise. The (m+1)-
th coordinate of p, on the other hand, equals val(o).
Furthermore, p carries a weight which equals weight(o).
We build a kd-tree on the set of points converted from all

the objects. Each internal node of the kd-tree is associated

with the total weight of the points in its subtree. We

include the optimization that, at each leaf node – suppose

that it corresponds to point p – we store only its 1

coordinates so that the overall space is O(n). Give a 2-

RASS query with interval I and set ids i, j, we can see

that its result is the total weight of the points that fall in

an (m + 1)-dimensional rectangle ρ: (i) the extent of ρ
is [0, 1] for every dimension k ∈ [1,m] such that k 6= i
and k 6= j, (ii) the extent of ρ is [1, 1] on dimensions i
and j, and (iii) the extent of ρ is I on dimension m+1.

Finding the total weight (of the points in ρ) is a standard

aggregate range query [12] that is answered by the kd-

tree.

Query workload. In general, an algorithm geared for range

aggregation has an advantage over an algorithm for range

reporting when the query answer is large – after all, if only

few objects qualify the query conditions, little could be gained

from intersection values, in which case range aggregation

would end up fetching all those objects, and thus degenerate

into range reporting. A main objective of our experiments is

to find out how different approaches work as the query answer

changes.

For this purpose, given a target query answer k > 0, we

generated a k-workload of queries as follows. Let us first

consider d = 2. Given distinct set ids i and j, we say that the

pair (i, j) is k-meaningful if the dataset has at least k objects

in Si ∩Sj . A k-workload contains 100 queries, each of which
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Fig. 3. Query time vs. k (d = 2)

is obtained in two steps. First, its set ids i, j are determined

such that (i, j) can be any of the k-meaningful pairs with

the same probability. Second, having fixed (i, j), the query

interval I is a range that makes the number of qualifying

objects exactly k. Furthermore, it is ensured that all such

ranges have equal likelihood to be selected as I . Interestingly,

the above approach has the benefit of avoiding queries that are

semantically void (e.g., picking Smale and Sfemale at the same

time) because k > 0 objects must be in the query answer.

Straightforward adaptation of the above method was used to

generate a k-workload of d > 2.

We will vary k from 8 to 8192 with k = 512 being

the default value. The value of d will be varied from 2

to 4, with d = 2 as the default. Unless otherwise stated,

each parameter is set to its default value in the subsequent

presentation. It is worth mentioning that, for d ≥ 5, almost all

queries we examined have exceedingly small answers (namely,

few objects exist in 5 or more common sets simultaneously).

Therefore, range aggregation nearly always degenerated into

range reporting, due to reasons explained earlier.

Query efficiency. We started by assessing the query per-

formance of various methods when k doubled from 8 to

8192. For each method, we measured the averaged time it

required to answer a query in a k-workload. The results

are illustrated in Figures 3a and 3b for datasets Flickr and

Delicious, respectively. Note that the y-axes are in log-scale.

RASS exhibited by far the best efficiency. It outperformed

the closest competitor inverted-index by a factor up to an order

of magnitude, whereas value-filter and IR-tree were much

more expensive. The cost of RASS initially grew with k, and

then stabilized even when k increased further. To explain this,

first notice that a large k typically corresponds to queries with

long intervals I . As analyzed in Section 3.4, the query time

of RASS is sensitive to the number of canonical nodes. If

I = [x, y], the canonical nodes in a BST (on a set chosen by

the query) are those along two root-to-leaf paths: one towards

x, and the other towards y. When I is short, the two paths share

many nodes, in which case there are fewer canonical nodes.

This explains why the query time was lower for small k. As

I becomes longer, the number of canonical nodes increases,

until the two paths share no common node (except the root).

This was the point when the query time started to stabilize.

The next experiment studied the influence of the number d

RASS value-filterIR-treekd-treeinverted-index
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Fig. 5. Query time vs. dataset size (k = 512, d = 2)

of sets chosen by the query. Figure 4a (4b) shows the average

query time of each method in processing a 512-workload on

Flickr (Delicious), as d increased from 2 to 4. It is evident that

RASS remained significantly faster than all of its competitors.

RASS demanded longer time answering a d-RASS query when

d was larger. Recall that its query algorithm needs to traverse

the subtree of each small canonical node. When d increases,

the subtree of a small node has more leaves, because the

threshold τ in Definition 3 equals n1−1/d in general, namely,

greater for a larger d. This is the reason for the increase of the

query cost with d. In fact, this also explains why the increase

was (much) more obvious when d went from 2 to 3, compared

to when d went from 3 to 4. Specifically, the values of τ for

d = 2, 3, 4 are n1/2, n2/3, n3/4 respectively. In other words,

from d = 2 to 3, τ escalated by a factor of n1/6, whereas the

factor was merely n1/12 from d = 3 to 4.

