
Finding Approximate Partitions and Splitters
in External Memory∗

Xiaocheng Hu† Yufei Tao† Yi Yang‡ Shuigeng Zhou‡

†Chinese University of Hong Kong ‡Fudan University
{xchu, taoyf}@cse.cuhk.edu.hk {yyang1, sgzhou}@fudan.edu.cn

ABSTRACT

This paper studies two fundamental problems both of which
are defined on a set S of elements drawn from an or-
dered domain. In the first problem—called approximate K-
partitioning—we want to divide S into K disjoint partitions
P1, ..., PK such that (i) every element in Pi is smaller than
all the elements in Pj for any i, j satisfying 1 ≤ i < j ≤ K,
and (ii) the size of each Pi (1 ≤ i ≤ K) falls in a given
range [a, b]. In the second problem—called approximate K-
splitters—we want to find K − 1 elements s1, ..., sK−1 from
S , such that the size of S ∩ (si, si−1] falls in a given range
[a, b] (define dummy s0 = −∞ and sK = ∞).

We present I/O-efficient comparison-based algorithms for
solving these problems, and establish their optimality by
proving matching lower bounds. Our results reveal that the
two problems are separated in terms of I/O complexity when
K is small, but have the same hardness when K is large.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complex-

ity]: Nonnumerical Algorithms and Problems

Keywords

Approximate partitioning, approximate splitters, external
memory, lower bound

1. INTRODUCTION
Let S be a set of N elements drawn from an ordered do-

main. Given two elements e1, e2, we use the natural nota-
tions e1 < e2 and e1 > e2 to indicate that e1 is before and
after e2 in their domain, respectively. Furthermore, in the
former (latter) case, we say that e1 is smaller (larger) than

∗Xiaocheng Hu and Yufei Tao were supported in part by
projects GRF 4165/11, 4164/12, and 4168/13 from HKRGC.
Yi Yang and Shuigeng Zhou were supported in part by the
Research Innovation Program of Shanghai Municipal Edu-
cation Commission under grant No. 13ZZ003.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA’14, June 23–25, 2014, Prague, Czech Republic.

Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00.

Http://dx.doi.org/10.1145/2612669.2612691.

e2. Also, by [e1, e2], we refer to the set of elements e in
the underlying domain such that e1 ≤ e ≤ e2. Notations
(e1, e2] and [e1, e2) are defined analogously (i.e., exclusive at
e1 and e2, respectively). Denote by −∞ and ∞ two special
elements that are smaller and larger than all the elements
in S , respectively.

We study two problems defined on S . In the first
problem—called approximate K-partitioning—we are given
(i) an integer K of which N is a multiple and (ii) an integer
interval [a, b], and want to divide S intoK disjoint partitions
P1, ..., PK such that both of the following hold:

• Every element in Pi is smaller than all the elements in
Pj for any i, j satisfying 1 ≤ i < j ≤ K.

• a ≤ |Pi| ≤ b for all i ∈ [1, K].

The algorithm is required to output P1, ..., PK in a linked
list, where the elements of P1 precede those of P2, followed
by those of P3, and so on. The relative positions of the
elements in the same partition are not important.

In the second problem—called approximate K-splitters—
it is not necessary to actually perform the partitioning; in-
stead, the goal is to indicate where to. Formally, we are given
the same parameters as in approximate K-partitioning, but
want to find K − 1 elements s1, ..., sK−1 from S called split-
ters with the property below:

• Suppose s1 < ... < sK−1, and let s0 = −∞ and sK =
∞. Then, a ≤ |S ∩(si−1, si]| ≤ b for every i ∈ [1,K].

An algorithm can output the splitters in any order.

Motivation. Both the above problems are frequently en-
countered in manipulating ordered elements. Partitioning
naturally arises, for example, in distributing S onto a num-
ber K of machines for parallel processing. Achieving a
perfectly balanced load (where each machine is responsible
for N/K elements) is a special instance of approximate K-
partitioning with a = b = N/K. As we will see, interestingly,
the cost of partitioning can be reduced if one is satisfied with
a roughly balanced distribution where each machine is allo-
cated at least a but at most b elements (with a 6= b). Split-
ters, on the other hand, have been very useful in building
statistical profiles of S . For example, the bucket boundaries
of an equi-depth histogram of K buckets (also known as a
(1/K)-quantile) correspond to the output of the approximate
K-splitters problem with a = b = N/K. If one can accept
a nearly equi-depth histogram where each bucket covers at
least a but at most b elements, then the bucket boundaries

can be found in less—sometimes even sublinear—time, as
we will show in this paper.

Math Conventions and Computation Model. We are
interested in solving the two problems in the external mem-
ory (EM) model [1]. In this model, a machine is equipped
with memory of size M words, and a disk that has been for-
matted into blocks of size B words. It holds that M ≥ 2B.
An I/O operation either reads a block of data from the disk
to memory, or writes B words in memory to a disk block.
The cost of an algorithm is measured by the number of I/Os
performed. CPU calculation is free. All the algorithms dis-
cussed in this paper are comparison based, and adhere to
the indivisibility assumption that each data element is al-
ways stored as a whole.

We define lgx y = max{1, logx y}. The base x equals 2 if
omitted. Linear cost refers to O(N/B) when the problem at
hand has an input size of N .

1.1 Parameter Ranges and Companion Prob-
lems

It is easy to see that the parameters a, b and K must
satisfy the conditions

a ≤ N/K and b ≥ N/K;

otherwise, the approximate K-partitioning and K-splitters
problems both have no solution.

Let us quickly get rid of the case K = N . In such a sce-
nario, approximate K-partitioning degenerates into sorting,
while for approximate K-splitters an algorithm can simply
return the input S directly. Henceforth, we will consider
K ≤ N/2.

When a = 0, the approximate K-partitioning/splitters
problem is said to be left-grounded. Similarly, when b = N ,
the problem is right-grounded. When a 6= 0 and b 6= N , the
problem is said to be two-sided.

