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I/O-Efficient Bundled Range Aggregation
Yufei Tao Cheng Sheng

Abstract—This paper studies bundled range aggregation, which is conceptually equivalent to running a range aggregate query

separately on multiple datasets, returning the query result on each dataset. In particular, the queried datasets can be arbitrarily chosen

from a large number (hundreds or even thousands) of candidate datasets. The challenge is to minimize the query cost no matter how

many and which datasets are selected. We propose a fully-dynamic data structure called aggregate bundled B-tree (aBB-tree) to settle

bundled range aggregation. Specifically, the aBB-tree requires linear space, answers any query in O(logB N) I/Os, and can be updated

in O(logB N) I/Os (where N is the total size of all the candidate datasets, and B the disk page size), under the circumstances where

the number of datasets is O(B). The practical efficiency of our technique is demonstrated with extensive experiments.

Index Terms—Aggregation, Range Search, Index

✦

1 INTRODUCTION

Range aggregation computes an aggregate result about
the data items satisfying a range predicate. It has been
extensively studied (see Section 2 for a survey) due to
its importance in a great variety of applications. To be
specific, denote by D a dataset where each item has a key
in the real domain. Given an interval r, letD(r) be the set
of items in D whose keys are covered by r. A range count
query returns the number of items in D(r). Sometimes
each item may carry a real-valued weight. In this case, a
range sum query returns the total weight of the items in
D(r). Similarly, range aggregation can also be performed
using other aggregate functions. For example, a range
average query reports the average weight of the items in
D(r).

1.1 Bundled Range Aggregation

This paper studies bundled range aggregation, which can
be regarded as the simultaneous execution of a range
aggregate query on multiple datasets, returning a result
for each dataset.

Formally, let D be a set of N data items. Each item has
a key and a weight, both of which are values in the real
domain R. Furthermore, each item also carries a color.
Let b be the number of possible colors; each color thus
can be represented as an integer in {1, 2, ..., b}. Denote
by Di (1 ≤ i ≤ b) the set of values in D having color i.
Since every item has exactly one color, D1, D2, ..., Db are
mutually disjoint; and their union is exactly D. Each Di

is referred to as a category.

Definition 1 (Bundled Range Sum/Count): Given an in-
terval r in R and a non-empty set Q ⊆ {1, 2, ..., b}, a
bundled range sum (BRS) query returns, for each i ∈ Q,
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the sum of the weights of all the items in Di whose keys are
covered by r.

A bundled range count (BRC) query is a special BRS
query when the weights of all items are 1. �

The query parameter Q is called a category preference.
Note that as Q can be any non-empty subset of {1, ..., b},
the total number of possible Q is 2b − 1.

Our objective is to design an index structure to answer
any BRS/BRC query with a small number of I/Os. Fur-
thermore, the structure should be fully dynamic, namely,
it must allow an item to be inserted or deleted when the
item appears or disappears in D. Apparently, once the
BRS and BRC problems are settled, we can immediately
solve bundled range average queries1, which return, for
each i ∈ Q, the average weight of all the items in Di

whose keys fall in r.

Computation model and assumptions. We consider the
standard external memory model [2]. In this model, a
computer is equipped with memory of M words, and
a disk of an unbounded size. The disk is formatted into
disjoint pages, each of which consists of B consecutive
words. An I/O either reads a page of data into memory,
or conversely, writes B words from memory to a page.
The values of M and B satisfy M ≥ 2B, namely,
the memory can accommodate at least two pages. The
space of a structure is defined as the number of pages
occupied, whereas the time of an algorithm is defined
as the number of I/Os performed. CPU time is for free.
Every integer or real value can be stored using a single
word.

The value of B in practice ranges from 1k (words) to
64k. We make the assumption that the number b of colors
is no more than B by a constant factor, i.e., b = O(B). In
other words, our techniques are not designed to support
arbitrarily many categories, but instead, a large number

1. Note that an average can simply be obtained by dividing a sum
by a count.
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method space query update remark
one-for-all O(N/B) O(f logf N) O(logf N) f can be any value in [3, B]
one-for-each O(N/B) O(|Q| logB N) O(logB N) –

ours O(N/B) O(logB N) O(logB N) the update cost is amortized

TABLE 1
Comparison of the previous results and ours (assuming b = O(B))

of them. As is evident from the next subsection, this is
a valid assumption in numerous real-life applications.

1.2 Applications and motivation

Bundled range aggregation is motivated by the fact that,
in applications where data are naturally divided into
categories, a user is often interested in some, but not all, of
the categories. For example, consider a crime database
that stores, for each city in the US, the number of crimes
each day. Here, every city is a category, in which each
item is a pair of (date, crime number), where date is the
item’s search key, and crime number is its weight. A
bundled range sum query can be:

Find the total number of crimes during 1-10 Jan.
2010 in each of the 50 state capitals in the US.

The category preference Q of the above query has 50
categories (one for each state capital). For each category,
the query returns a value, which sums up the crime
numbers of the days during 1-10 Jan. 2010 of the corre-
sponding capital. In general, a unique feature of bundled
range aggregation is that it offers vast flexibility to a user
in selecting the queried categories. In particular, the set
of those categories (i.e., Q) can be completely ad-hoc, as
they do not need to be restricted to any hierarchy at all.
In the above scenario, for instance, a category preference
can be any non-empty subset of all the 1248 cities2 in the
US.

