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Abstract

A reporting query returns the objects satisfying a predicate q from an input set. In prioritized
reporting, each object carries a real-valued weight (which can be query dependent), and a query
returns the objects that satisfy q and have weights at least a threshold τ . A top-k query finds,
among all the objects satisfying q, the k ones of the largest weights; a max query is a special
instance with k = 1. We want to design data structures of small space to support queries (and
possibly updates) efficiently.

Previous work has shown that a top-k structure can also support max and prioritized queries
with no performance deterioration. This paper explores the opposite direction: do prioritized
queries, possibly combined with max queries, imply top-k search? Subject to mild conditions,
we provide affirmative answers with two reduction techniques. The first converts a prioritized
structure into a static top-k structure with the same space complexity and only a logarithmic
blowup in query time. If a max structure is available in addition, our second reduction yields a
top-k structure with no degradation in expected performance (this holds for the space, query,
and update complexities). Our techniques significantly simplify the design of top-k structures
because structures for max and prioritized queries are often easier to obtain. We demonstrate this
by developing top-k structures for interval stabbing, 3D dominance, halfspace reporting, linear
ranking, and L∞ nearest neighbor search in the RAM and the external memory computation
models.

To appear in ACM Transactions on Algorithms.

∗A preliminary version of this paper appeared in PODS’16.
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1 Introduction

Reporting queries can be abstracted at a high level as follows. Let D be the data domain, namely,
the (possibly infinite) set from which the input elements (called objects) are chosen. Denote by Q
the set of all possible predicates, each being a function q : D → {0, 1}. An object e ∈ D satisfies
q ∈ Q if q(e) = 1. The input is a finite D ⊆ D. Given a predicate q ∈ Q, a reporting query returns
all the objects e ∈ D satisfying q; we use q(D) to represent the set of such objects.

The result size |q(D)| is often exceedingly large, especially in today’s big-data era. In practice,
a user would rarely be interested in all the objects in q(D). For many applications, what matter
most are the k records (for some k ≪ |D|) in q(D) with the highest “importance” measured by an
appropriate weight function. For example, while the query “find all the creditcard transactions of
today” can return millions of records, a bank manager may actually just want to scrutinize the 100
transactions with the largest payments. This motivates top-k search, which retrieves only the k best
objects and becomes increasingly important as the data volumes continue to grow rapidly.

Top-k search is easy if one is willing to examine all the objects in D. Avoiding an exhaustive
scan calls for a data structure on D, which we will refer to as a top-k structure. This paper aims to
develop such structures for a broad class of top-k problems formulated next.

1.1 Problem Definitions

Top-k search. Let W be a set of functions w : D → R, where R is the set of real values. An object
e in the input set D has w-weight w(e) under a w ∈ W. Given a predicate q ∈ Q and a w ∈ W, a
top-k query returns the k objects with the largest w-weights in q(D). Note that various queries may
choose different weight functions. The objective is to preprocess the input D into a data structure
that answers every top-k query efficiently.

We say that a top-k problem characterized by a triplet (D,Q,W) is λ-polynomially bounded if
the next two conditions hold for any input D ⊆ D:

• there are at most |D|λ distinct q(D), ranging over all the predicates q ∈ Q;

• there are at most |D|λ ways to order the objects e ∈ D by w(e), ranging over all the weight
functions w ∈ W.

When λ is a constant and need not be emphasized, we will simply say that the problem is polynomially
bounded. Many top-k problems in computational geometry are polynomially bounded when the
dimensionality is a fixed constant (we will discuss several representatives in Section 1.4).

Computation models. We will carry out most of our analysis in the standard external memory
(EM) model [12]. A machine is equipped with M words of memory and a disk formatted into blocks
of B words each. The values of M and B satisfy M ≥ 2B. An I/O either reads a disk block into
memory or writes B words of memory into a disk block. The time of an algorithm is measured in
the number of I/Os, while the space of a structure in the number of disk blocks occupied. By setting
M and B to appropriate constants, all our EM results hold in the classic RAM model as well.

We assume that each object in D, each predicate in Q, and each function in W can all be
described in O(1) words. We further assume that the objects of D have distinct w-weights under
every w ∈ W (by breaking ties in a consistent manner, e.g., favoring a smaller id).

Math conventions. Set n = |D|. All complexities hold in the worst case by default. The notation
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Õ(.) hides a factor polylogarithmic to n. All logarithms have base 2 by default. A function f(n) is
geometrically converging if it satisfies two conditions:

• f(n) = O(1) if n < B;

• otherwise, it holds for any c ≥ 2 that
∑h

i=0 f(n/c
i) = O(f(n)), where h is the largest integer i

satisfying n/ci ≥ B.

1.2 Prioritized Reporting

Top-k search is closely related to prioritized reporting. Let D, Q, and W be as defined earlier; an
input is still a subset D of D. Given a predicate q ∈ Q, a weight function w ∈ W, and a real value
τ , a prioritized query reports all the objects e ∈ q(D) with w(e) ≥ τ . We want to preprocess D into
a data structure that can answer all prioritized queries efficiently. Such structures will be referred
to as prioritized structures.

Considerable research has been dedicated to designing top-k data structures (see Section 2 for a
survey). Most solutions, interestingly, follow a common two-step process: first design a prioritized
structure and then modify it somehow to answer top-k reporting query. The process turns out to
be necessary. Previous work [38–40] has shown that prioritized reporting can be reduced to top-k
reporting. Specifically, suppose that there is a structure of Stop(n) space that answers a top-k query
in Qtop(n) +O(k/B) I/Os. Then, there is a prioritized structure (under the same D, Q, and W) of
Spri(n) space that answers a query in Qpri(n) +O(t/B) I/Os (where t is the number of reported
objects) such that Spri(n) = O(Stop(n)) and Qpri(n) = O(Qtop(n)). This holds regardless of D, Q
and W. Therefore, if one does not even have a good prioritized structure, s/he should not hope to
derive a good top-k structure.

What is intriguing is the opposite: how much harder is top-k reporting than prioritized reporting?
To rephrase, assume the existence of a prioritized structure consuming Spri(n) space that answers
a query in Qpri + O(t/B) time. We want to use the structure as a black box to design a top-k
structure (under the same D, Q, and W) of space Stop(n) and query cost Qtop +O(k/B). How good
can the functions Stop(n) and Qtop(n) be compared to Spri (n) and Qpri (n)? Resolving the question
has an important technical implication. Since prioritized reporting structures are already known for
numerous problems, such a black-box reduction will give us top-k structures immediately for all
those problems!

Unfortunately, there is not much progress towards this direction. The best understanding [39] is
rather primitive1: Stop(n) = O(Spri (n)) and Qtop(n) = O(Qpri (n) log2 n) +O((k/B) log2 n). Ideally,
we would like to prove Stop(n) = O(Spri(n)) and Qtop(n) = O(Qpri(n)), which would establish
the exciting fact that prioritized reporting and top-k reporting were asymptotically equivalent!
When such a perfect reduction still remains elusive, the next natural question is, besides prioritized
reporting, what other “assisting problem” needs to be settled before we are guaranteed a top-k
structure with no performance degradation.

1.3 Our Results 1: Reductions

We show that, subject to some mild conditions, there only needs to be an O(logB n) gap in the
query cost between top-k and prioritized reporting:

1Assuming that Spri(n) is geometrically converging.
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Theorem 1. Consider a polynomially bounded top-k problem (D,Q,W). Suppose that there is a
prioritized structure (under D, Q, and W) of Spri(n) space and query cost Qpri(n) +O(t/B) such
that Spri(n) is geometrically converging and Qpri(n) ≥ logB n. Then, there is a top-k structure of
space Stop(n) and query time Qtop(n) +O(k/B) where Stop(n) = O(Spri(n)) and

Qtop(n) = O

Qpri(n) ·
log n

logB + log
Qpri (n)
logB n

 . (1)

As the denominator in (1) is at least logB, we have Qtop(n) = O(Qpri(n) · logB n) in any case.
Furthermore, if Qpri(n) ≥ (n/B)ϵ for an arbitrarily small constant ϵ > 0, (1) can be simplified
into Qtop(n) = O(Qpri(n)). In other words, the theorem already implies the equivalence between
prioritized and top-k reporting for problems demanding expensive query cost.