The problems we study are closely related to two other
important problems:

• Multi-Partition: Besides S , we are given K−1 integers
σ1, ..., σK−1, and need to partition S into P1, ..., PK

such that (i) |Pi| = σi for each i ∈ [1, K − 1], and (ii)
all elements in Pi are smaller than those in Pj for any
i, j satisfying 1 ≤ i < j ≤ K.

• Multi-Selection: Besides S , we are given K ranks1

r1, ..., rK , and need to report K elements e1, ..., eK in
S such that ei (1 ≤ i ≤ K) has rank ri in S .

1.2 Previous Results
It is clear that all the above problems can be trivially

solved by sorting in O(N
B
lgM/B

N
B
) I/Os. The interesting

question is when it is possible to do better.
The multi-partition problem is already well understood.

Aggarwal and Vitter [1] gave an algorithm that performs
O(N

B
lgM/B K) I/Os, which is optimal (we suspect that the

optimality may be folklore, but we are not aware of a pub-
lished proof of the lower bound; thus, we give one in the
appendix—see the proof of Lemma 5).

Multi-selection can be also be solved in O(N
B
lgM/B K)

I/Os by first doing a multi-partition, and then returning the

1We follow the convention that, in an ordered set, the ele-
ment with rank i is the i-th smallest in the set.

largest element of each partition. In internal memory, the
problem requires Θ(N lgK) comparisons [7]. Combining the
internal-memory lower bound with a general result of Arge,
Knudsen and Larsen [2] gives a lower bound Ω(N

B
lgM/B

K
B
)

in EM. Therefore, the aforementioned approach (by resort-
ing to multi-partition) is not optimal when K is small. It
remains open to close this gap.

A multi-partition algorithm can be directly applied to
solve the approximate K-partitioning problem: simply di-
vide S into K partitions of equal size. Therefore, regardless
of a and b, approximate K-partitioning can always be set-
tled in O(N

B
lgM/B K) I/Os. This further implies that the

same bound holds on the approximate K-splitters problem
(first do approximate K-partitioning and then return each
partition’s max element).

Recently, Hu et al. [6] studied a special instance of the ap-
proximate K-splitters problem, where K = M , a = c1N/M ,
and b = c2N/M , with c1 and c2 being some constant. They
gave an algorithm solving the problem in O(N/B) I/Os.
Unfortunately, their algorithm does not extend to the case
where K > M , and/or arbitrary a and b.

1.3 Our Main Results
In this work, we present matching upper and lower bounds

for both the approximate K-partitioning and splitters prob-
lems.

Lower Bounds. Concerning approximate K-splitters, our
first result is:

Theorem 1. For any a ∈ [2, N/K], any comparison-
based algorithm solving the right-grounded approximate K-
splitters problem must perform Ω((1 + aK

B
) lgM/B

K
B
) I/Os

in the worst case.

Note that when a = o(N/(K lgM/B
K
B
)), the lower bound

is sublinear (as we will see, this bound is tight)! This is
interesting because all the existing lower bound machineries
[1, 2, 5] in EM are inherently designed to prove bounds at
least linear, while our argument circumvents this obstacle.

Our second result on approximate K-splitters is:

Theorem 2. For any b ∈ [N/K,N/2], any comparison-
based algorithm solving the left-grounded approximate K-
splitters problem must perform Ω(N

B
lgM/B

N
bB

) I/Os in the
worst case.

As a corollary, for any a ∈ [2, N/K] and any b ∈
[N/K,N/2], any algorithm solving the two-sided approxi-
mate K-splitters problem must incur

Ω

(

max

{(

1 +
aK

B

)

lgM/B

K

B
,
N

B
lgM/B

N

bB

})

I/Os in the worst case.
Concerning approximate K-partitioning, we prove:

Theorem 3. If lgN ≤ B lg M
B
, any comparison-based

algorithm solving the approximate K-partitioning problem
must perform Ω(N

B
lgM/B min

{

N
b
, N
B

}

) I/Os in the worst
case.

Interestingly, our proof of the above theorem does not
use combinatorial arguments, but is instead derived from
an elegant reduction from multi-partition to left-grounded
approximate K-partitioning.

Lower bound Upper bound Remarks

right Θ((1 + aK
B

) lgM/B
K
B
) Thm 1, 5

K-splitters left Θ(N
B
lgM/B

N
bB

) Thm 2, 5

2-sided Θ
(

(

1 + aK
B

)

lgM/B
K
B

+ N
B
lgM/B

N
bB

)

Thm 1, 2, 5

right Ω(N/B) O(N
B

+ aK
B

lgM/B min{K, aK
B

}) Sec 3, Thm 6

K-partitioning left Θ(N
B
lgM/B min

{

N
b
, N
B

}

) Thm 3, 6

2-sided Ω(N
B
lgM/B min

{

N
b
, N
B

}

) O(aK
B

lgM/B min{K, aK
B

}+ N
B
lgM/B min{N

b
, N
B
}) Sec 3, Thm 3, 6

Table 1: Summary of our results

Upper Bounds. In terms of algorithms, our main contri-
bution is an optimal solution to multi-selection:

Theorem 4. There is an algorithm that solves the multi-
selection problem in O(N

B
lgM/B

K
B
) I/Os.

This finally closes the gap between the upper and lower
bounds on this problem. Equipped with this new weapon,
we present algorithms for both the approximate K-splitters
and approximate K-partitioning problems with optimal
performance (except for a single case of approximate K-
partitioning where the value of aK is close to N). Table 1
summarizes these results.

The establishment of Theorem 4 has another implica-
tion. As mentioned earlier, there is a lower bound of
Ω(N

B
lgM/B K) on the multi-partition problem. Hence,

Theorem 4 formally separates multi-selection from multi-
partition in terms of I/O-complexity. Notice that the sep-
aration occurs only for small K, whereas for large K, the
two problems have the same hardness. This phenomenon
is interesting because in internal memory the two problems
have exactly the same complexity: both demand Θ(N lgK)
comparisons.

2. LOWER BOUNDS: APPROXIMATE K-

SPLITTERS
In this section, we establish our lower bounds for the ap-

proximate K-splitters problem. As before, let s1, ..., sK−1

in ascending order be the splitters returned by an algo-
rithm. Define dummy s0 = −∞ and sK = ∞. Given a
pair of consecutive splitters si−1 and si (1 ≤ i ≤ K), we
say that they induce a partition P on the dataset S where
P = S ∩(si−1, si]. Recall that |P | must fall between a and
b.