The query given earlier is conceptually equivalent
to 50 individual range sum queries, each of which is
issued on a capital. Executing those queries separately,
however, may incur heavy I/O penalty, especially when
the number of cities concerned (i.e., the size |Q| of
Q) is substantially higher. This motivates the question
whether there exists a mechanism for processing bun-
dled range aggregation that remains highly efficient even
when |Q| is very large.

Applications similar to the previous one are abundant
in practice. For example, in a stock database, each stock
forms a category; and an item is a pair of (date, volume),
which records the trading volume of the stock on a
particular day. In this case, a meaningful bundled range
average query is “retrieve the average daily trading vol-
ume of each of the 500 stocks in the S&P500 index during
1-31 Jan. 2010”. As yet another example, consider a tax
database, where each category is a state; and an item is

2. Data (year 2002) from U.S. Census Bureau, counting all cities with
populations at least 25000.

the amount of tax paid by an individual in that state.
Then, a bundled range count query can be used to “find
the number of people that paid at least 10000 dollars of
tax in California, Pennsylvania, Florida, and New York,
respectively”.

1.3 How well can aggregate B-trees do?

The B-tree is a well-known structure for solving the
classic problem of range reporting. With slight aug-
mentation, a B-tree can be changed into an aggregate
B-tree (aB-tree) [16], which supports range aggregation
effectively. As reviewed in Section 2, the aB-tree solves
any range sum (hence also, count and average) query
in O(logB N) I/Os, and can be updated in O(logB N)
I/Os per insertion/deletion, where N is the dataset
cardinality. There are two straightforward ways to apply
aB-trees for bundled range aggregation:

• One aB-tree on all categories (one-for-all). That
is, the items of all categories are indexed with a
single aB-tree. This method has the drawback that,
when the number of categories is large, a great
amount of aggregate values need to be squeezed
into each internal node. As a result, the size of a
node increases significantly, which in turn severely
compromises query and update efficiency. As ana-
lyzed in Section 3, one-for-all requires O(f logf N)
I/Os to answer a query and handle an update,
where f can be any value between 3 and B.

• One aB-tree for each category (one-for-each). An-
other approach is to create a separate aB-tree for
each category. Given a bundled range sum query,
we simply search the |Q| aB-trees on the categories
in Q, respectively. The query cost is bounded by
O(|Q| logB N) I/Os.

1.4 Our main results

We are not aware of any previous study dedicated
to bundled range aggregation. This problem, given its
importance both as a standalone operator and as the
building brick of more complex problems, deserves spe-
cialized efforts to improve the above straightforward
methods. This paper fills the gap by showing that, when
b = O(B), the problem can be nicely solved by an elegant
structure named the aggregate bundled B-tree (aBB-tree).
Specifically:

• An aBB-tree consumes linear space, namely,
O(N/B) pages, where N is the total number of
items in all categories.
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• It answers a bundled range sum/count/average
query in O(logB N) I/Os3.

• It is fully dynamic. Each insertion/deletion can be
performed in amortized O(logB N) I/Os.

Table 1 compares the performance of the aBB-tree to
that of the solutions mentioned in Section 1.3. The aBB-
tree is simple enough to be incorporated into a commer-
cial DBMS. It is merely a traditional B-tree, where each
internal node is associated with several sequential pages.
The overall effect is as if there was an aB-tree dedicated
to each category, but physically all those aB-trees are
bundled together in a space-efficient manner that permits
efficient queries and updates.

The rest of the paper is organized as follows. Section 2
formalizes bundled range aggregation and reviews the
related techniques. Section 3 presents the aBB-tree and its
query algorithm. Section 4 elaborates the insertion and
deletion procedures. Section 5 experimentally evaluates
the efficiency of the aBB-tree. Finally, Section 6 concludes
the paper with a summary of our findings.

2 PRELIMINARIES

Aggregate B-tree (aB-tree).When the dataset D has only
b = 1 category, BRS (BRC) retrieval degenerates to the
traditional range sum (count) problem, which is nicely
solved by the aB-tree [16]. Next, we review this structure
by explaining how to use it to answer range count
queries (extensions to range sum are straightforward)

The aB-tree is essentially a B-tree with the only dif-
ference that, each internal entry e is augmented with
a counter, which equals the number of data items in
the subtree of e. To illustrate, Figure 1 shows an aB-
tree, which has four leaf nodes u1, ..., u4, and a root u5.
For example, node u1 contains three items 1, 9, and 16,
while node u2 includes two items 20 and 33. Therefore,
their parent entries e1 and e2 (in u5) carry counters 3
and 2, respectively. Counter maintenance does not incur
extra I/O overhead (asymptotically), on top of the cost

3. The actual query complexity is O(logB N + |Q|/B). But since
|Q| <= b = O(B), the term |Q|/B is really O(1).

in updating the B-tree itself [16]. In other words, every
insertion/deletion can be handled in O(logB N) I/Os.

Each node u is associated with a range R(u). If u is a
leaf node, R(u) equals [x, x′), where x (resp. x′) is the
smallest item stored in u (resp. the leaf succeeding u). In
the special case where no leaf succeeds u, x′ =∞. If u is
an internal node, R(u) is the union of the ranges of all
the child nodes of u. For example, R(u1) equals [1, 20),
noticing that 20 is the smallest item in u2. Similarly,
R(u2) = [20, 40), whereas R(u5) is [1,∞).