A top-k query degenerates into a max query when k = 1. A data structure answering max
queries will be referred to as a max structure. Just like prioritized reporting, max reporting is also
a necessary step before one can settle top-k reporting. Our second contribution is to show that
solving both prioritized and max reporting is sufficient in the expected sense:

Theorem 2. Consider an arbitrary top-k problem (D,Q,W). Suppose that there is

• a prioritized structure (under D, Q, and W) of Spri (n) space that answers a query in Qpri (n)+
O(t/B) time;

• a max structure (under D, Q, and W) of Smax (n) space that answers a query (i.e., k = 1) in
Qmax (n) time. The function Smax (n) should be O(1 + n2/B) and geometrically converging.

Then, there is a top-k structure of expected space Stop(n) and expected query time Qtop(n) +O(k/B)
where

Stop(n) = O

(
Spri(n) + Smax

(
6n

B ·Qpri(n)

))
(2)

Qtop(n) = O (Qpri(n) +Qmax (n)) . (3)

Furthermore, if the prioritized and max structures support an update in Upri(n) and Umax (n) I/Os
respectively, then the top-k structure supports an update in O(Upri (n) + Umax (n)) expected I/Os. If
any of Upri (n) and Umax (n) is amortized, the update cost of the top-k structure is amortized expected.

Several remarks are in order:

• The theorem holds regardless of whether the problem is polynomially bounded.

• The above reduction is optimal in the sense that it incurs no performance degradation (in
expectation). The space, query, and update costs of the top-k structure are all determined by
the worse between the prioritized and max structures.

• Somewhat surprisingly, Stop(n) may even be smaller than O(Smax (n)). For instance, consider
Spri (n) = O(n/B), Smax (n) = O((n/B) logB n), and Qpri (n) ≥ logB n; these lead to Stop(n) =
O(n/B).

• The condition Smax (n) = O(n2/B) essentially captures all the max structures useful in practice.
The power 2 is not compulsory and can be replaced by any larger constant without affecting
the asymptotic claims, as discussed in Section 4.2.

Both theorems are applicable in the RAM by setting B to appropriate constants.
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1.4 Our Results 2: New Top-k Structures

Our reductions are useful for solving many top-k problems. We will discuss several representatives
that either prove new results or improve previous work. For this purpose, we classify top-k problems
into two categories. In the first fixed weight category, all the queries choose the same weight function.
Equivalently, one can imagine that W contains a single function w, such that we can as well associate
each object e ∈ D with a fixed weight w(e). In the second non-fixed weight category, each query is
free to choose its own weight function. All the results stated below in the EM model also hold in
the RAM by setting B to a constant.

1.4.1 Fixed-Weight Problems

Top-k interval stabbing. D is the set of all intervals in R, namely, D = {[x, y] | x, y ∈ R, x ≤ y}.
Each predicate in Q specifies a real value q such that an object [x, y] in D satisfies the predicate if
and only if q ∈ [x, y]. Every object e ∈ D carries a (fixed) weight w(e).

Theorem 3. For top-k interval stabbing, there is an EM structure of O(n/B) space and O(logB n+
k/B) query time. The structure can be updated in O(logB n) amortized I/Os per insertion and
deletion. All the complexities hold in expectation.

Our result compares more favorably with a structure of [39] that uses O((n/B) log n) space to
ensure query time O(log n · logB n+ k/B).

Top-k 3D dominance. D is the set of points in R3. Each predicate in Q specifies a point
q = (xq, yq, zq) such that an object e = (xe, ye, ze) in D satisfies the predicate if and only if xe ≤ xq,
ye ≤ yq, and ze ≤ zq. Every object e ∈ D carries a (fixed) weight w(e).

Theorem 4. For top-k 3D dominance, there is a RAM structure of O(n log n/ log log n) space and
O(log1.5 n+ k) query time, both in expectation.

This compares favourably to a structure obtained by combining [39] and [5] that uses O(n log n)
space and O(log2 n+ k) query time.

Top-k halfspace reporting. D is the set of points in Rd where d is a fixed integer. Each predicate
in Q specifies a halfspace, i.e., all the p ∈ Rd satisfying p · q ≥ c, where q and c are the query
parameters (p and q are d-dimensional vectors, and c a real value). An object e ∈ D satisfies the
predicate if e falls in the halfspace. Every object e ∈ D carries a (fixed) weight w(e).

Theorem 5. For top-k halfspace reporting:

• when d = 2, there is a RAM structure of O(n) space and O(log n + k) query time, both in
expectation.

• when d ≥ 4, there is a RAM structure of O(n log n) space and Õ(n1−1/⌊d/2⌋)+O(k) query time,
both in the worst case; there is an EM structure of O(n/B) space and O((n/B)1−1/⌊d/2⌋+ϵ+k/B)
query time, both in the worst case, where ϵ > 0 is an arbitrarily small constant.

The first bullet compares favourably to a structure obtained by combining [5], [21], and [39]
that uses O(n log n) space and answers a query in O(log2 n+ k) time. For d ≥ 4, [39] gave a RAM
structure that, when matching our query time, requires O(n1+ϵ) space for some constant ϵ > 0.
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1.4.2 Non-Fixed Weight Problems

Linear ranking. D is the set of points in Rd for some fixed integer d. Q = {true}, namely, Q
has only a single predicate which always evaluates to 1. W is the set of linear functions of the
form w(p) = c · p where c is a parameter of w and p is a d-dimensional point (both c and p are
d-dimensional vectors).

Theorem 6. For top-k linear ranking:

• when d = 2, there is an EM structure of O(n/B) space and O(logB n+ k/B) query time, both
in expectation.

• when d ≥ 4, there is a RAM structure of O(n) space and Õ(n1−1/⌊d/2⌋)+O(k) query time, both
in the worst case; there is an EM structure of O(n/B) space and O((n/B)1−1/⌊d/2⌋+ϵ + k/B)
query time, both in the worst case, where ϵ > 0 is an arbitrarily small constant.

L∞ k-nearest neighbor search in 2D. D is the set of points in R2. Given a point q ∈ R2 and an
integer k, a query returns the k points p ∈ D with the smallest L∞(p, q), which is the L∞-distance
between p and q. To map the problem into our top-k framework, set Q = {true}; design W such
that each function w ∈ W is parameterized by a point q ∈ R2 and outputs w(p) = −L∞(p, q) for
each p ∈ D.

Theorem 7. For L∞ k-nearest neighbor search in 2D, there is an EM structure of O(n/B) space
that answers a query in O(logB n+ k/B) I/Os. All the complexities hold in expectation.

2 Previous Work

The existing research on top-k can be classified into two categories: (i) general reductions to existing
problems (our paper belongs to this category) and (ii) tailored-made structures for individual
problems.

The first category, to our knowledge, contains only the work [39] of Rahul and Janardan. Besides
the contributions mentioned in Section 1.2, they also showed that top-k reporting can be converted
to approximate counting2 and conventional reporting queries. Consider a reporting problem defined
by D and Q (see Section 1). Given a predicate q ∈ Q, an approximate counting query returns a value
between |q(D)| and c · |q(D)| for some constant c > 1. Suppose that we have a structure (i) of space
Srep(n) answering a reporting query in Qrep(n) + O(t/B) time, where t is the number of objects
reported, and (ii) of space Scnt(n) space answering an approximate counting query in Qcnt(n) time.
Then, there is a top-k structure with space Stop(n) and query time Qtop(n) +O(k/B) where

Stop(n) = O((Srep(n) + Scnt(n)) log n)

Qtop(n) = O((Qrep(n) +Qcnt(n)) log n);

note that the logarithms have base 2.

Regarding the second category, [28] is an excellent survey on top-k research that focuses on system
implementation, rather than achieving attractive performance guarantees. In the theory line, the
work of [15] is the first to incorporate top-k features into conventional reporting queries. Since then,
the topic has grown into a sizeable literature. The most extensively studied problem is top-k range
reporting, whose 1D version was studied in [3,16,17,44,46], and 2D version in [39,40]. The recent work

2The work [39] actually requires exact counting, which, as discussed here, is not necessary.
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of [19] developed efficient RAM structures [19] for the top-k 2D rectangle stabbing problem and the
top-k 2D point enclosure problem. The theory community has also studied top-k problems outside
the class formulated in Section 1, e.g., colored reporting [36,41], text retrieval [26, 29, 31, 35–37,43],
and uncertain data search [8, 11,47], etc.

3 Reduction with Worst-Case Efficiency

This section presents our first reduction and serves as a proof of Theorem 1. Our reduction utilizes
only a prioritized structure to solve a top-k problem with worst-case performance guarantees.

3.1 Top-k Core-Set

Rank sampling. Let S be a set of objects drawn from an ordered domain. An object e ∈ S has
rank i if it is the i-th greatest in S. By independently sampling each object of S with probability p,
we obtain a p-sample set R. Intuitively, the object with rank kp in R ought to have rank roughly k
in S. The next lemma formalizes this intuition and clarifies the accompanying conditions.

