
Output-sensitive Skyline Algorithms in External Memory∗

Xiaocheng Hu† Cheng Sheng† Yufei Tao†‡ Yi Yang§ Shuigeng Zhou§

Abstract

This paper presents new results in external memory
for finding the skyline (a.k.a. maxima) of N points
in d-dimensional space. The state of the art uses
O((N/B) logd−2

M/B(N/B)) I/Os for fixed d ≥ 3, and

O((N/B) logM/B(N/B)) I/Os for d = 2, where M and
B are the sizes (in words) of memory and a disk block,
respectively. We give algorithms whose running time de-
pends on the number K of points in the skyline. Specifi-
cally, we achieve O((N/B) logd−2

M/B(K/B)) expected cost

for fixed d ≥ 3, and O((N/B) logM/B(K/B)) worst-case
cost for d = 2.

As a side product, we solve two problems both
of independent interest. The first one, the M -skyline
problem, aims at reporting M arbitrary skyline points,
or the entire skyline if its size is at most M . We settle
this problem in O(N/B) expected time in any fixed
dimensionality d. The second one, the M -pivot problem,
is more fundamental: given a set S of N elements
drawn from an ordered domain, it outputs M evenly
scattered elements (called pivots) from S, namely, S has
asymptotically the same number of elements between
each pair of consecutive pivots. We give a deterministic
algorithm for solving the problem in O(N/B) I/Os.

1 Introduction

Let p, p′ be two different points in Rd, where R repre-
sents the real domain. We say that p dominates p′ if
p[i] ≤ p′[i] for every i ∈ [1, d], where p[i] is the i-th co-
ordinate of p. In the skyline problem, we are given a set
P of N points in Rd, and want to compute the skyline
of P , or formally:

SKY (P) = {p ∈ P | ∄p′ ∈ P s.t. p′ dominates p}

∗This work was supported in part by (i) GRF grants 4164/12,
4165/11, and 4166/10 from the HKRGC, (ii) the WCU (World

Class University) program under the National Research Foun-
dation of Korea, which is funded by the Ministry of Education,
Science and Technology of Korea (Project No: R31-30007), and
(iii) the Research Innovation Program of Shanghai Municipal Ed-
ucation Committee under grant No. 13ZZ003.

†Department of Computer Science and Engineering, Chinese
University of Hong Kong

‡Division of Web Science and Technology, Korea Advanced

Institute of Science and Technology
§School of Computer Science, Fudan University

1

8

3

4

6
5

7

2

Figure 1: Skyline = {(point) 1, 6, 7}

See Figure 1 for an example. This is also known as
the maxima problem in computational geometry or the
pareto set problem in operations research. Let K =
|SKY (P)|.

We study the problem in the external memory (EM)
computation model [2]. A machine has M words of
memory, and a disk of unbounded size that is formatted
into disjoint blocks, each of which has B words. The
value of M is at least 2B. An I/O exchanges a block
between the disk and memory. The running time of an
algorithm is measured as the number of I/Os performed.
A linear complexity refers to O(N/B).

Mathematical conventions. Two positive integers
are roughly the same if they are within a constant
factor that is independent on N , K and B. Every
logarithm logb x should be interpreted as max{1, logb x}.
All logarithms by default have base b = 2. For b > 1,

define log
(1)
b x = logb x and log

(i)
b x = logb log

(i−1)
b x for

any integer i ≥ 2. Furthermore, log∗b x is the smallest i

such that log
(i)
b x < 16.

Previous results. The skyline problem has been
extensively studied due to its relevance to a large variety
of applications (see [14] for a survey). Most solutions
are heuristic, that is, they perform well on certain real
datasets, but on a bad dataset, can be as slow as a naive
blocked nested loop (BNL) that simply checks each pair
of points in P using O(N2/(MB)) I/Os. In the sequel,
we focus on the existing algorithms beating the time
complexity of BNL.

In 2d space, the skyline can be easily computed in

O(NB logM/B
N
B) I/Os by sorting the dataset followed

by a single scan [12]. Goodrich, Tsay, Vengroff and
Vitter [9] were the first to observe that, in 3d space, the
problem can also be settled in O(NB logM/B

N
B) I/Os,

using a technique called distribution sweep. Sheng
and Tao [14] extended the result to arbitrary fixed
dimensionality d ≥ 3, where their algorithm terminates
in O(NB logd−2

M/B
N
B) I/Os.

Under many data distributions, the number K of
skyline points is significantly smaller than the cardinal-
ity N of the dataset (see [15] and the references therein).
An intriguing question is whether we can improve the
computation time in such a scenario. Ideally, an algo-
rithm should be output-sensitive: its cost ought to in-
crease slowly along with K, whereas even at K = Ω(N),
it is still as efficient as the best algorithm whose running
time is insensitive to K (i.e., the solutions in [9, 12, 14]).

Motivated by this, Sarma, Lall, Nanongkai and Xu
[13] developed a randomized algorithm, which we call
3-pass, to solve the skyline problem of any fixed d in
O(NB + NK

MB) expected I/Os. When K = O(M), their
algorithm performs only linear I/Os in expectation.
However, as K increases, the efficiency deteriorates
rapidly such that when K = Ω(N), the algorithm loses
its advantage even over BNL. In 2d space, the authors
of [13] presented a deterministic algorithm, which runs
in O(NB + NK

MB logN) I/Os, provided that the memory
has Ω(B logN) words1.

In internal memory, a classic result by Kung,
Luccio and Preparata [12] computes the skyline in
O(N logd−2N) time for fixed d ≥ 3 and in O(N logN)
time for d = 2. Bentley [4] described how to achieve
the same performance via different algorithms. Depart-
ing from the class of comparison-based algorithms and
leveraging features of the word-RAM model, Gabow,
Bentley and Tarjan [8] reduced the computation time to
O(N logd−3N · log logN) for fixed d ≥ 4. Chan, Larsen
and Patrascu [7] recently further improved the cost to
O(N logd−3N). The only output-sensitive algorithm is
due to Kirkpatrick and Seidel [11]. Their algorithm runs
in O(N logd−2 K) time for fixed d ≥ 3, and O(N logK)
time for d = 2.

Our results. This paper develops the first output-
sensitive skyline algorithms in external memory that is
efficient for the whole range of K. For any fixed d ≥ 3,
we can find the skyline in O((N/B) logd−2

M/B(K/B)) ex-

pected I/Os, whereas for d = 2, the running time is
O((N/B) logM/B(K/B)) I/Os in the worst case (The-
orem 4.2). As an interesting corollary, when K =
polylog(M/B) – a situation likely to occur in practice

1The memory requirement arises from the deployment of a
GK-sketch [10].

– the skyline problem can be settled in linear I/Os. No
previous algorithm is known to have this property. For
largeK, the cost of our algorithms gracefully aligns with
the output-insensitive solutions in [9, 14]. At d = 2, our
algorithm is optimal in the comparison class for all val-
ues of K (see the remark in Section 4.4).

Our techniques differ significantly from those of [11].
In particular, we have to settle two separate problems,
both of which are specialized to external memory, and
are of independent interest. In the first, called the M -
skyline problem, the goal is to report M arbitrary points
in SKY (P) if |SKY (P)| ≥ M , or the entire SKY (P),
otherwise. We prove that this problem can be solved in
O(N/B) expected I/Os for any fixed dimensionality d
(Theorem 2.1). The running time’s independence from
d is somewhat surprising, given that d plays a major role
in the cost of computing the full skyline. In 2d space,
the running time can be made worst case (Theorem 4.1).

