
Dynamic Ray Stabbing∗

Yufei Tao

Department of Computer Science and Engineering

Chinese University of Hong Kong

Sha Tin, New Territories, Hong Kong

taoyf@cse.cuhk.edu.hk

Abstract

We consider maintaining a dynamic set S of N horizontal segments in R2 such that, given a vertical

rayQ in R2, the segments in S intersectingQ can be reported efficiently. In the external memory model,

we give a structure that consumes O(N/B) space, answers a query in O(log
B
N +K/B) time (where

K is the number of reported segments), and can be updated in O(log
B
N) amortized time per insertion

and deletion. With B set to a constant, the structure also works in internal memory, consuming space

O(N), answering a query in O(logN+K) time, and supporting an update inO(logN) amortized time.

To appear in ACM Transactions on Algorithms.

A preliminary version appeared in SoCG’12.

∗This work was supported by grants GRF 4164/12 and GRF 4165/11 from HKRGC.

1 Introduction

In the orthogonal ray stabbing problem (henceforth, the ray stabbing problem), we want to store a set S
of N horizontal segments in R

2 such that, given a vertical ray Q = x × (−∞, y], all the segments in S
intersecting Q can be reported efficiently. See Figure 1 for an example. We consider the problem in a

fully dynamic setting, where segments can be inserted and deleted in S. Applications of this problem have

been described in databases [1, 10, 14], GIS [6], networking [12], and so on. Throughout the paper, every

logarithm is assumed to be at least 1. In other words, logx y should be understood as max{1, logx y}.

Q

Figure 1: A ray stabbing query that reports 3 segments

Previous Results. The ray stabbing problem is a special instance of the segment intersection problem,

where a query reports the segments of S intersecting a vertical segment (instead of a ray). In internal

memory, when S is static, the segment intersection problem can be solved with a persistent binary search

tree that uses O(N) space and answers a query in O(logN +K) time, where K is the number of reported

segments. For dynamic data, Cheng and Janardan [9] gave a linear-size structure that solves a query in

O(log2N+K) time, and supports an insertion and a deletion inO(logN) time. Mortensen [13] proposed a

structure that has space complexity O(N logN/ log logN),O(logN+K) query time andO(logN) update
time. Blelloch [7] presented a linear-size structure that supports an update in O(logN) amortized time and

a query in O(logN +K logN/ log logN) time.

In the external memory (EM) model [2], a machine has a disk formatted into blocks of B words, and

memory ofM words satisfying M ≥ 2B. Time complexity is measured as the number of I/Os performed,

whereas space complexity is measured as the number of disk blocks occupied. Linear complexity on an input

of size N is interpreted as O(1+N/B). In this model, the static version of the ray stabbing problem can be

settled with the persistent B-tree [5] that consumes linear space and solves a query in O(logBN + K/B)
I/Os. For the dynamic version, we are not aware of any published result. Perhaps as a folklore, using

standard techniques [3, 4, 5], one can obtain a linear-size structure that has query time O(log2B N +K/B)
and supports an update in O(logBN) amortized I/Os.

Our Results. We present a structure for solving the ray stabbing problem:

Theorem 1. For the ray stabbing problem, there is a structure in external memory that uses linear space,

answers a query inO(logB N+K/B) I/Os, and can be updated inO(logBN) amortized I/Os per insertion
and deletion.

The theorem also holds in internal memory by setting B to an appropriate constant.

Technique Overview. Our solution is based on the external interval tree [4]. To improve over standard

techniques, however, we adopt a different approach to handle the so-called “left segments”. Conventionally,

a query reports the qualifying left segments of a node when the node is reached, which necessitates

Ω(log2B N) query time. To break this barrier, we take a delayed approach which does not report a left

segment until its left endpoint has “departed” from the query, namely, the endpoint is no longer on the

1

σu

s
l

s
r

s
m

u

Figure 2: A segment s in the stabbing set of node u

search path. With a filtering-search argument, we can charge most of the cost incurred at a node of the

search path on the reported segments, which is the key to achieving logarithmic query time.

Central to our techniques is a new notion called bottom set. Concerning the interval tree (or its external

version), intuitively, a bottom set includes some low segments (by y-coordinate) among those that are stored

at an internal node. Each node can have a large number of bottom sets, each of which is defined with respect

to a distinct descendant of the node. A side message delivered by this paper is that bottom sets may equip

us with an extra weapon in solving problems (e.g., ray stabbing) for which the interval tree appears to be the

right structure. Because of this, the mechanism presented in this paper for maintaining bottom sets may be

of independent interest, especially given the fact that it handles an update in logarithmic amortized time.

2 A Static Structure

This section describes a linear-size, static, structure that answers a query in O(logBN + K/B) I/Os.

Although the same performance can also be achieved by a persistent B-tree, our structure manages segments

in an alternative manner. We will make the structure fully dynamic in the later sections, but its static version

illustrates some central ideas behind our techniques without the distraction from update handling.

2.1 Structure

Given horizontal segments s1 and s2, we say that s1 is lower if it has a smaller y-coordinate than s2;
otherwise, s1 is higher. Also, we will refer to the x-coordinate of a segment’s left endpoint simply as its left

x-coordinate. As before, let S be the input set of data segments, and N = |S|.

Base Tree. In our structure, the base tree is a B-tree T indexing the x-coordinates of the segments in S . All
the x-coordinates are stored at the leaf level. A leaf node contains Θ(b) coordinates where b = B log3BN ,

while an internal node has Θ(f) child nodes where f = max{B1/3, (logB N)1/3}. A leaf node is at level

0; and in general, the parent of a level-l node is at level l + 1.
Naturally, a total order exists on the leaf nodes. The slab of a leaf node z is an interval [x, x′) where x

and x′ are the smallest x-coordinates stored in z and the leaf node succeeding z, respectively (x′ = ∞ if no

leaf succeeds z). We denote the slab as σz . The slab σu of an internal node u, in general, is the union of the

slabs of its child nodes. In R
2, a slab σ corresponds to a vertical strip, enclosing all the points (of the data

space) with x-coordinates in σ. Henceforth, we will interpret a slab as a strip.

As in the external interval tree [4], each segment s ∈ S is assigned to the lowest node u whose slab

covers s. The set of segments assigned to u is the stabbing set of u, denoted as stab(u).
Now, consider u as an internal node. We refer to σv as a child slab of u if v is a child node of u. As

in the external interval tree, every segment s ∈ stab(u) defines a left segment sl, a right segment sr, and
perhaps a middle segment sm. Specifically, sl (sr) is the part of s in the only child slab of u covering the left

(right) endpoint of s. On the other hand, sm is the remainder of s after trimming sl and sr. See Figure 2.
Let Lu,Ru and Mu be the sets of left, right and middle segments at u, respectively. Lu,Ru and Mu are

2

σp′

σu

...