2.1 Right-Grounded
This subsection serves as a proof for Theorem 1 (i.e., b =

N). Let us first discuss the simple case K < αM—where
α is a constant to be determined later—under which the
target lower bound is Ω(1 + aK

B
). Consider an algorithm

that sees N0 ∈ [0, N] elements S during its execution. In the
K partitions induced by the returned splitters, there must
exist a partition P containing at most N0/K seen elements.
Since all the other N−N0 elements have not been seen, they
can have any possible ranks in S , so it is possible that none
of them is in P , i.e., |P | ≤ N0/K. By problem definition,
|P | ≥ a, which gives N0/K ≥ a. Hence, N0 ≥ aK, which
means the algorithm must spend Ω(1 + N0

B
) = Ω(1 + aK

B
)

I/Os.
The rest of the subsection assumes K ≥ αM , where our

target lower bound becomes Ω(aK
B

lgM/B
K
B
). We define a

family Πhard of hard permutations of S as follows. First
recall that S is initially stored in N/B input blocks, each
with B elements. For each i ∈ [1, B], let Si be the set
consisting of the i-th element of every input block. Then,
Πhard consists of all those permutations where for any i, j
satisfying 1 ≤ i < j ≤ B, every element in Si is smaller than
all elements in Sj . Clearly, |Πhard| = ((N/B)!)B .

Consider an algorithm that solves the problem in H I/Os.
Let Π be the set of permutations in Πhard that are consistent
with all the comparisons performed by the algorithm. A
standard argument (see appendix) shows that:

Lemma 1. |Π| ≥ ((N/B)!)B/
(

M
B

)H
.

Next, we will derive an upper bound on |Π| (which will
then yield a lower bound on H together with Lemma 1). For
this purpose, we will analyze |Π| by resorting to order theory.
Let us first define some general concepts concerning partial
orders. Let ≺ be a partial order defined on some domain.
Consider a set X of elements from this domain, and π a
permutation of X. We say that π is consistent with ≺ if,
for any x, y ∈ X such that x ≺ y, x precedes y in π. Let
CP(≺, X) be the set of permutations of X consistent with
≺.

Now we are ready to proceed with our analysis on |Π|.
First, define a partial order ≺⋆ over S as follows: given two
elements x, y ∈ S , x ≺⋆ y if and only if x precedes y in all
the permutations in Π. We prove the following intuitive fact
in the appendix:

Fact 1. Π = CP(≺∗,S).

Let x, y be two different elements in S . If either x ≺⋆ y
or y ≺⋆ x holds, we say that they are comparable; otherwise,
they are incomparable. We observe:

Fact 2. For any i, j satisfying 1 ≤ i < j ≤ K−1, si and
sj are comparable.

Proof. Suppose that si and sj are incomparable. Then
we can find a permutation π ∈ CP(≺∗,S) in which si pre-
cedes sj without any element between them. By Fact 1,
π ∈ Π, so the algorithm has to be correct on π. However,
the partition induced on π between si and sj has only one el-
ement sj , contradicting the requirement that each partition
has size at least a ≥ 2 (as is a condition of Theorem 1).

By Fact 2, we have that s1 ≺⋆ ... ≺⋆ sK−1. For each i ∈
[2, K−1], define Ti = {x ∈ S | si−1 ≺⋆ x ≺⋆ si}. Also define
T1 = {x ∈ S | x ≺⋆ s1} and TK = {x ∈ S | sK−1 ≺⋆ x}.

Fact 3. |Ti| ≥ a−1 for each i ∈ [1,K−1], and |TK | ≥ a.

Proof. For any i ∈ [2, K−1], there exists a permutation
π ∈ CP(≺∗,S) = Π in which only elements in Ti are between
si−1 and si. Therefore, the partition induced on π between
the two splitters is exactly Ti ∪ {si}, implying that |Ti| ≥
a−1. |T1| ≥ a−1 and |TK | ≥ a can be proved similarly.

We also need the following basic facts from order theory:

Fact 4. Let ≺ be a partial order over a finite set X. If
X can be divided into disjoint partitions X1 and X2, such
that x ≺ y holds for any x ∈ X1 and y ∈ X2, then |CP(≺
, X)| = |CP(≺, X1)| · |CP(≺, X2)|.

Fact 5. Let ≺ be a partial order over a finite set X. For
any subset Y ⊆ X, it holds that |CP(≺, X)| ≤ |CP(≺, Y)| ·

|CP(≺, X \ Y)| ·
(

|X|
|Y |

)

.

Now we are ready to give an upper bound of |Π| = |CP(≺⋆

,S)|, as promised earlier:

Lemma 2.

lg |CP(≺⋆,S)| ≤ B lg((N/B)!) − aK lg(K/B)

+O(K lg a)

Proof. In this proof, we abbreviate CP(≺⋆, X) into
CP(X) for any X ⊆ S . Recall that the elements in S come
from B disjoint sets S1, ...,SB , where each Si (1 ≤ i ≤ B)
takes the i-th element of every input block. In any permuta-
tion π ∈ Π, for any x ∈ Si and y ∈ Sj (1 ≤ i < j ≤ B), we
have that x precedes y in π because Π ⊆ Πhard. Therefore,
x ≺⋆ y by the definition of ≺⋆.

For each i ∈ [1, K− 1], let Ai be a set consisting of si and
a−1 arbitrary elements from Ti. Also let AK be a set consist-
ing of a arbitrary elements in Tk. By Fact 3, A1, ..., AK exist.
By definition, for any x ∈ Ai and y ∈ Aj (1 ≤ i < j ≤ K),
we have that x ≺ y. Let A = A1 ∪ ... ∪ AK . Therefore,

|CP(S)|

=
B
∏

i=1

|CP(Si)| (by Fact 4)

≤
B
∏

i=1

((

|Si|

|Si \A|

)

· |CP(Si \ A)| · |CP(Si ∩A)|

)

(by Fact 5)

=
B
∏

i=1

((

|Si|

|Si \A|

)

· |CP(Si \ A)| ·
K
∏

j=1

|CP(Si ∩Aj)|

)

(by Fact 4)

≤
B
∏

i=1

((

|Si|

|Si \A|

)

· |Si \A|! ·
K
∏

j=1

|Si ∩ Aj |!

