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ABSTRACT

OPTICS is a popular method for visualizing multidimensional clus-

ters. All the existing implementations of this method have a time

complexity ofO (n2) —where n is the size of the input dataset — and

thus, may not be suitable for datasets of large volumes. This paper

alleviates the problem by resorting to approximation with guar-

antees. The main result is a new algorithm that runs in O (n logn)

time under any �xed dimensionality, and computes a visualization

that has provably small discrepancies from that of OPTICS. As a

side product, our algorithm gives an index structure that occupies

linear space, and supports the cluster group-by query with near-

optimal cost. The quality of the cluster visualizations produced by

our techniques and the e�ciency of the proposed algorithms are

demonstrated with an empirical evaluation on real data.
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1 INTRODUCTION

DBSCAN [10], a well-known density-based clustering method, is

able to discover clusters of arbitrary shapes. Let P be a set of multi-

dimensional points. De�ne the vicinity of a point p ∈ P as the ball

B (p, ϵ ) centered at p with radius ϵ . DBSCAN enforces two rules:

• A point p is an ϵ-core point if B (p, ϵ ) covers at least minPts

points, where minPts is a constant parameter.

• If p is an ϵ-core point, all the points in B (p, ϵ ) should appear

in the same cluster as p.
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Figure 1: Dataset for our running example
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Figure 2: An OPTICS diagram

To form a clusterC , start with an emptyC , and add to it an arbitrary

ϵ-core point. Then, growC as follows: for every ϵ-core point p ∈ C ,
add all the points in B (p, ϵ ) to C (this may bring new ϵ-core points

into C), and repeat this until the size of C no longer increases.

Multiple ϵ values can give meaningful clusters. Consider the

dataset in Figure 1. Assuming minPts = 4, DBSCAN returns

• For ϵ =
√
2: only one cluster {p6,p7,p8,p9}, while all the

other points are treated as noise because their vicinities are

not dense enough at this ϵ ;

• For ϵ =
√
10: two clusters {p6,p7,p8,p9} and {p1,p2,p3,p4},

while p10, p11, p12, and p13 are noise;

• For ϵ =
√
34: also two clusters but di�erent from above:

{p1,p2,p3,p4,p5,p6,p7,p8,p9} and {p10,p11,p12,p13}.
Which of the above clusterings make sense? The answer is: all

of them. These ϵ values produce clusterings at di�erent “zoom

levels”. Intuitively, if we imagine each point as a residential area,

the clustering of ϵ =
√
2 could be thought of being at the “city”

granularity, that of ϵ =
√
10 at the “country” granularity, while that

of ϵ =
√
34 at the “continent” granularity.

Also worth noting is the fact that,
√
2,
√
10, and

√
34 are “wa-

tershed values” for the parameter ϵ in the following sense: at all

other values of ϵ , the clustering is either highly similar to one of

the three clusterings shown, or hardly meaningful (e.g., ϵ = 0 gives

no clusters at all, and ϵ = ∞ puts everything into a single cluster).

It is, therefore, important to identify such watershed values. This,

unfortunately, is not easy because those values are highly data-

dependent. For small P , it would be feasible to try out numerous

ϵ values for a direct comparison, but such a brute-force approach

fails to scale with |P |.
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A dominant approach to tackle the above challenge is to produce

a visualization that reveals key information on the structure of the

clusters, so that humans can use their perceptive instincts to iden-

tify interesting parameter values. For DBSCAN, the most popular

method towards that purpose is OPTICS [3], which allows one to

visualize the forming of clusters at all scales of ϵ simultaneously.

Deferring a detailed introduction about OPTICS to Section 2.2, next

we illustrate its main features with Figure 2, which is an OPTICS

diagram for the dataset in Figure 1.

The horizontal axis enumerates the points in a certain order,

while a vertical bar is displayed for each point. These bars di�er

in heights (the number above a bar gives its height), thus creating

valleys: the four most conspicuous valleys have been indicated in

the �gure. Every valley re�ects a cluster in the dataset; furthermore,

the heights of the bars at the bottom of the valley indicate the lowest

value of ϵ that will discover the cluster. From Figure 2, one can see

the “morphing of clustering” as ϵ increases. At ϵ =
√
2, Valley 1 (i.e.,

the �rst cluster) shows up. At ϵ =
√
10, Valley 2 (the second cluster)

appears. As ϵ grows further, Valleys 1 and 2 merge into Valley 3

(the two clusters are combined into one cluster). When ϵ reaches√
34, Valley 4 surfaces (recall that there are two clusters at ϵ =

√
34,

as indicated by Valleys 3 and 4).

Themorphing behavior illustrated is reminiscent of the hierarchi-

cal clustering approach as exempli�ed by HDBSCAN [8]. Assuming

a �xed minPts, HDBSCAN encodes compactly the clusterings of

DBSCAN at all possible ϵ values (precisely speaking, the cluster-

ings encoded in HDBSCAN are slightly di�erent from those of

DBSCAN, but the di�erences are minor). Upon receiving a speci�c

value of ϵ from a user, HDBSCAN simply extracts the correspond-

ing (pre-computed) clusters. In other words, HDBSCAN is a space-

economical method for storing the clustering results at multiple ϵ

values; it, however, does not eliminate the need to supply a suitable

ϵ value — without which no actual clustering can be returned. As a

remedy, the article [8] also described how to produce a visualiza-

tion diagram (which can be thought of as an OPTICS diagram with

minor di�erences) based on the encoding obtained.

As surveyed in Section 2.2, all known algorithms for computing

an OPTICS diagram run in O (n2) time (where n = |P |), though
some heuristics have been designed to reduce the running time

by constant factors. This includes the HDBSCAN approach which

takes O (n2) time to generate its tree encoding. The quadratic time

complexity becomes a serious issue on massive datasets.

1.1 Our Results

This paper’s main contribution is a fast algorithm for computing an

approximate OPTICS diagram which bears provably small visual

di�erences from the exact OPTICS diagram. Our techniques are

based on two central ideas:

• Idea 1: Formalization of the concept of valley. Somewhat

surprisingly, this has never been done prior to this work.