...

B logB N
lowest

σp

p

u

p′

Figure 3: Illustration of bottomu(p): The segments shown are the left segments at p whose left endpoints

are in σu. The B logBN lowest ones constitute bottomu(p). All these segments are grounded on the right

boundary of σp′ , where p
′ is a child node of p and a proper ascenstor of u.

managed by secondary structures. We will focus on Lu in this section. Symmetric structures exist for Ru,

whereas the management ofMu is left to Section 3.

Bottom Set. Let u be a leaf/internal node in T , and parent(u) be its parent. Consider a proper ancestor

p of parent(u). Clearly, σu is within σp. Some left segments at p may have their left endpoints covered

by σu. Among them, we are interested in the few lowest ones. Let bottomu(p) be a set consisting of the

B logB N lowest segments in Lp whose left endpoints are in σu. If less than B logB N such segments exist,

bottomu(p) includes all of them. We will refer to bottomu(p) as the bottom set of p at u. See Figure 3.

Note that the definition of bottomu(p) requires that the levels of p and u differ by at least 2.

Now, consider u as an internal node with child nodes v1, ..., vf . For each i ∈ [1, f], define:

πu(i) =
⋃

∀ proper ancestor p of u

bottomvi(p). (1)

Let ψu(i) be the set of B lowest segments in πu(i). If |πu(i)| < B, ψu(i) includes all the segments in πu(i).

Secondary Structures. An internal node u with children v1,, vf is associated with:

• for each vi, a B-tree Πu(i) on the y-coordinates of the segments in πu(i). We call Πu(i) a bottom

structure.

• (only if the level of u is at least 2) for each vi, a priority search tree [3] Fu(i) on the left endpoints

in Lu that appear in σvi . Fu(i) answers lower-open 3-sided range queries efficiently1. Such a query

reports all the endpoints in a rectangle of the form [x1, x2] × (−∞, y2], i.e., the lower edge of the

rectangle is grounded on the bottom of R2. We call Fu(i) a flank structure.

• a priority search tree Pu on the left endpoints in ψu(1) ∪ ... ∪ ψu(f). Pu is also for answering

lower-open 3-sided range queries. We call Pu a pilot structure.

1A priority search tree on N 2d points consumes O(N/B) space. Given a 3-sided axis-parallel rectangle, it can be used to

report all the points in the rectangle in O(logB N +K/B) I/Os, where K is the number of such points. It supports an update in

O(logB N) time per insertion and deletion.

3

v

σvσi

Q

Q′

s1

s2
s3

σu

p

u

p′

structure of p
query on the flank

structure of u
query on the pilot

σp′

Figure 4: Query processing at an internal node u: s1, s2 and s3 are left segments at p. They are in the

spanning, pending, and disposable groups of p, respectively.

Consider a leaf node z of T . If a segment s ∈ S has its left x-coordinate in z, we store s at z. Note that z
stores at most b segments.

Space. T itself obviously occupies O(N/B) space. It has height h = O(logf N). A bottom structure

indexes at most hB logBN segments in O(h logB N) blocks. An internal node has f bottom structures

using O(fh logB N) space in total. The node’s pilot structure stores at most fB points in O(f) blocks.
Since there are O(N/(fb)) internal nodes, all the bottom and pilot structures require O(Nfbfh logB N) =

O((N/b) log2B N) = o(N/B) space in total. A flank structure consumes linear space. The left endpoint of

a data segment is stored in at most one flank structure. Hence, all the flank structures use O(N/B) space.
Finally, each segment is stored constant times at the leaf level. Overall, our structure occupies linear space.

2.2 Query

Given a query Q = x× (−∞, y], we visit a root-to-leaf path of T , formed by the nodes whose slabs contain

Q. Refer to the path as the query path. We will report segments only from the secondary structures of the

nodes on this path. For a data segment, only one of its left, right and middle segments can intersect Q.

Hence, we concentrate on reporting the left, right and middle segments, respectively, without worrying that

a data segment may be reported twice. Next, we discuss first left segments.

Internal Node. We examine the nodes of the query path in top-down order. Suppose that we are currently

at an internal node u, which has f child slabs σ1, ..., σf . Let v be the child node of u on the query path.

Hence, Q is contained in σv (which is one of σ1, ...σf).
Consider any proper ancestor p of u. Let S be the set of segments in Lp whose left endpoints are in σu.

Based on left endpoints, S can be divided into three disjoint groups as follows. The spanning group includes

the segments of S whose left endpoints are to the left of σv. Every such segment must span σv, and hence

the group’s name. The pending group, on the other hand, includes the segments whose left endpoints are

in σv. In the final disposable group, all the segments are to the right of σv, and thus can be safely ignored.

Figure 4 illustrates this with s1, s2 and s3.

4

When the processing finishes at u, we ensure an invariant that all the qualifying segments in the spanning

group of p have been reported. There is no such guarantee for the pending group. Nevertheless, as we

descend further along the query path, the qualifying segments in the pending group either will appear in

a spanning group later, or are stored in the path’s leaf node. Our invariant implies that we will find those

segments in the former situation, whereas in the latter we will also find them by inspecting the leaf node.

No left segment can be reported twice, noticing that the spanning group of p is completely different if u
changes. Specifically, as we move from u to its child node on the query path, the pending group at u will

unfold into the spanning, pending and disposable groups at its child node.

Next, we explain how to report segments from the spanning groups of the proper ancestors of u. Obtain
a ray Q′ by snapping Q onto the left boundary of σv. Namely, the resulting ray Q′ is x′ × (−∞, y], where
x′ is the x-coordinate of the left boundary of σv. No segment in the pending group of any proper ancestor

of u can intersect Q′. On the other hand, each qualifying segment from a spanning group must intersect Q′;

its left endpoint must lie in rectangle (−∞, x′]× (−∞, y]. See the gray area in Figure 4.

We search the pilot structure of u to retrieve all the left endpoints covered by (−∞, x′] × (−∞, y].
Recall that every such endpoint belongs to a left segment in ψu(i) for some i ∈ [1, f]. The segments whose

endpoints are retrieved definitely satisfy the query, and hence, are reported. If less than B segments from

ψu(i) are found, no other segment in πu(i) can intersect Q′ because ψu(i) collects the lowest segments of

πu(i). In this case, πu(i) is pruned from further consideration.