)

. (1)

Then the lemma follows from simplification of (1), which
can be found in the appendix.

Let β be the hidden constant in the term O(K lg a) in 2.
Now we fix α = 22β . Lemmas 1 and 2 give

B lg((N/B)!)−H lg

(

M

B

)

≤ B lg((N/B)!)− aK lg(K/B) + βK lg a.

Hence:

H lg

(

M

B

)

≥ aK lg(K/B)− βK lg a

⇒ H · B lg
M

B
= Ω(aK lg(K/B)− βK lg a)

⇒ H = Ω((aK/B) lgM/B(K/B))

as needed, where the last step used the fact that
a lg(K/B) ≥ a lg(αM/B) ≥ 2aβ.

2.2 Left-Grounded
This subsection will prove Theorem 2 (i.e., a = 0). Let

us first start with the simple case N/b < αM—where α is
a constant to be determined later—under which our target
lower bound becomes Ω(N/B). Consider an algorithm that
sees N0 ∈ [0, N] elements in S during its execution. Then,
we can construct a permutation, such that all the N − N0

unseen elements are in the same partition induced by the
splitters. By problem definition, N−N0 ≤ b, which together
with the condition b ≤ N/2 (of Theorem 2) implies that
N0 ≥ N/2. Hence, the algorithm must perform Ω(N/B)
I/Os.

The rest of the subsection assumes that N/b ≥ αM . Let
Πhard and H be defined in the same way as in Section 2.1.
Lemma 1 still holds, giving a lower bound on |Π|.

To prove an upper bound on |Π|, we consider the same
partial order ≺⋆ defined in Section 2.1. As before, given
elements x, y ∈ S , they are comparable if either x ≺⋆ y or
y ≺⋆ x holds; otherwise, they are incomparable. Fact 1 still
holds.

Define Ti = Si \{s1, ..., sK−1} for each i ∈ [1, B], i.e., Ti is
the set of non-splitter elements in Si. Let T = T1 ∪ ... ∪ TB,
i.e., T is the set of all the non-splitter elements. Note that
|T | ≥ N/2 because K ≤ N/2.

Fact 6. For any i ∈ [1, B], let A be a subset of Ti, such
that all the elements in A are pairwise incomparable. Then
|A| ≤ b.

Proof. Since the elements in A are pairwise incompara-
ble, there exists a permutation π ∈ CP(≺∗,S) = Π, such
that all the elements of A appear consecutively in π. Fur-
thermore, A ⊆ Ti implies that A does not contain any split-
ter. Therefore, there exists a partition induced on π by the
splitters which contains all the elements in A. The size of
the partition must be at most b, so |A| ≤ b.

In the appendix, we prove a general lemma in order the-
ory:

Lemma 3. Consider a partial order ≺ over a finite set X
of n elements. Any set of pairwise incomparable elements
from X has size at most w. Then, lg |CP(≺, X)| ≤ n lgw +
O(lg n).

Combining Fact 6 and Lemma 3, we know that, for each
i ∈ [1, B]:

lg |CP(≺⋆, Ti)| ≤ |Ti| lg b+O(lg |Ti|). (2)

Now we show an upper bound on |CP(≺⋆,S)|:

Lemma 4.

lg |CP(≺⋆,S)| ≤ B lg((N/B)!)− |T | lg(|T |/(bB))

+O(|T |)

Proof. In this proof, we abbreviate CP(≺⋆, X) into
CP(X) for any X ⊆ S . Recall that for any 1 ≤ i < j ≤ B,
x ∈ Si and y ∈ Sj , it holds that x ≺⋆ y. Therefore,

|CP(S)|

=

B
∏

i=1

|CP(Si)| (by Fact 4)

≤
B
∏

i=1

(

|Si|

|Ti|

)

· |CP(Si \ Ti)| · |CP(Ti)| (by Fact 5)

≤
B
∏

i=1

(

|Si|

|Ti|

)

· |Si \ Ti|! · |CP(Ti)|. (3)

Then the lemma follows from combining and simplifying (2)
and (3). See appendix for details.

Let β be the hidden constant in the term O(|T |) in
Lemma 4. Now we set constant α to be 22β . From Lem-
mas 1 and 4, we have

B lg((N/B)!) −H lg

(

M

B

)

≤ B lg((N/B)!) − |T | lg(|T |/(bB)) + β|T |.

Therefore,

H lg

(

M

B

)

≥ |T | lg(|T |/(bB))− β|T |

⇒ H ·B lg(M/B) = Ω(|T | lg(|T |/(bB))− β|T |)

⇒ H = Ω((N/B) lgM/B(N/(bB)))

as needed, where the last step used the fact that lg |T |
bB

≥

lg N
2bB

≥ lg αM
2B

≥ 2β.

3. LOWER BOUNDS: APPROXIMATE K-

PARTITIONING
In this section, we will prove the lower bound in Theo-

rem 3 for the approximate K-partitioning problem. Recall
that the goal is to divide the dataset S into K partitions
by respecting the ordering, such that the size of each parti-
tion falls in [a, b]. As in Section 2, we will discuss the left-
and right-grounded versions of the problem separately. The-
orem 3 will then follow from our results for these versions.

Right-Grounded. When b = N , any algorithm must see
all the elements at least once, as long as a ≥ 1 and K ≥ 2.
To understand this, suppose that the algorithm terminates
without seeing all elements. Consider an arbitrary seen el-
ement e and an arbitrary unseen element e′. Regardless of
whether the algorithm puts e, e′ in the same partition, the
adversary can always manipulate the value of e′ to call the
algorithm wrong. Therefore, any algorithm must perform
Ω(N/B) I/Os.

Left-Grounded. Now we will prove a lower bound for the
case where a = 0. For this purpose, let us define the precise
K-partitioning problem as the special instance of the multi-
partition problem with σ1 = ... = σK−1 = N/K. We will
first present a reduction from precise K-partitioning to left-
grounded approximate K-partitioning. Then, we will prove
a lower bound for the former problem.