Instead, the term “valley” has been used on an intuitive

basis throughout the literature. We rectify this, and make

it possible to reason rigorously on the resemblance of two

valleys. This lays down the foundation for our proposition:

ρ-approximate OPTICS — where ρ is a real value satisfying

0 < ρ < 1 — for generating a diagram where the valleys

have guaranteed similarity to those of OPTICS, with the

discrepancies continuously fading away as ρ decreases.

• Idea 2: Bridging the ρ-approximate OPTICS problem with

the geometric technique of well-separated pair decomposition.

This yields an algorithm that outputs a ρ-approximate OP-

TICS diagram on a set P ofn points inO (n logn+ (1/ρ)d/2 ·n)
expected time for any �xed dimensionality d .

As a side product, the proposed algorithm generates a data struc-

ture of O (n) space that allows one to obtain a ρ-approximate DB-

SCAN clustering [14] at an arbitrary value of ϵ in O (n) time. This

time complexity does not depend on the dimensionality d and the

approximation factor ρ at all, and thus, compares favorably to com-

puting the clusters using the algorithm of [14], which (after ap-

plying a patch in [9]) requires O ((1/ρ)d/3 · n) time in expectation.

In fact, our structure supports a more powerful operation called

cluster-group-by (C-group-by) [13], which groups the points of a

query set Q ⊆ P by the clusters they belong to. For example, given

Q = {p1,p5,p11} and ϵ =
√
34, under the exact DBSCAN semantics,

the query must breakQ into two groups: {p1,p5} and {p11} because,
at this value of ϵ , (as mentioned earlier) points p1,p5 belong to the

same cluster, while p11 is in a di�erent cluster.

The approach of [13] supports C-group-by queries under the

ρ-approximate DBSCAN semantics at only one value of ϵ .1 Our

structure does so at arbitrary values of ϵ , that is, the query is free

to specify the desired ϵ . The query time is guaranteed to beO ( |Q |),
plus the time of sortingO ( |Q |) integers in the domain of [1,n]. The

query time is not a�ected by ρ and d , and is near-optimal because

Ω( |Q |) time is needed even just to look at Q .

It is worth pointing out that, the C-group-by query endows our

structure with the “cluster-extraction” functionality of HDBSCAN.

As mentioned earlier, given an arbitrary ϵ value, HDBSCAN is able

to output right away the (pre-computed) clustering at that value. A

C-group query achieves the same by simply setting Q = P .

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 introduces

the background knowledge required for our discussion. Section 3

formalizes the concept of valley, and proves some properties on the

valleys of OPTICS. Section 4 presents the details of the proposed

approximation techniques. Section 5 explains our index structures

for answering C-group-by queries. Section 6 contains an experi-

mental evaluation of the proposed solutions with real data. Finally,

Section 7 concludes the paper with a summary of �ndings.

2 RELATED WORK

2.1 DBSCAN and Its ρ-Approximation

DBSCAN. Denote by dist (p1,p2) the Euclidean distance between

two points p1,p2 in R
d . As before, let P be the input set of n points

in Rd . DBSCAN takes two parameters:

• Vicinity radius ϵ , which can be any positive real value;

• Density threshold minPts, a constant integer at least 1.

1For fairness, it should be noted that [13] considered maintaining a clustering in the
dynamic scenario where updates to the dataset are allowed. We consider the static
scenario in this paper.
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Figure 3: Illustration of DBSCAN (minPts = 4, ϵ =
√
17)

As mentioned, a point p is an ϵ-core point if the ball B (p, ϵ ) covers

at least minPts points of P .

The clusters output by DBSCAN can be conveniently described

from a graph’s perspective [13]. Imagine an undirected graph G (ϵ )

where each vertex is a distinct ϵ-core point in P . There is an edge

between two ϵ-core points p1,p2 if and only if dist (p1,p2) ≤ ϵ .

Break G (ϵ ) into connected components (CC): C1,C2, ...,Cm , where

m is the number of CCs. Each Ci (1 ≤ i ≤ m) is taken as a cluster

on the ϵ-core points.

To illustrate, suppose that we perform DBSCAN clustering on

the data of Figure 1 with ϵ =
√
17 and minPts = 4. Figure 3a shows

the
√
17-core points in black, and the non-

√
17-core points in white.

It also demonstrates the edges inG (
√
17), whose CCs are {p2,p3,p4}

and {p6,p7,p8,p9} (non-
√
17-core points are not part of G (

√
17)).

Next, each non-ϵ-core point p′ is assigned to one, more than one,

or no clusters as follows. If B (p′, ϵ ) contains no ϵ-core points, p′

does not belong to any clusters (it is classi�ed as noise). Otherwise,

for every ϵ-core point p in B (p′, ϵ ), p′ is added to the (only) cluster

that contains p. This may put p′ into O (1) di�erent clusters as

B (p′, ϵ ) covers at most minPts − 1 points (by de�nition of p′).
Continuing the earlier example, let us focus �rst on the non-

√
17-

core point p5. There are two
√
17-core points p4,p6 in B (p5,

√
17).

We thus add p5 into the cluster (i.e., the aforementioned CC) of p4
and the cluster of p6. Similarly, the non-

√
17-point p1 is added to

the cluster of p2. This gives the �nal clusters {p1,p2,p3,p4,p5} and
{p5,p6,p7,p8,p9}. Note that p10, p11, p12, p13 are noise at ϵ =

√
17.

In 2D space, the DBSCAN clustering can be computed in O (n)

time, provided that P has been properly sorted [14]; otherwise,

standard sorting time is needed in addition. Regarding higher con-

stant dimensionalities d , the fastest existing algorithm [14] runs in

O ((n logn)4/3) time for d = 3, and O (n2−δ ) time for d > 3, where

δ is slightly less than 2/d . On the lower bound side, it was proved

that (under mild assumptions) any algorithm must entail Ω(n4/3)

time when d ≥ 3 [14]. Consequently, approximation is necessary

for d ≥ 3 if one wants to bring down the time complexity even just

to O (n polylogn).