If, on the other hand, B segments from ψu(i) have been reported, we have earned ourselves a free

I/O, namely, an extra I/O that we can charge on those B segments without worrying that the output cost

can become super-linear—the standard idea of filtering search [8]. We spend this I/O jumping to the first

leaf node of the bottom structure Πu(i). From there, scan the segments of πu(i) in ascending order of

y-coordinate. Keep reporting the segments2 until encountering the first one that does not intersect Q′, i.e.,

the first segment whose y-coordinate is greater than y.
Every segment in πu(i) is a left segment at some proper ancestor p of u. If less than B logBN segments

from Lp have been reported from πu(i), we have found all the segments from Lp whose left endpoints are

in σi, because the lowest B logB N of those segments are in πu(i). Otherwise, B logB N segments from

Lp have been reported. In this case, we have earned ourselves O(logB N) free I/Os, which are utilized to

launch a 3-sided range query to report the other segments of Lp with left endpoints in σi, as explained next.

Recall that p has f flank structures, each corresponding to a different child node of p. Let Fp be the

flank structure for the child node of p on the query path. We formulate a 3-sided rectangle r that has the

same x-range as σi, and has the same y-range as Q′. See Figure 4. A segment in L(p) intersects Q′ and has

its left endpoint in σi, if and only if r covers its left endpoint. The cost of answering the 3-sided range query

on Fp is O(logBN) plus the linear output time.

Leaf Node. At the leaf node z of the query path, we simply report all the qualifying segments stored in z.

A Sentinel Trick. As mentioned before, in searching an internal node u, we need to know whether B
segments from a ψu(i) have been reported in the pilot structure, for each i ∈ [1, f]. Since f may be greater

than 2B (the smallest amount of memory that may be available), we cannot simply keep a counter for each

i in memory. A similar situation occurs when we are scanning through πu(i) for some i—we need to know

whether B logB N segments from the Lp of a proper ancestor p of u have been found. Again, as there can

be O(h) = O(logf N) different p, we cannot keep a memory-resident counter for each p if h is far greater

than 2B. Maintaining the counters in external memory would lead to cost penalty we cannot afford.

We resolve this issue by marking some segments as sentinels such that enough segments (from a certain

set) have been reported if and only if a sentinel is reported. Specifically, in the pilot structure, the sentinel

2Of course, skip the first B segments in πu(i) because they have been reported from ψu(i). Henceforth, we will not discuss
trivial duplicate removal like this.

5

from ψu(i) is the B-th lowest segment in ψu(i); if ψu(i) has less than B segments, no sentinel is marked.

Likewise, in a πu(i), the sentinel from an Lp is the (B logB N)-th lowest segment in Lp, or undefined if

there are less than B logBN segments in Lp.

Cost. The query path has O(logf N) nodes. At each internal node u of the path, searching its pilot structure

requires O(logB f) I/Os (recall that the pilot structure indexes at most fB points). The other cost at u can

be charged on the output cost, as discussed earlier. Hence, overall, only O(h logB f) = O(logB N) I/Os
has not been charged on the output. At the leaf node of the query path, we spend O(b/B) I/Os reading its

contents. Therefore, the total query cost is O(b/B + logB N) plus the linear output time. A symmetric

algorithm can be used to retrieve the qualifying right segments. We have not discussed the reporting of

middle segments. As will be shown later, this can be done in O(logB N) I/Os plus the linear output time,

by augmenting our current structure with extra information occupying O(N/B) space.

2.3 Bootstrapping

We have obtained a linear-space structure whose query complexity isO(b/B+logB N) = O(log3B N), plus
the linear output time. The term b/B arises from finding the qualifying segments in a leaf node z. Currently,
no specialized structure exists on the segments in z. Now, let us bootstrap by indexing those segments with

the structure described above. As z stores at most b segments, those satisfying a query can be reported

in O(log3B b) = O((logB logB N)3) I/Os plus the linear output time. Therefore, the overall query cost is

improved to O((logB logBN)3 + logB N +K/B) = O(logB N +K/B). The space consumption of the

bootstrapped structure remains linear.

3 The Middle-Indexing Problem

As before, let S be a set of N horizontal segments. Let L be a set of vertical lines {ℓ1, ..., ℓf} where

f = Θ(max{B1/3, (logB N)1/3}). ℓi is to the left of ℓj for any i, j with 1 ≤ i < j ≤ f . For each

i ∈ [1, f − 1], refer to the vertical strip between ℓi and ℓi+1 as a slab. A multi-slab is the union of a

non-empty set of consecutive slabs. There are f − 1 slabs, and hence, f(f − 1)/2 multi-slabs (note that a

slab is also a multi-slab).

All segments of S lie between ℓ1 and ℓf . A segment s ∈ S is long if it spans at least one multi-slab, i.e.,

its x-range covers that of the multi-slab. Otherwise, s is short. Every short segment is required to intersect

one of ℓ2, ..., ℓf−1. A long segment s defines a middle segment, which is the part of s in the widest multi-slab

it spans. Denote byM the set of middle segments thus defined. The goal is to store S in a structure so that,

given a vertical rayQ, all the segments inM intersectingQ can be reported efficiently (i.e., we are interested

in retrieving only middle segments). We refer to the above problem as the middle-indexing problem.

Lemma 1. In the middle-indexing problem, there is a structure ofO(f +N/B) space such that a query can
be answered in O(logB f + K/B) I/Os. The structure can be updated in O(logB N) amortized I/Os per

insertion and deletion.

We have encapsulated some standard details into lemmas (such as the above one), whose proofs can be

found in the appendix.

Completing the Static Structure. Refer to the structure of Lemma 1 as a middle structure. In the static

structure of Section 2, each internal node u in the base tree has a stabbing set stab(u). We use a middle

structure to manage the segments of stab(u), with L being the set of boundary lines of the child slabs of

u. In answering a query Q, we report the qualifying middle segments by searching the middle structures of

the internal nodes along the query path. As there are O(logf N) such nodes, by Lemma 1, the total cost is

O(logf N · logB f) = O(logBN) plus the linear output time.

6

ℓ

σ

σl σr

Figure 5: A refine operation: The solid vertical lines constitute the current L. Snew consists of the thick

segments. The other segments are in the current S .

ℓ

Figure 6: A split operation: Scross consists of the thick segments.

Each middle structure usesO(f) extra blocks, on top of space linear to the number of segments indexed.

There are o(N/B) extra blocks for all middle structures because the base tree hasO(N/(bf)) internal nodes.
Hence, the overall space consumption is still linear.

Refinement. Next, we describe a refine operation which will be useful later. In this operation, a slab σ is

divided into two slabs σl and σr by a vertical line ℓ, where σl is on the left of ℓ. Accordingly, ℓ is added to L.
Furthermore, ℓ is associated with a set Snew of horizontal segments, all of which are inside σ. See Figure 5.
Snew is to be incorporated into the dataset S . Snew is given in two copies where its segments are sorted by

x- and y-coordinate, respectively. The objective is to update the middle structure to index the resulting S
and L.

