
Concurrent Range Reporting in Two-Dimensional Space

Peyman Afshani∗ Cheng Sheng† Yufei Tao† Bryan T. Wilkinson∗‡

Abstract

In the concurrent range reporting (CRR) problem, the
input is L disjoint sets S1, ..., SL of points in R

d with a
total of N points. The goal is to preprocess the sets into
a structure such that, given a query range r and an arbi-
trary set Q ⊆ {1, ..., L}, we can efficiently report all the
points in Si ∩ r for each i ∈ Q. The problem was stud-
ied as early as 1986 by Chazelle and Guibas [9] and has
recently re-emerged when studying higher-dimensional
complexity of orthogonal range reporting [2, 3].

We focus on the one- and two-dimensional cases
of the problem. We prove that in the pointer-
machine model (as well as comparison models such
as the real RAM model), answering queries requires
Ω(|Q| log(L/|Q|) + logN + K) time in the worst case,
where K is the number of output points. In one di-
mension, we achieve this query time with a linear-space
dynamic data structure that requires optimal O(logN)
time to update. We also achieve this query time in
the static case for dominance and halfspace queries
in the plane. For three-sided ranges, we get close
to within an inverse Ackermann (α(·)) factor: we an-
swer queries in O(|Q| log(L/|Q|)α(L)+logN+K) time,
improving the best previously known query times of
O(|Q| log(N/|Q|) + K) and O(2LL + logN + K). Fi-
nally, we give an optimal data structure for three-sided
ranges for the case L = O(logN).

1 Introduction

We consider concurrent range reporting (CRR) in two-
dimensional space. The dataset consists of L sets
S1, ..., SL of points in R

d, where L is potentially ω(1).
We want to preprocess the sets into a structure such
that, given a query range r and an arbitrary set
Q ⊆ {1, ..., L}, we can efficiently report all the points
in Si ∩ r for each i ∈ Q. See Figure 1. This is

∗MADALGO, Aarhus University, Denmark,
{peyman,btw}@madalgo.au.dk. MADALGO is a center of
the Danish National Research Foundation.

†Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong, Hong Kong,
{csheng,taoyf}@cse.cuhk.edu.hk. Supported by grants
GRF 4165/11, GRF 4164/12, and GRF 4168/13 from HKRGC.

‡Supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 1: The dataset has L = 5 sets of points indicated
with different types of markers. Let r be the shaded
rectangle and Q = {×, •}. Only points 5, 9, and 11
should be reported.

equivalent to performing traditional range searching on
|Q| sets of points simultaneously, thus raising the hope
of improving query efficiency (compared to searching
each set separately) by sharing some of the common
computation. We consider axis-parallel rectangular
ranges (i.e., orthogonal ranges) as well as halfspace
ranges. Special versions of the orthogonal problem
are three-sided CRR and two-sided CRR where r is a
rectangle of the form [x1, x2]×[y,∞) and [x,∞)×[y,∞),
respectively.

The CRR problem is useful in several domains.
An important example is geographic information sys-
tem (GIS), which organizes a massive volume of spatial
entities of different varieties, such as residential build-
ings, factories, hotels, restaurants, gas stations, schools,
etc. One major use of a GIS is to offer a convenient
way for a user to explore a map, by rendering the en-
tities in the current navigation window of the user. A
user is often given the option of turning on only some
thematic layers. One such layer, for instance, can be
the set of hotels whereas another layer may include all
the restaurants, and so on. It is exactly a CRR query
to find all and only the entities of the requested layers.
An analogous application is a variant of spatial keyword
search. Imagine that, in Figure 1, the points with an
identical marker represent restaurants of the same com-
pany (e.g., ×, •, ◦, ... correspond to McDonald’s, Pizza
Hut, Burger King, ... respectively). A typical query is
like “find all restaurants of McDonald’s and Pizza Hut
in my neighborhood”. This is exactly a CRR query with

Q = {×, •}.
Define S as the union of S1, ..., SL. Set N =

∑L
i=1 |Si|. In practice, N is often far greater than L. By

standard tie-breaking techniques, we consider that no
two points in S have the same x- (or y-) coordinate. To
facilitate discussion, let us associate every point p ∈ Si

with a color i. Accordingly, Q can be interpreted as a
set of colors. Note, however, that CRR should not be
confused with colored range reporting1 [4].

1.1 Previous Results The one-dimensional CRR
problem was studied first by Chazelle and Guibas [10]
in their seminal 1986 paper on fractional cascading
where they obtained a linear-size data structure with
O(|Q| log L

|Q| + logN + K) query time. Here, K is

the number of reported points. They also proved a
Ω(|Q| log L

|Q|) lower bound in a pointer machine model,

although a peculiar aspect of the lower bound is that
their representation of the query colors is not the same
as the one used in their data structure so their lower
bound does not in fact apply to their algorithm (see
Section 2 for more details). By applying dynamic
fractional cascading [9, 16], this method supports an
update in O(logN) time, but the query cost becomes
O(|Q| log L

|Q| log logN + logN +K).

In two dimensions, a trivial solution is to issue |Q|
individual range reporting queries, one on each color in
Q. Using a structure of Chazelle [8], this gives a data
structure for the two-dimensional CRR problem that
uses O(N logN/ log logN) space2 and answers a query
in O(|Q| log N

|Q| +K) time. If all queries are three-sided,

the space can be lowered to linear by resorting to the
priority search tree [15], while the query cost remains
the same. The only non-trivial solutions for CRR in
dimensions two and higher were given by Afshani et al.
[2] (see also [3]). They considered a special instance
of three-sided CRR, which has an additional constraint
that Q can be selected from only a number M ≤ 2L of
possible choices. They gave a linear-space structure that
answers a (three-sided) query in O(ML + logN + K)
time. While this adequately serves the purposes in
[2], in our context where Q can be any subset of [L]

1In colored range reporting, the underlying dataset is the same
as in the CRR problem. Given a rectangle r, a query retrieves the
distinct colors of the points covered by r. In other words, even if
a color has multiple points in r, the color should be reported only
once. The CRR problem differs in that, in addition to a rectangle
r, a query also specifies a color set Q of interest. Accordingly,
the output of the query is also substantially different from that
in colored range reporting, as can be verified easily.

2All logarithms in this paper have base 2. Furthermore, we
follow the convention that every logarithm returns a value at least
1, by defining log x = max{1, log2 x}.

(notation [x] represents the set of integers {1, ..., x}),
the query time becomes O(2LL+ logN +K).

1.2 Our Results Our main contribution is to show
that almost optimal results can also be obtained for
two-dimensional CRR problems. Our bounds involve
some sublogarithmic functions which we now define. Let
αp(x) for p ≥ 1 be a family of functions that are defined
for x ≥ 1. In the base case p = 1, α1(x) = x − 2. For

p > 1, we let αp(x) = min{i | i ≥ 1 ∧ α
(i−1)
p−1 (x) ≤ 2}.