Lemma 8. Let S be a set of n objects and R be a p-sample set of S. Let k be an integer and δ
be a real value satisfying 1 ≤ k ≤ n/4, 0 < δ < 1, and kp ≥ 3 ln(3/δ). Then, the following hold
simultaneously with probability at least 1− δ:

• |R| > 2kp;

• the object with rank ⌈2kp⌉ in R has rank between k and 4k in S.

Proof. We will need the Chernoff bounds given in the appendix. The first bullet fails with probability

Pr[|R| ≤ 2kp] = Pr[|R| ≤ (2k/n) · np] ≤ Pr[|R| ≤ (1/2)np]

(Chernoff bound (12)) ≤ exp(−np/12) ≤ exp(−kp/3) ≤ δ/3.

Let e be the object with rank ⌈2kp⌉ in R and k̂ be the rank of e in S. Next, we bound the
probability of the event k̂ > 4k. For i ∈ [1, 4k], define xi to be 1 if the i-th greatest object in S
is sampled, or 0 otherwise. Let X =

∑4k
i=1 xi and, thus, E[X] = 4kp ≥ 12 ln(3/δ). Event k̂ > 4k

implies X ≤ ⌈2kp⌉ − 1. We have:

Pr[k̂ > 4k] ≤ Pr[X ≤ ⌈2kp⌉ − 1] = Pr[X < 2kp] = Pr[X < (1/2) ·E[X]]

(Chernoff bound (12)) ≤ exp(−E[X]/12). ≤ δ/3.

Finally, we bound the probability of the event k̂ < k. Define Y =
∑k

i=1 xi and, thus, E[Y ] =

kp ≥ 3 ln(3/δ). Event k̂ < k implies that Y ≥ ⌈2kp⌉. We have:

Pr[k̂ < k] ≤ Pr[Y ≥ 2kp] = Pr[Y ≥ 2E[Y ]]

(Chernoff bound (13)) ≤ exp(−E[Y ]/3) ≤ δ/3.

By the union bound, the two bullets in the lemma hold simultaneously with probability at least
1− δ.

Core-set. Consider a λ-polynomially bounded top-k problem (D,Q,W). Let R be a subset of the
input D. Given a weight function w ∈ W, an object in R has w-rank i in R if it has the i-th largest
w-weight in R. The next lemma proves the existence of a small-size core-set that approximately
captures a specific rank for all the weight functions and all the “large” queries.
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Lemma 9 (Top-k Core-Set Lemma). Let (D,Q,W) be a λ-polynomially bounded top-k problem and
D be a subset of D with n ≥ 6 objects. For any integer K ≥ 8λ lnn, there is an R ⊆ D such that

• |R| ≤ 24λ · (n/K) lnn;

• for any weight function w ∈ W and any q ∈ Q satisfying |q(D)| ≥ 4K, it holds that

– |q(R)| > 16λ lnn;

– the object with w-rank ⌈16λ lnn⌉ in q(R) has w-rank between K and 4K in q(D).

Proof. Set p = (8λ/K) lnn and δ = 1/(2n2λ). These values ensure:

Kp = 8λ lnn ≥ 3 ln(3/δ) (4)

for n ≥ 6. Let R be a p-sample set of D. We will prove that R satisfies all the conditions in the
lemma with a non-zero probability.

Fix a weight function w ∈ W and a predicate q ∈ Q satisfying |q(D)| ≥ 4K. Clearly, q(R) is
a p-sample set of q(D). Applying Lemma 8 on S = q(D) (the application is enabled by (4)), we
assert that the following hold simultaneously with probability at least 1− δ:

• |q(R)| > 2Kp = 16λ lnn.

• The object with w-rank ⌈2Kp⌉ has w-rank between K and 4K in q(D).

By λ-polynomially boundedness and the union bound, the above holds for all the qualifying pairs
(w, q) with probability at least 1− δn2λ = 1/2 (it suffices to consider at most n2λ “effective” pairs
that differ either in q(D) or the weight ordering under w).

Finally, as |R| equals np in expectation, by Markov’s inequality, |R| ≤ 3np = 24λ(n/K) lnn with
probability at least 2/3. It thus follows that all the conditions of the lemma hold with probability
at least 1− (1/2 + 1/3) > 0.

3.2 The Reduction

High-level overview. Before getting into the full details, we first present a high-level overview
of our reduction. For simplicity, our discussion will consider the RAM model and assume the space
and query time of the prioritized structure to be O(n) and O(log n+ t), respectively (t is the number
of objects reported), i.e., Spri (n) = O(n) and Qpri (n) = log n. We will outline the design of a top-k
structure with space O(n) and query time O(log2 n+ k). The overview will concentrate on queries
with q(D) ≥ 4k; the case of q(D) < 4k can be handled in a cost monitoring manner as explained in
the full reduction.

The most interesting case turns out to be k = ⌈48λ lnn⌉. The other two cases — k < ⌈48λ lnn⌉
and k > ⌈48λ lnn⌉ — will be reduced to the case of k = ⌈48λ lnn⌉. To handle k < ⌈48λ lnn⌉, we
will issue a top-⌈48λ lnn⌉ query to find the ⌈48λ lnn⌉ objects with the largest w-weights in q(D)
and then perform k-selection [12] to extract the k objects with the maximum w-weights. Ignoring
the cost of the top-⌈48λ lnn⌉ query, these steps take O(log n) time.

To handle k > ⌈48λ lnn⌉, it suffices to deal with k values of the form 2i⌈48λ lnn⌉, i ≥ 1. Indeed,
any other k can be rounded up to the smallest 2i⌈48λ lnn⌉; from the top-(2i⌈48λ lnn⌉) objects
reported, we can retrieve the top-k objects with k-selection in O(2i⌈48λ lnn⌉) = O(k) time.
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Next, we explain how to support k = 2i⌈48λ lnn⌉, i ≥ 1. Fix an i and k = 2i⌈48λ lnn⌉. Apply
Lemma 9 with K = 2i⌈48λ lnn⌉ to obtain a set Ri ⊆ D and build a structure to handle top-⌈48λ lnn⌉
queries on Ri. By Lemma 9, the object with w-rank ⌈16λ lnn⌉ in q(Ri) has w-rank between k and 4k
in q(D). By querying the top-⌈48λ lnn⌉ structure on Ri, we obtain the weight τ of the ⌈16λ lnn⌉-th
largest w-weight object in q(Ri); then, we search the prioritized structure on D with τ followed
by a k-selection step to report the top-k objects. As the sizes of R1, R2, ... form a geometrically
decreasing sequence, the space occupied by the structures on all the Ri’s is O(n). Ignoring the time
to perform the top-⌈48λ lnn⌉ query, the remaining steps take O(log n+ k) time.

Finally, we are left with the case of k = ⌈48λ lnn⌉. Once again, we make use of Lemma 9.
Applying the lemma with K = ⌈48λ lnn⌉ on D yields a set R ⊆ D such that |R| ≤ |D|/2 (this
explains why the constant 48). If we have a structure to answer top-⌈48λ lnn⌉ queries on R, then
using steps similar to the ones explained earlier for k > ⌈48λ lnn⌉, one can report the top-⌈48λ lnn⌉
objects in D. Ignoring the time taken to query the top-⌈48λ lnn⌉ structure on R, this can be done
in O(log n+ k) = O(log n) time.

Therefore, the original problem of finding top-⌈48λ lnn⌉ objects in D has been reduced to
top-⌈48λ lnn⌉ search on R. Noticing that the problem size has reduced by a factor of at least 2,
we can handle the new subproblem on R via recursion, until O(log n) objects are left, in which
case a query can be answered with brute force. Ignoring the output size term, the query time Q(n)
satisfies the following recurrence:

Q(|D|) = O(log n) +Q(|R|) =⇒ Q(n) = O(log n) +Q(n/2) = O(log2 n).

In summary, we have a top-k structure which uses O(n) space and query time O(log2 n+ k).

The full reduction. We will now present the complete details of how to use a prioritized structure
to design a top-k structure for a λ-polynomially bounded problem (D,Q,W). A brief summary can
be found in Figure 1.

Recall that the prioritized structure consumes Spri(n) space and answers a prioritized query in
Qpri(n) +O(t/B) I/Os. Define

g =
Qpri(n)

logB n
(5)

f = 24λB · Qpri(n). (6)

Note that g ≥ 1 (as required by Theorem 1) and both the following hold for a sufficiently large B:

24λ

f
· lnn ≤ 1

g
√
B

(7)

f ≥ ⌈16λ lnn⌉. (8)

We will first discuss top-k queries with k ≤ f and then attend to queries with larger k. Remember
that, besides k, a query also designates a predicate q ∈ Q and a weight function w ∈ W.