Let α be the total number of segments in the final S having an endpoint in σ. In other words, α equals

the sum of |Snew| and the number of such segments in the original S . The lemma below explains the cost

of refinement:

Lemma 2. A refine operation can be performed in O(f2 log2 f + α/B) I/Os.

Split. Let ℓ be a line in L. A split operation cuts S and L into S1, S2 and L1, L2, respectively. Specifically,

S1 (S2) includes all the segments in S entirely on the left (right) of ℓ, whereas L1 (L2) includes all the lines

of L on the left (right) of ℓ. Let Scross be the segments of S intersecting ℓ. See Figure 6. The operation has

two goals. First, output Scross in two copies, with its segments sorted by x- and y-coordinate, respectively.

Second, create middle structures for the two middle-indexing problems defined on (S1, L1) and (S2, L2),
respectively. As for the efficiency of the operation, we have:

Lemma 3. A split operation can be performed in O((N/B) log2 f + f2 log2 f) I/Os.

7

.

.

.

σu

v1 v5v2 v3 v4

.

.

.

.

.

.

.

.

.

.

.

.

σv1
σv2

σv3
σv4

σv5

p

u

p
′

σp′

Figure 7: Illustration of γu(p): For each bottomvi(p), only the highest and lowest segments are shown,

whereas the other segments are omitted. All these segments together constitute γu(p).

4 A Dynamic Structure

In this section, we make our structure in Section 2 dynamic. The main challenge is to efficiently maintain

bottom sets. In general, changes to bottom sets may occur for two reasons. First, segments are moved from

a stabbing set to another during tree rebalancing. Second, a newly inserted segment enters a bottom set, or

an existing segment there is deleted. We will describe techniques to handle these situations.

4.1 Structure

We now implement the base tree T as a weight-balanced B-tree [4], where a leaf node stores Θ(b)
x-coordinates and an internal node has Θ(f) child nodes, with b and f defined as in Section 2. All the

secondary structures in Sections 2 and 3 are inherited by the nodes of T . Next, we describe the additional

structures required on left segments. Symmetric structures exist for right segments, whereas the middle

structure has been completely presented in the previous section. Let h = O(logf N) be the height of T .

Let u be an internal/leaf node of T , and p a proper ancestor of parent(u). Recall that bottomu(p), the
bottom set of p at u, is the set of the B logB N lowest left segments at p whose left endpoints are in σu.
We maintain a B-tree indexing the segments of bottomu(p) by y-coordinate. T has O(N/b) nodes, each
of which has O(h) proper ancestors. Hence, the B-trees on all the bottom sets occupy O(Nb h logB N) =
o(N/B) space in total.

Now, consider u instead as an internal node with child nodes v1, ..., vf . Define:

γu(p) =

f
⋃

i=1

bottomvi(p). (2)

See Figure 7. Notice that, if bottomu(p) is defined (i.e., the levels of p and u differ by at least 2), the

segments of bottomu(p) are in fact the B logB N lowest in γu(p).
We associate u with a (slightly augmented) B-tree Γu(p), which indexes the y-coordinates of the

segments in γu(p). Given an integer k, Γu(p) allows us to find efficiently the k-th lowest segment in

8

γu(p). Refer to Γu(p) as a rank B-tree. As γu(p) has at most fB logB N segments, a rank B-tree occupies

O(f logB N) blocks. There are O(N/(bf)) internal nodes, each of which has h = O(logf N) proper

ancestors. Hence, the total space of all rank B-trees is O(Nh
bf f logB N) = o(N/B).

Let z be a leaf node in T , and p a proper ancestor of z. Define:

φz(p) = the set of left segments at p whose left endpoints are in σz .

If bottomz(p) is defined, the B logBN lowest segments of φz(p) are exactly the segments in bottomz(p).
We maintain a B-tree on the y-coordinates of the segments in φz(p). The B-trees on the φz(p) of all

p together occupy O(h + b/B) = O(b/B) space, because only b endpoints are in σz and z has O(h)
proper ancestors. Thus, all these B-trees require O(N/B) blocks in total. Finally, there is a B-tree on the

y-coordinates of the segments stored in z—recall that every such segment has at least one x-coordinate in z.
The space of our overall structure still remains linear.

The query algorithm remains the same as in the static structure. The cost is O(b/B + logB N +K/B),
where the b/B term stems from reading the segments stored in the leaf node of the query path. We will

eliminate the term by bootstrapping later.

4.2 Updates

In the sequel, whenever we insert or delete a segment in some bottomu(p), the B-tree on bottomu(p) is
updated accordingly. The same convention applies to φz(p), and the segment set stored in a leaf node.

Recall that our structure uses some sentinels to facilitate query processing. We, however, will not elaborate

on the maintenance of sentinels because the relevant details are straightforward extensions to the update

procedures presented below.

Insertion. To insert a segment s, first update the base tree T by inserting the x-coordinates of s. This may

trigger one or more node splits in T . Deferring node split handling to Section 4.3, we now proceed assuming

that all the splits have been taken care of. Let p be the node whose stabbing set stab(p) contains s. If p is a
leaf, we finish by storing s there. Next, we consider that p is an internal node.

Insert s into the middle structure of p in O(logB N) I/Os (Lemma 1). Now, consider the left segment sl

of s (a similar algorithm applies to its right segment). Let ϕ be the path from p to the leaf node of T that

stores the left x-coordinate of sl. Recall that p has a flank structure for each child. In O(logB N) I/Os, we
insert the left endpoint of sl in the flank structure of p for its child on ϕ.

Let u be an internal node that is a proper descendant of p on ϕ. Let v be the child of u on ϕ. Recall that
u has a bottom structure for v; suppose that the structure is Πu(i) for some i ∈ [1, f]. Whether Πu(i) needs
to be updated depends on whether sl enters bottomv(p). This is also true for the rank B-tree Γu(p). There
are two situations where sl should be added to bottomv(p):

• first, bottomv(p) has less than B logB N segments;

• second, sl is lower than the highest segment, say s′, in bottomv(p).

Using the B-tree on bottomv(p), which (if any) situation occurs can be decided in one I/O: simply read the

last leaf node of the B-tree. This also allows us to retrieve the segment s′.
If neither of the aforementioned situation happens, there is no more processing on v. Otherwise,

insert sl in bottomv(p), and if bottomv(p) has more than B logB N segments, also remove s′ from
bottomv(p). In any case, the cost is O(logB logB N). Accordingly, sl and s′ (if applicable) are inserted

in and deleted from Πu(i), respectively. As Πu(i) indexes O(hB logB N) segments, this can be done in

O(logB(hB logB N)) = O(logB logBN) I/Os. Likewise, insert sl and delete s′ (again, if applicable) in
the rank B-tree Γu(p), which takes O(logB(fB logB N)) = O(logB f) I/Os.