The second problem, called the M -pivot problem,
is more fundamental. The input is a set S of N
elements drawn from an ordered domain. The goal
is to find v1, ..., vM−1 from S as pivots. Assuming
v1 < ... < vM−1, the pivots should have the property
that S has Θ(N/M) elements between vi−1 and vi for
each i ∈ [1,M], defining v0 (vM) to be the minimum
(maximum) element in the ordered domain.

The problem can be easily solved by sorting, which
necessitates super-linear I/Os. If randomization is
allowed, one can resort to random sampling to obtain a
linear time algorithm easily [1]. What is non-trivial is to
do so deterministically. Previously, the best linear-time
algorithm [2] produces only O(

√

M/B) evenly scattered
pivots2 (i.e., S has roughly the same number of elements
between two consecutive pivots). In this paper, we settle
the M -pivot problem in linear I/Os (Theorem 3.1).

The M -pivot problem should not be confused with
the L-partition problem, where the goal is to partition S
into disjoint subsets S1, ..., SL of roughly the same size,
such that all elements in Si are smaller than those in Sj

for any i < j. Note that it is impossible to solve even the
M ǫ-partition problem (for any constant ǫ ∈ (0, 1]) in lin-
ear time. One can prove this easily by setting M = 2B,
and arguing that the ability of doing so would imply
sorting N elements in O((N/B) logB(N/B)) I/Os, vi-
olating the lower bound Ω((N/B) log2(N/B)) [2]. Our
result, therefore, separates the M -pivot problem from
the harder M ǫ-partition problem.

2By repeating the algorithm c times where c ≥ 1 is a constant
integer, O((M/B)c/2) evenly scattered pivots can be obtained.

2 The M-skyline Problem

This section concentrates on the M -skyline problem
as defined in Section 1. We observe that the 3-pass
algorithm of [13] can be utilized to solve this problem
in linear time. Our contribution is the analysis: we
prove a new, crucial, property of this algorithm that
has escaped the previous studies.

2.1 3-pass Let m be the number of points that can
be stored in memory, namely, m = M/d = Θ(M).
This algorithm scans the input set P three times,
each of which performs O(N/B) I/Os. The first scan
samples (with replacement) m points uniformly and
independently from P . Let Σ be the sample set. Note
that |Σ| may be less than m because a point can be
sampled multiple times.

Σ is kept in memory during the second scan. Cer-
tain points may be inserted to Σ during the scan, but
each insertion is always accompanied by removing at
least one point in Σ. Hence, |Σ| never increases, but
may decrease significantly. Specifically, this scan in-
spects every point p ∈ P . If p dominates at least a
point in Σ, p is added to Σ (if not already there) while
those points dominated by p are expunged from Σ. Note
that, at this moment, p may possibly be dominated by
a sample p′ ∈ Σ (i.e., p and p′ co-exist in Σ). How-
ever, such a situation can happen only if the (second)
scan has not reached p′ yet, and p′ was acquired from
the first scan. Later, p will be removed from Σ when
p′ is encountered, if not earlier. When the second scan
finishes, all the points of Σ must be in the skyline.

To illustrate, assume that the points in Figure 1
are scanned in ascending order of their ids, and that
the first scan returns Σ = {(point) 3, 7} (i.e., m = 2).
In the second scan, point 1 has no effect on Σ because it
does not dominate any point in Σ. The first change of Σ
takes place when inspecting point 4 – since it dominates
point 3, we insert the former and delete the latter in Σ,
which becomes {4, 7}. Notice that even though point 7
dominates point 4, they are co-existing in Σ. Later,
point 4 is replaced by point 6, which remains in Σ
together with point 7 till the end of this scan.

Again retaining Σ in memory, the last scan of 3-
pass eliminates the points of P dominated by at least
one point in Σ. All the (skyline) points in Σ are also
removed from P . In other words, at the end of 3-pass,
P contains points that have not been confirmed as a
skyline or non-skyline point. Continuing our earlier
example, with Σ = {6, 7} from the second scan, the
third scan removes all the points from P except point
1.

To solve the M -skyline problem, we keep running
3-pass until either at least M skyline points have been

1

5

7

4 2

3

6

8

T1 T2 T3

Figure 2: T1, T2, T3 for the example in Figure 1

reported, or P has become empty.

2.2 Analysis This subsection serves as the proof of:

Theorem 2.1. The M -skyline problem on N points
in any fixed dimensionality can be solved in O(N/B)
expected I/Os.

We will show that the algorithm of the previous
section has the desired performance guarantee. Towards
this purpose, next we first review some facts observed
in [13] about 3-pass, and then prove a new imperative
property.

Facts from [13]. Regard the input set P as a sequence,
arranging the points in the same order as they are
encountered by a scan. For each point p ∈ P , let first(p)
be the earliest point p′ ∈ P dominating p. If p is in the
skyline, first(p) = ∅. Note that, for a non-skyline point
p, first(p) can be before or after p in the sequence. We
define K trees T1, ..., TK , where K is the number of
skyline points, by making first(p) the parent of p for
every p ∈ P . If p is a skyline point, it has no parent,
and therefore, is the root of a tree. Figure 2 shows the
trees for the dataset in Figure 1, assuming that points
are scanned in ascending order of their ids. The parent
of point 3, for instance, is point 4 because points 1 and
2 do not dominate point 3. 3-pass has the following
property:

Lemma 2.1. ([13]) The following are true at the end
of 3-pass. If a point in Ti (1 ≤ i ≤ K) is sampled in
the first scan, the entire Ti is eliminated, and the point
at its root is reported. Otherwise, the entire Ti remains
in P and its root is not reported.

A new property. Set c = 0.7 in the rest of the section.
Denote by Ni (1 ≤ i ≤ K) the number of points in Ti.
We say that Ti is big if Ni ≥ cN/m; otherwise, Ti is
small. We will prove:

Lemma 2.2. At the end of 3-pass, P has at most (0.5+
e−c)N < 0.997N points in expectation if

∑

∀ small Ti

Ni ≤ N/2.(2.1)

Otherwise, 3-pass returns more than m/4 points in
expectation.

In other words, 3-pass either prunes a constant
fraction of the dataset, or reports Ω(M) skyline points.
This will be the key to establishing Theorem 2.1 later.

Proof. We say that Ti (1 ≤ i ≤ K) is sampled if the
first scan of 3-pass samples at least one point from
Ti. Otherwise, Ti is not sampled. Define a random
variable xi to be 1 if Ti is sampled, or 0 otherwise.
Clearly, Pr[xi = 0] = (1−Ni/N)m, and hence, E[xi] =
1− (1−Ni/N)m.

First consider the scenario where (2.1) holds. By
Lemma 2.1, either every or no point of Ti remains in P
when 3-pass finishes. The former situation happens if
and only if xi = 0. Hence, the number of points in P
after 3-pass equals

∑K
i=0 Ni(1 − xi) whose expectation

is:

K
∑

i=0

Ni(1 −E[xi]) =

K
∑

i=1

Ni · (1−Ni/N)m

≤
∑

∀ small Ti

Ni +

∑

∀ big Ti

Ni(1−Ni/N)m

(by (2.1)) ≤ N

2
+

∑

∀ big Ti

Ni

(

1− Ni

N

)m

(1− x ≤ e−x) ≤ N

2
+

∑

∀ big Ti

Ni

(eNi/N)m

(by the def. of big Ti) ≤ N

2
+

∑

∀ big Ti

Ni

e
cN
m ·mN

≤ N

2
+

N

ec

which proves the first part of Lemma 2.2.
Now consider that (2.1) does not hold. By

Lemma 2.1, the root of Ti is returned by 3-pass if and
only if xi = 1. Hence, the number of skyline points
returned is

∑K
i=1 xi whose expectation is:

K
∑

i=1

E[xi] =

K
∑

i=1

1−
(

1− Ni

N

)m

≥
∑

∀ small Ti

1−
(

1− Ni

N

)m

.(2.2)

In the appendix, we prove the following fact: for
any real x and integer y satisfying 0 < x < 1, y ≥ 1,
and xy ≤ 3/4, it holds that (1 − x)y < 1 − xy/2. Now
we apply the fact to every small Ti. Treat x = Ni/N

and y = m. Since Ti is small, Ni < cN/m, which
means (Ni/N)m < c and hence, xy < c = 0.7 < 3/4.
Therefore, (1−Ni/N)m < 1−Nim/(2N). We now have:

(2.2) >
∑

∀ small Ti

1−
(

1− Nim

2N

)

=
m

2N

∑

∀ small Ti

Ni

(as (2.1) does not hold) >
m

2N

N

2
=

m

4
.

as claimed.