ρ-Approximate DBSCAN. This approximate version takes the

same parameters ϵ and minPts (as exact DBSCAN), but in addition
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Figure 4: Core distances (minPts = 4)

also an approximation factor ρ ≥ 0. The approximate clusters bear

a graph interpretation as well, as explained below.

Imagine an undirected graph G̃ (ϵ, ρ) where each vertex is still

a distinct ϵ-core point on P . For each pair of ϵ-core points p1,p2,

whether G̃ (ϵ, ρ) has an edge between them is decided as:

• If dist (p1,p2) ≤ ϵ , de�nitely yes;

• If dist (p1,p2) > (1 + ρ)ϵ , de�nitely no;

• Otherwise, don’t care (either decision is acceptable).

The CCs of G̃ (ϵ, ρ) constitute the clusters on the ϵ-core points. The

non-ϵ-core points are then assigned to the clusters (i.e., the CCs) in

the same manner as in DBSCAN.

For a comparison with Figure 3a, still choose ϵ =
√
17 and

minPts = 4, but additionally, set ρ = 1. The graph G̃ (
√
17, 1) is

almost the same as G (
√
17), except that �exibility is permitted on

(p4,p6). Note that dist (p4,p6) =
√
68, which falls into the “don’t-

care case”. Hence, there may or may not be an edge between p4 and

p6. If the edge exists, there is only one CC: {p2,p3,p4,p6,p7,p8,p9};
otherwise, there are two CCs {p2,p3,p4}, and {p6,p7,p8,p9}. In ei-

ther case, non-
√
17-core point p1 will be added to the cluster of p2,

while non-
√
17-core point p5 to the clusters of p4 and p6.

In general, G̃ (ϵ, ρ) is “sandwiched” between G (ϵ ) and G (ϵ (1 +

ρ)): G̃ (ϵ, ρ) contains all the edges of G (ϵ ), and has all its edges

contained inG (ϵ (1+ ρ)). This leads to a sandwich guarantee on the

ρ-approximate clustering returned: it must be enclosed between

the exact DBSCAN clusterings obtained with vicinity radii ϵ and

(1 + ρ)ϵ , respectively (see [14] for the formal description of the

guarantee). Hence, as ρ decreases, the approximate clusters become

increasingly similar to the precise clusters.

For ρ > 0, under any �xed d , a ρ-approximate DBSCAN cluster-

ing can be computed in O ((1/ρ)d/3 · n) expected time2, which is

O (n) for any constant ρ. By integrating this algorithm with �ne-

tuned heuristics, one can e�ciently compute clusters at ρ as low

as 0.001 on real-world data [14].

2.2 OPTICS

OPTICS Diagrams.We formalize the OPTICS method proposed

in [3] with a graph approach. The input is a set P of n points with

ids 1, 2, ..., n, respectively. An OPTICS diagram is parameterized by:

• minPts: A constant integer at least 1;

• ϵmax : A su�ciently large positive real value.

Each point p ∈ P has a core distance:

core-dist (p) = dist (p,NNp (minPts)) (1)

where NNp (i ) is the i-th nearest neighbor (NN) of p in P . Note

that core-dist (p) is the smallest value of ϵ at which p quali�es as

an ϵ-core-point for DBSCAN. Figure 4 shows the core distances of

all the points in our example, assuming minPts = 4. For example,

2The bound O ((1/ρ )d · n) was proved in [14]. As pointed out in [9], the power d
drops to d/3 by simply replacing the “approximate range counting” operation of [14]
with the “approximate bichromatic closest pair” algorithm of [4].
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Figure 5: The base graph (minPts = 4, ϵmax =
√
125)

core-dist (p1) =
√
29 is the distance between p1 and its 4-th NN p4

in P (note that p1 is the NN of itself).

De�nition 2.1. The base graph G is a directed graph where

• The vertices are the points of P ;

• For two distinct points (i.e., vertices) p1,p2, G has a directed

edge (p1,p2) if and only if:

max{core-dist (p1), dist (p1,p2)} ≤ ϵmax .

If the edge exists, its weight — denoted asw (p1,p2) — equals

the left hand side of the above inequality. �

Figure 5 shows the base graph for our example dataset, under

minPts = 4 and ϵmax =
√
125. For example, the edge from point

p1 to p2 has weight w (p1,p2) =
√
29, which is the larger between

core-dist (p1) =
√
29 and dist (p1,p2) =

√
5. Conversely, the edge

from p2 to p1 has weight w (p2,p1) =
√
10, the larger between

core-dist (p2) =
√
10 and dist (p1,p2) =

√
5. Figure 5 represents the

two edges with one bidirectional link, but puts each weight near

the corresponding arrow. Sometimes there is only one number on

a bidirectional link (e.g., the link between p2 and p3); this means

that both edges represented by the link have the same weight

(i.e., w (p2,p3) = w (p3,p2) =
√
10). Some weights are omitted for

clarity. Note that no edge goes, for instance, from p5 to p10 because

max{core-dist (p5), dist (p5,p10)} > ϵmax .

De�nition 2.2. The OPTICS procedure is the following program

which produces a set of directed trees from G:

OPTICS

1. Vunseen = P

2. while Vunseen , ∅
/* create a new directed tree */

3. Vtree = {s} where s is the vertex in Vunseen with

the smallest id

4. delete s from Vunseen
5. while G has an edge from Vtree to Vunseen
6. (p,o) = the lightest edge in G with

p ∈ Vtree and o ∈ Vunseen
7. make o a child of p

8. delete o from Vunseen, and add it to Vtree �
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Figure 6: The tree output by the OPTICS procedure (minPts =

4, ϵmax =
√
125)

Let us illustrate the OPTICS procedure with the base graph of

Figure 5. At the beginning,Vunseen = P . Point p1 is the �rst removed

fromVunseen because it has the smallest id, givingVtree = {p1}. Each
of (p1,p2), (p1,p3), (p1,p4) has weight

√
29, and could be used as

the lightest edge at Line 6. Suppose that we break ties by favoring

a smaller id; this chooses (p1,p2) at Line 6, and makes p2 a child

of p1 (see Figure 6) in the tree being generated. After moving p2
from Vunseen to Vtree , (p2,p3) is the next lightest edge at Line 6,

thus growing the tree by adding p3 as a child of p2. The process

continues in the same fashion until p9 has been moved fromVunseen
to Vtree . At this moment, the procedure has created the left tree in

Figure 6, withVtree = {p1,p2, ...,p9} andVunseen = {p10,p11, ...,p13}.
As there are no more edges from Vtree to Vunseen, the procedure

starts growing a new tree with p10 as the root (it has the smallest

id in Vunseen). The two �nal trees are shown in Figure 6.