9

Changes toΠu(i)may necessitate updating the pilot structure Pu, because only the lowestB segments in

Πu(i) should appear in Pu. ThoseB segments can be obtained in one I/O fromΠu(i). At most one insertion

and one deletion are then needed on Pu. Their cost is O(logB f) as Pu stores at most fB segments.

In summary, the processing at u incurs O(logB logB N +logB f) = O(logB f) I/Os. We need to do the

same to O(h) nodes on ϕ, the cost of which adds up to O(h logB f) = O(logB N). Finally, at the leaf z of
ϕ, insert sl to φz(p) and the segment set stored in z with O(logB b) = o(logB N) I/Os.

Deletion. To delete a segment s, we first find the node p such that s ∈ stab(p). If p is a leaf, finish by

deleting s from the segments stored at p. Now, consider that p is an internal node. Remove s from the

middle structure of p in O(logB N) I/Os. Next we explain the rest of processing on only the left segment sl.
Let ϕ be the path from p to the leaf node of T storing the left x-coordinate of sl. Delete in O(logBN) I/Os
the left endpoint of sl from the relevant flank structure at p.

Let u be an internal node that is a proper descendant of p on ϕ. Let v be the child of u on ϕ. In one

I/O, we check whether sl is in bottomv(p). If so, delete sl from bottomv(p), the rank B-tree Γu(p), and
the bottom structure of u for v. Update the pilot structure Pu accordingly. The cost is O(logB f), as should
have been clear from the earlier analysis on insertion. Currently, u is dirty because bottomv(p) may have

one less segment than required. At the leaf z of ϕ, we remove sl from φz(p) and the segment set stored in z
with o(logB N) I/Os.

Next, we fix the dirty nodes in bottom-up order. Let u be the lowest dirty node, and v its child on ϕ.
If v is a leaf node, we check whether φv(p) has at least B logB N segments. If not, bottomv(p) is already
accurate. Otherwise, retrieve the (B logBN)-th lowest segment s′ from φv(p) using O(logB N) I/Os, by
simply reading the entire φv(p). Insert s′ into bottomv(p), Γu(p), the bottom structure of u for v, and
update Pu in totally O(logB f) I/Os. At this time, bottomv(p) has been brought up-to-date, and so have the

secondary structures of u.
On the other hand, if v is an internal node, we check whether γv(p) (see (2)) has at least B logB N

segments. If not, bottomv(p) is accurate. Otherwise, retrieve the (B logB N)-th lowest segment s′ from
γv(p). Using the rank B-tree Γv(p), this can be done in O(logB f) I/Os. Then, insert s

′ into the relevant

structures (same as the case where v is a leaf) in O(logB f) I/Os.
In summary, to delete a segment s, we spend O(logB f) I/Os per internal level, and O(logB N) I/Os at

the leaf level. Hence, the total cost is O(logB N). Note that we keep the x-coordinates of the endpoints of s
in the base tree T . This does not affect the correctness of our query algorithm since it reports segments only

from secondary structures, which are always properly maintained. On the other hand, it brings the benefit

of not having to deal with node underflows. With global rebuilding, we ensure that the height of T should

remain O(logf N).

4.3 Handling Node Splits

We have explained that each insertion and deletion can be performed in O(logB N) I/Os, excluding the cost

of handling node splits in the base tree T . This subsection completes the description of our update procedure

by elaborating the split algorithms. Our discussion concentrates on the secondary structures for managing

left and middle segments.

We start by giving some basic facts. Recall that, a lower-open 3-sided range query specifies a rectangle

of the form [x1, x2] × (−∞, y]. The flank structures of our index are external priority search trees for

answering such queries efficiently. The lemma below explains how fast a flank structure can be constructed.

Lemma 4. An external priority search tree for answering lower-open 3-sided range queries on N points,

can be built in O(N/B) I/Os, provided that all the points have been sorted by x-coordinate.

The next lemma indicates that, once the bottom sets at the child nodes of a node u are ready, we can

build several secondary structures of u efficiently. Recall that h = O(logf N) is the height of T .

10

Lemma 5. Let u be an internal node with child nodes v1, ..., vf . Suppose that the segments of bottomvi(p)
have been sorted by y-coordinate, for each vi (1 ≤ i ≤ f) and each proper ancestor p of u. InO(hf logB N ·
log2 f) I/Os, we can build the following secondary structures of u: the bottom structure Πu(i) of each i, the
pilot structure Pu, the B-tree on bottomu(p) of each relevant p, and the rank B-tree Γu(p) of each p.

Leaf Split. Next, we discuss the split of a leaf node z. Let u be the parent of z, and z1, z2 be the leaf nodes
that z splits into. Let ℓ be the vertical line that divides σz1 and σz2 .

The stabbing set stab(z) can be divided into three groups. The first (second) group includes those

segments on the left (right) of ℓ, while the last group, denoted as Scross, includes those intersecting ℓ. The
first (second) group becomes stab(z1) (stab(z2)), whereas Scross will be merged into stab(u).

Let Sz be the set of (at most b) segments stored at z, and similarly, Sz1 (Sz2) the set of segments to be

stored at z1 (z2) after the split. Recall that stab(z) is a subset of Sz (because a segment in Sz has at least an
endpoint in σz, whereas σz covers both endpoints of a segment in stab(z)). Each segment in Sz should be

added to Sz1 if its left endpoint is on the left of ℓ, or to Sz2 otherwise. Utilizing the B-tree on Sz , inO(b/B)
I/Os, we can generate Sz1 , Sz2 and Scross such that the segments of each set are sorted by y-coordinate.

Then, the B-trees on Sz1 and Sz2 can be built in O(b/B) I/Os.
Let p be an ancestor of u (note: p can be u). After the split, a segment s ∈ φz(p) appears in φz1(p) if

its left endpoint is to the left of ℓ; otherwise, s appears in φz2(p). Moreover, if p = u, φz1(p) also includes

those segments of Scross whose left endpoints are to the left of ℓ. Using the B-tree on φz(p) (and Scross, if
p = u), we create the B-trees on φz1(p) and φz2(p) in O(1 + |φz(p)|/B) I/Os (and plus O(b/B) if p = u).
As there are O(h) different p, and the sum of |φz(p)| for all p is at most b, the B-trees on the φz1(p) and
φz2(p) of all p can be built in O(h + b/B) I/Os. If p is at level 2 or above, bottomz1(p) is simply a prefix

of φz1(p). Hence, the B-trees on the bottomz1(p) of all p can also be built in O(h + b/B) I/Os. The same

is true for bottomz2(p).
At this point, the secondary structures of z1 and z2 are ready, so we proceed to fix those of u. Create

an additional copy of Scross where the segments are sorted by x-coordinate. This can be achieved in

O(b
B log2 b) I/Os. Perform a refine operation (Section 3) on the middle structure of u, with ℓ and Scross

as the inputs. By Lemma 2, the cost is O(f2 log2 f + b/B), noticing that the value of α in the lemma is at

most b. The other secondary structures of u mentioned in Lemma 5 can be built in O(hf logBN · log2 f)
I/Os.