We remark that Lemma 2.2 applies to not only the
first run of 3-pass in our M -skyline algorithm, but also
the subsequent runs. The only change is that N should
be replaced by the size of P at the beginning of a run.

Proof of Theorem 2.1. Equipped with Lemma 2.2,
we now present the proof of Theorem 2.1. Set ρ = 0.997.
We first give a corollary of Lemma 2.2:

Corollary 2.1. The following are true at the end of
3-pass. If (2.1) holds, with probability at least 1 − ρ,
P has less than 0.9996N points left. Otherwise, with
probability at least 1 − ρ, 3-pass returns more than
0.247m skyline points.

All the omitted proofs (such as the above one)
can be found in the appendix. Let c1 = 0.9996 and
c2 = 0.247. We are ready to bound the expected cost
of the M -skyline algorithm. Recall that the algorithm
runs 3-pass multiple times. We say that a run is (i)
downscaling, if P has at most c1x points left after the
run, where x is the size of P when the run started; (ii)
productive, if it finds at least c2m skyline points; (iii)
futile, if it is neither downscaling nor productive.

There can be at most M/(c2m) = O(1) productive
runs because we aim at reporting M skyline points
only. As for downscaling runs, notice that when the
i-th (i ≥ 1) such run is launched, P has at most Nci−1

1

points left. Therefore, the total cost of all these runs is

at most
∑∞

i=1
Nci−1

1

B = O(N/B).
It remains to bound the cost of futile runs. For this

purpose, define a streak as a sequence of consecutive
futile runs, preceded (resp. followed) by either a down-
scaling/productive run, or the beginning (resp. end) of
the algorithm. Let nfutile be the number of runs in a
streak. Corollary 2.1 shows that a run is futile with
probability at most ρ. Hence, Pr[nfutile = i] ≤ ρi such
that E[nfutile] ≤

∑∞
i=1 i · ρi = ρ

(1−ρ)2 = O(1). Hence, if

P has x points at the beginning of a streak, the total
cost of the streak is O(x/B) in expectation because each
run of the streak performs at most O(x/B) I/Os.

It follows that, if a streak is preceded by a down-
scaling or productive run, in expectation, the streak in-
curs asymptotically at most the same cost as that run.
Otherwise (i.e., the algorithm goes into a streak right
from the beginning), the streak entails O(N/B) I/Os
in expectation. Therefore, the total overhead of all the
streaks cannot be more expensive than that of down-
scaling and productive runs by more than a constant
factor. We thus conclude the proof of Theorem 2.1.

3 The M-pivot problem

We now proceed to explain how to settle the M -
pivot problem (defined in Section 1) deterministically
in O(N/B) I/Os. Set n = N/M . For simplicity,
we will assume that all elements are drawn from the
real domain, but our discussion extends to any ordered
domain straightforwardly.

3.1 Even sampling We first describe an algorithm
even-sample, which extends a sub-routine in distribution
sort [2]. The input of even-sample is a set S of N values
in R, and an integer parameter s called reduction ratio
satisfying 2 ≤ s ≤ √

n. It outputs a sample set Σ of S
such that N/s− sM < |Σ| ≤ N/s+ sM .

Even-sample starts by dividing S arbitrarily into
g = ⌈N/(s2M)⌉ groups, each of which has size s2M
except possibly the last group, whose size can be
smaller. Denote these groups as G1, ..., Gg respectively.
For each Gi (1 ≤ i ≤ g), sort its values, and divide
the sorted list into sM sub-groups of size s. The only
exception is the last sub-group of Gg, which may have
less than s values. Each of G1, ..., Gg−1 must contain
exactly sM sub-groups, whereas the number of sub-
groups in Gg can be anywhere from 1 to sM . The
total number of sub-groups from all groups is therefore
between s(g − 1)M + 1 and sgM . Finally, Σ takes the
maximum value in each sub-group as a sample.

Partitioning S into (arbitrary) groups requires only
O(N/B) I/Os. As each group has size at most

s2M , sorting the group takes O(s
2M
B logM/B

s2M
B) =

O(s
2M
B logM/B s) I/Os. Hence, the sorting of all g

groups finishes in O(gs
2M
B logM/B s) = O(NB logM/B s)

I/Os. Hence, even-sample runs in O(NB logM/B s) I/Os
overall.

We have the following facts about Σ:

Lemma 3.1. N/s− sM < |Σ| ≤ N/s+ sM .

Lemma 3.2. Let (v1, v2] be any interval in R. If Σ has
x values in (v1, v2], S has more than sx− 2n/s, but less
than sx+ 2n/s values in (v1, v2].

3.2 Solving the M-pivot problem We consider
n > 65536 so that log4M/B n ≤ log42 n < n. For
n ≤ 65536, the M -pivot problem can be solved in linear
time by sorting.

Algorithm. Define h = log∗M/B n. In other words,

log
(h−1)
M/B n ≥ 16 (recall our definition of log∗ in Sec-

tion 1). Our algorithm has two steps. The first step
runs even-sample h − 1 times with rapidly increasing
reduction ratios. The input to each run is the out-
put of the previous run, except the first run whose
input is the dataset S itself. Let Si be the input of
the i-th (1 ≤ i ≤ h − 1) run, and Σi its output.
Hence, S1 = S, and Si = Σi−1 for i ≥ 2. Denote by si
the parameter s (i.e., reduction ratio) of the i-th run.

We set si = ⌊log(h−i)
M/B n⌋. It is easy to verify that

si ≥ 1
2 (M/B)si−1 for i ≥ 2.
The second step sorts Σh−1 in ascending order,

and divides the sorted list into M segments as evenly
as possible. Namely, each segment has size either
⌊|Σh−1|/M⌋ or ⌊|Σh−1|/M⌋ + 1. The greatest value in
each of the first M−1 segments is taken as a final pivot,
which is returned.

Analysis. For each i ∈ [1, h− 1], define Ni = |Si| and
ni = Ni/M . Remember N1 = N and Ni = |Σi−1| for
i ≥ 2. The following fact is elementary:

Lemma 3.3. For n > 65536,
∏h−1

i=1 si <
√
n <

n
4 logM/B n .

We now establish a crucial property of our algo-
rithm:

Lemma 3.4. For each i ∈ [1, h−1], N
2sisi−1...s1

< |Σi| <
3N

2sisi−1...s1
.

Proof. Regarding the i-th run of even-sample, setting
the N of Lemma 3.1 to Ni shows:

|Σi| >
Ni

si
− siM =

|Σi−1|
si

− siM

(applying Lemma 3.1) >

Ni−1

si−1

− si−1M

si
− siM

(as si > 1) >
Ni−1

sisi−1
−M

i
∑

j=i−1

sj

...