De�nition 2.3. TheOPTICS sequence is a sequence of point-value

pairs (o1,h1), (o2,h2), ..., (on ,hn ) such that:

• Point oi (1 ≤ i ≤ n) is the i-th point that the OPTICS procedure

deletes from Vunseen.

• If oi is the root of a directed tree, hi = ∞. Otherwise, hi =
w (p,oi ) where p is the parent of oi . �

The OPTICS diagram is simply a plot of the OPTICS sequence

(o1,h1), ..., (on ,hn ); speci�cally, it plots the function f (i ) = hi for

i ∈ [1,n]. On the base graph of Figure 5, points are deleted from

Vunseen in ascending order of id. The weights of the edges in the

resulting trees are shown in Figure 6. This spawns the OPTICS

diagram of Figure 2.

Computation. A naive method to obtain an OPTICS diagram is to

�rst create G in O (n2) time, and then perform the OPTICS proce-

dure in O (n2) time using the Fibonacci heap. This is still the best

time complexity known.

Practical e�ciency can be improved by heuristics. The number

of edges in G depends on ϵmax , and can be o(n2) on real data for

some ϵmax . In this case, it would be faster to generate the edges of

a point p ∈ P with range reporting — fetching the points covered

by B (p, ϵmax ) — through a spatial index (e.g., the R-tree) on P [3].

In fact, the edges of G do not even need to be explicitly generated.

By looking at the OPTICS procedure closely, one sees that the

only edges required are the lightest edges at Line 6, each of which

corresponds to the bichromatic closest pair (BCP; recall that, in

general, for two setsU ,V of points, the BCP is the pair (u,v ) ∈ U×V
with the smallest distance) between Vtree and Vunseen under the

distance metric in De�nition 2.1. Retrieval of the BCPs can also be

accelerated by a spatial index [1].

Research has also been done to create visualizations that are in

the “OPTICS style”, but o�er no quality guarantees on resemblance

(see [5, 8, 9, 19–21] and the references therein).
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radius
√
10

distance ≥ 4
√
10

p10

p11 p12

p13

p6

p9

p5

p7 and p8

Figure 7: A 4-separated pair

2.3 Well-Separated Pair Decomposition

This subsection gives an introduction to a geometric tool named

well-separated pair decomposition (WSPD). LetU and V be two sets

of points inRd . For a value λ ≥ 1,U andV are said to be λ-separated

if there exists a value r ≥ 0 that validates the following:

• U can be covered by a ball B1 with radius r . This implies that

any two points inU are within distance 2r .

• V can be covered by a ball B2 with radius r .

• The smallest distance between B1 and B2 is at least λ · r .
Figure 7 shows a λ-separated pair with λ = 4, where U =

{p5,p6,p7,p8, p9} and V = {p10,p11,p12,p13}. Both U and V are

covered by a circle with radius r =
√
10, respectively, while the two

circles have distance at least λ · r = 4
√
10.

Let P be a set ofn points inRd . A λ-well-separated pair decomposi-

tion (WSPD) of P is a collection ofm pairs (U1,V1), (U2,V2), ..., (Um ,

Vm ) with three properties:

(1) For every i ∈ [1,m],Ui ⊆ P , Vi ⊆ P , andUi ∩Vi = ∅.
(2) For any two distinct points p,q in P , there is a unique

i ∈ [1,m] satisfying: between the two sets Ui and Vi , one

contains p, and the other contains q.

(3) For every i ∈ [1,m],Ui and Vi are λ-separated.

The dataset in Figure 2 admits a 4-WSPD that consists ofm = 20

pairs, as detailed in Figure 8. As demanded by Property (1), U

and V are disjoint for each pair (U ,V ) in the WSPD. Property (2)

states that, for every two points p,q (p , q), there is exactly one

pair (U ,V ) that separates them — that is, either p ∈ U ,q ∈ V or

p ∈ V ,q ∈ U . For example, p5,p1 are separated in ({p5}, {p1,p2,p3}).
Finally, Property (3) says that every pair (U ,V ) must be 4-separated

(Figure 7 demonstrated this for one of the pairs).

Lemma 2.4 ([7]). For any λ ≥ 1, all of the following are true:

• P has a λ-WSPD (U1,V1), ..., (Um ,Vm ) withm = O (λdn).

• In O (n logn + λdn) time, we can compute a data structure

that allows us to extract, for any i ∈ [1,n], the points ofUi in
O ( |Ui |) time, and the points of Vi in O ( |Vi |) time.

The Euclidean bichromatic closest pair (EBCP) of two setsU ,V of

points is the pair (u∗,v∗) minimizing dist (u,v ) among all (u,v ) ∈
U ×V . We say that a pair (u,v ) ∈ U ×V is an α -approximate EBCP

ofU ,V if dist (u,v ) ≤ (1 + α ) · dist (u∗,v∗).

Lemma 2.5 ([6]). Suppose that we have obtained the data struc-

ture of Lemma 2.4 on a λ-WSPD (U1,V1), ..., (Um ,Vm ) of P . In

O (λd−1n) extra time, we can obtain 2m representative points

rep(U1), ..., rep(Um ) and rep(V1), ..., rep(Vm ) such that all the fol-

lowing hold on every i ∈ [1,m]:

• rep(Ui ) ∈ Ui and rep(Vi ) ∈ Vi .
• (rep(Ui ), rep(Vi )) is an

8
λ2
-approximate EBCP ofUi and Vi .