Our reduction works as follows. Suppose that there is an
algorithm solving the left-grounded problem in F (N,K, b)
I/Os (recall that b ≥ N/K needs to hold). The same ar-
gument we gave for the right-grounded case implies that
F (N,K, b) = Ω(N/B) when b < N and K ≥ 2. Assuming
that N is a multiple of b, we can perform precise (N/b)-
partitioning as follows:

1. Solve an approximate K-partitioning problem to di-
vide S into partitions P1, ..., PK (in this order), where
each partition has size at most b.

2. Let R be an initially empty set. We process P1, ..., PK

in turn. At Pi (i ∈ [1, K]), we first append the entire
Pi to R. If |R| > b, divide R into disjoint partitions R1

and R2 such that every element in R1 is smaller than
all elements in R2, and |R1| = b. Then R1 is returned
as the next partition in the precise (N/b)-partitioning,
and R2 replaces R as we proceed to process Pi+1.

The first step requires F (N,K, b) I/Os, while the second step
requires O(N/B) I/Os in total. Therefore, we can solve
the precise (N/b)-partitioning in F (N,K, b) + O(N/B) =
O(F (N,K, b)) I/Os. However, in the appendix, we prove:

Lemma 5. If K ≥ 2 and lgN ≤ B lg M
B
, a comparison-

based algorithm solving the precise K-partitioning problem
must perform Ω(N

B
lgM/B min{K, N

B
}) I/Os in the worst

case.

The lemma then implies

F (N,K, b) = Ω((N/B) lgM/B min{N/b,N/B}).

Note that K has no effect on the lower bound. We thus
complete the proof of Theorem 3.

4. MULTI-SELECTION
This section develops a new algorithm for the multi-

selection problem. Towards this purpose, we will first solve a
relevant problem called L-intermixed selection in Section 4.1,
and then leverage our solution to attack multi-selection in
Section 4.2.

4.1 L-Intermixed Selection
Set m = cM for some sufficiently small constant c. Given

an integer L ∈ [1, m], the L-intermixed selection is defined
as follows. The input consists of:

• A set D with each element being a pair e = (ke, ge),
where ke is drawn from an ordered domain, and ge
is an integer in [1, L]. We refer to ke (ge) as the key
(group id) of e. For each i ∈ [1, L], denote by Di the set
of elements in D with group id i. Each of D1, ...,DL is
called a group.

• L integers t1, ..., tL, where 1 ≤ ti ≤ |Di| for each i ∈
[1, L].

The objective is to report, for each i ∈ [1, L], the element
ei with the ti-th smallest key in Di. Intuitively, we want to
solve L instances of rank selection, but the L datasets are
intermixed.

Algorithm. Whenever we compare two elements e and e′

from the same group, we are comparing their keys ke and ke′ .

Similarly, when we say e is the median of a subset S of some
group, we mean that e has the median key in S. If |D| ≤
M/3, the problem can be solved trivially by loading D and
t1, ..., tL entirely into memory. The subsequent discussion
assumes |D| > M/3.

Our algorithm can be thought of as concurrently running
L threads of the“median-of-medians” selection algorithm [3].
However, doing so naively would demand a block of memory
dedicated to each thread. This is an issue because it will
allow us to do only O(M/B) threads at a time, whereas
L = Ω(M). Next we show how to overcome the obstacle by
using only O(1) words of memory for each thread.

In the first step, by scanning D only once, we can divide
each group arbitrarily into subgroups of size at most 5, and
collect the median of each subgroup into a set Σ. To do
so, maintain L sets S1, ..., SL in memory, which are initially
empty. For each element e = (ke, ge) in D, we first insert e
into Sge . If |Sge | = 5, then Sge makes a subgroup, so we add
the median of Sge to Σ, and then clear the contents of Sge .
After all elements have been scanned, if any Si (1 ≤ i ≤ L)
is non-empty, then Si is the last subgroup of Di; its median
is added to Σ.

Now Σ consists of the medians of all the subgroups. For
each i ∈ [1, L], denote by Σi the set of elements with group
id i in Σ. By recursion, we can find the medians of Σ1, ...,ΣL,
denoted as µ1, ..., µL, respectively. With another scan of D,
we can obtain the rank θi of µi in Di for each i ∈ [1, L].

In the last step, we construct another (smaller) instance
of L-intermixed selection, with D′ = D′

1 ∪ ... ∪ D′
L and

t′1, ..., t
′
L as the input. For each i ∈ [1, L], if ti ≤ θi, then

D′
i = Di∩(−∞, µi] and t′i = ti; otherwise, D

′
i = Di∩(µi,∞)

and t′i = ti − θi. Clearly, by solving this instance, we also
solve the original L-intermixed selection problem. To cre-
ate the instance, we keep in memory t1, ..., tL, µ1, ..., µL,
θ1, ..., θL. Then, t′1, ..., t

′
L can be computed in memory. D′

can be generated with another scan of D in O(|D|/B) I/Os
as follows. For each element e ∈ D, let i ∈ [1, L] be its group
id (i.e., ge = i). By comparing e with µi and ti with θi, we
know whether e ∈ D′

i; if so, add e to D′.

Analysis. We now prove the efficiency of our algorithm:

Lemma 6. The above algorithm solves the L-intermixed
selection problem in O(|D|/B) I/Os.

Proof. Let F (D) be the cost of our algorithm on dataset
D. When |D| ≤ M/3, the algorithm simply solves the prob-
lem in memory. When |D| > M/3, the algorithm recurses on
Σ and D′, respectively, and scans D for a constant number
of times. Therefore,

F (D) =

{

O(|D|/B), if |D| ≤ M/3

O(|D|/B) + F (Σ) + F (D′), if |D| > M/3
.

Clearly, |Σ| =
∑L

i=1⌈|Di|/5⌉ ≤ |D|/5 + L. By the analysis
in [3], we can show that |D′

i| ≤
7
10
|Di|+ 3 for each i ∈ [1, L].