Here, α
(i−1)
p−1 is the identity function composed with

i − 1 instances of the αp−1 function. In this way,
α2(x) = ⌈n/2⌉, α3(x) = max{1, ⌈logx⌉}, α4(x) =
max{1, ⌈log∗ x⌉} and so on. Let α(x) be min{p |
αp(x) ≤ 3} so that it is asymptotically equivalent to
the inverse Ackermann function [12].

Theorem 1.1. Given N points in R
2 divided into L

disjoint sets, we can construct a pointer-machine struc-
ture that answers three-sided CRR queries and has one
of the following pairs of bounds (K is the size of the
query result):

1. O(Nαp(N/L)) space and O(|Q| log(L/|Q|) +
logN +K) query time, for any constant p ≥ 3;

2. O(N) space and O(|Q|(log(L/|Q|)+logαp(N/L))+
logN +K) query time, for any constant p ≥ 3; or

3. O(N) space and O(|Q| log(L/|Q|)α(N/L)+logN+
K) query time.

Each of these data structures require O(S(N) logN)
preprocessing time, where S(N) is the data structure’s
space bound.

Our data structure makes extensive use of a space-
saving technique for three-sided range searching appear-
ing as early as the work of [17] that involves dividing the
point set into slabs and building data structures for the
points within each slab and a data structure on repre-
sentative points from each slab.

Additionally, we obtain a number of other results
that enhance our understanding of the CRR problems:
We consider two different methods of specifying the
query colors as the previous papers had not done this
in a satisfactory way (e.g., consider the peculiar aspect
of Chazelle and Guibas’s lower bound [9]). We prove
a significantly more involved lower bound and provide
some other reductions that ultimately show the different
formulations of the query colors are in fact equivalent.
We also observe that the Ω(|Q| log(L/|Q|)+ logN +K)
query lower bound also holds in the comparison model,
which means our results are almost optimal in other
fundamental models such as the real RAM model.

The data structure of Afshani et al. [2] achieves
linear space and O(logN + K) query time for the
case L ≤ log logN − log log logN . In Section 6, we
give a data structure that achieves these same bounds
for a broader special case of L = O(logN). Our
data structure uses persistence to transform a dynamic
1d solution based on an interval tree into a static
three-sided solution. If we use either of these data
structures for small settings of L and the data structure
of Theorem 1.1 for larger L, then we can rewrite the
bounds of Theorem 1.1 so that, for p ≥ 4, αp(N/L)
becomes αp(L) and α(N/L) becomes α(L). This is
because, for p ≥ 4 and L > log logN − log log logN ,
αp(N/L) = O(αp(L)) and α(N/L) = O(α(L)).

By standard (range tree) techniques, Theorem 1.1
implies that a general (four-sided) CRR query can be
settled with the same query cost, after increasing space
by a factor of O(logN). When restricted to two-sided
ranges, and also for halfspace ranges, we obtain linear
space andO(|Q| log L

|Q|+logN+K) query time. We also

present an optimal dynamic one-dimensional structure.

Theorem 1.2. Given N values in R divided into L
disjoint sets, there is a dynamic structure that requires
O(N) space, and answers a one-dimensional CRR query
in O(|Q| log L

|Q| + logN +K) time, where K is the size

of the query result. The structure supports insertions
and deletions in O(logN) amortized time.

We sometimes need to perform a concurrent lookup
on a BST T indexing L keys. Given a set Q of sorted
keys, each of which is indexed by T , this operation finds
the nodes in T corresponding to the keys in Q. Chazelle
and Guibas [10] show that the minimum spanning tree
of the |Q| output nodes in T has size O(|Q| log(L/|Q|)).
It is then straightforward to perform a concurrent
lookup in O(|Q| log(L/|Q|)) time by performing an
Euler tour of this minimum spanning tree: at each step
we progress towards the least query key that we have not
yet found. Since the query keys are sorted, we always
know the next least key to progress towards.

2 Query Representation and Lower Bounds

In this section, we discuss the representation of query
colors as there is a potential for ambiguity when study-
ing CRR problems in a pointer machine. In fact this
ambiguity has already revealed itself in the previous
work of Chazelle and Guibas [10]: when employing the
fractional cascading technique, they assume that the
query colors are given as pointers to special nodes of
the pointer machine but while proving the optimality
of their technique, they assume that the query colors
are given instead by indices. This means in their data

structure, it is assumed that the query begins by hav-
ing access to |Q| pointers (thus |Q| entry points into the
data structure) but when proving the lower bound, they
assume the query algorithm begins by having access to
one entry point. The latter is a much more restric-
tive starting setup for the query algorithm which means
their data structure does not in fact fit their lower bound
framework!

We explicitly define these two different (but as
it turns out equivalent) query representations. In
the first representation, the set of query colors is a
sorted set of indices. We consider this the index query
representation. In an alternate representation, each
color i is associated with some specific node ci in the
pointer-machine structure called a color node. Let
C = {c1, c2, . . . , cL} be the set of all the color nodes.
A set of query colors is specified by a set Q ⊆ C (more
precisely, Q is a set of pointers to the color nodes) that
is not necessarily sorted in any way. We call this the
pointer query representation.

We first give O(L)-space and O(|Q| log(L/|Q|))-
time reductions between the index and pointer query
representations. We then proceed to show that there is
a lower bound of Ω(|Q| log(L/|Q|)) for both query rep-
resentations. Thus, these representations are equivalent
in the pointer-machine model, and any data structure
for CRR with O(|Q| log(L/|Q|)+logN+K) query time
is optimal in the pointer-machine model.

2.1 Query Representation Reductions

Lemma 2.1. Given a data structure D for CRR with
the pointer query representation that requires TD query
time and SD space, there exists a data structure for
CRR with the index query representation that requires
O(SD+L) space and O(TD+|Q| log(L/|Q|)) query time.

Proof. We build a BST T on the L color nodes of D
based on the sorted order of the colors. Then, given a
sorted set of query colors Q, we find their associated
color nodes in O(|Q| log(L/|Q|)) time via a concurrent
lookup in T . We then query D with the color nodes. �

Lemma 2.2. Given a data structure D for CRR with
the index query representation that requires TD query
time and SD space, there exists a data structure for
CRR with the pointer query representation that requires
O(SD+L) space and O(TD+|Q| log(L/|Q|)) query time.