>
N1

si...s1
−M

i
∑

j=1

sj .(3.3)

The above used only the lower bound of |Σ| in
Lemma 3.1. From its upper bound (i.e., N/s + sM),

after similar derivation, we get:

|Σi| ≤ N1

si...s1
+M

i
∑

j=1

sj .(3.4)

The rest of the proof will show: M
∑i

j=1 sj < N1

2si...s1
,

which will establish the lemma together with (3.3) and
(3.4) (recall that N1 = N). In fact:

M

i
∑

j=1

sj ≤ M

i
∑

j=1

log
(h−j)
M/B n

< 2M logM/B n

(applying Lemma 3.3) <
nM

2sh−1...s1

≤ nM

2si...s1
=

N

2si...s1

thus completing the proof.

Corollary 3.1. For each i ∈ [2, h−1], n
2si−1si−2...s1

<

ni <
3n

2si−1si−2...s1
.

Proof. It follows from the previous lemma and the fact
that ni = Ni/M = |Σi−1|/M .

Corollary 3.2. For each i ∈ [2, h− 1], si <
√
ni.

The above corollary shows that si falls in the legal
range [2,

√
ni] as demanded by even-sample (recall that

s1 ≥ 16). Next, we prove that the pivots computed by
our algorithm satisfy the requirement of the M -pivot
problem. Let v1, ..., vM−1 be the pivots in ascending
order. Define dummy values v0 = −∞ and vM = ∞.

Lemma 3.5. For each j ∈ [1,M], the original dataset
S has Θ(n) values in (vj−1, vj].

Proof. Let xi (1 ≤ i ≤ h − 1) be the number of
values in Σi ∩(vj−1, vj], and x0 the number of values
in S ∩(vj−1, vj]. We will prove x0 = Ω(n) only, because
an analogous argument establishes x0 = O(n).

Recall that the second step of our algorithm divides
Σh−1 into M segments evenly. Exactly one segment
falls in (vj−1, vj]. A segment has length ⌊|Σh−1|/M⌋ or
⌊|Σh−1|/M⌋+ 1. Hence, xh−1 is at least |Σh−1|/(2M).
As for |Σh−1|, we have from Lemma 3.4: |Σh−1| >

N
2sh−1...s1

which gives:

xh−1 >
n

4sh−1...s1
.(3.5)

Now we turn attention to xh−2. Recall that Σh−2 =
Sh−1. Hence, xh−2 is also the number of values in
Sh−1 ∩(vj−1, vj]. By Lemma 3.2, this number is greater

than sh−1xh−1 − 2nh−1/sh−1. Lower bounding xh−1

with (3.5) and upper bounding nh−1 with Corollary 3.1,
we obtain:

xh−2 > sh−1
n

4sh−1...s1
− 2

sh−1

3n

2sh−2...s1

=
n

4sh−2...s1
− 3n

sh−1...s1

=
n

sh−2...s1

(

1

4
− 3

sh−1

)

.(3.6)

With reasoning similar to what we applied to xh−2,
Lemma 3.2 shows that xh−3 > sh−2xh−2−2nh−2/sh−2.
Lower bounding xh−2 with (3.6) and upper bounding
nh−2 with Corollary 3.1, we obtain:

xh−3 >
sh−2 · n
sh−2...s1

(

1

4
− 3

sh−1

)

− 2

sh−2

3n

2sh−3..s1

=
n

sh−3...s1

(

1

4
− 3

sh−1

)

− 3n

sh−2...s1

=
n

sh−3...s1

(

1

4
− 3

sh−2
− 3

sh−1

)

.

Continuing in the same manner, eventually we obtain:

x0 > n

(

1

4
− 3

s1
− 3

s2
− ...− 3

sh−1

)

.(3.7)

We know: s1 ≥ 16, s2 ≥ 1
2 (M/B)16 ≥ 215, s3 ≥

1
2 (M/B)2

15 ≥ 22
15−1, ... Therefore, from (3.7), we have

x0 > n
(

1
4 − 3

16 − 2 · 3
215

)

= Ω(n).

We complete our analysis with:

Theorem 3.1. Our algorithm solves the M -pivot prob-
lem in O(N/B) I/Os.

Proof. The second step of our algorithm sorts
Σh−1. With |Σh−1| upper bounded in Lemma 3.4,
we know that the sorting needs no more than
O(N

Bsh−1...s1
logM/B

N
B) I/Os, which is O(N/B) because

logM/B
N
B = O(logM/B n) = O(sh−1).

The first step runs even-sample h−1 times. The first
run takes O(NB logM/B s1) = O(N/B) I/Os, because

logM/B s1 ≤ logM/B log
(h−1)
M/B n = log

(h)
M/B n = O(1).

It remains to bound the cost of the 2nd, ..., (h − 1)-
st runs. Combining Corollary 3.1 and the discussion
in Section 3.1, the i-th (2 ≤ i ≤ h − 1) run entails
cost O(N

Bsi−1...s1
logM/B si), which is O(N

Bsi−2...s1
) be-

cause logM/B si ≤ logM/B log
(h−i)
M/B n = log

(h−(i−1))
M/B n =

O(si−1). Therefore, the total cost of the 2nd, ..., (h−1)-

st runs is O(
∑h−1

i=2
N

Bsi−2...s1
), which is O(N/B) because

the terms decrease at least geometrically as i grows.
To see this, notice that the ratio between the i-th and
(i− 1)-st term (for each i ≥ 3) equals 1/si−2 ≤ 1/16.

4 Output-sensitive skyline algorithms

This section will develop our new skyline algorithms.
Sections 4.1 and 4.2 clear two more obstacles before we
can start presenting our final solutions. In Section 4.3,
we explain an output-sensitive algorithm under the as-
sumption that the skyline size K is (magically) known.
In Section 4.4, we remove this assumption, and give the
ultimate algorithm.

4.1 M-skyline problem in 2d space Section 2 has
presented a randomized algorithm for solving the M -
skyline problem in linear expected I/Os in any fixed
dimensionality. Exploiting our M -pivot algorithm, we
obtain a deterministic solution in 2d space:

Theorem 4.1. The M -skyline problem on N points in
2d space can be solved in O(N/B) I/Os deterministi-
cally.

4.2 Dominance screening In the dominance
screening problem, we are given two sets, denoted as R
and S, of points in Rd. The goal is to report the points
of S that are not dominated by any point of R. We
prove in the appendix:

Lemma 4.1. The dominance screening problem can be

solved in O(|R|+|S|
B logd−2

M/B
|R|
B) I/Os in any fixed dimen-

sionality d ≥ 3.

Note that the logarithmic term is unrelated to
|S|. Also, the lemma implies that the problem in
2d space (i.e., a special case of 3d) can be solved in

O(|R|+|S|
B logM/B

|R|
B) I/Os.

4.3 Skyline algorithm when K is known If K ≤
M , the problem can be settled by our M -skyline al-
gorithm, which runs in O(N/B) expected cost for
d ≥ 3 (Theorem 2.1) and in the worst case (The-
orem 4.1). On the other hand, if K ≥

√
NM , it

holds that N ≤ K2/M . For d ≥ 3, we can simply
apply the output-insensitive algorithm of [14] to solve

the problem in O(NB logd−2
M/B

N
B) = O(NB logd−2

M/B
K2

MB) =

O(NB logd−2
M/B

K
B) I/Os. Similarly, for d = 2, we can

solve the problem inO(NB logM/B
N
B) = O(NB logM/B

K
B)

I/Os.
The subsequent discussion considers onlyM < K <√

NM. Set f = Θ(K/M). We divide P into disjoint
partitions P1, ..., Pf of roughly the same size, such that
every point in Pi has a smaller x-coordinate than all
points in Pj for any i, j satisfying 1 ≤ i < j ≤ f .

Lemma 4.2. P1, ..., Pf can be produced in
O(NB logM/B

K
B) I/Os.

We inspect Pi in ascending order of i. When Pi is
finished, we guarantee that the skyline R of P1 ∪ ...∪Pi

should have been found. In other words, R = SKY (P)
after P1, ..., Pf have all been processed. The next lemma
below bounds the cost of handling each Pi.