In summary, a leaf split can be performed in O(f2 log2 f + b
B log2 b+ hf logBN · log2 f) I/Os.

Internal Split. Consider that an internal node u is split into u1 and u2 along a vertical line ℓ that divides
σu1

and σu2
. Define w(u) as the number of x-coordinates stored at the leaf nodes in the subtree of u, and

w(u1), w(u2) similarly. We start with a split operation on the middle structure of u with input ℓ. This

operation creates the middle structures of u1 and u2, and generates a segment set Scross in two copies:

one sorted by y-coordinate, and the other by x-coordinate. Scross includes all the segments from stab(u)
that intersect ℓ, and will be added to the stabbing set of parent(u). By Lemma 3, the operation requires

O(w(u)
B log2 f + f2 log2 f) I/Os, noticing that the middle structure of u indexes at most w(u) segments.

If u is at level 2 or above, we need to build the flank structures of u1 and u2. Let v be a child node of u
that becomes a child node of u1 after the split (the case of u2 is analogous). Let Fu1

(i) be the flank structure
of u1 for v, and Fold the flank structure of u for v before the split. Fu1

(i) should store those endpoints in Fold

that do not belong to the segments of Scross. As the endpoints indexed by Fold are sorted by x-coordinate, in

linear I/Os, we can generate the list of endpoints to be stored in Fu1
(i), preserving their ordering. After this,

Fu1
(i) can be built in linear I/Os (Lemma 4). Hence, the flank structures of u1 and u2 can be constructed

using O(f + w(u)/B) I/Os in total, because they together manage at most w(u) endpoints.
At parent(u), we update its middle structure with a refine operation using O(w(u)/B + f2 log2 f)

(Lemma 2), feeding ℓ and the two copies of Scross obtained earlier. Next, we discuss how to build the flank

structures of parent(u) for u1 and u2—denote them, respectively, as Fparent(u)(i) and Fparent(u)(i+1) for

11

some i ∈ [1, f − 1]. Also, let F ′

old be the flank structure of parent(u) for u before the split. Fu(i + 1)
should store the endpoints in F ′

old that are on the right of ℓ. Fu(i) should store (i) the other endpoints of

F ′

old, and (ii) the left endpoints of the segments in Scross. In F
′

old, the at most w(u) endpoints are sorted in

ascending order of x-coordinate. Given that a copy of Scross is sorted in the same way, in O(w(u)/B) I/Os,
we generate the lists of endpoints managed by Fu(i) and Fu(i+1) respectively, where each list is sorted by

x-coordinate. Then, Fu(i) and Fu(i+ 1) are created in O(w(u)/B) I/Os with Lemma 4.

Recall that u may have bottom sets at its proper descendants. After the splits, those bottom sets no

longer exist, but instead we should build the bottom sets of u1 and u2. Furthermore, as new segments have

been added to the stabbing set of parent(u), some bottom sets of parent(u) may contain errors. Also

affected are the secondary structures dependent on the aforementioned bottom sets. Next, we explain a

bottom overhaul to fix all these issues, by processing the descendants of u in bottom-up manner.

Let z be a leaf descendant of u that is now a descendant of u1 (the case of u2 is similar). Create

the B-tree of φz(u1) by scanning the B-tree on φz(u) in O(b/B) I/Os (ignoring segments intersecting ℓ).
Regarding φz(parent(u)), the segments in Scross whose left endpoints are in σz should now be added to

φz(parent(u)). As those segment must be in φz(u) before the split, in O(b/B) I/Os, we can extract them

into a list sorted by y-coordinate, and then, merge the list into the B-tree of φz(parent(u)). After this,

bottomz(parent(u)) and if applicable, also bottomz(u1) and bottomz(u2), can be built in O(b/B) I/Os.
Note that the set of segments stored at z is not affected; hence, its B-tree before the split can be used directly.

As u has O(w(u)/b) leaf descendants, processing all of them takes O(w(u)
b

b
B) = O(w(u)/B) I/Os in total.

For every proper internal descendant of u, we rebuild its secondary structures mentioned in Lemma 5 in

O(hf logB N · log2 f) time. Since there are O(w(u)/(bf)) such internal nodes, the total cost is

O

(

w(u)

bf
hf logB N · log2 f

)

= O

(

w(u)

B logB N
log2 f

)

= o(w(u)).

We complete the bottom overhaul by applying Lemma 5 to u1, u2 and p, necessitating anotherO(hf logB N ·
log2 f) I/Os.

In summary, an internal split takes O(w(u)
B log2 f +w(u)+ f

2 log2 f +hf logBN · log2 f) time, which

is O(w(u)
B log2 f + w(u)) given the fact w(u) = Ω(bf).

Amortized Cost. The WBB-tree guarantees that when a node u is split, Ω(w(u)) insertions must have been

performed in its subtree since the creation of u. Hence, if u is a leaf, we charge the split cost over those

Ω(b) insertions, so that each insertion accounts for

O

(

f2 log2 f

b
+
b log2 b

Bb
+
hf logB N · log2 f

b

)

= O

(

1 +
log2 b

B
+
f · log2 f

B logB N

)

= o(log2 logB N)

I/Os. If u is an internal node, after amortization, each insertion bears O (1 + (1/B) log2 f) I/Os incurred
from splitting u. As an insertion bears such cost for O(h) nodes, its amortized cost increases by

O

(

h+
h log2 f

B

)

= O

(

h+
logf N · log2 f

B

)

= O

(

h+
log2N

B

)

which is O(logB N).

12

4.4 Bootstrapping

Currently, our ray-stabbing structure handles an update in O(logB N) I/Os amortized, but its query time is

O(b/B + logB N + K/B) = O(log3B N + K/B). Similar to the bootstrapping in Section 2, we use the

above structure to index the (at most b) segments stored in a leaf node, thus improving the query cost to

O(logBN +K/B). In a leaf split, this structure can be rebuilt in O(b logB b) = O(b logB logB N) time by

doing at most b insertions. Note that the structure does not need to be touched in a bottom overhaul (which

does not affect the segments stored in a leaf, as mentioned earlier). Hence, each update (on the bootstrapped

structure) is charged only additional O(logB logB N) I/Os. This completes the proof of Theorem 1.

5 Conclusions and Future Work

In the orthogonal ray stabbing problem, the input is a set S ofN horizontal segments in R2. Given a vertical

ray Q, a query reports all the segments in S intersecting Q. This paper has described a dynamic structure

in the external memory model that uses O(N/B) space, answers a query in O(logBN +K/B) I/Os, and
supports an insertion/deletion in O(logB N) I/Os amortized, where B is the block size and K the number

of reported segments. Setting B to an appropriate constant, the structure also works in internal memory,

retaining exactly the same efficiency.