To answer a range count query with interval r, the
query algorithm first initializes the temporary result res
to 0, and then starts by processing the root. In general, let
u be the node being processed (i.e., at the beginning, u is
the root). If u is a leaf node, the algorithm simply adds
to res the number of items in u that fall in r. Otherwise
(i.e., u is an internal node), it adds to res the counters of
all those entries e in u, such that the child node v of e
has a range R(v) contained in r. After this, the algorithm
recursively processes the child nodes v of u whose R(v)
intersects, but is not contained in, r. Standard analysis
shows that at most two nodes are accessed at each level
of the tree. As each node occupies only O(1) pages, the
total query cost is O(logB N).

Other related work. Our BRC problem should not be
confused with colored range counting [8]. Let D be a set
of items, each of which is a real value, and associated
with a color. Given an interval r, a colored range count
query returns the number of distinct colors of the items
that appear in r. In other words, it is the colors that are
counted, instead of the items. Moreover, only a single
value is returned as the query result, unlike a BRC query
which should report a value for each category in Q.

Range aggregation has been widely investigated in the
database area, e.g., [1], [4], [6], [7], [9], [11], [12], [14],
[16], [17], [18], to mention just a few. Those approaches,
however, are specific to their own contexts; for our
problems in Definition 1, none of them yields a notable
advantage over the one-for-each method (as explained
in Section 1.3). Finally, it is worth mentioning that our
work is irrelevant to research on categorical data (see, for
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example, [13], [15]). The term “category” in this paper
refers to a group of items but each item is a value in an
ordered domain, as opposed to a categorical domain.

3 THE AGGREGATE BUNDLED B-TREE

In the sequel, we will first analyze the defects of one-for-
all, and then describe a static version of the aggregate
bundled B-tree (aBB-tree). In Section 4, we will make the
aBB-tree dynamic by elaborating the insertion and dele-
tion algorithms. For simplicity, our discussion focuses
on bundled range counting (BRC), because extensions to
bundled range sum (BRS) queries are straightforward.

One-for-all. As reviewed in the previous section, in an
aB-tree, an entry e of an internal node stores only one
counter. This is no longer sufficient for solving the BRC
problem. Instead, b counters are necessary: the i-th (1 ≤
i ≤ b) counter of e equals the number of items of color i
in the subtree of e.

By default, each leaf node of the aB-tree stores Θ(B)
data items, while each non-root internal node has Θ(B)
child nodes. If b counters are associated with each entry,
an internal node will need to store O(bB) counters
in total. Since every counter requires a word, an in-
ternal node with O(bB) counters occupies O(b) pages.
To answer a BRC query, we need to access O(logB N)
internal nodes; therefore, the total query cost becomes
O(b logB N). Similarly, each update of the aB-tree incurs
the same overhead.

To alleviate the deficiency, a radical approach is to
manually decrease the fanout of internal nodes. In gen-
eral, if each internal node has at most f child nodes,
the node contains at most fb counters, which fit in
O(fb/B) = O(f) pages (applying b = O(B)). Since the
capacity of a leaf node remains Θ(B), the height of the
tree is O(logf (N/B)), rendering the query cost to be
O(f logf (N/B)).

The value of f is at least 3 (i.e., an internal node
has 2 child nodes at minimum). As f logf (N/B) is
monotonic with f , it is minimized at f = 3. In other
words, the lowest possible query time complexity of
one-for-all is O(log3(N/B)). This, however, is still more
expensive than the query/update cost O(logB(N/B)) of
the proposed aBB-tree by a factor of O(log3 B). In any
case, the update cost is proportional to the height of the
tree, namely, O(logf (N/B)).

The aBB-tree. Underlying the aBB-tree is a B-tree T that
indexes all the items of D (including all categories) by
their keys. We refer to T as the base tree. Let u be a node
of T . As defined in Section 2, u naturally corresponds
to a range R(u) in R. We denote by D(u) = D ∩ R(u)
as the set of data items stored in the subtree of u. Now,
consider u as an internal node with child nodes v1, ..., vB ,
listed in such a manner that the items in D(vi) precede
those in D(vj), for any 1 ≤ i < j ≤ B. We refer to vi as
a left sibling of vj . Note that vi has i− 1 left siblings.

Each internal entry e of T is associated with b counters,
one for each color. These counters are defined in a prefix
sum manner. Specifically, let u be an internal node, and
v a child node of u whose parent entry is e. Then, the
i-th (1 ≤ i ≤ b) counter of e, denoted as counter(e)[i],
equals the total number of color-i items in the subtrees
of v and all the left siblings of v. As u has up to B entries,
it is associated with at most bB counters this way.

The at most bB counters of u are stored separately in
O(b) sequential pages – referred to as the counter pages –
such that the b counters (i.e., counter(e)[i] for i = 1, ..., b)
of each entry e are placed consecutively in ascending
order of i. As each counter has a fixed size (i.e., a single
word), for any e, we can find the starting page of the
counters of e in a single I/O. In other words, once u has
been pinpointed, all the b counters of e can be read in
O(1) I/Os.

Figure 2 illustrates an example, where the base tree
T has 12 leaf nodes u1, ..., u12, and 4 internal nodes
u13, ..., u16. The bottom of Figure 2 shows the ranges of
all nodes in T except the root. The underlying dataset
D contains items of b = 2 colors: white and gray. In the
sequel, we refer to white as color 1, and gray as color
2. The white (gray) counter 13 (11) of e14 indicates that
13 white (11 gray) items are in the subtrees of e13 and
e14. Similarly, the white (gray) counter 18 (19) of e15 is
essentially the total number of white (gray) items in the
entire tree.