Lemma 4.3. For d ≥ 3, the processing of Pi takes
O(N

fB logd−2
M/B

K
B + NKi

fMB) expected I/Os, where Ki is the

number of points of SKY (P) that are found in Pi. For
d = 2, the cost is O(N

fB logM/B
K
B + NKi

fMB) in the worst
case.

Therefore, for d ≥ 3, the overall expected cost is
bounded by

O

(

f
∑

i=1

(

N

fB
logd−2

M/B

K

B
+

NKi

fMB

)

)

= O

(

N

B
logd−2

M/B

K

B
+

NK

fMB

)

= O

(

N

B
logd−2

M/B

K

B
+

N

B

)

.

With a similar argument for d = 2, we arrive at:

Lemma 4.4. For fixed d ≥ 3, when K is known, the
skyline of N points can be found in O(NB logd−2

M/B
K
B)

expected I/Os. In 2d space, when K is known, the
skyline can be found in O(NB logM/B

K
B) I/Os.

4.4 The ultimate algorithm Finally, we remove
the assumption that K is known. The subsequent
discussion concentrates on d ≥ 3 because the 2d case
can be handled in the same fashion. The main idea
behind our approach is to guess K strategically. The
idea is hardly new (see, e.g., [6]), but its application in
our context requires some careful treatment, as shown
below.

From now on, let K⋆ be the actual number of sky-
line points (which is unknown), and K be our current
guess which will always satisfy M < K <

√
NM . We

will refer to the algorithm of Lemma 4.4 as rigid-size.
Imagine running rigid-size with K anyway (i.e., poten-
tially feeding a wrong guess) with one modification: the
algorithm terminates by reporting failure as soon as it
finds K + 1 skyline points. From the previous subsec-
tion, we have:

Corollary 4.1. For fixed d ≥ 3, the following are true
for some constant c > 0:

– When K⋆ ≤ K <
√
NM , rigid-size finds

the entire skyline within 3dcNB logd−2
M/B

K
M I/Os

with probability at least 1− 3−d.

– When M < K < K⋆ rigid-size always fails.

We are ready to elaborate our final algorithm.
First, start by using our M -skyline algorithm to check
whether K⋆ ≤ M ; if so, the problem has been solved.
Otherwise, we run rigid-size with guess K (whose value
will be given later), while counting how many I/Os
have been performed. As soon as the I/O count has
exceeded 3dcNB logd−2

M/B
K
M , we abort the algorithm (i.e.,

forcing it to stop). In other words, rigid-size has
three possible outcomes: normally terminated, failed,
and aborted. The entire algorithm finishes in the first
outcome, whereas in the other two, we increase K and
re-run rigid-size. In general, K equals M · (M/B)2

i

(so
that logM/B(K/M) = 2i) when running rigid-size for

the i-th (i ≥ 1) time. As soon as K ≥
√
NM , however,

we stop using rigid-size and instead deploy an output-
insensitive algorithm, as explained in Section 4.3.

Leaving the analysis to the appendix, we now
present the final main result:

Theorem 4.2. For any fixed d ≥ 3, we can find
the skyline of N points in d-dimensional space using
O(NB logd−2

M/B
K
B) expected I/Os, where K is the number

of skyline points. For d = 2, the running time is
O(NB logM/B

K
B) I/Os in the worst case.

Remark. It is not difficult to show that our 2d
algorithm is optimal in the class of comparison-based
algorithms. For example, by the transformation in [11],
we can show that a skyline algorithm can be used to
remove duplicates in a multi-set of N elements where
only K of them are distinct. The latter problem is
known to have a lower bound of Ω(NB logM/B

K
B) [3].

References

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,
Z. Wei, and K. Yi. Mergeable summaries. In Pro-
ceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 23–34, 2012.

[2] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM (CACM), 31(9):1116–1127, 1988.

[3] L. Arge, M. Knudsen, and K. Larsen. A general
lower bound on the I/O-complexity of comparison-
based algorithms. In Algorithms and Data Structures
Workshop (WADS), pages 83–94, 1993.

[4] J. L. Bentley. Multidimensional divide-and-conquer.
Communications of the ACM (CACM), 23(4):214–229,
1980.

[5] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences (JCSS), 7(4):4 48–461,
1973.

[6] T. M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions. Discrete &
Computational Geometry, 16(4):361–368, 1996.

[7] T. M. Chan, K. G. Larsen, and M. Patrascu. Orthog-
onal range searching on the ram, revisited. In Sympo-
sium on Computational Geometry (SoCG), pages 1–10,
2011.

[8] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling
and related techniques for geometry problems. In Pro-
ceedings of ACM Symposium on Theory of Computing
(STOC), pages 135–143, 1984.

[9] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proceedings of Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 714–723,
1993.

[10] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proceedings of
ACM Management of Data (SIGMOD), pages 58–66,
2001.

[11] D. G. Kirkpatrick and R. Seidel. Output-size sensitive
algorithms for finding maximal vectors. In Symposium
on Computational Geometry (SoCG), pages 89–96,
1985.

[12] H. T. Kung, F. Luccio, and F. P. Preparata. On finding
the maxima of a set of vectors. Journal of the ACM
(JACM), 22(4):469–476, 1975.

[13] A. D. Sarma, A. Lall, D. Nanongkai, and J. Xu. Ran-
domized multi-pass streaming skyline algorithms. Pro-
ceedings of the VLDB Endowment (PVLDB), 2(1):85–
96, 2009.

[14] C. Sheng and Y. Tao. Finding skylines in external
memory. In Proceedings of ACM Symposium on Prin-
ciples of Database Systems (PODS), pages 107–116,
2011.

[15] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H.
Tung. Kernel-based skyline cardinality estimation. In
Proceedings of ACM Management of Data (SIGMOD),
pages 509–522, 2009.

Appendix 1: A mathematical fact

Next we show: for any real x and integer y satisfying
0 < x < 1, y ≥ 1, and xy ≤ 3/4, it holds that
(1− x)y < 1− xy/2. This is trivial for y = 1. If y = 2,
then (1− x)y < 1− x = 1− xy/2. The rest of the proof
considers y ≥ 3, for which we have:

(1− x)y =

y
∑

i=0

(

y

i

)

(−x)i

= 1− yx+

y
∑

i=2

(

y

i

)

(−x)i

< 1− yx+

y
∑

i=2

(

y

i

)

xi

Define zi =
(

y
i

)

xi so that we can simplify the above to

(1− x)y < 1− yx+

y
∑

i=2

zi(4.8)

For any i ≥ 3:

zi
zi−1

=

(

y
i

)

xi

(

y
i−1

)

xi−1

=
y − i+ 1

i
x

(as i ≥ 3, y − i+ 1 < y) <
yx

3
(as xy < 3/4) < 1/4.

Therefore, for any i ≥ 3, it holds that

zi < z2 ·
(

1

4

)i−2

.

It follows that

(4.8) < 1− yx+

y
∑

i=2

z2 ·
(

1

4

)i−2

< 1− yx+
4

3
z2

= 1− yx+
4

3
· y(y − 1)

2
· x2

To prove the above is at most 1 − yx/2, it remains to
show

4

3
· y(y − 1)

2
· x2 ≤ xy

2

⇔ 4

3
(y − 1)x ≤ 1

⇔ 4

3
xy ≤ 1 +

4

3
x

(as xy < 3/4) ⇐ 1 ≤ 1 +
4

3
x

which is true.

Appendix 2: Proof of Corollary 2.1

If (2.1) holds, at the end of 3-pass, |P | has at most
(12 +

1
ec)N points in expectation. Hence, by the Markov

inequality3:

Pr

[

|P | ≥
(

1

2
+

1

ec

)

N

ρ

]

≤ ρ.