An obvious direction for future work is to study whether the above result is helpful in attacking the

orthogonal segment intersection problem, where the input S is the same as before, but a query is given a

vertical segment Q, and reports all the segments in S intersecting Q. It would be a breakthrough to solve

the problem by matching the performance of ray stabbing, or argue against the existence of such a result. In

internal memory, our discussion has essentially focused on the pointer machine model, whereas it would be

interesting to improve the query and/or update efficiency using RAM features.

References

[1] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing uncertain data. In Proceedings of ACM Symposium on

Principles of Database Systems (PODS), pages 137–146, 2009.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Communications of

the ACM (CACM), 31(9):1116–1127, 1988.

[3] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range search indexing. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 346–357, 1999.

[4] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal of Computing,

32(6):1488–1508, 2003.

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multiversion B-tree.

The VLDB Journal, 5(4):264–275, 1996.

[6] E. Bertino, B. Catania, and B. Shidlovsky. Towards optimal indexing for segment databases. In Proceedings of

Extending Database Technology (EDBT), pages 39–53, 1998.

[7] G. E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection, and range reporting. In

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 894–903, 2008.

[8] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal of Computing, 15(3):703–724,

1986.

[9] S.-W. Cheng and R. Janardan. Efficient dynamic algorithms for some geometric intersection problems.

Information Processing Letters (IPL), 36(5):251–258, 1990.

13

[10] J. Enderle, N. Schneider, and T. Seidl. Efficiently processing queries on interval-and-value tuples in relational

databases. In Proceedings of Very Large Data Bases (VLDB), pages 385–396, 2005.

[11] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry. In

Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 714–723, 1993.

[12] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rectangular intersection with priorities. In Proceedings of ACM

Symposium on Theory of Computing (STOC), pages 639–648, 2003.

[13] C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line segment intersection reporting in

logarithmic time. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

618–627, 2003.

[14] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving data. ACM Computing Surveys,

31(2):158–221, 1999.

Appendix

Proof of Lemma 1. We assign each long segment s ∈ S to the widest multi-slab it spans. A multi-slab

is large if it has at least B segments (assigned to it), and is small otherwise. Let Slow be the union of the

B lowest segments in each multi-slab. All the segments of a small multi-slab are in Slow. We index the

O(f2B) segments in Slow with a persistent B-tree [5] so that the segments intersecting a vertical ray can be

reported efficiently. For each large multi-slab X, create a B-tree on the y-coordinates of its segments. Call

the B-tree a multi-slab B-tree.

To answer a query with a ray Q, first search the persistent B-tree to report all the segments intersecting

Q. For each large multi-slab X, if B segments have been reported (as can be detected using the sentinel

trick in Section 2.2, namely, by marking some segments in the persistent tree as sentinels), deploy the B-tree

of X to report the other qualifying segments of X in ascending order of y-coordinate. The query cost is

O(logB f) plus the linear output cost, where the logarithmic term comes from querying the persistent B-tree.

To support updates, we maintain a B-tree Tlow that indexes the segments in Slow by the ids of their

origin multi-slabs. Given any multi-slab X, Tlow allows us to retrieve the lowest B segments of X in

O(logB f
2) = o(logB N) I/Os. Furthermore, additional structures are needed in order to facilitate some

operations required later in Lemmas 2 and 3. For each ℓi (2 ≤ i ≤ f − 1), we create a B-tree on the

y-coordinates of the short segments intersecting ℓi. Call the B-tree a line B-tree. Furthermore, for each slab

σ, create a B-tree on the x-coordinates of all (long and short) the segments whose endpoints are covered by

σ. Call this B-tree a slab B-tree.

All structures use linear space, except that a line/slab B-tree occupies at least one block in any case. As

each segment exists in constant structures, the space consumption is O(f +N/B).
Next, we describe updates. First note that the persistent B-tree can be constructed in O(f2 log2 f) I/Os

with the algorithm in [11]. Using a block to buffer updates, we apply global rebuilding to update the structure

in O(f
2

B log2 f) = o(logB N) I/Os per insertion and deletion.

Inserting/deleting a short segment s only requires updating a line B-tree and a slab B-tree. Consider

inserting a long segment s to S . First, update the relevant slab and multi-slab B-trees. Assume that s
belongs to multi-slab X. Using Tlow, check in o(logB N) I/O whether s is among the B lowest segments

in X. If no, the insertion is complete. Otherwise, insert s in Slow (updating the relevant structures), and if

Slow now has B + 1 segments from X, delete the highest segment of X in Slow. Accordingly, the sentinel
segment ofX can be maintained, if necessary, with an insertion and perhaps also a deletion in the persistent

B-tree.

Deleting a long segment from S can be handled in a reverse manner with the same overhead.

Proof of Lemma 2. We will utilize the structure described in the proof of Lemma 1.

14

σr

s1

σ

σl σ1 . . . σ2

s2

ℓ ℓr

s3

s4

X

Xr

Figure 8: Proof of Lemma 2

Let σ1 be the slab next to σ on the right. Let X be a multi-slab that starts from σ1 and ends at some

slab σ2 (it is possible that σ2 = σ1). Denote by Xr the multi-slab after refinement that starts from σr and
ends at σ2. See Figure 8. Consider a segment slong of X. After refinement, slong belongs to either Xr or

X, depending on whether the left endpoint of slong is in σl or σr. For example, in Figure 8, s1 (s2) is a long
segment that will appear in Xr (X). In O(logB f) I/Os, we can obtain a list of segments (currently) in X
sorted by y-coordinate: if X is large, such a list is already availabe from its multi-slab B-tree; otherwise,

we retrieve all the (less than B) segments of X from Tlow. Then, we can generate two lists of segments that

should belong toXr andX after refinement, respectively. In both lists, segments are sorted by y-coordinate.

The cost of the generation is linear to the number of segments inX before refinement.

Let ℓr be the right boundary of σ. Consider a short segment sshort intersecting ℓr before refinement.

After refinement, sshort may or may not become long. It will, if its left endpoint is in σl, in which case it

will belong to multi-slab σr. Otherwise, it will not. For example, in Figure 8, s3 (s4) is a short segment that

will become long (remain short). Hence, from the line B-tree of ℓr, we can generate a list of segments that

have become long or remain short, respectively. In both lists, segments are sorted by y-coordinate. The cost

is linear to the number of short segments intersecting ℓr before refinement.