Space. The base tree T itself occupies O(N/B) pages,
and has O(N/B2) internal nodes. As each internal node
needs O(b) counter pages, all the internal nodes occupy
O( N

B2 b) = O(N/B) pages in total. The overall space cost
is therefore O(N/B).

Query. Consider a BRC query with search interval r =
[x, y] and category preference Q. Denote by Q[i], 1 ≤ i ≤
|Q|, the i-th color of Q. To answer the query, we resort to
an array res of size |Q|, such that res[i] is set to 0 initially,
and will equal the number of color-Q[i] data items in r
when the query algorithm finishes.

The algorithm first descends two root-to-leaf paths to
the leaf nodes z1 and z2 such that R(z1) and R(z2) con-
tain x and y, respectively. Let u be the lowest common
ancestor of z1 and z2. Denote by π1 (resp. π2) the set
of nodes on the path from u to z1 (resp. z2). For each
internal node v on π1 ∪ π2, we carry out the following
steps to update res. Let v1, ..., vB be the child nodes of
v.4 Define:

• j1 to be the integer such that vj1 is on π1. If no child
of v is on π1, then j1 = 0.

• j2 to be the integer such that vj2+1 is on π2. If no
child of v is on π2, then j2 = B.

If we denote by ej1 and ej2 the parent entries of vj1 and

4. The ordering is such that any item in D(vj1 ) precedes the entire
D(vj1 ), for all 1 ≤ j1 < j2 < B. The same convention applies
whenever we list the child nodes of a node.
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vj2 respectively, then res is updated as:

res[i] = res[i] +
{

counter(ej2)[Q[i]] if j1 = 0
counter(ej2)[Q[i]]− counter(ej1)[Q[i]] otherwise

for every i ∈ [1, |Q|]. Finally, at z1 and z2, we simply
go through all the items stored there, and update res
accordingly.

For example, given a query with r = [10, 75] and
Q = {1, 2} on the example of Figure 2, we have π1 =
{u16, u13, u2} and π2 = {u16, u15, u9}. It is the 5 nodes in
π1∪π2 that are accessed. At u16, for instance, ej1 and ej2
correspond to e13 and e14, respectively.

Clearly, there are O(logB N) nodes in π1 ∪ π2. At each
internal node v ∈ π1∪π2, we spend O(b/B) I/Os to fetch
the b counters of ej1 , and those of ej2 . Then, array res
can be updated in O(b/B) I/Os5. This means that we pay
only O(b/B) = O(1) I/Os per internal node. Processing
z1 and z2 obviously incurs no more than O(b/B) = O(1)
I/Os. The overall query time is therefore O(logB N).

Remark. Note that counter(ej1)[Q[i]] and
counter(ej2)[Q[i]] for i = 1, ..., |Q| can also obviously be
retrieved using |Q| I/Os. In this way, the query cost
amounts to O(|Q| logB N). This means that one can
also attain the query performance of one-for-each (see
Section 1.3) using an aBB-tree. This alternative query
algorithm is more efficient when |Q| < b/B.

Difficulty of updates. Defining counters in a “prefix
sum” style allows us to achieve O(logB N) query cost.

5. These I/Os can be avoided if res fits in memory, which is true
in practice. Here, we aim to provide formal description that holds for
any M ≥ 2B.

They, however, make dynamic maintenance of the aBB-
tree a challenging issue. To see why, notice that, at
each node, inserting into (or deleting from) one branch
may invalidate the counters of O(B) other branches. For
example, if a white item is inserted in the subtree of e13,
then the white counters of e13, e14 and e15 all need to
be increased by 1. When b is large, these counters may
be scattered in different pages, so that O(b) I/Os may be
needed to update them. As this happens at all internal
levels, the total insertion cost would be as high as
O(b logB N) I/Os! In the next section, we give alternative
strategies to improve the update cost to O(logB N).

4 DYNAMIC MAINTENANCE

In this section, we show how to perform insertions and
deletions in the aBB-tree using O(logB N) amortized
I/Os. This is achieved using a patching approach as pre-
sented in Section 4.1. The concrete update algorithms are
described in Section 4.2. We will focus on BRC retrieval
but the extensions to BRS queries are straightforward.

4.1 Patching

Rationale. Recall that each internal node in the base
tree T is associated with O(bB) counters stored in O(b)
pages. An obstacle in updating the aBB-tree efficiently,
as discussed in Section 3, is that one insertion/deletion
may affect O(B) counters at each internal level. As those
counters may be kept at different pages, immediately
modifying them can incur O(b) I/Os at each internal
level, resulting in O(b logB N) update cost overall.

We avoid such deficiency by updating the counters
in a delayed manner. For each internal node u in T ,
we do not update any of its counters until Ω(B) inser-
tions/deletions have happened in its subtree. In other
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words, those counters may stay inaccurate for some time
(but precise results are still guaranteed using a method
described later). Once Ω(B) updates have occurred be-
neath u, we perform a counter overhaul (to be elaborated
shortly) to correct all the counters of u in O(b) I/Os.
The cost of a counter overhaul can be amortized over
those Ω(B) updates, so that each update bears only
O(b/B) = O(1) I/Os.

Patch. Motivated by the above, we associate each inter-
nal node u with one extra page called the patch of u,
denoted as P (u). We use P (u) to remember all the items
that have been inserted in or deleted from the subtree
of u since the last counter overhaul on u. Let F = Ω(B)
be the maximum number of items that can be stored in
a page. Once P (u) gets full (namely, when it contains F
items), a counter overhaul is triggered.