Remember c = 0.7. Hence, with probability at least
1− ρ, |P | is smaller than (12 + 1

ec)
N
ρ < 0.9996N.

3If X is a non-negative random variable, the Markov inequality
says that Pr[X ≥ E[X]/y] ≤ y for any y > 0.

Now consider that (2.1) does not hold. At the end
of 3-pass, the sample set Σ has more than m/4 points
in expectation. Set

z = m− |Σ|.

Note that z ≥ 0 because Σ can have at most m samples.
Also:

E[z] = m−E[|Σ|] < 3m/4.

By the Markov inequality:

Pr

[

z ≥ 3m

4ρ

]

≤ ρ.

⇒ Pr

[

m− |Σ| ≥ 3m

4ρ

]

≤ ρ.

⇒ Pr

[

|Σ| ≤ m− 3m

4ρ

]

≤ ρ.

Hence, with probability at least 1−ρ, |Σ| is greater than
m− 3m

4ρ > 0.247m.

Appendix 3: Proof of Lemma 3.1

If N is a multiple of s2M , Σ has exactly gsM =
N/s samples so the lemma obviously holds. Next, we
consider that N is not a multiple of s2M .

Write N = αs2M + β where α and β are integers
satisfying α ≥ 0 and β ∈ [1, s2M − 1]. Hence, g = α+1
and ⌊N/s⌋ = αsM + ⌊β/s⌋. Clearly:

αsM ≤ ⌊N/s⌋ ≤ αsM + sM − 1.(4.9)

As mentioned before, there are altogether between s(g−
1)M + 1 and sgM sub-groups, from each of which a
sample is taken. Hence, |Σ| ≤ sgM = s(α + 1)M =
αsM + sM ≤ ⌊N/s⌋+ sM ≤ N/s+ sM . On the other
hand, |Σ| ≥ s(g − 1)M + 1 = αsM + 1 > αsM , which
by (4.9) is at least ⌊N/s⌋+ 1− sM > N/s− sM .

Appendix 4: Proof of Lemma 3.2

Among the x values of Σ in (v1, v2], suppose that xi

of them come from group Gi (1 ≤ i ≤ g). Clearly,
∑g

i=1 xi = x.
Let us focus on Gi of any i ∈ [1, g]. Denote by

Xi the set of values (from S) in Gi ∩(v1, v2]. Among
the sub-groups of Gi having at least one value in Xi

(such a sub-group is said to touchXi), Xi entirely covers
all those sub-groups except possibly two. Figure 3
illustrates the idea with each box representing a sub-
group. Xi fully covers 3 sub-groups, and contains a
portion of the two boxes intersecting the vertical lines
at v1 and v2, respectively. The dot in a box denotes the
maximum value of the corresponding sub-group, i.e., the
dot is a sample in Σ.

v1 v2

......

= sub-groups touching Xi

= a sample in Σ

Xi

Figure 3: Proof of Lemma 3.2

Xi can touch at most xi +1 sub-groups. Otherwise
(if Xi touches at least xi + 2), the greatest values of
at least xi + 1 sub-groups would have fallen in (v1, v2],
contradicting the definition of xi. Hence, |Xi| ≤ s(xi +
1). On the other hand, Xi must fully cover at least xi−1
sub-groups. Otherwise (if Xi covers at most xi−2), the
greatest values of at most xi − 1 sub-groups could have
fallen in (v1, v2], also contradicting the definition of xi.
Hence, s(xi − 1) ≤ |Xi|.

It follows that

g
∑

i=1

s(xi − 1) ≤
g
∑

i=1

|Xi| ≤
g
∑

i=1

s(xi + 1)

⇒ sx− sg ≤
g
∑

i=1

|Xi| ≤ sx+ sg

g = ⌈N/(s2M)⌉ < n/s2 + 1. Hence,
∑g

i=1 |Xi| is
more than sx − n/s − s and less than sx + n/s + s.
Recall that s ≤ √

n, which implies s ≤ n/s. Therefore,
sx− 2n/s <

∑g
i=1 |Xi| < sx+ 2n/s.

Appendix 5: Proof of Lemma 3.3
√
n < n

4 log
2
n < n

4 logM/B n is obvious so we focus on the

first inequality. When n > 65536, log42 n < n. Hence:

n
∏h−1

i=1 ⌊log
(i)
M/B n⌋

>

√
n
√
n

∏h−1
i=1 log

(i)
2 n

>

√
n log22 n

∏h−1
i=1 log

(i)
2 n

=
√
n

log2 n
∏h−1

i=2 log
(i)
2 n

>
√
n.

Therefore,
∏h−1

i=1 si <
√
n.

Appendix 6: Proof of Corollary 3.2

Since 2si−1...s1 > s1 ≥ 16, we know
√
2si−1...s1 <

si−1...s1. Hence:

si ≤ sh−1...s1
si−1...s1

(by Lemma 3.3) <

√
n

si−1...s1

<

√
n√

2si−1...s1

(by Corollary 3.1) <
√
ni.

Appendix 7: Proof of Theorem 4.1

The M -skyline algorithm described next is due to [13];
we sketch it here for completeness. Let P be a set of
2d points. We run our M -pivot algorithm on the x-
coordinates of the points in P . In linear I/Os, the al-
gorithm reports pivots, in ascending order, v1, ..., vM−1.
They determine M vertical slabs partitioning the data
space R2, where the i-th (1 ≤ i ≤ M) slab σi has an x-
range set to (vi−1, vi], defining v0 = −∞ and vM = ∞.
Note that P has Θ(N/M) points in each σi.

Next, we scan P once to obtain, for each i ∈ [1,M],
the lowest point pi in P ∩ σi, i.e., pi has the smallest
y-coordinate among the points in σi. Now, compute
in memory the skyline Π of {p1, ..., pM}, namely, the
skyline of just M points. It is easy to see that all the
points in Π are also in the skyline of P . Furthermore, if
pi for some i is not in Π, the entire slab σi can be pruned,
because whatever point dominating pi also dominates
all the other points in P ∩σi. It is easy to verify that,
we either have reported at least M/2 skyline points, or
have pruned (M/2) ·Θ(N/M) = Θ(N) points from P .

If less than M skyline points have been found, we
re-run the above algorithm on the set of points in P
that are not dominated by any point in Π. Given
Theorem 3.1, we can now apply the analysis in [13] to
show that the total cost is O(N/B).

Appendix 8: Proof of Lemma 4.1

Partial sorting. To prove Lemma 4.1, we cannot af-

ford to sort S as this will bring about a term logM/B
|S|
B

in the running time. Nevertheless, we can still sort S
partially, by the definition below.

Definition 1. Let R and S be two sets of points in Rd.
Let U be a sequence including all the points in R and
S. In this sequence, S is partially sorted against R

if the following are true:

• Each point p is assigned an integer label lp.

• For any two points p1 and p2 with lp1
< lp2

, it must

hold that (i) p1 precedes p2 in U , (ii) p1[d − 1] ≤
p2[d− 1], and (iii) in case p1[d− 1] = p2[d− 1], p1
is lexicographically smaller than p2.

4

• At most m = M/d points from R have an identical
label.

Viewed differently, U can be partitioned into trunks
such that all points in the same trunk carry an identical
label. For this reason, we may sometimes refer to a label
as a trunk id. The above definition essentially states
that points in different trunks must have been properly
ordered (in the sense of the second bullet), whereas we
do not care about the ordering within a trunk.

Lemma 4.5. The sequence U in Definition 1 can be

obtained in O(|R|+|S|
B logM/B

|R|
B) I/Os.