We continued with an experiment to inspect how query

cost scales with the dataset cardinality. Towards this purpose,

for each of the two datasets, we created 4 miniatures, each

of which was obtained by sampling (without replacement) a

certain percentage p of the records from the underlying dataset.

Naturally, we refer to p as the sample rate. It is obvious

that each miniature has the same data distribution. Therefore,

cardinality becomes the chief factor affecting query efficiency.

Regarding the miniatures of Flickr, Figure 5a plots, as a

function of p, the average query time of RASS and inverted-

index in processing a workload. Clearly, a 100% miniature

is simply the original dataset. Figure 5b gives the results

of the same experiment on Delicious. In both figures, we

have omitted IR-tree, value-filter, and kd-tree because their

performance was far worse, as should have become obvious

from the previous experiments. The cost of both RASS and

inverted-index scaled well with the dataset size; RASS once

again was the clear winner.
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interval I set ids d
F1 05-10-25,22:38:11 - 05-12-28,9:20:17 london, red 2

F2 04-11-19,13:20:09 - 05-12-11,10:16:51 boy, girls 2

F3 05-03-11,20:36:17 - 05-12-29,7:48:36 macro, 2
photoshop

F4 05-01-31,15:35:59 - 05-12-18,21:22:46 dog, vacation, 3
sky

F5 04-05-23,10:47:46 - 05-12-18,21:19:42 blue, friends, 3
people

F6 04-09-15,10:22:05 - 05-12-18,21:02:41 art, portrait, 3
cameraphone

F7 04-05-13,17:07:18 - 05-12-31,11:12:22 vacation, trip, 4
sky, tree

F8 04-12-06,17:56:09 - 05-12-18,21:16:41 art, sky, usa, 4
architecture

F9 05-03-16,8:17:04 - 05-12-24,0:23:01 friends, water, 4
blue, green

D1 06-08-18,22:47:42 - 06-11-22,4:40:31 code, downloads 2

D2 06-05-31,08:45:08 - 06-11-13,9:11:31 personal, 2
entertainment

D3 06-06-12,20:18:18 - 06-11-29,15:00:45 jobs, art 2

D4 06-06-06,03:33:57 - 06-11-19,13:15:52 search, 3
research,

blogs

D5 06-07-03,13:44:34 - 06-11-20,03:38:58 free, internet, 3
games

D6 06-06-04,01:40:27 - 06-11-21,17:01:47 books, art, web 3

D7 06-06-13,07:50:46 - 06-11-20,12:36:10 tutorial, 4
development,

work, web2.0

D8 06-06-06,08:45:31 - 06-11-20,16:20:29 tools, 4
online, toread,

technology

D9 06-07-21,03:59:03 - 06-11-19,23:26:22 web, news, 4
blogs, fun

(a) Slowest queries for RASS

interval I set ids d
F10 05-04-04,11:00:24 - 05-05-03,16:07:01 california, san 2

F11 05-04-03,11:26:32 - 05-05-27,20:21:38 diego, ski, skiing 2

F12 05-06-08,11:57:05 - 05-08-01,4:38:53 photography, 2
september

F13 05-06-04,3:10:18 - 05-09-06,10:13:24 vacations, holiday, 3
europe

F14 05-07-01,18:54:44 - 05-08-01,04:38:47 day, portraits, 3
women

F15 05-08-27,3:37:25 - 05-10-29,17:37:56 cathedral, sunny, 3
germany

F16 05-06-21,13:54:07 - 05-07-30,17:03:52 stuttgart, kii, 4
campuswg,

idwebcamkii

F17 05-06-20,20:55:27 - 05-08-01,4:38:26 october, 4
september,

may, march

F18 05-06-19,1:17:49 - 05-08-01,4:37:18 day, april, 4
march, january

D10 06-11-20,3:07:47 - 06-11-28,5:23:55 blogs, trends 2

D11 06-06-21,14:54:24 - 06-08-22,16:19:17 lesbian, galleries 2

D12 06-10-04,12:23:00 - 06-10-09,0:52:02 inspiration, design 2

D13 06-08-20,19:18:18 - 06-09-03,15:40:59 social, discussion, 3
networking

D14 06-11-21,3:15:35 - 06-11-27,20:26:37 computing, tech, 3
tools

D15 06-11-20,16:10:49 - 06-12-01,3:50:51 resource, service, 3
cool

D16 06-11-17,6:22:25 - 06-12-05,23:20:45 internet, online, 4
technology,

webservice

D17 06-11-16,22:15:42 - 06-12-18,12:14:14 web, webdesign, 4
css, developer

D18 06-11-21,12:55:09 - 06-12-06,5:46:11 reference, tools, 4
work, utilities

(b) Fastest queries for RASS
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Fig. 6. Efficiency of individual queries in the 512-workloads of d = 2, 3, 4