To illustrate, imagine that we delete item 60 from node
u7 in Figure 2, and insert a gray item 48 into node u6.
The relevant parts of the resulting aBB-tree are given in
Figure 3, where each internal node is now accompanied
by a patch. Each updated item is recorded in the patches
of all the internal nodes on the path from the root to the
leaf containing the item. Hence, the deletion of 60 and
insertion of 48 are recorded in the patches of both u16

and u14. Note that none of the counters of u16 and u14

has been altered.

Counter overhaul. Next, we clarify how to perform
a counter overhaul when the patch P (u) of node u
is full. Let v1, ..., vB be the child nodes of B, whose
parent entries are e1, ..., eB , respectively. We pin P (u)
in memory, while updating the O(b) counter pages of
u one by one. Specifically, after fetching a counter page,
we modify all the counters there to their accurate values,
and then write the counter page back to the disk. Note
that, given a counter counter(ej)[i] for any j ∈ [1, B]
and i ∈ [1, b], once its current value has been brought
into memory, its accurate value can be obtained without
any I/O. For this purpose, we only need to obtain the
numbers α and β of insertions and deletions respectively
in P (u) that fall into the subtrees of v1, ..., vj . After this,
counter(ej)[i] can be modified to counter(ej)[i] + α− β.

To illustrate, consider that a gray item 25 is inserted in
the tree of Figure 3, and hence, is recorded in the patch
P (u16) of the root u16 (see Figure 4a). Assume that a
patch can contain up to F = 3 items, so P (u16) is full,
necessitating a counter overhaul on u16. Its child nodes
u13, u14, u15 have ranges [1, 35), [35, 70), and [70,∞),
respectively (as can also be observed in Figure 2). Let us
look at the first record in P (u16) (removal of white item
60). As 60 is covered by R(u14) = [35, 70), its removal
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should reduce the white counters of e14 and e15 by 1.
Similarly, the second record in P (u16) should increase the
gray counters of e14 and e15 by 1, while the last record
increases all the 3 gray counters of u16 by 1. Figure 4b
illustrates the updated counters, and the emptied P (u16).

In general, a counter overhaul on node u needs to
access u and P (u), and then read/write the O(b) counter
pages of u at most once. Hence, it can be finished in O(b)
I/Os.

Space. Since (i) each patch occupies only 1 page and (ii)
there are O(N/B2) internal nodes, all the patches occupy
only O(N/B2) space. Hence, the overall space cost of the
aBB-tree is still O(N/B).

Query. Our algorithm in Section 3 needs to be slightly
modified to account for the fact that, a counter of a node
u must be verified (and corrected if necessary) using the
items in the patch P (u). Counter verification imposes
only 1 extra I/O (for reading the patch) at each internal
node accessed. The query cost thus remains O(logB N).

To illustrate, consider a query with r = [10, 75] and
Q = {1} issued on the aBB-tree in Figure 3. At the
root u16, the query algorithm needs to retrieve the white
counters of e13 and e14. The two counters are stored as 8
and 13 respectively in the counter pages of u16, but they
may be erroneous due to the updates logged in P (u16).
To find out, the algorithm reads P (u16), and modifies
the white counter of e14 to 12 according to the first
record in P (u16). Note that the modification happens
only in memory; namely, the counter of e14 still remains
13 in disk. The algorithm then proceeds as described in
Section 3 with the verified counters (the white counter
of e13 needs no correction).

4.2 Update algorithms

This subsection elaborates the insertion and deletion al-
gorithms of the aBB-tree. These algorithms extend those
of a traditional B-tree with extra steps to maintain the
counter pages of the internal nodes in the base tree T .
Overall, several principles are followed: (i) T is updated
in exactly the same way as a normal B-tree. (ii) The
item being inserted/deleted is automatically recorded in
the patches of all the nodes along the insertion/deletion
path. (iii) Counter pages are modified only when a
patch becomes full (in which case, a counter overhaul is
performed), a node is split, or two nodes are merged. As
(i) and (ii) are straightforward, and for (iii) the details of
a counter overhaul have been given in Section 4.1, what
remains unclear is how to update counters in a node split
and merge, respectively. Next, we discuss these scenarios
respectively.

Split. Figure 5 formally presents the node split algo-
rithm. Next, we illustrate it using an example. Consider
that node u14 in Figure 6a is to be split. The algorithm
starts by forcing a counter overhaul on u14 and its parent
node u16 – that is, perform a counter overhaul on them

Algorithm Split(u)

/* u is the node being split. This algorithm assumes
that u is not the root. Otherwise, the split algorithm
is a straightforward adaptation of this one. */

1. uparent ← the parent node of u
2. force counter overhauls on u and uparent

/* if u is a leaf node, no counter overhaul on u */
3. e← the parent entry of u
4. split u into u′ and u′′ as in a normal B-tree

/* assume u′ is on the left of u′′ */
5. for each entry ê in u′

6. set all counters of ê in u′ directly to those of
ê in u

7. e∗ ← the right most entry in u′;
e∗∗ ← the right most entry in u′′

8. for each entry ê in u′′

9. for i← 1 to b
10. counter(ê)[i]← counter(e)[i]− counter(e∗)[i]
11. remove u, and add u′ and u′′ as children of uparent

12. e′ ← parent entry of u′;
e′′ ← parent entry of u′′

13. set all counters of e′′ directly to those of e
14. for i← 1 to b
15. counter(e′)[i]← counter(e′′)[i]− counter(e∗∗)[i]

Fig. 5. Node split algorithm

respectively, even if their patches are not full yet. Fig-
ure 6b shows the situation after the (forced) overhauls.