Proof. We construct a color node for each color and
store them in a BST T based on the sorted order of the
colors. As shown by Chazelle and Guibas [10], if we
augment T with parent pointers, then we can construct
the minimum spanning tree of a set of query color

nodes in O(|Q| log(L/|Q|)) time. In the same amount of
time, we perform an in-order traversal of the minimum
spanning tree to recover the query colors in sorted order.
We then query D with the sorted set of query colors. �

2.2 Lower Bounds For the index query represen-
tation, obtaining a comparison-based lower bound is
straightforward: consider a dataset where each Si has
only one point and a query range that covers all of these
points. For any specific |Q|, there are

(

L
|Q|

)

size-|Q|
subsets of [L], each of which defines a unique result.
Since any query algorithm must be able to distinguish
at least as many results, it follows that Ω(log

(

L
|Q|

)

) =

Ω(|Q| log(L/|Q|)) comparisons are needed. This is es-
sentially a lower bound for a problem we call the concur-
rent lookup problem: given a set T of keys, store them in
a data structure such that given a set Q of sorted query
keys, each of which is indexed by T , find the keys in T
that correspond to the keys in Q.

We now consider the pointer-machine model. In
this model, the memory is a directed graph with out
degree of two (the model generalizes easily to any
constant out degree as well) and each node of the graph
can store one input element. To output an element, the
query algorithm must navigate the pointers to reach
a cell that contains the element. While Chazelle and
Guibas proved a pointer-machine lower bound [10], their
lower bound assumes the colors are given as indices
rather than pointers. In this way, the CRR problem
inherits the difficulty of the concurrent lookup problem,
which makes proving a lower bound easier. Instead,
we consider the pointer query representation, which
means the query algorithm begins with access to |Q|
entry points to the data structure; this is in contrast
to the traditional pointer machine data structures in
which the query algorithm begins from the root of the
data structure. In fact, because of this, we cannot
take advantage of the difficulty of the concurrent lookup
problem, and we must instead consider the geometry of
the problem. Essentially, we space out many instances
of the concurrent lookup problem and show that the
color nodes cannot adequately help all instances of the
problem. While simple counting arguments work to
establish a lower bound when starting from one pointer,
they seem to be ineffective when starting from |Q|
pointers. When the query algorithm begins from one
pointer, it can only access 2O(k) different subsets of
the memory cells by making k pointer jumps so to be
able to access

(

L
|Q|

)

sets we must have 2O(k) ≥
(

L
|Q|

)

or k = Ω(|Q| log(L/|Q|)). On the other hand, if
we give the query algorithm access to |Q| pointers,
there are

(

L
|Q|

)

ways just to pick our entry points

and so the counting argument is rendered completely
ineffective. To establish a lower bound for the pointer
query representation, we have to work harder.

Theorem 2.1. Any pointer-machine data structure for
CRR with the pointer query representation that uses
(N/L)O(1) space, requires Ω(|Q| log(L/|Q|)+logN+K)
query time.

Proof. Our bad input instance is a one-dimensional
point set composed of N/L sets of size L. Each set
only contains one point of each color and the points in
the i-th set are laid consecutively in an interval Ii; the
intervals are disjoint and they are also used as geometric
ranges for queries. Thus, for a set Q ⊆ C of color nodes,
the output size for the query range Ii is exactly |Q|. In
our proof, the number of colors for all queries will be
fixed but to avoid introducing extra variables, we will
continue to use |Q| to refer to this fixed value.

If logN ≥ |Q| log(L/|Q|) then there is nothing left
to prove since there is a trivial Ω(logN) lower bound
in the pointer-machine model. In the rest of this proof,
we assume otherwise. Let G be the directed graph that
corresponds to the memory layout of the data structure:
the vertices of G are memory cells and edges correspond
to the pointers between the memory cells. G has L cells
that correspond to the color nodes; the query algorithm
begins the search from these cells. We say a memory
cell (in G) is shallow, if it lies at a depth less than
log(N/L) − 2 of a color node. We say an interval I is
shallow, if there are at least L/2 shallow cells that store
points in I. Since the number of shallow cells is less than
L2log(N/L)−2 = N/4, there are less than N/(2L) shallow
intervals. We will only use non-shallow intervals for our
queries so one can safely ignore the shallow intervals in
the rest of this proof.

Given a non-shallow interval I, consider the query
algorithm: it starts with access to |Q| pointers and then
continues to make pointer jumps in graph G until all
the cells containing the output have been accessed. We
ignore the part of the output that is stored in shallow
cells so for the rest of this proof, by output we mean only
the points that are not stored in shallow cells (in other
words, we only require the query algorithm to output
elements stored in non-shallow cells).

Consider the subgraphH of G composed of memory
cells that are explored at the query time and the edges
that are used to visit these cells for the first time.
Except for the color nodes, each vertex of H has in-
degree of exactly one (each color node has in-degree
zero). So, H is a forest with |Q| arborescences3 such

3An arborescence is a directed tree in which there is a directed
path from the root to every other node, or informally, a directed

that each color node in Q is the root of one arborescence.
H contains at most |Q| cells that store the output points
of the query. We call these the output cells. We denote
the number of output cells in an arborescence T with
k(T). Let α|Q| be the size of H which is also a lower
bound on the query time. We call a subgraph of G a β-
heavy hub of size r if it is an arborescence of size r with
β output cells. Intuitively, our proof idea is to combine
two things: one, that for every query, the subgraph H
contains at least one β-heavy hub of size O(αβ) and
two, that the number of β-heavy hubs of size O(αβ)
that the graph G can use at the query time depends on
and grows as a function of α.

We set β = C log(N/L)/ log(L/|Q|), where C
is a constant to be determined later. Consider an
arborescence T in H with k(T) > 0. Observe that T
must have at least log(N/L)−2 vertices (since its output
cells are not shallow). If a fraction (say a quarter) of
all the output elements lie in arborescences T such that
k(T) ≤ 2β, then we are good: each such arborescence
uses at least an average of log(L/|Q|)/(2C) pointer
jumps to output one element and thus the query time
is already Ω(|Q| log(L/|Q|). Thus, assume otherwise
which means we can afford to remove any arborescences
T with k(T) ≤ 2β and still have three quarters of
the output elements left. After this, since the total
size of all the arborescences were α|Q|, it easily follows
that there exists at least one arborescence T such that
|T | ≤ 2αk(T) with k(T) ≥ 2β. In this case, by using
the same technique as in [1], we can find at least one
β-heavy hub of size O(αβ).

We now look at the overall structure of graph G.
While the definition of a β-heavy hub only makes sense
with respect to a given query, the structure of the hub
must still be embedded in graph G. This means that
G has only a limited number of different β-heavy hubs
of size O(αβ). To bound this number, we can pick a
cell v in graph G, consider O(αβ) pointer jumps that
visit O(αβ) other memory cells in G and then pick β
cells out of all the visited cells to be output cells. After
considering all the different possible pointer jumps, and
all the different ways to pick β cells out of O(αβ) cells, it
is a simple exercise (for more details see [1]) to show that
the number of different possible β-heavy hubs of size
O(αβ) in G is S(N)2O(αβ) where S(N) is the total space
used by the data structure (S(N) is in fact the number
vertices in graph G). Now, remember that we have
at least N/(2L) non-shallow intervals so there exists
a non-shallow interval I such that there are at most
S(N)2O(αβ)L/N possible β-heavy hubs of size O(αβ)
that involve cells that store points of I.

tree in which the edges are directed away from the root.