Hence, |D′| ≤ 7
10
|D| + 3L. So we have

|Σ|+ |D′| ≤
9

10
|D|+4L ≤

9

10
|D|+4cM ≤

(

9

10
+ 12c

)

|D|,

where the last inequality follows from |D| > M/3. By set-
ting c sufficiently small, |Σ| + |D′| is at most 19

20
|D|. Then

by standard analysis, the recursion is solved as F (D) =
O(|D|/B).

4.2 Solving Multi-Selection
Recall that in the multi-selection problem, we need to find

elements e1, ..., eK from S , such that each ei (1 ≤ i ≤ K)
has rank ri in S . Let m be as defined in Section 4.1. We first
show that the in the base case where K ≤ m, the problem
can be solved in linear I/Os. After that, we solve the general
case where K > m by decomposing it into base cases.

Base Case K ≤ m. As mentioned in Section 1.3, Hu et al.
[6] has solved the special case K = M,a = c1N/M and b =
c2N/M of approximate K-splitters in linear I/Os for some
constants c1 and c2. Let s1 < ... < sM−1 be the splitters
returned by their algorithm on S . Define Pi = S ∩ (si−1, si]
for each i ∈ [1,M] (define dummy s0 = −∞ and sM = ∞).
Note that |Pi| = Θ(N/M).

Consider the following instance of the K-intermixed se-
lection problem. For each i ∈ [1, K], let Pj (1 ≤ j ≤ M)
be the partition such that ei is in Pj . Define group Di =
{(e, i) | e ∈ Pj}, and rank ti = ri−(|P1|+...+|Pj−1 |). Then,
D = D1 ∪ ... ∪ DK . The output of this instance is exactly
the set of elements e1, ..., eK we want for the original multi-
selection problem. The instance can be solved in O(|D|/B)
I/Os by Lemma 6, which is O(N/B) because each group has
size Θ(N/M) and there are K < M groups.

It suffices to show that the instance can be constructed in
O(N/B) I/Os. To do so, we first obtain |P1|, ..., |PM | with
one scan of S , while keeping s1, ..., sM−1 memory resident.
After this, t1, ..., tK can be calculated in memory. We scan
S one more time to construct D as follows. For each ele-
ment e ∈ S , by comparing it with the splitters, we get the
partition id j ∈ [1,M] such that e ∈ Pj . Then, by from
the ranks r1, ..., rK and the partition sizes |P1|, ..., |PM |, we
can find (in memory) those group ids i ∈ [1, K] such that
Di should contain pair (e, i): specifically, find every i that
|P1|+ ...+ |Pj−1| < ri ≤ |P1|+ ...+ |Pj |. Once such an i is
found, insert pair (e, i) into D. In this manner, we generate
D in O(N/B) I/Os.

General Case: K > m. Set g = ⌈K/m⌉. Perform multi-
partition (using an algorithm of [1], which is reviewed in
Section 1.2) to divide S at ranks rm, r2m, ..., r(g−1)m into g
partitions P1, ..., Pg. Now for each i ∈ [1, g−1], the elements
of ranks r(i−1)m+1, ..., rim must be in Pi, and the elements
of ranks r(g−1)m+1, ..., rK must be in Pg. Since at most m
elements need to be selected from each partition, it suffices
to solve a base case on each of them.

Generating the partitions takes O((N/B) lgM/B g) =
O((N/B) lgM/B(K/B)) I/Os, while solving all the base

cases requires altogether O(
∑g

i=1 |Pi|/B) = O(N/B) I/Os.
We thus have completed the proof of Theorem 4.

5. ALGORITHMS FOR APPROXIMATE

K-SPLITTERS ANDK-PARTITIONING
This section presents algorithms for the approximate K-

splitters and K-partitioning problems.

5.1 ApproximateK-Splitters

Right-Grounded. Take a set S ′ of aK arbitrary elements
in S in O(1 + aK/B) I/Os. Then, simply return the 1

K
-

quantile of S ′ as the splitters s1, ..., sK−1, namely, si (1 ≤
i ≤ K−1) has rank ia in S ′. The cost is O((1+ aK

B
) lgM/B

K
B
)

by Theorem 4.

Left-Grounded. Set K′ = ⌈N/b⌉. Pick splitters
s1, ..., sK′−1 from S such that si (1 ≤ i ≤ K′−1) has rank ib

in S . This demands O(N
B
lgM/B

K′

B
) = O(N

B
lgM/B

N
bB

) I/Os

by Theorem 4. After that, if K′ < K, we select sK′ , ..., sK−1

as K −K′ arbitrary distinct elements in S \ {s1, ..., sK′−1}.
The total cost is O(N

B
lgM/B

N
bB

).

Two-Sided. We first get rid of the scenario where a ≥
N/2K or b ≤ 2N/K. In this case, we simply return the
1
K
-quantile of S as the splitters (namely, splitter si has

rank iN/K in S , where 1 ≤ i ≤ K − 1). The cost is
O(N

B
lgM/B

K
B
) = O(max{aK

B
lgM/B

K
B
, N
B
lgM/B

N
bB

}).
Henceforth, we assume a < N/2K and b > 2N/K. Set

K′ = ⌊ bK−N
b−a

⌋. It is easy to verify that K′ ∈ [1, K − 1].
Our algorithm partitions S into Slow and Shigh, such that
Slow consists of the aK′ smallest elements of S , and Shigh

the remaining ones. After that, we determine the splitters
s1, ..., sK−1 of S as follows:

• sK′ is the largest element of Slow;

• s1, ..., sK′−1 constitute the 1
K′

-quantile of Slow;

• sK′+1, ..., sK−1 constitute the 1
K−K′ -quantile of Shigh.

To see the correctness of our algorithm, consider the K
partitions induced by s1, ..., sK−1. Among them, we get K′

even partitions of Slow, and K−K′ even partitions of Shigh.
Since |Slow| = aK′, each of the partitions from Slow has
exactly a elements. To show that the partitions from Shigh

have legal sizes, it suffices to prove that |Shigh| = N − aK′

is in the range [a(K −K′), b(K −K′)]. This is true by our
choice of K′ and the facts that a < N/2K and b > 2N/K.