Queries with k ≤ f . It suffices, in fact, to consider k = f . Given a query with k < f , we first
issue a top-f query to find the f objects with the largest w-weights in q(D), and then perform
k-selection [12] in O(f/B) = O(Qpri (n)) I/Os to extract the k objects with the maximum w-weights.
The total cost is the time of the top-f query plus O(Qpri(n)).
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Top-f structure on D

1) Lemma 9 produces a sample
R ⊆ D.

2) Recursive structure on R.

3) Prioritized structure on D.

Query

1) Top-f query on q(R).

2) τ ←− d16λ lnne-th w-rank
object in q(R).

3) Query prioritized structure
on D with τ .

case (b): q(D) > 4k
(Lemma 9 + Prioritized structure)

case (a): q(D) ≤ 4k

k < f

k = 21f, 22f, . . . , 2if, . . .

k = f

cost monitoring manner

Solving k = f

Figure 1: Summary of our reduction (f = 24λB · Qpri(n))

At a high level, our strategy for answering a top-f query is as follows. If |q(D)| is small, we can
retrieve the entire q(D) and then easily find the one with w-rank f . The brute force method is too
expensive for large q(D), but in such a situation q(D) is eligible for Lemma 9. This motivates us to
identify some object e ∈ q(D) with w-rank in [f, 4f ] and then apply f -selection on those objects in
q(D) with w-weights at most w(e). Lemma 9 (with the help of (8)) indicates that the retrieval of e
is another top-f query on a subset of D. This naturally points to a recursive approach to construct
our structure.

If |q(D)| ≤ 4f , we answer a top-f query using a prioritized structure on D directly. For this
purpose, we do not need any counting structure for estimating |q(D)|. Instead, we can perform
a prioritized query (defined in Section 1.2) with predicate q and threshold τ = −∞ in a cost
monitoring manner: either the query terminates by itself, or we terminate it manually as soon as
4f + 1 objects have been reported. The number of I/Os is at most Qpri (n) +O(f/B) = O(Qpri (n)).
In the former case, we obtain the result of the top-f query by performing f -selection on the 4f + 1
objects fetched, while in the latter case it must hold that |q(D)| > 4f .

For queries with |q(D)| > 4f , we build a set of structures as follows. First, take a core-set R1 of
D using Lemma 9 with K = f and build a prioritized structure on R1. This process is then carried
out recursively: for every i ≥ 2, take a core-set Ri+1 of Ri with K = f and build a prioritized
structure on Ri+1. The recursion ends at some i = h where |Rh| ≤ 4f .

For convenience, let us treat D as R0. For each Ri (0 ≤ i ≤ h − 1), f ≥ 8λ lnn ≥ 8λ ln |Ri|.
Hence, Lemma 9 shows

|Ri+1| ≤
24λ · |Ri|

f
ln |Ri| ≤

24λ · |Ri|
f

lnn ≤ |Ri|
g
√
B

(9)

where the last inequality used (7). The total space of all the prioritized structures is O(Spri(n))
because Spri(n) is geometrically converging. Furthermore, (9) indicates that h = O(logg

√
B n).
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Lemma 10. Consider any top-f query with predicate q and weight function w. For i ∈ [0, h], the
query’s result on Ri can be computed in c · (h− i+ 1) · Qpri(n) I/Os for some constant c ≥ 1.

Proof. For i = h, we can do so by performing f -selection on Rh directly in O(f/B) I/Os, which
is at most c1 · Qpri(n) for some constant c1. Inductively, assuming that the claim is true for all
i ≥ j + 1 (where 1 ≤ j ≤ h− 1), next we will prove its correctness for i = j.

Our algorithm proceeds differently in two scenarios.

• Case |q(Rj)| ≤ 4f : We use the prioritized structure on Rj to solve the top-f query (on Rj) in
the cost monitoring manner explained earlier. The cost is Qpri (|Rj |) +O(f/B) ≤ c2 · Qpri (n)
for some constant c2.

• Case |q(Rj)| > 4f : According to Lemma 9, |q(Rj+1)| ≥ ⌈16λ ln |q(Rj)|⌉; meanwhile, (8)
ensures f ≥ ⌈16λ ln |q(Rj)|⌉. Equipped with these facts, we answer the top-f query on Rj as
follows. First, retrieve the object e with w-rank ⌈16λ ln |q(Rj)|⌉ in q(Rj+1) by issuing a top-f
query on Rj+1; this incurs c · (h− j) · Qpri (n) I/Os by the inductive assumption. By Lemma 9,
the w-rank of e in q(Rj) is between f and 4f . Then, we deploy the prioritized structure on Rj to
fetch all the objects of q(Rj) with w-weights at least w(e) in Qpri (|Rj |)+O(f/B) ≤ c2 ·Qpri (n)
I/Os. The query result (on Rj) can now be obtained from these objects with f -selection in at
most c3 · Qpri(n) I/Os for some constant c3.

We choose c to be max{c1, c2 + c3}, which ensures

c · (h− j) · Qpri(n) + (c2 + c3) · Qpri(n) ≤ c · (h− j + 1) · Qpri(n)

thereby establishing Lemma 10.

Hence, the cost of answering a top-f query on D is O(h · Qpri(n)) = O(Qpri(n) · logg√B n).
Plugging in the definition (5) for g gives the query complexity claimed in Theorem 1.

Queries with k > f . We apply Lemma 9 to take a core-set R[i] of D with K = 2i−1f for each
i ∈ [1, h′], where h′ is the largest integer i satisfying 2i−1f ≤ n. It is easy to verify from (6) that
h′ = O(log(n/B)). Our structure has two components:

• A prioritized structure on D.

• On each R[i] where 1 ≤ i ≤ h′, build a top-f structure, namely, the structure we just explained
for answering queries with k ≤ f . Since |R[i]| ≤ 24λ · n

2i−1f
· lnn, all these top-f structures

use in total

O
(∑h′

i=1 Spri

(
24λn lnn
2i−1f

))
= O(Spri(n) + h′) = O(Spri(n))

space, where the derivation used the facts that (i) Spri(n) is geometrically converging, (ii)
Qpri (n) = Ω(logB n), and (ii) Spri (n) obviously needs to be Ω(n/B) (implying h′ = O(Spri (n))).

The total space of our structure is therefore O(Spri(n)).

Now consider a top-k query q with f < k ≤ n. First, if k ≥ n/2, we answer it by performing
k-selection on the entire D in O(n/B) = O(k/B) I/Os. Consider now k < n/2. Identify the smallest
i ∈ [1, h′] such that 2i−1f ≥ k. Fix the value of K to 2i−1f in the rest of the section; note that
k ≤ K < 2k. Then:
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• if |q(D)| ≤ 4K, we use the prioritized structure on D to answer the query with Qpri(n) +
O(K/B) I/Os in the cost monitoring manner explained earlier.

• if |q(D)| > 4K, Lemma 9 indicates that q(R[i]) has size at least ⌈16λ lnn⌉, and the object e
with w-rank ⌈16λ lnn⌉ in q(R[i]) has w-rank between K and 4K in q(D). As f ≥ ⌈16λ lnn⌉,
we can retrieve e by issuing a top-f query on R[i], which costs O(Qpri(n) logg

√
B n) I/Os, as

proved earlier. Then, use the prioritized structure on D to extract the objects in q(D) whose
w-weights are at least w(e), which entails Qpri(n) +O(K/B) I/Os. Finally, the query result
can be produced with k-selection in O(K/B) I/Os.

Overall, the query cost is O(Qpri (n) logg
√
B n+K/B). This completes the whole proof of Theorem 1.

4 Reduction with Expected Efficiency

This section presents our second reduction and serves as a proof of Theorem 2. We are given (i) a
prioritized structure of Spri(n) space answering a prioritized query in Qpri(n) +O(t/B) I/Os, and
(ii) a max structure of Smax (n) space answering a max query in Qmax (n) I/Os. The objective is
to design a top-k structure with no performance degradation (in expectation). We will focus on
n ≥ B · Qmax (n); otherwise, a top-k query can be trivially answered by performing k-selection on
the whole D in O(n/B) = O(Qmax (n)) I/Os.

4.1 Rank Sampling, Again

Our rank sampling result in Lemma 8 falls short for the subsequent discussion. Notice that the lemma
is concerned with the sample with rank ⌈2kp⌉ which, under the working condition kp ≥ 3 ln(3/δ), is
strictly greater than 1. This is problematic because, to apply max (i.e., top-1) queries, we need
to understand the behavior of rank 1 in the sample set. Fortunately, we can prove an alternative
result, which is less general than Lemma 8 but serves the purpose of understanding rank 1 in the
sample set.