We fix I as the query range and it remains to define
the color set. Since I has only one point of each color,
output points and query colors are interchangeable (i.e.,
we can determine Q by a query’s set of output points).
To pick the set of output points, we consider the points
of I that are not stored in shallow cells; by the non-
shallowness of I, there are at least L/2 such points.
Q is picked by randomly sampling each such point
with probability 2|Q|/L (remember that |Q| is a fixed
parameter). The number of points that we consider is
at least L/2, so we expect to sample |Q| colors. Now,
consider a possible β-heavy hub h. If the point stored
at one of the output cells of h is not sampled, then h
is not useful since it cannot become a β-heavy hub for
our query. Thus, the probability that h is useful for
our query is at most (2|Q|/L)β. This implies that the
expected number of β-heavy hubs that can be useful for
the query is at most

(

2|Q|
L

)β

S(N)2O(αβ) L

N
.

Since β = C log(N/L)/ log(L/|Q|), we have (|Q|/L)β =
2−C log(N/L) = (N/L)−C . To be able to answer the
query, the query should have at least one such β-heavy
hub, implying

(

L

N

)C−1

S(N)

(

N

L

)O(Cα
log(L/|Q|))

≥ 1.

Since S(N) = (N/L)O(1), by setting C to a large
enough constant, it follows that we must have α =
Ω(log(L/|Q|)). �

Corollary 2.1. For L ≤
√
N , any pointer-machine

data structure for CRR with the pointer query
representation that uses polynomial space, requires
Ω(|Q| log(L/|Q|) + logN +K) query time.

3 Two-Sided and Halfspace CRR

Before looking at 2d CRR, consider the concurrent
version of predecessor search. In this problem we must
preprocess L sets S1, . . . , SL of elements so that we can
efficiently find the predecessor of a query element q in
Si for each i in a set of query colors Q ⊆ [L]. The
solution to 1d CRR of Chazelle and Guibas [10] also
solves concurrent predecessor search in linear space and
optimal O(|Q| log(L/|Q|) + logN) time.

Assume we have a data structure for traditional
range reporting that, in order to answer a query, per-
forms a single 1d predecessor search and then uses O(K)
additional time to report all necessary points. Sup-
posed further that the query element used in the 1d
predecessor search depends only on the original query

range (i.e., it does not depend on the points stored in
the data structure). Observe that we can then build
an efficient data structure for CRR by building this
traditional data structure for each color, but perform-
ing the predecessor searches for each query color con-
currently. This concurrent predecessor search requires
O(|Q| log(L/|Q|)+logN) time, and all subsequent work
is bounded by O(K).

Lemma 3.1. There exists a linear-space data structure
for two-sided range reporting that requires, for any
query, a single predecessor search that depends on only
the query and O(K) additional time. The data structure
requires O(N logN) preprocessing time.

Proof. Given a point set S, let ℓ1, . . . , ℓm be all m non-
empty layers of maxima of S, such that ℓi contains the
maxima of S\⋃i−1

j=1 ℓj. We store the points of each layer
in a linked list in order of increasing x-coordinate (or
equivalently, decreasing y-coordinate). For each layer ℓi,
we build a catalog Ci containing the points of ℓi keyed
by their x-coordinates. We connect the catalogs into a
path ordered by layer index to create a catalog graph
that supports fractional cascading. Proprocessing time
is dominated by the construction of the layers of maxima
in O(N logN) time by a simple sweep-line algorithm.

Given a query with range r = [x0,∞) × [y0,∞),
we report points layer by layer, starting at ℓ1, until we
reach a layer ℓi such that ℓi ∩ r = ∅. Since the points
of ℓi dominate the points of all further layers, for any
further layer ℓj , it must also be that ℓj ∩ r = ∅. When
we consider some layer ℓi, we must report ℓi ∩ r. In
order to do so, we search for the point p associated with
the successor of x0 in Ci. If there is no such point, then
ℓi ∩ r = ∅ and we are done. Otherwise, p is the highest
point of ℓi that is to the right of x0. We report points
of the linked list for ℓi, starting from p, until we reach
a point with y-coordinate less than y0.

We need to search for the successor of x0 in a path
of at most O(K) catalogs in our catalog graph. By
fractional cascading, this requires a single predecessor
search for x0 in the augmented catalog for C1, followed
by O(K) additional work. �

Lemma 3.1 implies an optimal two-sided CRR
pointer-machine structure with linear space and
O(|Q| log(L/|Q|) + logN +K) query time that can be
built in O(N logN) time. There is also a linear-space
data structure for 2d halfspace range reporting that per-
forms a single predecessor search followed by O(K) ad-
ditional work. It is similar to the data structure of
Lemma 3.1, but uses convex layers instead of layers
of maxima. Convex layers can also be constructed in
O(N logN) time [7]. Finding a point on a convex layer

in a given halfspace reduces to predecessor search over
the slopes of the edges of the convex layer, using the
slope of the halfspace boundary line as the query ele-
ment. Therefore, there is a linear-space data structure
for 2d halfspace CRR with O(|Q| log(L/|Q|)+logN+K)
query time that can be built in O(N logN) time.

4 Three-Sided CRR

This section concerns the proof of Theorem 1.1. Recall
that the dataset S has N points in R

2, each of which
is associated with a color i ∈ [L]. A three-sided
CRR query specifies a rectangle r = [x1, x2] × [y,∞)
and a color set Q ⊆ [L], and retrieves Si ∩ r for
each i ∈ Q. As mentioned in Section 1, there is a
simple linear-space data structure for three-sided CRR
based on priority search trees that requires suboptimal
O(|Q| log(N/|Q|)+K) query time. Priority search trees
can be built in O(N logN) time, which is thus the data
structure’s preprocessing time. Note, that in the special
case where N = O(L), this naive data structure is
actually optimal. We will use this data structure as
the base case for a few recursive structures. We will
also use the two-sided solution of Section 3 as a black
box. For each new data structure in this section, the
analysis of the data structure’s preprocessing time is
identical to that of its space consumption, except that
the preprocessing bound has an extra multiplicative
O(logN) factor. This extra factor is simply propagated
from the naive three-sided data structures and optimal
two-sided data structures that we use as black boxes.

Lemma 4.1. There exists a data structure for three-
sided CRR that requires O(N log(N/L)) space and
O(|Q| log(L/|Q|) + logN +K) query time.

Proof. As mentioned in Section 3, using a range tree
and our optimal two-sided solution, we can create an
O(N logN)-space data structure for three-sided queries
with optimal query time. By modifying the tree so that
it has fat leaves of size O(L), and building the naive data
structure for three-sided CRR in these leaves, we reduce
space to O(N log(N/L)) and retain optimal query time.
�

Note that the data structure of Lemma 4.1 requires
O(Nα3(N/L)) space. We now give a technique that
reduces space from O(Nαp(N/L)) to O(Nαp+1(N/L)).