It takes O(N/B) I/Os to obtain Slow, Shigh and sK′ . By
Theorem 4, it takes O((|Slow|/B) lgM/B(K

′/B)) I/Os to
get s1, ..., sK′−1 from Slow, and O((|Shigh|/B) lgM/B(K −

K′)/B) I/Os to get sK′+1, ..., sK−1 from Shigh. As K −
K′ = Θ(N−aK

b−a
) = Θ(N/b), |Slow| = aK′ < aK, and

|Shigh| < N , we know that the total cost is bounded by
O(aK

B
lgM/B

K
B

+ N
B
lgM/B

N
bB

).

Theorem 5. For the approximate K-splitters problem,
there is an algorithm that solves

• the right-grounded version in O((1 + aK
B

) lgM/B
K
B
)

I/Os;

• the left-grounded version in O(N
B
lgM/B

N
bB

) I/Os;

• the two-sided version in O(aK
B

lgM/B
K
B
+ N

B
lgM/B

N
bB

)
I/Os.

The cost for all three versions is optimal according to the
lower bounds in Theorems 1 and 2.

5.2 Approximate K-Partitioning

Right-Grounded. Take the set S ′ of the a(K−1) smallest
elements of S in O(N/B) I/Os. Then, divide S ′ into K − 1
partitions of size a using the multi-partition algorithm of [1]
in O((1+ aK

B
) lgM/B min{K, aK

B
}) I/Os. Simply treat S \S ′

as the K-th partition (whose size is N − a(K − 1) ≥ a).

Left-Grounded. LetK′ = ⌈N/b⌉. Perform multi-partition
to divide S into K′ partitions of size at most b. If K′ <

K, simply add K −K′ empty partitions. The total cost is
O(N

B
lgM/B min{N

b
, N
B
}).

Two-Sided. The algorithm is analogous to our two-sided
approximate K-splitters algorithm, by simply replacing
multi-selection with multi-partition. More specifically, we
generate Slow and Shigh using the same K′. Then, we di-
vide Slow into K′ partitions of the same size, and Shigh

into K − K′ partitions of the same size, both respecting
the ordering. The total cost is O(aK

B
lgM/B min{K, aK

B
} +

N
B
lgM/B min{N

b
, N
B
}).

Theorem 6. For the approximate K-partitioning prob-
lem, there is an algorithm that solves

• the right-grounded version in O(N
B
+ aK

B
lgM/B min{K,

aK
B

}) I/Os;

• the left-grounded version in O(N
B
lgM/B min{N

b
, N
B
})

I/Os;

• the two-sided version in O(aK
B

lgM/B min{K, aK
B

} +
N
B
lgM/B min{N

b
, N
B
}) I/Os.

The cost for all three versions is optimal according to the
discussion in Section 3. In particular, we have matching up-
per and lower bounds whenever logN < B log(M/B) (which
is the condition of Theorem 3) and a ≤ N/(K lgM/B K).

6. REFERENCES
[1] Alok Aggarwal and Jeffrey Scott Vitter. The

input/output complexity of sorting and related
problems. Communications of the ACM (CACM),
31(9):1116–1127, 1988.

[2] Lars Arge, Mikael Knudsen, and Kirsten Larsen. A
general lower bound on the I/O-complexity of
comparison-based algorithms. In Algorithms and Data
Structures Workshop (WADS), pages 83–94, 1993.

[3] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt,
Ronald L. Rivest, and Robert Endre Tarjan. Time
bounds for selection. Journal of Computer and System
Sciences (JCSS), 7(4):448–461, 1973.

[4] Robert P. Dilworth. A decomposition theorem for
partially ordered sets. The Annals of Mathematics,
51(1):161–166, 1950.

[5] Jeff Erickson. Lower bounds for external algebraic
decision trees. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 755–761, 2005.

[6] Xiaocheng Hu, Cheng Sheng, Yufei Tao, Yi Yang, and
Shuigeng Zhou. Output-sensitive skyline algorithms in
external memory. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 887–900, 2013.

[7] Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and
Peter Sanders. Towards optimal multiple selection. In
International Colloquium on Automata, Languages and
Programming (ICALP), pages 103–114, 2005.

APPENDIX

Proof of Lemma 1

In our context, the algorithm only needs to focus on the
permutations in Πhard. Therefore, prior to reading a block,

the algorithm must have already known the ordering of the
elements there, regardless of whether the block had been
written by the algorithm before. Thus, the algorithm can
be described with a decision tree with fanout at most

(

M
B

)

.

The lemma follows from the fact that |Πhard| = ((N/B)!)B .

Proof of Fact 1

We first show Π ⊆ CP(≺⋆,S). Suppose that there is a per-
mutation π ∈ Π but π /∈ CP(≺⋆,S). This means that there
exist elements x, y such that x ≺⋆ y but y precedes x in π.
This is a contradiction by the definition of ≺⋆.

Next we show CP(≺⋆,S) ⊆ Π. Suppose that there is a
permutation π ∈ CP(≺⋆,S) but π /∈ Π. There must be
elements x, y such that x precedes y in π, but the algorithm
can infer y < x from the comparisons it has performed. But
y < x implies that y ≺⋆ x, which contradicts the assumption
that π ∈ CP(≺⋆,S).

Simplification of (1)

For each i ∈ [1, B] and j ∈ [1, K], let aij = |Si ∩ Aj |. Also

let ai = |Si ∩A| =
∑K

j=1 aij for each i ∈ [1, B]. By plugging

in |S1| = ... = |SB | = N/B, we have

|CP(S)| ≤ (1)

=

(

B
∏

i=1

(

N/B

ai

)

· (N/B − ai)!

)

·

(

K
∏

j=1

B
∏

i=1

aij

)

!

≤

(

B
∏

i=1

(N/B)!

ai!

)

·

(

K
∏

j=1

(

B
∑

i=1

aij

)

!

)

(in general, x!y! ≤ (x+ y)!)

= ((N/B)!)B · (a!)K/
B
∏

i=1

ai!

(for each j ∈ [1, K],

B
∑

i=1

aij = |Aj | = a).