Next, we split u14 splits into u′
14 and u′′

14 (in the same
way as in a standard B-tree), and decide the counters
of the new nodes appropriately. As shown in Figure 6c,
the counters of e5 and e6 in u′

14 are copied directly from
those in the original node u14, whereas adjustments are
needed to derive the counters in u′′

14. For instance, the
white counter of e7 equals 0 in u′′

14 because, from the
white counters of e6 and e7 in u14, we can infer that no
white item exists in the subtree of e7. The other counters
in u′′

14 are obtained based on analogous reasoning.

The generation of u′
14 and u′′

14 creates parent entries
e′14 and e′′14 in u16. To complete the split, we compute
the b counters of e′14 and e′′14, respectively. As given in
Figure 6, the counters of e14 (which has disappeared due
to the removal of u14) in Figure 6b are taken directly as
the counters of e′′14. The counters of e′14 are calculated as
follows: its white (gray) counter 12 (10) is the difference
between the white (gray) counter of e′′14 and that of e8
in u′′

14.

In general, a split involves at most 2 counter overhauls,
and reading/writing the counter pages of at most 4
nodes. Therefore, its cost is bounded by O(b) I/Os.

Merge. The merge algorithm, formally presented in Fig-
ure 7, can be easily understood as reversing the steps in
a split. For example, think backwardly of Figures 6c and
6b as nodes u′

14 and u′′
14 merging into u14. This demands
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Fig. 6. Handling a node split

Algorithm Merge(u′, u′′)

/* u′ and u′′ are the nodes to be merged. This
algorithm assumes that their parent node is not the
root. Otherwise, the split algorithm is a straightforward
adaptation of this one. */

1. uparent ← the parent node of u′ (hence also u′′)
2. force counter overhauls on u′, u′′, and uparent

/* if u′ and u′′ are leaf nodes, no counter overhaul
on them */

3. e′ ← the parent entry of u′;
e′′ ← the parent entry of u′′

4. e∗ ← the right most entry in u′

5. merge u′ and u′′ into u as in a normal B-tree
/* assume u′ is on the left of u′′ */

6. for each entry ê in u
7. if ê is from u′ then
8. set all counters of ê in u directly to those of

ê in u′

9. else
10. for i← 1 to b
11. counter(ê)[i]← counter(ê)[i]+

counter(e∗)[i]
12. remove u′, u′′, and add u as a child of uparent

13. e← parent entry of u
14. set all counters of e directly to those of e′′

Fig. 7. Node merge algorithm

creating the counter pages of u14, and modifying the
counter pages of u16. We omit the details because they
should have become straightforward at this point.

Update cost. We prove:

Lemma 1: The aBB-tree can be updated in O(logB N)
I/Os amortized.

Proof: An update on the aBB-tree includes (i) main-
taining the base tree T , (ii) modifying the patches and
counter pages of the relevant internal nodes. The cost
of (i) is O(logB N) I/Os by the standard analysis of the

B-tree. As for (ii), if no node split/merge is involved in
the update, our algorithm simply adds the item (being
inserted/deleted) to the patches of the internal nodes
along the insertion/deletion path, and carries out at most
one counter overhaul at each internal level. This requires
O(logB N) amortized I/Os per insertion/deletion (the
cost of counter overhauls can be amortized in the way
explained in Section 4.1, so that each update accounts
for O(1) I/Os at each internal level). In the sequel, we
assume that a split or merge has occurred. A charging
argument will be used to show that the total cost of
handling splits and merges can be amortized over all the
updates, such that each update bears O(logB N) I/Os.

The B-tree, as implemented in [10], has the property
that, after a node u is created (by a split or a merge),
it can generate an overflow/underflow only after Ω(B)
insertions or deletions have occurred in its subtree6.
Refer to the set of those updates as the pocket set of u.
Notice that every update is in the pocket sets of at most
O(logB N) nodes (i.e., those on the insertion/deletion
path of the update).

As explained in Section 4.2, our algorithm handles
a split (merge) in O(b) I/Os. We charge this cost over
the Ω(B) updates in the pocket set of the node that
generated the overflow (underflow). Each update thus
bears only O(b/B) = O(1) I/Os. Since an update belongs
to the pocket set of O(logB N) nodes, the total cost it
needs to bear is at most O(logB N).

Main result. We thus have arrived at:

Theorem 1: For b = O(B), there exists a structure
that consumes O(N/B) space, and solves any BRS/BRC
query in O(logB N) I/Os. The structure can be updated
with O(logB N) amortized I/Os per insertion/deletion.

Remark. Our patching method is reminiscent of the
buffer-tree technique [3] (see also [5]). The two approaches

6. A simple way to do so is to set the minimum number of entries
in a node to, e.g., B/4.
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aBB one-for-each one-for-all-3 one-for-all-
√

B

(a) Entire range of |Q| (b) Focusing on |Q| ∈ [1, 10]

Fig. 8. Query cost vs. the number |Q| of categories in the preference set Q (N = 80m, b = 800)

are similar in that both associate internal nodes with
additional pages in order to perform updates in a
batched manner. The buffer-tree technique, however,
aims at progressively pushing updates to lower levels of
a tree efficiently. In our context, an update immediately
reaches all levels (just like updating a normal B-tree); the
purpose of patching is to refresh aggregate information
(i.e., the counters), a feature that is absent from [3], [5].