U V

{p1 } {p4 }
{p2 } {p3 }
{p5 } {p6 }
{p5 } {p4 }
{p6 } {p9 }
{p7 } {p8 }
{p10 } {p13 }
{p11 } {p12 }
{p1 } {p2, p3 }
{p4 } {p2, p3 }

U V

{p6 } {p7, p8 }
{p9 } {p7, p8 }
{p10 } {p11, p12 }
{p13 } {p11, p12 }
{p5 } {p7, p8, p9 }
{p5 } {p1, p2, p3 }
{p4 } {p6, p7, p8, p9 }

{p1, p2, p3 } {p6, p7, p8, p9 }
{p5, p6, p7, p8, p9 } {p10, p11, p12, p13 }
{p1, p2, p3, p4 } {p10, p11, p12, p13 }

Figure 8: A 4-WSPD for our running example (points in bold

are representatives)

• For any point u ∈ Ui and any point v ∈ Vi :

dist (u, rep(Vi )) ≤ (1 + 8/λ2) · dist (u,v )
dist (rep(Ui ),v ) ≤ (1 + 8/λ2) · dist (u,v ).

In Figure 8, for each pair of (U ,V ), the representative points

are shown in bold. For example, the representatives of the pair

(U ,V ) = ({p1}, {p2,p3}) are p1 and p3. Note that the EBCP between

U andV is (p1,p2) whose distance is
√
5. The pair of representatives

(p1,p3) has distance
√
10, and thus, makes a (

√
2 − 1)-approximate

EBCP forU and V . Recall that here λ = 4; the approximation ratio√
2 − 1 is less than 8/λ2 = 0.5, as is consistent with Lemma 2.5.

The next lemma states a useful property for λ > 2:

Lemma 2.6. Let (U ,V ) be an arbitrary λ-separated pair with λ > 2.

The distance between any points p1,p2 ∈ U (or p1,p2 ∈ V ) must be

shorter than the distance between any point u ∈ U and any point

v ∈ V , i.e., dist (p1,p2) < dist (u,v ).

Proof. As (U ,V ) is λ-separated, there exists a real value r such

that any two points withinU (or V ) are within distance 2r , while

any point inU must be at least distance λ · r away from any point

in V . Hence, dist (p1,p2) ≤ 2r < λ · r ≤ dist (u,v ). �

3 FORMALIZATION OF VALLEYS

In this section, we formalize the concept of valley, and analyze the

properties of the valleys of OPTICS. Again, let P be the input set of

n points in Rd .

De�nition 3.1. A sequence of point-value pairs (o1,h1), (o2,h2),

..., (on ,hn ) is a height-augmented permutation of P if

• hi ≥ 0 for all i ∈ [1,n], and
• (o1,o2, ...,on ) is a permutation of the points in P . �

We refer tohi as the height of oi . Clearly, the OPTICS sequence is

a height-augmented permutation. Note that, in general, any height-

augmented permutation corresponds to a diagram that plots the

function f (i ) = hi for i ∈ [1,n].

De�nition 3.2. Fix a height-augmented permutation

(o1,h1), (o2,h2), ..., (on ,hn ). An H -valley, for some positive

value H ≤ ϵmax , is a subsequence (ox ,hx ), (ox+1,hx+1), ..., (oy ,hy )

satisfying:

• y > x ;

• hx > H , and hi ≤ H for all i ∈ [x + 1,y];
• If y < n, then hy+1 > H . �
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Note that an H -valley includes its “left wall” — point ox (with

height over H ) — but not its “right wall” (hy+1 is not part of the H -

valley). Furthermore, all theH -valleys are disjoint. For instance, con-

sider the OPTICS diagram in Figure 2. There are two
√
10-valleys:

the �rst one is (p2,
√
29), (p3,

√
10), (p4,

√
10) while the second one

(p6,
√
29), (p7,

√
8), (p8,

√
2), (p9,

√
2).

The rest of the section aims to establish an important fact: there

is a one-one correspondence between (i) the set of H -valleys, and (ii)

the set of DBSCAN clusters obtained with ϵ = H . For this purpose, a

key step is to answer the question: how does an H -valley capture

H -core-points (recall that DBSCAN clusters are formed by using

core points as the “backbone”)? This brings out the next de�nition:

De�nition 3.3. The backbone of an H -valley (ox ,hx ), (ox+1,

hx+1), ..., (oy ,hy ) is the set {oi | i ∈ [x ,y] and core-dist (oi ) ≤
H }. �

In the
√
10-valley (p2,

√
29), (p3,

√
10), (p4,

√
10), the backbone

includes p2 and p3, but not p4 (as shown in Figure 4, core-dist (p4) =√
17 >

√
10). In the

√
10-valley (p6,

√
29), (p7,

√
8), (p8,

√
2), (p9,

√
2),

all the points are in the backbone. We are ready to establish formal

links between OPTICS and DBSCAN (proof in Appendix A):

Lemma 3.4. Fix minPts, ϵmax , and a positive H ≤ ϵmax .

• There is a one-one mapping between the set of H -valleys and

the set of DBSCAN clusters obtained with ϵ = H .

• Consider any H -valley ϒ; let C be its corresponding DBSCAN

cluster under ϵ = H . The backbone of ϒ is precisely the set of

H -core points in C .

To illustrate, consider again our example dataset in Figure 3a.

As explained in Section 2.1, for minPts = 4 and ϵ =
√
17, DB-

SCAN returns two clusters C1 = {p1,p2,p3,p4,p5} and C2 =

{p5,p6,p7,p8,p9}. They correspond to the two
√
17-valleys in the

OPTICS diagram (Figure 2): the �rst (p2,
√
29), (p3,

√
10), (p4,

√
10),

(p5,
√
17), and the second (p6,

√
29), (p7,

√
8), (p8,

√
2), (p9,

√
2). The

backbone of the �rst valley is {p2,p3,p4}, where the points are pre-
cisely the three

√
17-core-points inside C1. Likewise, the backbone

of the second valley is {p6,p7,p8,p9}, i.e., the set of
√
17-core-points

inside C2.