This leads to:

lg |CP(S)|

≤ B lg((N/B)!) +K lg(a!)−

B
∑

i=1

lg(ai!)

≤ B lg((N/B)!) + aK lg a−
B
∑

i=1

ai lg ai +O(K lg a)

(by Stirling’s formula)

≤ B lg((N/B)!) + aK lg a

−

(

B
∑

i=1

ai

)

lg

(

1

B
·

B
∑

i=1

ai

)

+O(K lg a)

(by convexity of function x lg x)

≤ B lg((N/B)!) + aK lg a− aK lg(aK/B) +O(K lg a)

(by

B
∑

i=1

ai = |A| = aK)

= B lg((N/B)!) − aK lg(K/B) +O(K lg a).

Proof of Lemma 3

We will need:

Theorem 7 (Dilworth’s Theorem [4]). Let X be a
set of n elements, and ≺ a partial order over X. If X con-
tains at most w pairwise incomparable elements, then X can
be divided into w disjoint partitions X1, ..., Xw, such that el-
ements in each Xi (1 ≤ i ≤ w) are pairwise comparable.

In the sequel, we abbreviate CP(≺⋆, X) into CP(X) for
any X ⊆ S . Let X1, ..., Xw be as defined in the above theo-
rem, and ni = |Xi| (1 ≤ i ≤ n). By Fact 5,

|CP(X)| ≤
n!

∏w
i=1 ni!

·

w
∏

i=1

|CP(Xi)|.

For each i ∈ [1, w], since the elements in Xi are pairwise
comparable, there is only one permutation of Xi that is con-
sistent with ≺. Therefore, |CP(Xi)| = 1. Hence,

|CP(X)| ≤
n!

∏w
i=1 ni!

.

Taking logarithms at both sides gives

lg |CP(X)|

≤ lg(n!)−
w
∑

i=1

lg(ni!)

≤ n lg n−
w
∑

i=1

ni lg ni +O(lg n)

(by Stirling’s formula)

≤ n lg n− n lg(n/w) +O(lg n)

(by convexity of function x lg x)

= n lgw +O(lg n).

Simplification of (3)

By substitution of |S1| = ... = |SB | = N/B, we have

|CP(S)| ≤ (3) ≤
B
∏

i=1

(

N/B

|Ti|

)

· (N/B − |Ti|)! · |CP(Ti)|

=

B
∏

i=1

(N/B)! · |CP(Ti)|/|Ti|!.

Taking logarithms at both sides gives

lg |CP(S)|

≤ B lg((N/B)!)−
B
∑

i=1

(lg(|Ti|!) − lg |CP(Ti)|)

≤ B lg((N/B)!)−
B
∑

i=1

(lg(|Ti|!) − |Ti| lg b−O(lg |Ti|))

(by (2))

≤ B lg((N/B)!)−
B
∑

i=1

(|Ti| lg |Ti| − |Ti| lg b−O(|Ti|))

(by Stirling’s formula)

≤ B lg((N/B)!)− (|T | lg(|T |/B)− |T | lg b−O(|T |))

(by convexity of function x lg x)

= B lg((N/B)!)− |T | lg(|T |/(bB)) +O(|T |).

Proof of Lemma 5

For K ≥ 2, any algorithm must spend Ω(N/B) I/Os reading
the entire dataset (by our right-grounded argument in Sec-
tion 3). Hence, the lemma holds for K ≤ 16M/B, in which
case our target lower bound is Ω(N/B).

Let us also get rid of another simple case K > N/B.
Under this condition, we can sort S by (i) running a pre-
cise K-partitioning algorithm on S , and (ii) sorting the el-
ements inside each partition. Since the size of each parti-
tion is N/K ≤ B, step (ii) takes only O(N/B) I/Os; and
the running time of the algorithm is dominated by step (i).
Consequently, the time for precise K-partitioning cannot be
smaller than the lower bound Ω(N

B
lgM/B

N
B
) of sorting.

The rest of the proof focuses on K ∈ [16M/B,N/B],
where our target lower bound becomes Ω(N

B
lgM/B K). We

also assume that the algorithm uses at most N lgN blocks
(otherwise, the algorithm has already written more blocks
than the target lower bound). We consider the memory M
as a multiset of size M , and the i-th block Bi as a multiset
of size B for each i ∈ [1, N lgN]. Each element in M or Bi

is either an element of S or nil .
At any moment during the execution of an algorithm,

the machine state can be represented as a sequence
M,B1, ...,BN lgN . For each t ≥ 0, let MS(t) be the set of
all the possible machine states that can be generated by the
algorithm after t I/Os. Using a standard argument (see [1]),
we know:

Lemma 7. For any t ≥ 0, |MS(t)| ≤ (2N lgN ·
(

M
B

)

)t.

Let H be the worst-case I/O cost of the algorithm. By
Lemma 7, during the execution of the algorithm, at most

|MS(H)| ≤
(

2N lgN ·
(

M
B

))H
machine states can be gener-

ated. The following lemma shows that, the algorithm has
to be able to generate a large number of machine states in
order to ensure its correctness.

Lemma 8. |MS(H)| ≥ N!
(N/K)!K

.

Proof. Let P1, ..., PK be the partitions output by the
algorithm. Set g = ⌈N/KB⌉, i.e., g is the minimum num-
ber of blocks required to store a partition. We can safely
assume that, when the algorithm finishes, P1, ..., PK are
stored on the disk as follows: for each i ∈ [1,K], blocks
B(i−1)g+1, ...,Big store all and only the elements of Pi (any
algorithm can be slightly modified to satisfy this assumption
by spending additional O(N/B) I/Os). Therefore, whenever
the output partitions are different, the algorithm’s final ma-
chine state is also different. There are N !/(N/K)!K different
ways to divide S into K partitions of size N/K. This com-
pletes the proof.

By combining Lemmas 7 and 8, we have
(

2N lgN ·

(

M

B

))H

≥
N !

(N/K)!K
.

Taking logarithms at both sides and then applying Stirling’s
formula yield

H

(

lgN +B lg
M

B

)

= Ω(N lgK),

When lgN ≤ B lg M
B
, it follows that

H = Ω

(

N

B
lgM/B K

)

.