5 EXPERIMENTS

We will compare the aBB-tree to one-for-all and one-for-
each, both of which (as introduced in Section 1.3) are
based on aB-trees. Regarding one-for-all, we implemented
three versions, which differ in the maximum fanouts of
internal nodes:

• one-for-all-3: The maximum fanout is 3.
• one-for-all-

√
B: The maximum fanout is

√
B.

• one-for-all-B: The maximum fanout is B.

We evaluated all the methods by their query, update,
and space overhead, using both synthetic and real data.
The page size was fixed to 4096 bytes.

Data and queries. We generated datasets where items’
keys and weights are uniformly distributed in [0, 230)
and [0, 100), respectively. Each dataset can be character-
ized by two parameters: the number b of colors (a.k.a.
categories), and the total number N of items. Every item
is assigned a random color; hence, each category has
approximately the same number of items. In the sequel,
we use uNvb to denote a dataset with N = u million
and b = v. For example, 40N400b represents a dataset
with N = 40 million items and b = 400 categories. We
varied N from 4 to 80 million, and b from 100 to 800.

We also experimented with a real dataset called
S&P500, which contains the daily trading volumes of
every stock in the S&P500 index from 1 Jan. 1980 to 4
Mar. 2010 (if a stock entered the market after 1 Jan. 1980,
its entire history is included). Each stock is a category
(i.e., totally b = 500 categories), in which an item is of
the form (date, volume), where date is the item’s key, and

aBB one-for-each one-for-all-3

one-for-all-
√

B one-for-all-B

Fig. 9. Query cost vs. the total number of categories b
(N = b · 105, |Q| = 50)

volume is its weight. The total number N of items (of all
stocks) is 2.57 million.

A q-workload is defined to be a set of 100 bundled range
sum (BRS) queries whose category preferences Q have q
colors (i.e., |Q| = q). The search interval r of a query is
decided as [min{x, y},max{x, y}], where x and y are two
random integers in the underlying key domain. The Q of
the query is a random size-q subset of all the b possible
colors. A (q, ℓ)-workload, on the other hand, is similar
except that the interval r of each query has the same
length ℓ, and has its position uniformly decided in the
key domain. Note that a query on dataset S&P500 has the
semantics of retrieving the total trading volume during
the period of r for each of the stocks in Q. We gauge
the query cost of a method as the average number of
I/Os it performs in answering a query in the workload.
CPU time is ignored because in all cases it accounts for
a fraction (less than one thousandth) of the I/O time.

Query characteristics. Let us start by studying the query
behavior of each method using synthetic data. The first
experiment assesses the impact of q on query efficiency.
For this purpose, we used each method to answer q-
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aBB one-for-each one-for-all-3

one-for-all-
√

B one-for-all-B

Fig. 10. Query cost vs. the dataset cardinality N (b = 400,
|Q| = 50)

workloads on dataset 80N800b, by varying q in its entire
range (i.e., from 1 to b). Figure 8a illustrates the query
overhead as a function of q, while Figure 8b zooms into
q ∈ [1, 10] for better clarity. The performance of the aBB-
tree and one-for-allwas not affected by q, whereas the cost
of one-for-each escalated linearly with this parameter. In
Figure 8, one-for-each is outperformed by the aBB-tree at
q = 8; and the speedup of the aBB-tree increases to two
orders of magnitude when q reaches 800. Among the
three versions of one-for-all, the one with the smallest
fanout exhibits the best query efficiency, as explained
by our analysis in Section 3. Note that one-for-all-B is
omitted from Figure 8b due to its prohibitively high
query overhead.

The next experiment aims at revealing a defect of
one-for-all, that is, its query cost scales poorly with the
number b of categories. We fixed the number of items in
each category to 100k, but increased b from 100 to 800.
For each dataset, Figure 9 reports the cost of all methods
in processing a 50-workload. The overhead of the aBB-
tree and one-for-each is stable for all values of b, while
the performance of one-for-all deteriorates very rapidly.
Note that for b ≤ 200, one-for-all-

√
B outperformed one-

for-all-3. This phenomenon deserves further explanation
because it seems to contradict our claim that f = 3 is the
best fanout. In fact, this is merely an artifact of asymp-
totic analysis, which holds when the input parameters
(in our case, b) are sufficiently large. Otherwise, for small
b, the hidden constant (which is not taken into account
by big-O) does not permit drawing a decisive conclusion
on the superiority of one-for- all-3 and one-for-all-

√
B.

Let us now inspect the scalability of the three ap-
proaches with respect to the cardinality N , when the
number b of categories is fixed. For this purpose, we set
b to 400, and increased N from 4 to 40 million. Again,
for each dataset, we compared alternative methods in
answering a 50-workload; the results are presented in
Figure 10. The cost of all solutions is only slightly af-
fected, because their query complexities are logarithmic

aBB one-for-each one-for-all-3

one-for-all-
√

B one-for-all-B

Fig. 11. Query cost vs. the length ℓ of the query interval
(b = 800, N = 80m, |Q| = 50)

to N .

To examine the influence of the length ℓ of the query
interval, we deployed dataset 80N800b and compared
the efficiency of the competing methods on (50, ℓ)-
workloads by varying ℓ from 1% to 80% of the key do-
main’s length. The results, as shown in Figure 11, exhibit
the same relative superiority as has been observed in the
preceding figures.