Lemma 11. Let S be a set of n objects, K be a real value satisfying 2 ≤ K ≤ n/4, and R be a
(1/K)-sample set R of S. The following hold simultaneously with probability at least 0.09:

• |R| ≥ 1;

• if e is the largest object in R, then the rank of e in S is greater than K but at most 4K.

Proof. The first bullet fails only if no objects in D are sampled, which occurs with a probability

(1− 1/K)n ≤ (1− 1/K)4K ≤ 1/e4

where the last inequality used the fact that (1− x)1/x < 1/e for all x > 0.

Consider the largest object e in R. Denote by K̂ the rank of e in D. The event K̂ > 4K occurs
only if none of the 4K largest objects in D are sampled. Hence:

Pr[K̂ > 4K] = (1− 1/K)4K ≤ 1/e4.

On the other hand, the event K̂ ≤ K occurs only if at least one of the K largest objects in D was
sampled. Hence:

Pr[K̂ ≤ K] = 1− (1− 1/K)K ≤ 1− 1/e2

12



where the last inequality used the the fact that (1− 1/x)x ≥ 1/e2 for all x ≥ 2. By the union bound,
the probability of violating at least one bullet of Lemma 11 is at most

2/e4 + (1− 1/e2) < 0.91

which completes the proof.

4.2 The Reduction

We now describe how to construct a top-k structure from the available prioritized and max structures.

Structure. Fix a constant σ = 1/20 and define for each integer i ≥ 1:

Ki = B · Qmax (n) · (1 + σ)i−1.

Let h be the largest i such that Ki ≤ n/4; clearly, h = O(log(n/B)). Our structure includes:

• a prioritized structure on D, and

• a max structure on Ri for each i ∈ [1, h], where Ri is a (1/Ki)-sample set of D.

Query. Recall that a query chooses a predicate q ∈ Q, a weight function w ∈ W, and an integer k.
If k < B · Qmax (n), we treat the query as a top-(B · Qmax (n)) query instead, i.e., extracting the
B · Qmax (n) objects with the largest w-weights in q(D). The original query’s result can then be
obtained with k-selection. The cost is O(Qmax (n)) plus the time of the top-(B · Qmax (n)) query.

Next, we focus on top-k queries with k ≥ B · Qmax (n). If k > Kh, the query is answered naively
by performing k-selection on D in O(n/B) I/Os, which is O(k/B) because k > Kh ≥ n/(4(1+σ)) =
Ω(n).

Consider now k ≤ Kh. Let i∗ be the smallest i with Ki ≥ k; note that Ki∗ = Θ(k). Starting
with j = i∗, we carry out a round as follows:

1. If |q(D)| ≤ 4Kj , solve the query with the prioritized structure on D in the cost-monitoring
manner (Section 3.2) with cost Qpri(n) +O(Kj/B). The algorithm then declares the round
successful and terminates.

2. Otherwise, identify the object e ∈ q(Rj) with the maximum w-weight from the max structure
on Rj in Qmax (n) I/Os. In the special case where q(Rj) is empty, treat e as a dummy object
with w(e) = −∞.

3. Perform a prioritized query on D with q and threshold τ = w(e) in a cost-monitoring manner:

(a) either the query terminates by itself, in which case we define S as the set of objects
retrieved,

(b) or we terminate it as soon as 4Kj + 1 objects have been reported.

The cost is Qpri(n) +O(Kj/B) in both cases.

4. Declare this round failed in either situation below:

• Case 3(a) occurred but |S| ≤ Kj .

• Case 3(b) occurred.

13



Otherwise, declare this round successful.

5. If the round is successful, perform k-selection on S to produce the k objects in q(D) with the
largest w-weights and return them as the final answer.

6. Otherwise (i.e., failed), increase j by 1. If j ≤ h, start the next round from Step 1. Otherwise,
(i.e., j = h+1), answer the top-k query naively by reading the whole D in O(n/B) = O(Kh/B)
I/Os. This is the only scenario where termination can happen in a failed round.

To analyze the algorithm, notice that a round fails only if (i) |q(|D|)| > 4Kj (otherwise, Line 1
terminates the algorithm) and (ii) one of the two bullets in Step 4 is true. Thus, Lemma 11 tells us
that round failure happens with probability at most 0.91, noticing that q(Rj) is a (1/Kj)-sample
set of q(D). This implies that round j (for every specific j ≥ i∗) is executed only with probability
0.91j−i, namely, only when all the preceding rounds have failed. Round j, regardless of whether it
succeeds, performs Qpri(n) +Qmax (n) +O(Kj/B) I/Os. Thus, the algorithm’s expected cost is

h∑
j=i∗

O
((

Qpri(n) +Qmax (n) +
Kj

B

)
· 0.91j−i∗

)
= O

(
Qpri(n) +Qmax (n) +

h∑
j=i∗

Kj

B
0.91j−i∗

)
. (10)

Plugging in Kj = Ki∗ · (1 + σ)j−i∗ = O(k) · (1 + σ)j−i∗ gives

(10) = O

Qpri(n) +Qmax (n) +
k

B

h∑
j=i∗

((1 + σ) · 0.91)j−i∗


which is O(Qpri(n) +Qmax (n) + k/B) because (1 + σ) · 0.91 < 1.

Space. The prioritized structure on D obviously takes up Spri (n) space. We claim that all the max
structures occupy o(n/B) +O(Smax (

6n
B·Qmax (n)

)) expected space in total, which implies the space

complexity in Theorem 2 (because Spri(n) = Ω(n/B)).

E[|Ri|] = n/Ki geometrically decreases as i increases. This seems to yield the claim immediately
as Smax (n) is geometrically converging. The complication, however, is that E[Smax (|Ri|)] is not
necessarily O(Smax (E[|Ri|])). To circumvent the issue, we will prove that all the max structures
occupy o(n/B) + O(Smax (

6n
B·Qmax (n)

)) space in total with probability at least 1 − 1/n2. This will
establish our claim on the expected space consumption because all these structures obviously demand
no more than O(Smax (n) · h) = O((n2/B) · log(n/B)) space (Theorem 2 has the condition that
Smax (n) = O(1 + n2/B)).

Let i′ be the largest i such that Ki ≤ n/(3 lnn). Consider an i ∈ [1, i′]. Since |Ri| is the sum of
n independent Bernoulli variables each taking the value of 1 with probability 1/Ki, by Chernoff
bound (13), we have:

Pr[|Ri| ≥ 6 ·E[|Ri|]] ≤ exp(−E[|Ri|]) = exp(−n/Ki) ≤ 1/n3.

Therefore, with probability at least 1− h/n3, the max structures on R1, R2, ..., Ri′ use at most

i′∑
i=1

O

(
Smax

(
6n

B · Qmax (n) · (1 + σ)i−1

))
= O

(
h+ Smax

(
6n

B · Qmax (n)

))
space overall because Smax (·) is geometrically converging.
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Let us now concentrate on i ∈ [i′ + 1, h]. Notice that there are only O(log log n) such values
of i. Also, by definition of i′, we know that E[|Ri|] = n/Ki is O(log n) but at least 4 (recall that
Ki ≤ n/4). Again, by Chernoff bound (13), we have :

Pr[|Ri| ≥ (lnn4) ·E[|Ri|]] ≤ exp(−(lnn4) ·E[|Ri|]/6)
(by E[|Ri|] ≥ 4) ≤ exp(−(lnn4·2/3)) = 1/n8/3.

Hence, with probability at least 1−O(log log n)/n8/3, |Ri| ≤ 4 lnn · E[|Ri|] = O(log2 n) holds for
all i ∈ [i′ + 1, h]. As Smax (n) = O(1 + n2/B), the max structures on Ri′ , Ri′+1, ..., Rh together
consume O(h+ (log log n · log4 n)/B) = o(n/B) space, applying the fact that Smax (n) = O(n2/B).
We now conclude that, with probability at least 1− h/n3 − O(log logn)/n8/3 > 1− 1/n2, all the
max structures use o(n/B) +O(Smax (

6n
B·Qmax (n)

)) space.