Theorem 4.1. There exists a data structure for three-
sided CRR that requires O(Npαp(N/L)) space and
O(|Q|p log(L/|Q|) + logN + K) query time, for any
p ≥ 3.

The data structure of Theorem 4.1 for parameter
p = q recursively uses the data structure for p =

q − 1. Let Sp(N) and Tp(N) be the space and query
time, respectively, required by our data structure for
parameter p. In the base case p = 3, we simply use
the data structure of Lemma 4.1, so we have S3(N) =
O(Nα3(N/L)) and T3(N) = O(|Q| log(L/|Q|)+logN+
K), as required. We now wish to prove the theorem for
p = q > 3.

We construct a range tree T on the x-coordinates of
points so that each node u is associated with an x-range
I(u) and the x-ranges of the children of u partition I(u)
such that an equal number of points of S lie in each
child x-range. The children of u are ordered based on
the natural ordering of their x-ranges. Let Su be the
points of S which lie in I(u). Our range tree T has a
different fanout parameter at each level. If the root of
T is at level 1, then a node u at level i is associated with

an x-range I(u) that contains Lα
(i−1)
q−1 (N/L) points.

Our range tree T has fat leaves of size at most 2L
at level αq(N/L). This range tree can also be viewed
as a recursive construction: we divide the N points
into columns of size Lαq−1(N/L) and recurse in each
column.

In each fat leaf u, we store the naive three-sided
CRR data structure on Su, which is optimal for |Su| =
O(L) points. In each non-root node u we build a two-
sided CRR data structure D+

u on Su for queries of the
form [x,∞)× [y,∞) and (by mirroring Su) another data
structure D−

u for queries of the form (−∞, x] × [y,∞).
Now, consider an internal node u. We build a BST
Bu on the set of left boundaries of the x-ranges of the

children of u. Finally, we build a data structure D
||
u on

Su for three-sided ranges of the form [x1, x2) × [y,∞)
where x1, x2 ∈ Bu. We call these aligned queries.

Lemma 4.2. Given a data structure D that uses SD(N)
space and answers three-sided CRR queries in TD(N)
time, there is a data structure that supports aligned
queries in N/x columns of x points and uses at
most SD(NL/x) + O(N) space and answers queries in
TD(NL/x) +O(K) time.

Proof. In each column i, we store all points of the same
color j in a linked list Hi(j) so that the points are in
descending order of their y-coordinates. Since we do
not store lists for colors which are not represented in
a column, this requires O(N) space. We call the first
point (i.e., the one with the largest y-coordinate) of each
list Hi(j) a head point. See Figure 2. We store all
head points in data structure D, which requires at most
SD(NL/x) space.

Given an aligned query with range r = [x1, x2] ×
[y,∞) and color set Q, we forward the query to the
data structure containing only head points, so that in
TD(NL/x) time we have reported all appropriate head

points. Consider any non-head point that should be
reported. Then, every prior point in its linked list Hi(j)
must also be reported. The points of Hi(j) that lie in
r thus form a prefix of Hi(j). We know that the head
point for Hi(j) was reported. So, for every head point
that was reported, we scan its linked list and report its
points until we reach a point that is outside of r. We
charge this additional work to the output size. �

The data structure D
||
u is that of Lemma 4.2, where

x = Lα
(i)
q−1(N/L) and D is the data structure of

Theorem 4.1 with parameter p = q − 1.
For the space analysis, we strengthen our claimed

space bound to Sp(N) ≤ cNpαp(N/L) for a sufficiently
large constant c. Our induction hypothesis gives that
Sq−1(N) ≤ cN(q − 1)αq−1(N/L). Consider a single
level i of T . Each node u in level i requires at most
Sq−1(|Su|L/x) + c|Su| space. Here the c|Su| term
includes the linked lists of Lemma 4.2, as well as the
data structures D+

u , D−
u , and Bu. By the induction

hypothesis and simple arithmetic, the total space for u
is less than or equal to c|Su|q. The total space required
at level i is thus at most cNq, since every point in S lies
in the x-range of exactly one node at level i. Since T has
αq(N/L) levels, the total space for T is cNqαq(N/L),
as required.

We now show how queries are answered. Given a
query with range r = [x1, x2] × [y,∞) and color set Q,
we begin by finding the lowest node u in T such that
x1, x2 ∈ I(u). We do so by predecessor search for x1

and x2 in Bv for each ancestor v of u, starting from the
root of T . This process takes O(

∑

v(1 + log(|Bv|))) =
O(αq(N/L) + logN) = O(logN) time.

If u is a leaf, we query the naive three-sided data
structure stored at u with range r and color set Q and
we are done inO(|Q| log(L/|Q|)+logN+K) time. If u is
an internal node, then we know that u has two different
children v1 and v2 such that x1 ∈ I(v1) and x2 ∈ I(v2).
Let x′

1 be the left boundary of the x-range of the right
sibling of v1 and let x′

2 be the left boundary of I(v2). We
decompose r into three subranges r+ = [x1, x

′
1)× [y,∞],

r|| = [x′
1, x

′
2) × [y,∞], and r− = [x′

2, x2] × [y,∞], as
shown in Figure 2.

Amongst the points of Sv1 , the range r+ contains
the same points as [x1,∞]× [y,∞], thus we handle this
subrange in O(|Q| log(L/|Q|) + logN + K) time via a
two-sided query to D+

v1 . We handle r− symmetrically

with a two-sided query to D−
v2 . Finally, we handle r||

by recursing in D
||
u with the range r||. At each level

of recursion we perform O(|Q| log(L/|Q|)+ logN) work
that cannot be charged to the output size. So, the total
query time is O(p(|Q| log(L/|Q|) + logN) +K).

r
+

r
−

r
||

Figure 2: The points of Su are partitioned into columns.
Head points (depicted large) are the highest points of
each linked list. The query range is decomposed into
two-sided queries in the outer columns and a single
aligned query.

We can reduce the O(p logN) term to O(logN) by
fractional cascading. The O(p logN) term comes from
two O(logN) time algorithms that we invoke at each of
the O(p) levels of recursion: first, finding the node u in
T at which we can decompose r into an aligned query
and two-sided queries, and second, the two-sided CRR
queries. Both of these algorithms amount to predecessor
search for x1 and x2 in different sets of elements. In
finding node u we search for x1 and x2 in Bv for each
ancestor v of u. The two-sided CRR query algorithms
search for x1 or x2 in layers of maxima.

We construct a global catalog graph for all O(p)
levels of recursion. Each node u in a tree T at recursion
level q is associated with a catalog Cu that contains the
elements of Bu. If u is the root of T , then Cu is linked to
Cv for some node v in recursion level q+1 that uses T in

D
||
v . If u is not the root of T , then Cu is instead linked

to Cv where v is the parent of u. If u is an internal
node, then Cu is linked to Cv where v is the root of

a tree at recursion level q − 1 in D
||
u as well as Cw for

each child w of u. In this case, Cu is also linked to the
catalogs for the first layers of maxima in D+

u and D−
u .