4 ρ-APPROXIMATE OPTICS

We �rst de�ne an approximate version of OPTICS in Section 4.1,

and then present a fast algorithm for its computation in Section 4.2.

4.1 Formalization

Besides minPts and ϵmax , we take another parameter 0 < ρ < 1

to control how similar approximate OPTICS should be to its exact

counterpart:

De�nition 4.1. A height-augmented permutation σ of P is a ρ-

approximate OPTICS sequence if both of the following conditions

are satis�ed for any real value H ≤ ϵmax/(1 + ρ):

(1) If two points are in the backbone of the same H -valley in the

OPTICS sequence, they must be in the backbone of the same

H -valley in σ .

(2) If two points are in the backbone of the same H -valley in σ ,

they must be in the backbone of the same H (1 + ρ)-valley in

the OPTICS sequence. �

p1 p3 p2 p4 p5 p8 p7 p6 p9 p10 p12 p11 p13

√
2

√
10

∞ ∞

√

29

√

10

√

17

√

29
√

29

√

8
√

2

√

125

√

8

√

125

√
34

√

34

Figure 9: A 0.001-approximate OPTICS diagram

Let σ ∗ be an OPTICS sequence. A ρ-approximate OPTICS se-

quence σ has a strong valley-preservation guarantee (proof in Ap-

pendix B):

Lemma 4.2 (Valley Preservation Lemma). Both the following

are true for any subset S ⊆ P satisfying |S | ≥ 2 and any H ≤
ϵmax/(1 + ρ):

• If σ ∗ has an H -valley having S in the backbone, σ must also

have an H -valley having S in the backbone.

• If σ has an H -valley having S in the backbone, σ ∗ must have

an H (1 + ρ)-valley having S in the backbone.

Figure 9 plots a 0.001-approximate OPTICS diagram σ on the

dataset of Figure 1. Let us compare it with the OPTICS sequence

σ ∗ in Figure 2. The observations below illustrate Lemma 4.2 with

representative examples:

• Pick, somewhat arbitrarily, a set S = {p3,p7,p8}. Notice that
σ ∗ has a

√
29-valley containing S in the backbone (the valley

starts fromp2 and ends atp9 in Figure 2). The 1st bullet of the

lemma asserts that σ must also have a
√
29-valley with S in

the backbone; indeed, this valley is from p1 to p9 in Figure 9.

Note that the value
√
29 is not a must: the above statement

holds for any value of H ≥
√
29.

• Consider, instead, a set S = {p6,p7,p9}. Notice that σ has a√
8-valley with S in the backbone (starting from p8 and end-

ing at p9 in Figure 9). The 2nd bullet of Lemma 4.2 declares

that σ ∗ must have a (1.001 ·
√
8)-valley enclosing S in the

backbone. Indeed, this value goes from p6 to p9 in Figure 2.

Again, the value
√
8 is not a must: the above holds for any

value H ≥
√
8.

• We now look at examples of valley absence. Set S = {p2,p8,
p12}. Observe that σ ∗ (Figure 2) does not have any

√
50-

valleys containing S in the backbone. The 2nd bullet implies

that σ (Figure 9) cannot have any (
√
50/1.001)-valleys con-

taining S in the backbone. Similarly, since σ (Figure 9) does

not have any
√
50-valleys containing S in the backbone, the

1st bullet implies that σ ∗ (Figure 2) cannot have any
√
50-

valleys containing S in the backbone, either.

4.2 The Algorithm

We will explain how to obtain a ρ-approximate OPTICS sequence

with O (n logn + (1/ρ)d/2 · n) expected time.

Algorithm. There are three steps.

Step 1: Graph Creation. Obtain a λ-WSPD of P with

λ =

√

8/ρ . (2)

Suppose that the λ-WSPD has pairs (U1,V1), (U2,V2), ..., (Um ,Vm )

withm = O (λdn) (Lemma 2.4). Then, apply Lemma 2.5 to obtain a
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√
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√
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√
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√
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√
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√
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√
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√

17

√
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√
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√
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√
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√
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√
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√
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√
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√
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√

29

√
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√
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√

640/9

√

884/9

Figure 10: The undirected graph of our algorithm; the bold

edges give an MSF (minPts = 4, ϵmax =
√
125, ρ = 0.5)

representative point rep(Ui ) for eachUi , and similarly, rep(Vi ) for

each Vi where i ∈ [1,m].

We will now construct an undirected weighted graph G̃ whose

vertices are the distinct points in P . Starting from an empty graph,

we add edges gradually by processing each pair (Ui ,Vi ) (where

i ∈ [1,m]) in one of the following ways:

• Case I: |Ui | ≥ minPts, |Vi | ≥ minPts. Add a single edge

(rep(Ui ), rep(Vi )) to G̃.
• Case II: |Ui | < minPts, |Vi | ≥ minPts. For every point u ∈ Ui ,
add an edge (u, rep(Vi )) to G̃.
• Case III: |Ui | ≥ minPts, |Vi | < minPts. For every pointv ∈ Vi ,
add an edge (rep(Ui ),v ) to G̃.
• Case IV: |Ui | < minPts, |Vi | < minPts. For every point u ∈ Ui
and every point v ∈ Vi , add an edge (u,v ) to G̃.

Clearly, we add one edge in Case I, less than minPts = O (1) edges

in Cases II and III, and less than minPts2 = O (1) edges in Case 4. G̃
therefore has O (m) = O (λd · n) edges so far.

Finally, for every edge (u,v ) in G̃, calculate its weight as:

w̃ (u,v ) = max
{

core-dist (u), core-dist (v ),
dist (u,v )

1 + ρ

}

. (3)

If w̃ (u,v ) > ϵmax , discard it from G̃. This completes the construc-

tion of G̃. Note that G̃ hasO (λd ·n) edges, all of which have weights
at most ϵmax .