Update characteristics. We now proceed to study the
update behavior of each method, again using synthetic
data. Let us define a ρ-sequence as a sequence of updates,
in which there are ρ times more insertions than deletions,
where ρ is called the ins-del ratio. Specifically, each ρ-
sequence consists of 1 million updates generated as
follows. First, each update is an insertion with prob-
ability ρ/(1 + ρ), and a deletion with the remaining
probability. Second, an insertion adds to the dataset an
item whose key and weight are uniformly distributed
in their respective domains, while a deletion removes a
random item in the current dataset. The update cost of
a method is measured as the average number of I/Os in
handling an update in a ρ-sequence.

The first experiment examines the effect of ρ. For
this purpose, we obtained four ρ-sequences by doubling
ρ from 1 to 8, and applied each sequence to dataset
40N400b (e.g., after executing an 8-sequence on 40N400b,
the dataset cardinality becomes 40.9 million). Figure 12a
compares the update cost of all methods as a function
of ρ. All methods were able to handled an update in
less than 15 I/Os on average, whereas the overhead of
one-for-each-3 was significantly higher. This is expected
because one-for-each-3, due to its low fanout, has a much
greater height.

Let us analyze the cost of the aBB-tree in greater detail.
In the above experiment, the height of the aBB-tree re-
mained 4 (including 3 internal levels). It thus follows that
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aBB one-for-each one-for-all-3

one-for-all-
√

B one-for-all-B

(a) Update cost (b) Frequency of counter overhauls

Fig. 12. Influence of the ins-del ratio ρ on update cost (dataset 4N400b)

aBB one-for-each one-for-all
10 3.8 56

(a) Avg. num. of I/Os per update

aBB one-for-each one-for-all
69 42 122

(b) Space (mega bytes)

TABLE 2

Update and space comparison (dataset S&P500)

each insertion/deletion required at least 11 I/Os7 even if
no structural change (i.e., node split/merge) happened.
In other words, counter overhauls, the most expensive
procedure in handling a split/merge, contributed very
few amortized I/Os per update. To see why, Figure 12b
gives, as a function of ρ, the average number of counter
overhauls in every 1000 updates in the experiments
of Figure 12a. Evidently, counter overhauls were infre-
quent. For example, at ρ = 1, only less than 10 overhauls
took place every 1000 updates. Given that each overhaul
performed around 280 I/Os8, merely 10 · 280/1000 = 2.8
I/Os were amortized over each update. This is the main
reason behind the efficiency of our patching technique
in Section 4.1.

Space scalability. Figure 13 plots the space consumption
of each technique as a function of N , when the number
b of categories is fixed to 400. The space of all methods
grew linearly, as predicted by their space complexities.
One-for-each required the least space because, unlike the
other methods, it does not need to store the color (i.e.,
category id) of any item. One-for-all-3, on the other
hand, occupied the most space because it has much
more internal nodes. The space consumption of the other
methods was approximately the same.

7. This includes reading two internal nodes (3 I/Os), reading and
writing their patches respectively (6 I/Os), and reading and writing a
leaf node (2 I/Os).
8. The average fanout of an internal node in an aBB-tree was 357.

Hence, on average 357b/1024 counter pages were associated with an
internal node, as a page (of 4k bytes) can store 1024 counters. For
b = 400, 357b/1024 = 139.4; and a counter overhaul performed twice
as many I/Os (for reading and writing each counter page respectively).

aBB one-for-each one-for-all-3

one-for-all-
√

B one-for-all-B

Fig. 13. Space vs. the dataset cardinality N (b = 400)

Performance on real data. Finally, we examine the effi-
ciency of the ABB-tree, one-for-all-3, and one-for-each on
the real dataset S&P500 (one-for-all-

√
B and one-for-all-B

were not considered because their query cost is much
more expensive). Figure 14 compares their query cost
when the size |Q| of the category preference varies from
1 to 50. All methods demonstrated the same behavior as
in Figure 8. Table 2a gives the average number of I/Os
per update in constructing the index of each method
on S&P500, while Table 2b shows the amount of space
occupied by that index. These results are consistent with
the earlier observations on synthetic data. It is worth
mentioning that the maximum cost of the aBB-tree in
handling an update was over 300 I/Os, which again
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aBB one-for-each one-for-all-3

Fig. 14. Query cost vs. the number |Q| of categories in
the preference set Q (dataset S&P500)

indicates how infrequently counter overhauls occurred.

6 CONCLUSIONS

Bundled range aggregation performs a traditional range
aggregate query on multiple datasets simultaneously. Its
usefulness is reflected by the vast flexibility in selecting
the queried datasets, which can be arbitrarily chosen
from hundreds or even thousands of candidate datasets
in a completely ad-hoc manner. The challenge is to solve
the problem with cost significantly lower than answering
the query on each chosen dataset separately, while at the
same time, allowing updates to be carried out efficiently.
Under the assumption that the number b of datasets
is O(B), this work settles the problem with a struc-
ture called the aggregate bundled B-tree (aBB-tree). The
aBB-tree consumes linear space O(N/B), answers any
bundled range sum/count/average query in O(logB N)
I/Os, and supports an insertion/deletion in O(logB N)
amortized I/Os, where N is the total cardinality of all
the datasets, and B is the page size. We have also
presented extensive experimental results to demonstrate
the practical behavior of the aBB-tree and its superiority
over alternative solutions to the problem. We leave it as
an open problem to support bundled range aggregation
efficiently when b is far greater than B.
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