Our catalog graph thus has locally bounded degree of
5: although there are a non-constant number of links
to children, they only contribute to an increase of the
locally bounded degree by one since the ranges of the
catalogs of the children are all disjoint.

An issue that we have thus far ignored is that,
when we recurse, we change the query x-coordinates
from x1 and x2 to x′

1 and x′
2. Typically, in fractional

cascading, one searches for the same query elements
in every catalog. However, it is straightforward to
extend fractional cascading without penalty so that it
is possible to switch the query value to the result of
a previous search in an adjacent catalog. When we

recurse, this is precisely what we need to do: x′
1 and

x′
2 are the results of searches in Bu (now Cu) and these

values become the new query values in the root of the

tree for D
||
u.

Now, we must count the number of catalogs that
we visit to give a bound on running time. At each level
of the tree at each recursion level, there are a constant
number of catalogs that we search and cannot charge to
the output size. Thus, the O(p logN) term is reduced by
fractional cascading to O(logN)+

∑p
q=4 O(αq(N/L)) =

O(logN). This completes the proof of Theorem 4.1.
By fixing p to a constant in Theorem 4.1, we obtain

trade-off 1 of Theorem 1.1. To get the other two trade-
offs, we need one final step to reduce space to O(N).

Theorem 4.2. There exists a data structure for
three-sided CRR that requires O(N) space and
O(|Q|(p log(L/|Q|)+log(pαp(N/L)))+logN+K) query
time, for any p ≥ 3.

Proof. We divide our set of points S into columns
of O(Lpαp(N/L)) points. To handle queries that lie
entirely within one of these columns, we build the
naive data structure for three-sided queries in each
column. These data structures require linear space and
O(|Q| log(Lpαp(N/L)/|Q|) +K) = O(|Q|(log(L/|Q|) +
log(pαp(N/L))) + K) query time. To handle queries
that do not lie entirely within one column, we reuse the
technique of Theorem 4.1 to decompose the query into
two-sided queries in two columns and an aligned query.
By Lemma 4.2, where x = O(Lpαp(N/L)) and D is
the data structure of Theorem 4.1, we handle aligned
queries in linear space and O(|Q|p log(N/L)+logN+K)
query time. �

By fixing p to a constant in Theorem 4.2, we
obtain trade-off 2 of Theorem 1.1. Finally, by setting
p = α(N/L), we obtain trade-off 3. This completes the
proof of Theorem 1.1.

5 Dynamic One-Dimensional CRR

This section proves Theorem 1.2. All BSTs in this paper
are slightly augmented, such that there is a doubly-
linked list organizing the nodes in their sorted order,
so that the predecessor/successor of any node can be
found in constant time. During an insertion/deletion,
maintaining the linked list causes only O(1) extra time.

5.1 Structure As before, let S be the set of points
in the input to the one-dimensional CRR. We will refer
to each point in S as a key. For convenience, assume
that −∞ is a dummy key in S with an arbitrary color.
The base tree of our structure is a BST T on S. Each
node u of T has capacity L, namely, it accommodates a

R

I(u1) I(u2) I(u3) I(u4) I(u5) I(u6)

u1

u2

u3

u4

u5

u6

r

Figure 3: A BST with fat nodes

set Su of Θ(L) consecutive keys4 in S. T is created on
the obvious total order of all the nodes. The ordering
also associates each node u with a range I(u) ⊆ R in
the form of [α, β), where α is the smallest key in u, and
β is the smallest key in the node succeeding u (if such
a node does not exist, β = ∞). See Figure 3. For each
node u in T , we organize the keys of Su in L BSTs
Tu(1), ..., Tu(L), where Tu(i) manages the color-i keys
in Su. Index the root addresses of Tu(1), ..., Tu(L) in a
BST Ru.

Denote by Du the set of keys stored in the subtree
of u. Let ℓ(u) (γ(u)) be the left (right) child of node u,
or ∅ if the child does not exist. Define 4L boundary keys
as follows:

• For each i ∈ [L], Bℓ−
u (i) (Bℓ+

u (i)) is the minimum
(maximum) key of color i in Dℓ(u). If Dℓ(u) has no

key of this color, Bℓ−
u (i) = Bℓ+

u (i) = ∅.

• Bγ−
u (i) and Bγ+

u (i) are defined analogously with
respect to Dγ(u).

The 4L boundary keys can be divided into L
boundary groups, where the i-th group is a 4-tuple
(Bℓ−

u (i), Bℓ+
u (i), Bγ−

u (i), Bγ+
u (i)). These groups are in-

dexed by their colors with a BST Bu (i.e., each node of
Bu stores a boundary group). For update efficiency, we
keep some down pointers. Specifically for each i ∈ [L],
the color-i node of Bu stores two down pointers refer-
encing the color-i nodes in Bℓ(u) and Bγ(u), respectively.
If ℓ(u) (γ(u)) = ∅, the down pointer to Bℓ(u) (Bγ(u)) is
nil . Finally, the keys of each Si are indexed with a BST
Σi, called an exclusive BST. Each key k in T (including
boundary keys) is associated with a shortcut pointer,
referencing node k in the corresponding exclusive BST.

All the exclusive BSTs occupy totally O(N) space.
At each node u of T , all the secondary structures
require O(|Su| + L) space. Hence, the overall size of
our structure is

∑

u O(|Su|+ L) = O(N), noticing that
T has O(N/L) nodes.

4The only exception is when T has only one node u, in which
case |Su| can be anywhere from 1 to L.

5.2 Insertion Let all the BSTs be implemented as
AVL-trees. For any non-root node u, denote its parent
as ρ(u). Suppose that we need to insert a key k of
color c ∈ [L]. First, k is added to Σc in O(logN)
time. Then, we identify the node v in T such that
k ∈ I(v), which costs O(log N

L) time, i.e., same as
the height of T . For each node u on the path from
root(T) to v, update two of its boundary keys of color
c. To illustrate, assume that v is in the left (the
case of right is symmetric) subtree of u; we adjust the
boundary key Bℓ−

u (c) to min{Bℓ−
u (c), k}, and Bℓ+

u (c)
to max{Bℓ+

u (c), k}. These boundary keys can be found
efficiently using the down pointers. First, the (color-
c) boundary group of root(T) is retrieved by searching
Broot(T) in O(logL) time. In general, having found a
boundary group at a parent node ρ(u), we follow a down
pointer of the group to obtain the boundary group of the
same color at u in O(1) time. Hence, the entire process
takes O(logL+ log N