Proof. Using a subroutine of the distribution sort [2], we
can divide R (obeying the ordering requirement) into
√

M/B partitions of roughly the same size, and dis-

tribute S accordingly. This requires O(|R|+|S|
B) I/Os.

Then, we can focus on each partition recursively. The
recursion terminates when the number of points from
R is at most m. The depth of the recursion is

O(logM/B
|R|
M) = O(logM/B

|R|
B).

The h-screening problem. Let us tackle a related
problem called h-screening. The input is:

• A parameter h satisfying 0 ≤ h ≤ d− 2.

• For each dimension i ∈ [1, h], a set of f =

Θ((M/B)
1

d−2) slabs σi(1), ..., σi(f). If h = 0, no
slab needs to be given. Each set of σi(1), ..., σi(f)
is obtained by cutting the data space Rd with f −1
hyperplanes orthogonal to dimension i, so that for
any point p ∈ σi(j) and p′ ∈ σi(j

′), we have
p[i] < p′[i] if 1 ≤ j < j′ ≤ f .

• A sequence of the points in R sorted on dimension
h+ 1.

• A sequence U of R∪S in which S is partially sorted
against R. In addition, U has the property that a
point p of S is marked if (i) there exists some point
of R dominating p, and (ii) both points fall in the
same slab σi(j) for some i ∈ [1, h] and j ∈ [1, f].

If a point p ∈ S is dominated by some point in R, we
say that p is screened. The output of the problem has
one or two parts:

4Namely, there is an i ∈ [1, d] such that p1[i] < p2[i] while
p1[j] = p2[j] for all j < i.

• A sequence of R sorted on dimension h + 2 if
h < d− 2. We do not need this part if h = d− 2;

• A sequence U of R ∪ S where S is partially sorted
against R, and all the screened points of S are
marked.

Lemma 4.6. The h-screening problem can be solved in

O(|R|+|S|
B logd−h−2

M/B
|R|
B) I/Os.

Proof. We handle h = d− 2 and h < d− 2 separately.

Case 1: h = d − 2. In this case, the problem can
be settled by scanning the trunks of U in ascending
order of the trunk ids. During the scan, we maintain
a set of fh values λ(i1, ..., ih), where 1 ≤ ij ≤ f for
each j ∈ [1, h]. Each λ(i1, ..., ih) records the minimum
coordinate on dimension d of all the points of R that (i)
fall in σ1(i1)∩ ...∩σh(ih) and (ii) belong to trunks that
have already been fully scanned. If no point satisfies
both conditions, λ(i1, ..., ih) = ∞. With the choice of
f , these fh values fit in memory.

Now let us focus on a trunk. We first read the trunk
once to buffer all points from R in memory (recall that
there can be at most m such points). Then, scan the
trunk again, and mark all points from S screened by
a point of R in memory. Next, we scan the trunk one
more time, and mark all points from S screened by a
point of R in trunks already scanned. Specifically, let
p ∈ S be in this trunk, and σ1(i1), ..., σh(ih) be the slabs
that p falls in. If

p[d] ≥ min
j1<i1...jh<ih

λ(j1, ..., jh),

p must be screened, and hence, is marked.
As each trunk is processed only once, (d − 2)-

screening can be settled in O(|U |/B) I/Os.

Case 2: h < d− 2. If |R| ≤ m, the problem can easily
be solved in O(|U |/B) I/Os by keeping R in memory.
The subsequent discussion assumes that R does not fit
in memory. We will convert the problem to (h + 1)-
screening.

First, divide U into disjoint sequences U1, ..., Uf ,
such that:

• the points in Ui have smaller coordinates on di-
mension h + 1 than those in Uj for any i, j with
1 ≤ i < j ≤ f ;

• for each i ∈ [1, f], Ui has Θ(|R|/f) points from R;

• for each i ∈ [1, f], Si is partially sorted against Ri,
where Ri = Ui ∩R and Si = Ui ∩ S.

Sequences U1, ..., Uf can be generated in O(|U |/B)
I/Os. Recall that we have at our disposal a list of R

sorted on dimension h + 1. Scanning the list once, we
can partition the data space along this dimension into
f disjoint vertical slabs σh+1(1), ..., σh+1(f) such that
R has roughly the same number of points in each slab.
Keeping the slab definitions in memory, in linear time,
we can divide U into U1, ..., Uf , while ensuring that the
points in each Ui retain their mutual ordering in U .

For each i ∈ [1, f], perform dominance screening
on (Ri, Si) recursively, which is another h-screening
problem. On return, we have obtained:

• a sequence of Ri sorted on dimension h+ 2;

• a sequence Ui of Ri∪Si where Si is partially sorted
against Ri, and every point of Si screened by Ri is
marked.

In O(|U |/B) I/Os, we can merge U1, ..., Uf into a
sequence U of R∪ S where S is partially sorted against
R (replacing the original U), and merge the sequences
of R1, ..., Rf into another sequence of R sorted on
dimension h+2. We have obtained all the inputs to an
(h+1)-screening problem, which is therefore recursively
solved.

Running time of h-screening. Set T = |R| and N =
|S|. Let Gh(N, T) be the number of I/Os required to
solve h-screening, and Hh(N, T) the cost of converting
h-screening to (h+ 1)-screening. We have:

Gh(N, T) =






O((N + T)/B) if h = d− 2
or T = O(M)

Hh(N, T) +Gh+1(N, T) otherwise

with

Hh(N, T) =

f
∑

i=1

Gh(Ni, T/f) +O((N + T)/B)

where Ni is the number of points in Si for each
i ∈ [1, f]. Solving the recurrence yields Gh(N, T) =
O(N+T

B logd−h−2
M/B

T
B), which proves Lemma 4.6.

Dominance screening. We are now ready to solve
the dominance screening problem. Sort R on the
first dimension. Generate a sequence U of R ∪ S
in which S is partially sorted against R, which re-

quires O(|R|+|S|
B logM/B

|R|
B) I/Os (Lemma 4.5). Now,

solve a 0-screening problem with R and U as the in-
put. On return, all the screened points are marked
in U . We can extract those points with another
scan of U . By Lemma 4.6, the entire process takes

O(|R|+|S|
B logd−2

M/B
|R|
B) I/Os.

Appendix 9: Proof of Lemma 4.2

Assume first that N is a power of 2; we will remove the
assumption at end of the proof. Our algorithm is based
on distribution sort [2]. Let u be a power of 2 that is
Θ(
√

M/B). Let f ′ be the largest power of u that is at
most f . We will first explain how to divide P into f ′

partitions of roughly the same size, and then, further
divide it into f partitions.

The core of distribution sort is a sub-routine that
uses linear I/Os to partition P along the x-dimension
into Π1, ...,Πu of roughly the same size. After this,
we can recursively apply the sub-routine on each Πi

(1 ≤ i ≤ u), until there are f ′ partitions in total.
As the number of partitions increases by a factor of
u after each level of recursion, the number of levels is
O(logu f

′). The overall cost is therefore O(NB logu f
′) =

O(NB logM/B
K
B).

There is, however, a problem with the above strat-
egy. The sizes of Π1, ...,Πu are only roughly the same,
i.e., two partitions can differ in their sizes by a constant
factor. However, as there are logM/B

K
B recursion lev-

els, the size ratio of two partitions can be multiplied
non-constant times, such that the sizes of two final par-
titions can differ by a non-constant factor, thus beating
our objective. One way to remedy the problem is to
make the sizes of Π1, ...,Πu perfectly the same. Fortu-
nately, given Π1, ...,Πu, we can create such a perfect
partition Π′

1, ...,Π
′
u of P in O(N/B) I/Os.