Assuming minPts = 4, ϵmax =
√
125, and ρ = 0.5, Figure 10

shows the graph G̃ based on the 4-WSPD of Figure 8. For Case I, con-

sider the following pair in the 4-WSPD: ({p1,p2,p3,p4}, {p10,p11,
p12,p13}). We �rst add an edge (p4,p12) to G̃ , but since w̃ (p4,p12) =

max{core-dist (p4), core-dist (p12), dist (p4,p12 )1+0.5 } = dist (p4,p12 )
1.5 >

√
125,

the edge is then removed. For Case II, consider the pair ({p1,p2,p3},
{p6,p7,p8,p9}), for which 3 edges are added to G̃, i.e., (p1,p8), (p2,

p8), (p3,p8). Case III is symmetric to Case II. For Case IV, consider

the pair (p1,p4) in the 4-WSPD, which adds edge (p1,p4) to G̃.

Step 2: MSF. Find an MSF of G̃ using the state-of-the-art algorithm

for this purpose (we will come back to this later). Denote the MSF

by F .

Step 3: Prim.We now invoke Prim’s algorithm on F to produce

the �nal ρ-approximate OPTICS sequence σ . After a CC (connected

component) has been exhausted, care is exercised in picking a new

source vertex by respecting the id ordering (as in OPTICS). For

clarity, we provide the pseudocode in full, which will be referred to

as the approximate OPTICS procedure:

approximate OPTICS

1. Vunseen = P

2. while Vunseen , ∅
/* traverse a new connected component of F */

3. Vtree = {s} where s is the vertex in Vunseen with

the smallest id

4. delete s from Vunseen
5. while F has an edge from Vtree to Vunseen
6. (p,o) = the lightest edge (weight calculated in (3))

in F with p ∈ Vtree,o ∈ Vunseen
7. delete o from Vunseen, and add it to Vtree

The �nal sequence σ is (o1,h1), (o2,h2), ..., (on ,hn ) such that:

• Point oi (1 ≤ i ≤ n) is the i-th point that the above procedure

deletes from Vunseen.

• If oi is deleted at Line 4, hi = ∞. Otherwise, it is deleted at

Line 7 after �nding an edge (p,o) at Line 6 with o = oi . In

this case, hi = w̃ (p,oi ). �

The bold edges in Figure 10 illustrate an MSF F of G̃ for

our running example. Applying the Prim’s algorithm, a.k.a.

the approximate OPTICS procedure, on F generates the fol-

lowing height-augmented sequence: (p1,∞), (p3,
√
29), (p2,

√
10),

(p4,
√
17), (p5,

√
29), (p8,

√
29), (p7,

√
2), (p6,

√
8), (p9,

√
8), (p10,∞),

(p12,
√
125), (p11,

√
34), and (p13,

√
125). This is the sequence plot-

ted by Figure 9. Note that the actual approximation quality of the

sequence may be better than 0.5 — as explained earlier, Figure 9 is

in fact a 0.001-approximate OPTICS diagram.

Running Time. By Lemmas 2.4 and 2.5, the λ-WSPD, as well as

rep(Ui ) and rep(Vi ) for all i ∈ [1,m], can be computed inO (n logn+

λd · n) time. In each of Cases I-IV, we need to retrieve at most

minPts = O (1) points from Ui and Vi , respectively, which takes

O (1) time by the 2nd bullet of Lemma 2.4. Hence, the edges of G̃
are generated in O (m) = O (λd · n) time.

For Step 2, one can apply the algorithm of [16], which computes

the MSF F in linear expected time, i.e., O (m) = O (λd ·m). Since

F has at most n − 1 edges, Step 3 clearly takes O (n logn) time.

The algorithm requires the value of core-dist (p) for every point

p ∈ P . This can be ful�lled by �nding the minPts nearest neighbors

for every point p ∈ P (i.e., the minPts points in P with the smallest

distances to p). This can be done inO (minPts ·n logn) = O (n logn)

time in any d-dimensional space with d = O (1) [22]. The above

analysis proves that our entire algorithm runs inO (n logn+λd ·n) =
O (n logn + (1/ρ)d/2 · n) expected time.

We prove the correctness of our algorithm in Appendix C. With

this, we have arrived at the �rst main result of the paper:

Theorem 4.3. A ρ-approximate OPTICS sequence can be com-

puted in O (n logn + (1/ρ)d/2 · n) expected time.

As a remark, if one uses directly Prim’s algorithm for Step 2, the

total time is O ((1/ρ)d/2 · n logn) in the worst case.
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5 CLUSTER GROUP-BY QUERIES

We will develop an index structure to support cluster group-by

queries based on the techniques of the previous section. First, Sec-

tion 5.1 de�nes such queries formally, after elaborating on the

inherent connections between ρ-approximate OPTICS sequences

and ρ-approximate DBSCAN clusters. Then, Section 5.2 describes

our structure and its query algorithms, and establishes their perfor-

mance guarantees.

All the “weights” in this section are computed based on (3).

5.1 From MSF to Clusters

The MSF F produced in Step 3 of our algorithm in Section 4.2

serves as a succinct way to encode ρ-approximate DBSCAN clusters

(reviewed in Section 2.1) at all scales of ϵ . To clarify this, we de�ne:

De�nition 5.1. Given a positive real-value ϵ ≤ ϵmax/(1 + ρ), the

ϵ-forest — denoted as F (ϵ ) — is the undirected forest obtained from

F by the steps below:

• Remove all the edges of F with weights greater than ϵ .

• Discard the trees with no edges. �

Figure 11 illustrates F (
√
17), which is produced by the above

steps from the MSF F in Figure 10 (which in turn was created with

minPts = 4, ρ = 0.5, and ϵmax =
√
125).