L) = O(logN) time.
At v, k is inserted into Tv(c) inO(logL) time. If |Sv|

is now at most L, the insertion is completed. Otherwise,
v overflows, and needs to be split into v1 and v2. For this
purpose, we sort all the keys in Sv in O(L logL) time,
divide the sorted list in two equal halves, and take the
first (second) half as Sv1 (Sv2). Then, the secondary
BSTs Tv1(1), ..., Tv1(L),Rv1 and Tv2(1), ..., Tv2(L),Rv2

can be built in O(L) time. Nodes v1 and v2 need to be
incorporated in T . For this purpose, we first replace v
with v1 in T and set Bv1 directly to Bv, which takes O(1)
time. Then, v2 is inserted in the right subtree of v (now
v1) as in the BST. When this is done, v2 is a leaf of T ,
and some boundary keys of the nodes on the path from
ρ(v2) to v1 may now be incorrect. A boundary correction
is carried out to fix them in a bottom-up manner:

• Suppose, without loss of generality, that v2 is the
left child of ρ(v2). For each i ∈ [L], set Bℓ−

ρ(v2)
(i) =

mink(Sv2 , i) and Bℓ+
ρ(v2)

(i) = maxk(Sv2 , i), where

mink(X, i) andmaxk(X, i) return the smallest and
largest color-i key in a set X of keys, respectively.
We then build Bρ(v2) in O(L) time.

• In general, having fixed node u, the correction
process works at ρ(u) as follows, again assuming
u to be the left child of ρ(u). For each i ∈ [L], we
set:

Bℓ−
ρ(u)(i) = min{Bℓ−

u (i),mink(Su, i), B
γ−
u (i)}

Bℓ+
ρ(u)(i) = max{Bℓ+

u (i),maxk(Su, i), B
γ+
u (i)}.

The correction spends O(L) time per level, noticing
that mink(Su, i) and maxk(Su, i) of all i ∈ [L] can
be retrieved in O(

∑

i log |Tu(i)|) = O(L) time, where
|Tu(i)| is the number of nodes in Tu(i).

If T is unbalanced, we perform a single- or double-
rotation as in the AVL-tree. Each rotation modifies
O(1) pointers, as illustrated by bold lines in Figure 4.
In our context, a rotation is followed by boundary
correction. Specifically, in Figure 4a, we launch a
correction process to fix the boundary keys from u4 to u2

whereas, in Figure 4b, two processes are invoked to fix
the paths from u2 to u4 and from u6 to u4, respectively.
Since only two levels are corrected, all processes take
O(L) time. The above description has not included the
maintenance of down and shortcut pointers, but this can
be easily taken care of at no extra cost asymptotically.

If no overflow happens, an insertion terminates
in O(logN) time. Otherwise, the cost is O(L logN).
However, as a node u overflows only after Ω(L) keys
have been newly inserted in Su, each update is charged
O(logN) time.

5.3 Deletion Suppose that we are deleting a key k of
color c ∈ [L]. The deletion algorithm starts by removing
k from Σc in O(logN) time. Then, we find in O(log N

L)
time the node v in T such that k ∈ Iv, and remove
k from Tv(c) in O(logL) time. As k may be serving
as a boundary key at the nodes on the path from v to
root(T), we fix their boundary keys in a way similar to a
boundary correction process, except that here we focus
on only a unique color c. Using down pointers, all the
boundary keys to be fixed can be identified in O(logN)
time.

If now Sv has at least L/4 keys, the deletion is
completed. Otherwise, v underflows, which is treated
by a share or merge (reminiscent of underflow-handing
in a B-tree). Specifically, the algorithm first identifies in
O(log N

L) time the successor v′ of v in T . If |Sv|+|Sv′ | >
7
8L, we perform a share, which re-distributes the keys in
Sv and Sv′ evenly. This, in turn, necessitates rebuilding
Tv and Tv′ , and a boundary correction process from
either v or v′ (whichever is lower) to root(T). The total
time required is O(L logL).

On the other hand, if |Sv|+ |Sv′ | ≤ 7
8L, we perform

a merge, which combines the keys of Sv′ into Sv, and
then re-builds Tv. This costs O(L) time. Next, the
algorithm removes node v′ from T . Specifically, if v′ is
a leaf, we simply delete it; otherwise, if v′ has (or does
not have) a right subtree, we replace it by its successor
(or predecessor) v′′ in T . In any case, we carry out two
boundary correction processes on the paths from ρ(v′′)
to root(T), and from v to root(T), respectively. T may
have become unbalanced, which is remedied by rotations
(as in insertion) using O(L logN) time. Hence, a merge
can be accomplished in O(L logN) time. Overall a
deletion requires O(logN) time amortized.

5.4 Query Given a CRR query with search interval
r and color set Q, we find in O(logN) time the
highest node u in T whose I(u) intersects r (e.g., in
Figure 3, u = u4 for the r shown). Search Ru to
fetch the root addresses of all Tu(i) with i ∈ Q, which
takes O(|Q| log L

|Q|) time (this is a concurrent lookup

operation). Perform a range query in each such tree
to report the keys appearing in r. As the |Q| trees
manage at most L keys in total, the |Q| range queries
incur O(|Q| log L

|Q|) time plus the linear cost for result
outputting.

Next, we retrieve the points in the query result that
are outside I(u). If r contains at least an endpoint of
I(u), search Bu to retrieve the boundary keys Bℓ+

u (i)
and Bγ−

u (i) for each color i ∈ Q. This again takes
O(|Q| log L

|Q|) time. For each color i ∈ Q, if neither

Bℓ+
u (i) nor Bγ−

u (i) is covered by r, we can assert that
no other key of color i appears in r. Otherwise, assume
Bℓ+

u (i) ∈ r (the case with Bγ−
u (i) is similar); we follow

the shortcut pointer of Bℓ+
u (i) to its node in Σi, and

retrieve all the qualifying keys of color i in linear time
(avoid reporting the keys in I(u) though). The overall
query cost is therefore O(|Q| log L

|Q| + logN +K).

6 Three-Sided CRR for L = O(logN)

There is a solution to three-sided CRR that requires
linear space and O(2LL + logN + K) query time [2].
This solution is optimal for L ≤ log logN−log log logN ,
since in this case 2LL = O(logN). By tackling the
three-sided CRR problem from another angle, we obtain
a solution that is optimal for greater settings of L:
namely, L = O(logN). We start with a simple dynamic
1d data structure:

Lemma 6.1. For L = O(logN), there is a structure
that consumes O(N) space, answers a 1d CRR query
in O(logN + K) time, and handles an insertion or a
deletion in O(logN) time.

Proof. Borrowing an idea in [8], we will need an interval
tree [14], which indexes N intervals in R using O(N)
space such that, given a value q, all intervals containing
q can be reported in O(logN+K) time, where K is the
number of such intervals. This is known as a stabbing
query. Insertion/deletion of an interval can be done in
O(logN) time.