We now delve into query workloads to examine the behavior

of RASS on individual queries. For each dataset, we looked at

the 512-workloads for d = 2, 3 and 4, respectively. In each

workload, we identified the 3 slowest and 3 fastest queries for

RASS, respectively. As 6 queries were identified from each

workload, altogether 18 queries were extracted this way for

each dataset, i.e., 36 queries in total. We provide the full

details of all these queries in Figures 6a and 6b. Specifically,

Figure 6a includes the slowest queries for RASS: F1, ..., F9
from Flickr, and D1, ..., D9 from Delicious. Take F1 as an

example. It is from the workload of d = 2. Its interval I is

a period of time, whose starting and ending timestamps are

as shown (each timestamp has the format: yy-mm-dd,hr-mn-

sc). It specifies labels london and red (namely, it concerns

pictures carrying these labels at the same time; see the query

semantics explained earlier). Figure 6b lists the fastest queries

in the same style.

In Figure 6c (6d), we compare the cost of RASS and

inverted-index on the queries in Figure 6a (6b). Remember

that F1-F9 and D1-D9 are the “hardest” queries for RASS

in their workloads. Even regarding these queries, RASS beat

inverted-index on 16 of them, and narrowly lost only in 2

(i.e., F2 and D1). On the other hand, on the “easiest” queries

in Figure 6d, RASS was extremely fast, and outperformed

inverted-index by more than 10 times in most of them. It

was such vast performance discrepancy that determined the

dominant superiority of RASS in the previous experiments.

Space consumption and construction time. We now proceed

to evaluate the space overhead of RASS. We began by assessing

its scalability with the dataset size. Figure 7a (7b) plots the

space usage of RASS for the 5 miniatures of Flickr (Delicious)

in the experiment of Figure 5a (5b). For comparison, the

space occupied by the corresponding datasets is also included.

We can see that, thanks to its linear space complexity, RASS

demonstrates excellent scalability in its space consumption. In

particular, notice that it uses only about 20% more space than

the dataset itself. Given the significant benefits brought by

RASS in query efficiency, we believe that such space overhead

is fairly reasonable and worthwhile.
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Next, we turned attention back to the original Flickr and

Delicious (i.e., 100% sample rate), and measured the space

consumption of RASS as a function of d. The results are

presented in Figure 8. Evidently, the space is hardly affected

by this parameter. This is expected because, for different d, the

value of τ (see Definition 3) is adjusted, so that the intersection

array consumes roughly the same amount of space. Also recall

that, the intersection array is the only component that requires

“extra” space – all the other space is devoted to basic structures

(i.e., hash tables and BSTs).

The last set of experiments studied the time required to

build a RASS index. Figure 9a gives the construction cost as

a function of the dataset size (using the 5 miniatures of each

dataset), demonstrating graceful scalability. Figure 9b plots the

cost with respect to d (using the original datasets). It is worth

pointing out that the cost does not need to be monotonic to d.

This is because, as d grows, even though the number of large

nodes decreases, the number of their combinations remains

roughly the same, i.e., equal to the size of the intersection

array A. The building time may actually increase if more cells

of A need to be modified, which in turn depends on the data

distribution. In any case, even for the largest dataset Flickr

(1.3GB in size), the entire construction finished within only 3

and a half minutes.

7 CONCLUSIONS

This paper proposes the RASS problem, which aims at ex-

tracting aggregate information on the intersection of sets that

are arbitrarily selected at query time from a large number

of possible sets. Motivated by the vast importance of this

problem, we have developed the RASS system, which is able

to answer RASS queries significantly faster than alternative

methods, by a factor up to an order of magnitude. Besides

its excellent practical efficiency, RASS is designed based on
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solid theoretical foundation. Not only that it enjoys linear

space complexity, but also its query time nearly matches the

theoretically optimal performance. RASS involves only binary

search trees and a multi-dimensional array, and therefore can

be easily incorporated into many existing commercial systems.

Finally, our theoretical analysis has revealed valuable insight

into the characteristics of the RASS problem, and thus paves

a solid foundation for further research on this topic.
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