The main idea is to run the k-selection algorithm
[5] O(u) times, each of which is carried out on some
Πi. As |Πi| = O(N/u), each run incurs O(N/(uB))
I/Os so the overall cost is still O(N/B). To understand
the details, first note that each Π′

i (1 ≤ i ≤ u) should
have exactly N/u points. We thus aim at deciding u−1
pivots v1, ..., vu−1 (in ascending order) such that exactly
N/u points of P have x-coordinates in (vi−1, vi] for each
i ∈ [1, u] (define dummy v0 = −∞ and vu = ∞). To
find v1, we run k-selection to retrieve from Π1 the point
with the (N/u)-th smallest x-coordinate. Note that the
retrieval may fail by returning nothing if |Π1| < N/u.
However, in that case, we finish with Π1 and move on to
retrieve the point from Π2 having the (N/u − |Π1|)-th
smallest x-coordinate. In general, we may fail only u
times, whereas a new pivot is decided every time we do
not. Hence, k-selection is executed at most 2u times.

We now have obtained f ′ partitions P1, ..., Pf ′ of P .
To obtain f partitions, we divide each Pi into ⌈f/f ′⌉
sub-partitions of roughly the same size. As ⌈f/f ′⌉ ≤ u,
the division of Pi can be accomplished by invoking
the aforementioned sub-routine of distribution sort only
once. After having divided all of P1, ..., Pf ′ , we may
have ended up with more than f partitions. In this case,
pair-wisely merge some partitions to make the number

exactly f . It is easy to verify that the final partitions
have roughly the same size.

Finally, let us deal with the case where N is not a
power of 2. Let N ′ be the smallest power of 2 greater
than N . Add N ′−N dummy points to P , ensuring that
the dummy points have x-coordinates smaller than all
the points in P . Denote by P ′ the resulting dataset. Use
our earlier algorithm to partition P ′ into P ′

1, ..., P
′
f ′ with

exactly the same size. Let P ′
1, ..., P

′
x be the partitions

containing dummy points. Note that x ≤ f ′/2. Discard
P ′
1, ..., P

′
x−1, move all the non-dummy points of P ′

x into
P ′
x+1.

At this point, P has been divided into at least
f ′/2 but at most f ′ partitions of roughly the same
size. Similar to the method explained before, we further
divide them into f partitions of roughly the same size
by invoking the sub-routine of distribution sort at most
twice.

Appendix 10: Proof of Lemma 4.3

Next we describe how to handle Pi, given the skyline
R of P1 ∪ ... ∪ Pi−1. Let us first consider d ≥ 3. We
start by eliminating from Pi those points dominated by
any point in R. This can be done with the dominance
screening algorithm of Lemma 4.1, whose cost is

O

(|Pi|+ |R|
B

logd−2
M/B

|R|
B

)

= O

((

N

fB
+

K

B

)

logd−2
M/B

K

B

)

(as |Pi| = O(N/f) and |R| ≤ K)

= O

(

N

fB
logd−2

M/B

K

B

)

(as f = Θ(K/M) and K <
√
NM , thus

K/B <
NM

KB
= O

(

N

fB

)

).

After the screening, we can concentrate on finding the
skyline S of the remaining Pi. Every point of S is
definitely in SKY (P), i.e., Ki = |S|.

The entire S can be retrieved in O(N
fB + NKi

fMB) ex-

pected I/Os as follows. Execute the M -skyline algo-
rithm of Theorem 2.1 on Pi, which fetches a set S′ of
skyline points in O(N/(fB)) expected I/Os. If S′ has
less thanM points, we are done because the entire S has
been extracted. Otherwise, scan Pi once to remove all
the points dominated by any point in S′, which takes
only linear I/Os because S′ can be kept in memory.
Now, repeat the above by executing the M -skyline algo-
rithm again. There are at most Ki/M repeats because
each repeat discovers M new skyline points except per-
haps the last one. Hence, the total cost is O(N

fB+ N
fB

Ki

M)

expected.
The above discussion also applies to d = 2 by

using instead the M -skyline algorithm of Theorem 4.1.
All the I/O cost is thus in the worst case. Also
note that dominance screening is now completed in
O(N

fB logM/B
K
B) I/Os.

Appendix 11: Proof of Corollary 4.1

We focus on K⋆ ≤ K <
√
NM because the other case

of the corollary is obvious. We will show that rigid-
size reports the entire skyline in O(NB logd−2

M/B
K
B) =

O(NB logd−2
M/B

K
M) expected I/Os, from which the corol-

lary follows with a simple application of the Markov
inequality. In fact, it is easy to verify that both
Lemmas 4.2 and 4.3 still hold. The total cost
of rigid-size is thus O(NB logd−2

M/B
K
B +

∑f
i=1

NKi

fMB) =

O(NB logd−2
M/B

K
B + NK⋆

fMB) = O(NB logd−2
M/B

K
B), noticing

that f = Θ(K/M) = Ω(K⋆/M).

Appendix 12: Proof of Theorem 4.2

We concentrate on d ≥ 3 because the argument for d = 2
is analogous. We assume K⋆ > M because otherwise
the expected cost is obviously O(N/B).

First consider that our guess K of the skyline size
never reaches

√
NM . Set Ki = M · (M/B)2

i

for i ≥ 1.
The i-th run of rigid-size incurs at most

3dc · (N/B) · logd−2
M/B(Ki/M) = 3dc · (N/B) · 2i(d−2)

= O(N/B) · 2i(d−2)

I/Os. Let z be the smallest value satisfying Kz ≥ K⋆.
The total cost of the first z runs of rigid-size is at most

O(N/B) · (2d−2 + 22(d−2) + ...+ 2z(d−2))

= O(N/B) · 2z(d−2).(4.10)

Since Kz−1 < K⋆, we know:

M · (M/B)2
z−1

< K⋆

⇒ 2z−1 < logM/B(K
⋆/M)

⇒ 2z < 2 logM/B(K
⋆/M).

Therefore, we continue (4.10) with

O(N/B) · 2z(d−2) = O(N/B) · 2d−2 · logd−2
M/B

K⋆

M

= O

(

N

B
logd−2

M/B

K⋆

B

)

.(4.11)

Next we will show that, the cost of rigid-size beyond
its z-th run is O(NB logd−2

M/B
K⋆

B) in expectation. Assume
that the algorithm eventually performs x > z runs of
rigid-size. With derivation analogous to (4.10), we know

that the total running time is dominated by the cost of
the last run, i.e., O(N/B) · 2x(d−2). By Corollary 4.1,
for any i ≥ z, the probability that i-th run does not
complete on itself is at most 1/3d (namely, the run does
not find the entire skyline). To necessitate the x-th run,
self-completion happens to none of the z-th, (z + 1)-st,
..., (x−1)-th runs. Hence, the probability of terminating
at the x-th run is at most (1/3d)x−z . It follows that the
expected cost the algorithm incurs after the z-th run is
bounded by:

∞
∑

x=z+1

(

O(N/B) · 2
x(d−2)

3d(x−z)

)

≤
∞
∑

x=z+1

(

O(N/B) · 2z(d−2) · 2
(x−z)(d−2)

3(x−z)(d−2)

)

= O(N/B) · 2z(d−2)
∞
∑

x=z+1

(

(2/3)d−2
)x−z

= O(N/B) · 2z(d−2)

which is O(NB logd−2
M/B

K⋆

B) as shown in (4.11).
Finally, consider that our final guess K

reaches
√
NM eventually. In this case, our al-

gorithm invokes an output-insensitive algorithm
that performs O(NB logd−2

M/B
N
B) = O(NB logd−2

M/B
K
B)

I/Os. Note that this can be more expensive than
3dc(N/B) logd−2

M/B(K/M) by at most a constant factor.
Therefore, our earlier analysis shows that the overall
expected cost is still O(NB logd−2

M/B
K⋆

B).