Update. In expectation, each object e ∈ D has only O(1) copies in the entire structure (the
sampling rate 1/Ki of Ri geometrically decreases as i increases). Hence, the insertion of e triggers
one insertion into the prioritized structure and one insertion into O(1) max structures in expectation.
The total cost is thus O(Upri + Umax ) expected. We can record in O(1) expected words which max
structures include e. By hashing, such bookkeeping information can be maintained in O(1) expected
I/Os as e is inserted/deleted, without increasing the overall space complexity. In this way, a deletion
of e can also be supported in O(Upri + Umax ) expected I/Os. The above argument still works even
if one or both of Upri and Umax are amortized. This completes the whole proof of Theorem 2.

Remarks. The above reduction may be reminiscent of a method by Aronov and Har-Peled [14]
that reduces approximate counting to emptiness detection. Our approach differs in both algorithmic
and technical details, a quick proof of which is the following fact: the counting structure of [14]
suffers from performance degradation by a logarithmic factor compared to the emptiness structure,
while Theorem 2 incurs no performance degradation as explained in Section 1.3.

Another remark concerns relaxing the assumption Smax (n) = O(n2/B). The constant 2 can be
replaced with any constant γ > 2. We needed the assumption only because the space of all the
max structures was shown to be o(n/B) +O(Smax (

6n
B·Qmax (n)

)) with probability at least 1− 1/n2. If

Smax (n) = O(nγ/B), all we have to do is to reduce the failure probability from 1/n2 to 1/nγ . The
details are standard and omitted.

5 “Easy” Top-k Structures from Our Reductions

Theorems 1 and 2 are powerful tools for designing top-k structures with attractive performance
guarantees. They allow us to focus on solving the corresponding prioritized queries and perhaps
also the max queries. Next, we will demonstrate how “enjoyable” it is to obtain most of the new
top-k structures claimed in Section 1.4. Note that the top-k problems discussed below appear “easy”
only because of our reductions, without which they would require (much) more effort.

The following subsections are arranged in ascending order of sophistication. We will, however,
not prove the first bullet of Theorem 5 in this section. 2D top-k halfspace reporting requires
additional non-trivial ideas to be developed in the next section.

5.1 Top-k Interval Stabbing (Theorem 3)

The problem’s prioritized version is called ray stabbing, for which Tao [45] gave a structure of O(n/B)
size answering a query in O(logB n+ t/B) I/Os and supporting an update in O(logB n) amortized
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I/Os. The problem’s max version has been studied by Agarwal et al. [7], who gave a structure of
O(n/B) size answering a query in O(logB n) I/Os and supporting an update in O(logB n) amortized
I/Os. Theorem 3 now becomes a corollary of Theorem 2.

5.2 Linear Ranking (Theorem 6)

The problem’s prioritized version is simply halfspace reporting (see Section 1.4), while the corre-
sponding max queries are known as extreme-point queries.

For d = 2, Agarwal et al. [6] gave a structure of O(n/B) size that supports halfspace reporting in
O(logB n+ t/B) I/Os. It is well-known that an extreme-point query can be answered in O(logB n)
I/Os by a B-tree storing the boundary of the convex hull of the input D. The first bullet of
Theorem 6 is now a corollary of Theorem 2.

Consider now d ≥ 4. In the RAM model, Afshani and Chan [4] gave a structure of O(n)
size that answers a halfspace reporting query in Õ(n1−1/⌊d/2⌋) + O(t) time. In the EM model,
Agarwal et al. [6] gave a structure of O(n/B) size that answers a halfspace reporting query in
O((n/B)1−1/⌊d/2⌋+ϵ+t/B) I/Os. Plugging these into Theorem 1 gives the second bullet of Theorem 6.

5.3 L∞ k-Nearest Neighbor (Theorem 7)

The problem’s prioritized version is orthogonal range reporting where a query specifies an axis-parallel
square q in Rd and reports all the points in D∩ q. In the RAM, Chazelle and Edelsbrunner [20] gave
a structure of O(n) space that answers an orthogonal range reporting query in O(log n+ t) time.
Their solution essentially reduces the problem to 3D dominance reporting, for which Afshani [1]
gave an EM structure of O(n/B) space and O(logB n + t/B) query time. The problem’s max
version is the standard L∞ nearest neighbor search. It is well-known that we can store D in an EM
structure of O(n/B) space that answers an L∞ nearest neighbor query in O(logB n) time [13,27,30].
Theorem 7 then becomes a corollary of Theorem 2.

5.4 Top-k 3D Dominance (Theorem 4)

The problem’s prioritized version of the problem is called 4D dominance reporting. Afshani et
al. [2] gave a RAM structure with size O(n log n/ log logn) and query time O(log1.5 n + t). In
the max version, D is a set of n points in R3 each carrying a real-valued weight. Given a point
q = (x, y, z) ∈ R3, a max query reports the maximum weight of the points e = (ex, ey, ez) ∈ D
satisfying ex ≤ x, ey ≤ y, and ez ≤ z. Next, we will develop a structure for this problem that
uses O(n) space and answers a query in O(log n) time, after which Theorem 4 will follow from
Theorem 2.

e1

e5
e4

e2

e3

(a) (b) (c)

Figure 2: (a) a set of five points, (b) region ρi associated with each point ei, and (c) vertical
decomposition.
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Let e1, e2, ..., en be the sequence of points in descending order of weight. With each point ei, we
associate a region ρi in R3 satisfying the following constraint: a point q = (x, y, z) ∈ R3 belongs
to ρi if and only if ei is the point with the maximum weight in (−∞, x]× (−∞, y]× (−∞, z]. The
following design of regions satisfies the constraint for all points ei = (eix, eiy, eiz):

• ρ1 = [e1x,∞)× [e1y,∞)× [e1z,∞);

• for i ∈ [2, n], ρi = [eix,∞)× [eiy,∞)× [eiz,∞) \
⋃i−1

j=1 ρj .

Each non-empty region ρi is decomposed into axis-parallel disjoint cuboids by performing a vertical
decomposition. If ρi has ni vertices, then the number of cuboids in the decomposition of ρi will be
O(ni). It can be verified [1] that

∑n
i=1 ni = O(n). See Figure 2 for an illustration of these ideas.

Therefore, the max reporting problem can be transformed to a point location problem: given a
query point q ∈ R3, find the cuboid (if any) containing q from a set of O(n) disjoint axis-parallel
cuboids. Chan et al. [19] presented a structure of size O(n) to answer such a query in O(log n) time.

5.5 Top-k Halfspace Reporting for d ≥ 4 (2nd Bullet of Theorem 5)

All the aforementioned structures are based on Theorem 2. In this subsection, we will leverage
Theorem 1 to obtain a structure for top-k halfspace structure with good worst-case guarantees. In
the problem’s prioritized version, the input is a set D of n points in Rd, where each point e carries a
real-valued weight w(e). Given a halfspace q in Rd and a real value τ , a query reports all the points
e ∈ D ∩ q with w(e) ≥ τ .

RAM. We will show that the prioritized version admits a structure of O(n log n) size that answers
a query in Õ(n1−1/⌊d/2⌋)+O(t) time. Plugging this into Theorem 1 yields the RAM result in second
bullet of Theorem 5.

For halfspace reporting, Afshani and Chan [4] gave a structure of O(n) space and query time
Õ(n1−1/⌊d/2⌋) +O(t). We leverage this structure to support prioritized queries. Create a balanced
binary search tree T on the weights of the points in D. Each weight is stored at a leaf, together
with the point carrying the weight. For each node u of T , denote by Du the set of points in the
subtree of u. Create a halfspace reporting structure of [4] on Du. The total space is O(n log n).

We answer a prioritized query parameterized by halfspace q and threshold τ as follows. First,
pay O(log n) time to collect the canonical set of nodes u1, u2, ..., um such that m = O(log n), Du1 , ...,
Dum are disjoint, and their union equals {e ∈ D | w(e) ≥ τ}. Then, perform a halfspace reporting
query on Dui with halfspace q for each i ∈ [1,m]. The final answer is the union of all these m
queries’ outputs. The query time is Õ(n1−1/⌊d/2⌋) +O(t).

EM. We will show that the prioritized version admits a structure of O(n/B) size that answers a
query in O((n/B)1−1/⌊d/2⌋+ϵ + t/B) I/Os. Plugging this into Theorem 1 yields the EM result in the
second bullet of Theorem 5.