So far we have obtained a sorted list for each new/affected multi-slab on the right of ℓ, and a sorted list of
the short segments intersecting ℓr after refinement. Symmetrically, we can do the same with respect to each

new/affected multi-slab on the left of ℓ, and the left boundary ℓl of σ. The total cost is O(f logB f +α/B).
After this, all the corresponding multi-slab/line B-trees can be constructed in O(α/B + f) I/Os. Tlow and

the persistent B-tree can be rebuilt in O(f2 log2 f) I/Os.
Finally, we rebuild the line B-tree of ℓ, and the slab B-trees of σl and σr in O(α/B) I/Os. In total, a

refine operation takes O(f logB f + f2 log2 f + α/B) = O(f2 log2 f + α/B) I/Os.

Proof of Lemma 3. Again, our discussion is based on the structure described in the proof of Lemma 1.

Refer to the middle structure for the problem defined on (S1, L1) as the first middle structure, and to

the one on (S2, L2) as the second middle structure. As mentioned in the proof of Lemma 2, in O(logB f)
I/Os, we can obtain a list of all the segments in a multi-slab, sorted by y-coordinate. Hence, the lists of all

f2 multi-slabs can be generated in O(f2 logB f) I/Os, after which they can be merged on y-coordinates in

O((N/B) log2 f) I/Os. By scanning this merged list and the line B-tree of ℓ, in O(N/B) I/Os, we create
Scross with its segments sorted by y-coordinate. Another copy of Scross where its segments are sorted by

x-coordinate can be obtained easily from the slab B-trees in O(f +N/B) I/Os.
If a multi-slab does not intersect ℓ, its B-tree can be re-used directly in either the first or second middle

structure. Likewise, every line B-tree (except, obviously, the one on ℓ) can also be re-used. Tlow and

the persistent B-trees of the two new middle structures can be constructed in O(f2 log2 f) I/Os from the

15

multi-slab lists obtained earlier. Finally, the slab B-trees of the twomiddle structures are built inO(f+N/B)
I/Os from the original slab B-trees.

Proof of Lemma 4. First, build the base tree, namely, a B-tree on the x-coordinates of all the data points.

Each leaf node stores between B/4 and B coordinates, while an internal node node has between B/4 and

B child nodes. If a data point’s x-coordinate is in a leaf, we store the point in the leaf as well. Assume that

the leaf nodes are at level 0, and that the parent of a level-l node is at level l + 1.
As discussed in [3], each internal node u is associated with at most B2 prior points defined as follows.

Let v1, ..., vB be the child nodes of u. If u is the root of the base tree, for each child vi, u stores theB highest

points from the subtree of vi. Otherwise, for each vi, u stores theB highest points from the subtree of vi that
are not a prior point at any proper ancestor of u. In any case, denote the set of those B points as prioru(i).
Let prioru = prioru(1) ∪ ... ∪ prioru(B). The (at most) B2 points in prioru are indexed by a structure

called a B2-structure. Consuming O(B) space, the B2-structure answers a lower-open 3-sided range query

in O(1) I/Os plus the linear output time. If the B2 points indexed have been sorted by x-coordinate, the

structure can be built in O(B) I/Os [3], and supports an update in O(1) I/Os per insertion and deletion. In

addition, create a B-tree on the y-coordinates of the points in prioru.
We build the B2-structures of internal nodes in bottom-up order, i.e., finishing with all the nodes at a

level before attending to the parent level. Let u be a node at level 1, with child nodes v1, ..., vB (which are

leaves). For each i ∈ [1, B], obtain the B points stored in vi in one I/O. These points form prioru(i). After
this, the B2-structure of u is constructed in O(B) I/Os. The B-tree on prioru be easily built in O(B) I/Os.

Now, consider u instead as a node at level l ≥ 2, with v1, ..., vB as its child nodes. For each i, with
the B-tree on prior(vi), we obtain the B highest points from prior(vi) in one I/O; and they constitute

prioru(i). The B2-structure of u is then created in O(B) I/Os. Some additional processing is necessary

at vi. Suppose that a point o from prior(vi) has been included in prioru(i). Accordingly, o is deleted

from the B2-structures at vi with O(1) I/Os. We also need to promote a point, say o′, by inserting it

in prior(vi). Specifically, o′ is the highest of the prior points at the child nodes of vi. Recursively, the

promotion necessitates similar promotions along a path from vi to a leaf. As shown in [3], all these

promotions can be performed with a bubble-up procedure in O(l) I/Os. In total, at most B2 bubble-up

procedures are performed due to u, entailing O(lB2) I/Os.
In summary, the secondary structures of each node at level 1 can be built in O(B) I/Os, whereas those

of a node at level l ≥ 2 in O(lB2) I/Os. As there are at most N/(B/4)l+1 nodes at level l ≥ 1, the total
cost of creating all the secondary structures is

O

(

N

B2
· B +

h
∑

l=2

N

(B/4)l+1
lB2

)

= O(N/B)

where h is the level of the base tree’s root.

Proof of Lemma 5. For each p, we first merge the segments of bottomv1(p), ..., bottomvf (p) into a list

where the segments are sorted by y-coordinate. As each bottomvf (p) has at most B logB N segments, the

merge can be done in O(1
B fB logB N · log2 f) = O(f logB N · log2 f) I/Os. Then, bottomu(p) can be

acquired by reading the first B logB N segments of the merged list, after which the B-tree on bottomu(p)
can be created in O(logB N) I/Os. Hence, the B-trees of bottomu(p) for all p can be constructed with cost

O(hf logB N · log2 f).
To build the bottom structure Πu(i), first generate πu(i)—as defined in (1)—bymerging the bottomvi(p)

of all p. As u has at most h proper ancestors, the merge takes O(1
BhB logBN · log2 h) = O(h logB N ·

log2 h) time. Then, Πu(i) can be created in O(h logB N) I/Os. Hence, all the bottom structures can

be constructed with cost O(hf logB N · log2 h). To build the pilot structure Pu, collect the lowest B

16

segments from each πu(i), and sort the at most fB segments collected by x-coordinate. This requires

O((fB/B) log2 f) = O(f log2 f) time. Pu can then be constructed in O(f) I/Os using Lemma 4.

To build the rank B-tree Γu(p), first obtain γu(p) by merging the bottomvi(p) of all i ∈ [1, f] in
O(f logB N · log2 f) I/Os, and then create Γu(p) from γu(p) in O(f logB N) I/Os. Hence, all the rank

B-trees can be constructed with cost O(hf logBN · log2 f).
We have built all the secondary structures stated in the lemma using O(hf logB N · (log2 f + log2 h))

I/Os. Note that log2 h = O(log2 logB N). If logB N ≤ B, then log2 h = O(log2B) = O(log2 f) because
f = B1/3. Otherwise, f = (logB N)1/3 and log2 h is clearly still O(log2 f). The lemma thus follows.

17