For each Si, sort its keys in ascending order, and
create |Si| intervals as follows. The first interval starts
from −∞ and ends at the smallest key in Si. In general,
the j-th interval (2 ≤ j ≤ |Si|) starts from the (j−1)-th
key (of the sorted order) and ends at the j-th key. Build
an interval tree T on all the intervals thus obtained from
S1, ..., SL. Since there are O(N) intervals, T uses O(N)

u1

u2

u3

u4

u5

⇒

u1 u4

u3

u2

u5

u1

u2

u3

u4

u5

⇒

u6

u7

u1

u2

u3

u4

u6

u5

u7

(a) Single rotation (b) Double rotation

Figure 4: Rotations in an AVL-tree

space. Given a CRR query with r = [x, y] and a color set
Q, we perform a stabbing query on T to retrieve all the
intervals containing x. Since, for each i ∈ [L], at most
two intervals generated from Si are fetched, the query
time is O(logN +L) = O(logN). The successor of x in
Si (i ∈ Q) must be at a boundary of a retrieved interval
that originated from Si, and hence, can be determined
in O(1) time. After this, all the keys of Si ∩ r can be
reported in linear time. It is easy to see that when a key
of any color is inserted/deleted, T can be maintained in
O(logN) time. �

A data structure is usually ephemeral because, once
updated, the previous version is lost. In contrast, a
persistent structure Γp retains all the historical versions
of an ephemeral structure Γ, after Γ has gone through
a sequence of updates. Driscoll et al. [13] developed
a technique to make a structure Γ persistent, provided
that Γ can be modeled as a graph where each node has
constant in-degree. Their technique yields a Γp whose
space grows on average by O(s) after each update, where
s is the average footprint per update on Γ. Γp can
be constructed in the same time as performing all the
corresponding updates on Γ. Furthermore, Γp inherits
the query complexity of Γ, with only an O(logN)
additive cost to identify the correct version.

In general, three-sided range searching can be sup-
ported by the persistent counterpart of a structure de-
signed for 1d range searching. Imagine that we move a
horizontal sweeping line downwards, starting from the
top of R2. Whenever the line hits a point p ∈ S, insert
the x-coordinate of p in a 1d-CRR structure Γ. Denote
by Γ(λ) the version of Γ when the sweeping line inter-
sects the y-axis at λ. Given a three-sided query with
r = [x1, x2]× [y,∞), we answer it by performing a 1d-
CRR query with r = [x1, x2] on Γ(y). Based on this
idea, we prove:

Lemma 6.2. For L = O(logN), there is a linear-
space structure that answers a three-sided CRR query
in O(logN +K) time, and can be built in O(N logN)
time.

Proof. Our structure in Lemma 6.1 is indeed a graph
where nodes have constant in-degree. As shown in [6],
each insertion in the interval tree takes O(logN) time,
and leaves only O(1) footprint on average5. �

7 Open Problems

It remains open whether three-sided CRR can be solved
in linear space and O(|Q| log(L/|Q|)+logN+K) query
time. In the RAM model, 1d CRR can be solved in
linear space andO(|Q|+K) query time, since traditional
1d range searching can be solved in linear space and
O(1 + K) query time [5]. However, the same cannot
be said for the concurrent predecessor search problem,
since traditional predecessor search in the RAM model
using polynomial space requires super-constant query
time [18]. It is open whether concurrent predecessor
search can be solved in linear space and O(Tpred+ |Q|+
K) query time, where Tpred is the cost of traditional
predecessor search in the RAM model.

Another problem for which a concurrent variant is
interesting is point location. In concurrent point lo-
cation we must preprocess L subdivisions of the plane
S1, S2, . . . , SL. Given a query point q and a set of colors
Q ⊆ [L], we must locate q in Si for i ∈ Q. This problem
is closely related to a 2d generalization of fractional cas-
cading studied by Chazelle and Liu [11]. Chazelle and
Liu show that no efficient bounds can be achieved for
the 2d generalization of fractional cascading without us-
ing at least quadratic space. However, the hard instance
in their lower bound uses non-orthogonal subdivisions
of the plane. In the special case of concurrent orthog-
onal point location, there is a simple linear-space data
structure that requires O(L + logN + K) query time:
decompose the subdivisions into rectangles and store
these rectangles in the rectangle-stabbing data struc-
ture of Chazelle [8]. It is open whether the L term in
this query time can be reduced to O(|Q| log(L/|Q|)) as
in our CRR data structures.

5The result of [6] holds in the offline setting, i.e., all the
insertions are known in advance. This is sufficient for our purpose
here.

References

[1] P. Afshani. Improved pointer machine and I/O lower
bounds for simplex range reporting and related prob-
lems. In Symposium on Computational Geometry
(SoCG), pages 339–346, 2012.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In Pro-
ceedings of Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 149–158, 2009.

[3] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting: query lower bounds, optimal struc-
tures in 3-d, and higher-dimensional improvements.
In Symposium on Computational Geometry (SoCG),
pages 240–246, 2010.

[4] P. K. Agarwal, S. Govindarajan, and S. Muthukrish-
nan. Range searching in categorical data: Colored
range searching on grid. In Proceedings of European
Symposium on Algorithms (ESA), pages 17–28, 2002.

[5] S. Alstrup, G. S. Brodal, and T. Rauhe. Optimal static
range reporting in one dimension. In Proceedings of
ACM Symposium on Theory of Computing (STOC),
pages 476–482, 2001.

[6] A. Boroujerdi and B. M. E. Moret. Persistency in
computational geometry. In Proceedings of the Cana-
dian Conference on Computational Geometry (CCCG),
pages 241–246, 1995.

[7] B. Chazelle. On the convex layers of a planar set.
IEEE Transactions on Information Theory, 31(4):509–
517, 1985.

[8] B. Chazelle. Filtering search: A new approach
to query-answering. SIAM Journal of Computing,
15(3):703–724, 1986.

[9] B. Chazelle and L. J. Guibas. Fractional cascading: I.
a data structuring technique. Algorithmica, 1(2):133–
162, 1986.

[10] B. Chazelle and L. J. Guibas. Fractional cascading: II.
applications. Algorithmica, 1(2):163–191, 1986.

[11] B. Chazelle and D. Liu. Lower bounds for intersection
searching and fractional cascading in higher dimension.
Journal of Computer and System Sciences (JCSS),
68(2):269–284, 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[13] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences (JCSS), 38(1):86–124,
1989.

[14] H. Edelsbrunner. A new approach to rectangle inter-
sections, part I. International Journal of Computer
Mathematics, 13:209–219, 1983.

[15] E. M. McCreight. Priority search trees. SIAM Journal
of Computing, 14(2):257–276, 1985.

[16] K. Mehlhorn and S. Näher. Dynamic fractional cas-
cading. Algorithmica, 5(2):215–241, 1990.

[17] M. H. Overmars. Efficient data structures for range
searching on a grid. J. Algorithms, 9(2):254–275, 1988.

[18] M. Patrascu and M. Thorup. Time-space trade-offs for
predecessor search. In Proceedings of ACM Symposium
on Theory of Computing (STOC), pages 232–240, 2006.