For halfspace reporting, Agarwal et al. [6] gave a structure of O(n/B) space and query time
O((n/B)1−1/⌊d/2⌋+ϵ′ + t/B) where the constant ϵ′ > 0 can be arbitrarily small. We will utilize this
structure to design our priortized structure. Build a B-tree T on the weights of the points in D; T
has leaf capacity B and internal fanout f = (n/B)ϵ/2. All the weights are stored at the leaf level;
furthermore, we place each point e ∈ D in the leaf node containing w(e). For each node u of T ,
denote by Du the set of points in the subtree of u. Create a structure of [6] on Du with ϵ′ = ϵ/2.
The overall space consumption is O(n/B), noticing that T has O(1) levels.
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To answer a priortized query with halfspace q and threshold τ , we collect in the canonical
set of nodes u1, u2, ..., um such that m = O(f), Du1 , ..., Dum are disjoint, and their union equals
{e ∈ D | w(e) ≥ τ}. It is rudimentary to find these nodes in O(1 + f/B) I/Os. We perform a
halfspace reporting query on Dui with halfspace q for each i ∈ [1,m]. The final answer is the union
of all these m queries’ outputs. The query cost is

O
(
m · (n/B)1−1/⌊d/2⌋+ϵ′ + t/B

)
= O

(
(n/B)1−1/⌊d/2⌋+ϵ + t/B

)
.

6 2D Top-k Halfspace Reporting (1st Bullet of Theorem 5)

This section serves as a proof of the first bullet of Theorem 5 on the 2D top-k halfspace reporting
problem. We will give a max structure of O(n) size answering a max query in O(log n) time, and a
prioritized structure of O(n) size answering a prioritized query in O(log n+ t) time. Plugging in
these results into Theorem 2 completes the mission.

6.1 Max Reporting

In the max version, we have a set D of n points in R2, each associated with a real-valued weight.
Given a halfplane q (i.e., a 2D halfspace), a query returns the maximum weight of the points in
D ∩ q. By standard duality [24], this is equivalent to the stabbing max problem, where the input is
a set D′ of n halfplanes in R2, each carrying a real-valued weight. Given a point q′ in R2, a query
reports the maximum weight of the halfplanes of D′ containing q′. The goal is to preprocess D′ in a
data structure to answer queries efficiently.

Using the ideas in Section 5.4, we can transform the latter problem into a point location problem
on a planar subdivision. Let e′1, ..., e

′
n be the halfspaces of D′ in descending order of weight. For

each e′i, define a region ρi in R2 satisfying the following constraint: a point q ∈ R2 belongs to ρi if
and only if e′i is the halfplane with the maximum weight among all the halfspaces containing q. The
following region assignment satisfies the constraint: ρ1 = e′1, and ρi = e′i \

⋃i−1
j=1 ρj for i ∈ [2, n].

ρ1, ρ2, ..., ρn are disjoint polygons inducing a planar subdivision with O(n) vertices. To see
this, imagine generating ρi in ascending order of i as follows. If e′i falls entirely in

⋃i−1
j=1 ρj , then e′i

introduces no vertices on the subdivision. Otherwise, at least one point p on the boundary of e′i
must be outside

⋃i−1
j=1 ρj . Start walking from p in both directions along the boundary of e′i and stop

as soon as hitting the boundary line of any of ρ1, ..., ρi−1 or the (conceptual) boundary of the data
space R2. The stopping point of each direction is a new vertex on the subdivision. Hence, e′i can
add at most 2 vertices to the subdivision.

Given a query point q′, we answer it by finding the polygon of the subdivision containing q′.
This point location query can be done in O(log n) time with an O(n)-size structure [42].

6.2 Prioritized Reporting

In the prioritized version, we have a set D of n points in R2, where each point e ∈ D is associated
with a real-valued weight w(e). Given a halfplane q and a real-valued threshold τ , a query returns
all the points in D ∩ q with weights at least τ . We will present our data structure in three steps
(Sections 6.2.1-6.2.3).

6.2.1 When All Points are on the Convex Hull Boundary

We use CH (D) to represent the set of vertices of the convex hull of D. This subsection will prove:
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Figure 3: Decomposing D into disjoint chains D1, D2, and, D3.

Lemma 12. If all the points of D are in CH (D), then there is a data structure of size O(n) that
answers a prioritized query in O(log n+ t) time, where t is the number of points reported.

We assume, without loss of generality, that the query halfplane q is the portion of R2 on and
above a line with a negative slope. Label the points of D in clockwise order as e1, e2, ..., en with e1
being the highest point (with the largest y-coordinate). Let b be index such that eb is the lowest
point, and l such that el is the leftmost point (with the smallest x-coordinate). D can be broken
into disjoint chains: D1 = (e1, ..., eb), D2 = (eb+1, ..., el), and D3 = (el+1, ..., en). We observe:

• If D1 ∩ q ̸= ∅, the points in D1 ∩ q form a sequence (ei∗ , ei∗+1, ..., ej∗), where 1 ≤ i∗ ≤ j∗ ≤ b;
see Figure 3(a). The values of i∗ and j∗ can be found using binary search in O(log n) time.

• If D2∩q ̸= ∅, the points in D2∩q form two sequences: (eb+1, eb+2, ..., ei∗) and (ej∗ , ej∗+1, ..., el),
where b+ 1 ≤ i∗ < j∗ ≤ l; see Figure 3(b). The values of i∗ and j∗ can be found using binary
search in O(log n) time. Note that one of the two sequences may be empty, in which case
either i∗ or j∗ does not exist (in the example of Figure 3(b), i∗ does not exist).

• If D3 ∩ q ̸= ∅, the points in D3 ∩ q form a sequence (ei∗ , ei∗+1, ..., en) where l+1 ≤ i∗ ≤ n; see
Figure 3(c). The value of i∗ can be found using binary search in O(log n) time.

We use separate structures and algorithms for D1, D2, and D3:

• Reporting D1 ∩ q: Create a 2D point set P1 = {(i, w(ei) | 1 ≤ i ≤ b}. Given a halfplane q,
the points in D1 ∩ q must have their “image points” in P1 covered by the 3-sided rectangle
[i∗, j∗]× [τ,∞) (where i∗ and j∗ are as defined earlier). We build a priority search tree [33] on
P1, which consumes O(|P1|) space and finds all the points in a 3-sided rectangle in O(log n+ t′)
time, where t′ is the number of points reported.

• Reporting D2∩q: We explain only the retrieval of (eb+1, eb+2, ..., ei∗) because a similar method
works for (ej∗ , ej∗+1, ..., el). Create a 2D point set P2 = {(i, w(ei) | b+ 1 ≤ i ≤ l}. Given a
halfplane q, the points in D2 ∩ q have their image points in P2 covered by [b, i∗]× [τ,∞). We
can build a priority search tree on P2 to find those image points.

• Reporting D3 ∩ q: Create a 2D point set P3 = {(i, w(ei) | l + 1 ≤ i ≤ n}. Given a halfplane
q, the points in D3 ∩ q have their image points in P3 covered by [i∗, n]× [τ,∞). A priority
search tree on P3 serves our purposes in the same way as discussed before.

All the priority search trees consume O(n) space and allow us to find D ∩ q in O(log n+ t) time.
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6.2.2 A Structure of O(log2 n + t) Query Time

In this subsection, we will prove:

Lemma 13. There is a data structure of size O(n) that answers a prioritized halfplane reporting
query in O(log2 n+ t) query time.

Recall that a halfplane reporting query designates a halfplane q and reports the points in D ∩ q.
The following result is due to Chazelle et al. [21]:

Lemma 14. ([21]) Suppose that all the points of D are in CH (D). For any halfplane q, we can
report all the points of D ∩ q in O(log n+ |D ∩ q|) time. If we are given an arbitrary point in D ∩ q,
the query time can be reduced to O(1 + |D ∩ q|) time.

Structure. We build a binary search tree T as follows. Find D′ = D \ CH (D) and sort the
points of D′ in ascending order of weight. Let Dl be the first ⌊|D′|/2⌋ points in the sorted list, and
Dr = D′ \Dl. We associate the root u of T with the set Du = CH (D), and build a structure of
Lemma 12 and another structure of Lemma 14 on Du. Then, recursively build the left (resp., right)
subtree of u on Dl (resp., Dr), if Dl (resp., Dr) is not empty. The smallest weight (of the points) in
Dr will be referred to as the split weight of u (undefined if u is a leaf node).

For every internal node u that has a right child v, we store fractional cascading pointers such
that, having reported the points in Du ∩ q, we can decide in O(1) time whether Dv ∩ q is empty and,
if not, also obtain a point in Dv ∩ q. As discussed in [21] (see also [9]), such fractional cascading
pointers can increase the space by only a constant factor. The overall space consumption is O(n).

Query. Given a prioritized query parameterized by halfplane q and weight threshold τ , we first
identify a root-to-leaf path π in T as follows. First, add the root to π. In general, after appending u
to π, we add the left child of u if τ is less than the split weight of u, or the right child of u otherwise.
After π is ready, we proceed as follows:

1. For each node u ∈ π, search the structure of Lemma 12 at u to find all the qualifying points
in Du.

2. For each node u ∈ π, mark its right child, if the right child is not on π.

3. While there is still a marked node v, search the structure of Lemma 14 at v to find the points
in Dv∩q (note that these points must have weights at least τ). If at least one point is reported,
mark both children of v.

Analysis. Step 1 obviously incurs O(log2 n+ t) time. Next, we will focus on the nodes v processed
at Step 3. Such nodes can be divided into disjoint sets S1 and S2: every v ∈ S1 has its parent on π,
while S2 includes all the other nodes. The total cost paid at the nodes in S1 is clearly O(log2 n+ t).
Every node v ∈ S2 must have a parent u; furthermore, we must have reported at least one point
from Du. By leveraging the fractional cascading pointers at u and the second sentence of Lemma 14,
we spend only O(1 + t′) time on v, where t′ is the number of points reported from Dv. We can
charge the O(1) term on an arbitrary point reported from Du. Every reported point is charged at
most twice. The total query cost is, therefore, O(log2 n+ t). This completes the proof of Lemma 13.

6.2.3 The Final Structure

We will improve the query time to O(log n + t) by resorting to shallow cuttings [10, 32] and a
framework introduced by Afshani [1].
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Equivalent problems. By standard duality, we can transform the prioritized reporting problem to
the following. Define an upper halfplane in R2 as the set of points (x, y) ∈ R2 satisfying y ≥ c1x+x2
where c1 and c2 are constants. We will drop the word upper with the understanding that all the
halfplanes in this subsection are upper ones. Let D be a set of n halfplanes, where each halfplane
e ∈ D is associated with a real-valued weight w(e). Given a point q ∈ R2 and a real-valued threshold
τ , a query reports all the halfplanes e ∈ D such that q ∈ e and w(e) ≥ τ . By Lemma 13, we can
preprocess D into a structure of O(n) space that answers a query in O(log2 n+ t) time.

With one more transformation, we will work with yet another equivalent problem in 3D space.
For every halfplane e ∈ D, introduce a partially-defined bivariate function:

f(x, y) =

{
w(e) if (x, y) ∈ e
undefined otherwise.

(11)

We will refer to w(e) as the weight of f . Figure 4 shows the graph of such a function (the gray
portion). Let F be the set of functions obtained from the halfplanes in D (i.e., |F | = n). Given a 3D
point q′ = (x, y, z), we say that a function f (i) is below q′ if f is defined at (x, y) and z > f(x, y),
or (ii) passes q if z = f(x, y). A query reports all the functions in F that either pass or are below q′.
Lemma 13 allows us to build a structure on F that consumes O(n) space and answers a query in
O(log2 n+ t) time. We want to improve the query time to O(log n+ t).

Shallow cutting. The level of a point p ∈ R3 is the number of functions f below p. The (≤ l)-level
of F is the (infinite) set of points in R3 whose levels are at most l. We define the “boundary” of the
(≤ l)-level of F as the l-level of F ; specifically, a point p is on the boundary if an infinitesimally-small
ball (with a positive radius) centering at p covers a point whose level is strictly larger than l.

The lower envelope of F is defined as the 0-level of F . We observe:

Lemma 15. The lower envelope of F has complexity O(n).

Proof. The projection of each function f ∈ F onto the xy-plane is a halfplane. Given a real value z,
denote by F≤z the set of functions in F whose weights are at most z, and by H the set of halfplanes
obtained by projecting the functions in F≤z onto the xy-plane. As z increases from −∞ to ∞, the
lower envelope of H (the lower envelope of a set of upper halfplanes is a standard concept; see,
e.g., [24]) may change every time z reaches the weight of a function in F . Specifically, a change is in
the form of a segment appearing or disappearing. The complexity of F is proportional to the total
number of such changes as z goes from −∞ to ∞. Next, we will show that there can be O(n) such
changes.
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Consider the moment when z reaches the weight of a function f ∈ F . If the graph of F does not
intersect with the 0-level of F≤z, f introduces no changes to the lower envelope of H. Otherwise, f
can create at most two points on the lower envelope of H. Figure 5 shows an example where the
lower envelope of H was the chain of segments p1p2, p2p3, p3p4, p4p5, p5p6, p6p7 before processing
f , and becomes a new chain p1A,AB,Bp5, p5p6, p6p7 after processing f . In general, the number of
changes is proportional to the total number of disappearing segments plus a constant O(1) (which
is the number of new segments). As each segment disappears only once, we conclude that the total
number of changes is O(n).

Given a simplex ∆ in R3, define its conflict list F∆ as the set of functions f ∈ F whose graphs
intersect with ∆. Given an integer r ∈ [1, n], a (1/r)-shallow cutting of F is a collection Ξ of
non-overlapping simplices (except at the boundaries) satisfying:

• every simplex in Ξ has a conflict list of size O(r);

• the union of all the simplices in Ξ covers the (≤ r)-level of F .

A prism is a special simplex whose bottom vertex has z-coordinate −∞. There is an established
theory [10, 18, 22, 23, 32] on shallow-cuttings for general bi-variate functions. In our context, the
theory yields:

Lemma 16. F has a shallow-cutting of size O(n/r) where every simplex is a prism.

Proof. Given Lemma 15, Theorem 3.13 of [10] proves the existence of a (1/r)-shallow cutting Ξ
of size O(n/r). By applying a technique in Lemma 2.1 of [18], we can obtain from Ξ another
(1/r)-shallow cutting satisfying our requirements.

Structure. We are now ready to present our final structure for prioritized reporting on F (which,
as shown earlier, is equivalent to the original prioritized reporting problem). First, build a structure
T of Lemma 13 on F . Then, apply Lemma 16 to obtain a (1/ log2 n)-shallow cutting Ξ of F . For
each prism ∆ ∈ Ξ, build a structure T∆ of Lemma 13 on F∆ (the conflict list of ∆). The projection
of the prisms in Ξ onto the xy-plane is a subdivision of R2. Build a point location structure [42] on
the cells of that subdivision.

3The theorem was proved for totally-defined functions. However, as remarked in [10], it also holds on partially-
defined functions whose boundaries can be described as constant-degree polynomials of x and y. This is true in our
context, where the boundary of each function in F is a line. The idea is to convert every function f ∈ F into a
totally-defined function by computing its Minkowski sum with a cone z = c

√
x2 + y2 for an arbitrarily large constant

c.
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T uses O(n) space. As |Ξ| = O(n/ log2 n), the point location structure occupies O(n/ log2 n)
space. As each conflict list F∆ has size O(log2 n), the total space of all the T∆’s is |Ξ| ·O(log2 n) =
O(n). The overall space of our structure is therefore O(n).

Query. Recall that, given a point q ∈ R3, a query reports all the functions in F that either pass
through q or are below q. By searching the point location structure, we can determine in O(log n)
time whether a prism ∆ ∈ Ξ covers q. If so, all the qualifying functions must be in the conflict list
F∆; we can report all of them using T∆ in O((log logn)2 + t) time, using the fact |F∆| = O(log2 n).
Otherwise, the level of q must be at least log2 n, implying that the number t of qualifying functions
is at least log2 n. From T , we can find all of them in O(log2 n+ t) = O(t) time. In any case, the
query time is O(log n+ t).

7 Concluding Remarks

We conclude the paper with several directions for future research:

• Theorem 1 shows an O(logB n) gap in query cost between top-k search and prioritized reporting.
Closing the gap would make an exciting result because it would imply the two problems’
asymptotic equivalence.

• The space and query bounds in Theorem 2 hold in expectation. Can we prove high-probability
or even worst-case bounds?

• Currently, the core-set construction in Theorem 1 takes nO(1) expected time. Reducing the
construction time significantly remains as a major challenge.

• Some top-k problems still remain difficult even with our reductions. For example, is there a
RAM structure of O(n) space and O(log n+ k) query time for 3D top-k halfspace reporting?

• Our reductions appear to be simple enough for practical implementation. How do they compete
with the top-k solutions in the existing systems [28]?
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Appendix: Chernoff Bounds

Let X1, ..., Xn be independent Bernoulli variables such that Pr[Xi = 1] = pi for all i ∈ [1, n]. Let
X =

∑n
i=1Xi and µ = E[X] =

∑n
i=1 pi. It holds for any α ∈ (0, 1) that

Pr[X ≤ (1− α)µ] ≤ e−α2µ/3. (12)

For any α ≥ 2, it holds that

Pr[X ≥ αµ] ≤ e−αµ/6. (13)

The above inequalities can be found in many papers and textbooks, e.g., [25, 34].
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