Suppose that we want to �nd a ρ-approximate DBSCAN cluster-

ing under (i) the same value of minPts behind Theorem 4.3, and (ii)

an arbitrary vicinity radius ϵ ≤ ϵmax/(1 + ρ). Equipped with F (ϵ ),

there is a simple way to achieve the purpose (proof in Appendix D):

Lemma 5.2. The following steps return a ρ-approximate DBSCAN

clustering:

(1) Take the set of points in every tree of F (ϵ ) as a cluster.

(2) If an ϵ-core point p appears in no trees, form a cluster including

p itself.

(3) For each non-ϵ-core point p′ ∈ P , add it to the cluster of p for

every ϵ-core point p ∈ B (p′, ϵ ).
(4) Return the clusters.

We will represent the set of clusters determined by Lemma 5.2 as

C (ϵ, ρ). Let us illustrate the lemma by following its steps to derive

C (
√
17, 0.5) from the forest F (

√
17) in Figure 11.We �rst create two

clusters C1 = {p6,p7,p8,p9} and C2 = {p2,p3,p4}. Second, check
whether all

√
17-core points are already included; the answer is

yes (as shown in Figure 4, no ϵ-core points are outside C1 ∪ C2).

Third, we insert non-
√
17-core point p1 to the cluster C2 of the√

17-core point p2 ∈ B (p1,
√
17). Likewise, non-

√
17-core point p5

is added to both C1 and C2 (due to
√
17-core points p4 and p6 in

B (p5,
√
17), respectively). The �nalC1 = {p5,p6,p7,p8,p9} andC2 =

{p1,p2,p3,p4,p5} constitute C (
√
17, 0.5).

We are now ready to de�ne C-group-by queries:

De�nition 5.3. Given a set Q ⊆ P and a positive real value ϵ ≤
ϵmax/(1 + ρ), a cluster group-by query returns for each cluster C

in C (ϵ, ρ): C ∩Q , if C ∩Q , ∅, or nothing, otherwise.
For instance, a query withQ = {p1,p3,p8,p11} and ϵ =

√
17 must

return {p1,p3} and {p8} because in C (
√
17, 0.5): p1 and p3 are in the

same cluster, Q has no other points in the cluster of p8, and p11 is

not in any clusters. As a special case, when Q = P , a C-group-by

query extracts all the clusters in C (ϵ, 0.5) at the requested ϵ .

p6 p7

p8p9

√
8

√
2

√
8

p2

p3p4

√
10

√
17

Figure 11: Illustration of F (ϵ ) (ϵ =
√
17)

5.2 A C-Group-By Index

Suppose that Theorem 4.3 outputs a ρ-approximate OPTICS se-

quence o1,o2, ...,on . For each point p ∈ P , de�ne its sequence rank
as i if p = oi .

Structure.We record for every point p ∈ P :
• Its core-dist (p) (see (1)) and sequence rank.

• The minPts nearest neighbors of p in P .

The above information occupies O (minPts · n) = O (n) space, and

can be computed in O (n logn + (1/ρ)d/2 · n) expected time. Recall

that theminPts nearest neighbors of all points in P can be computed

in O (n logn) time, as discussed in Section 4.2.

We will also need a structure to support the tree-path operation:

Given two nodes u,v in F , return the highest

weight of the edges on the path between u and

v in F . If such a path does not exist, return∞.
For example, on the MSF F of Figure 10, a tree-path query with

u = p2 and v = p8 returns
√
29. Tree-path operations are well-

understood: they are identical to �nding the lowest common ances-

tor of two nodes [17]. The structure of [11] supports every operation

in O (1) time using O (n) space; the structure can be constructed in

O (n logn) time.

Overall, our structure uses O (n) space and can be built in

O (n logn + (1/ρ)d/2 · n) time.

Queries with Only Core Points.We now proceed to discuss how

to answer a C-group-by query with set Q and vicinity radius ϵ . For

each point q ∈ Q , by comparing the pre-computed core-dist (q) to

ϵ , we can decide in constant time whether q is an ϵ-core point. Let

us �rst consider the case where Q contains only ϵ-core points.

Set k = |Q |; and list the points in Q as q1,q2, ...,qk in ascending

order of sequence rank. As a naive approach, for any i, j ∈ [1,k],
one can determine whether qi and qj are in the same cluster of

C (ϵ, ρ), by performing a tree-path operation to �nd out if they are

connected in F by a path with only edges of weights at most ϵ .3

This, however, entailsO (k2) time. We improve the running time by

proving in Appendix E:

Lemma 5.4. For any i ∈ [1,k − 2], if qi and qi+2 are in the same

cluster of C (ϵ, ρ), so are qi and qi+1.

The lemma indicates that the aforementionedO (k2) time can be

reduced toO (k ) by performing only k − 1 tree-path operations: one

operation on each pair of qi and qi+1 for i ∈ [1,k − 1]. This groups
q1,q2, ...,qk by cluster.

General Queries.Consider now a query whose setQ contains non-

ϵ-core points. As shown below, this can be converted to another

query whose query setQ ′ contains only ϵ-core points, and has size

at most minPts · |Q |.
Initialize Q ′ to include all the ϵ-core points in Q . Then, for each

non-ϵ-core pointq′ ∈ Q , retrieve the (pre-computed)minPts nearest

3They are, if and only if the operation returns a value at most ϵ .
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neighbors of q′: NNq′ (1),NNq′ (2), ...,NNq′ (minPts). For every j ∈
[1,minPts], add NNq′ (j ) to Q ′ if NNq′ (j ) is an ϵ-core point with

distance at most ϵ from q′. Such NNq′ (j ) is said to be aQ-canonical

neighbor of q′. Now sort Q ′ by sequence rank, and group its points

by cluster using the “core-point only” algorithm explained earlier.

Each non-ϵ-core point q′ ∈ Q is added to every group containing

any of its Q-canonical neighbors (the number of which is at most

minPts). The correctness follows directly from Lemma 5.2. The

overall query time is O (minPts · |Q |) = O ( |Q |).
We now arrive at our second main result:

Theorem 5.5. InO (n logn+ (1/ρ)d/2 ·n) time, we can construct a

data structure ofO (n) space that answers a C-group-by query with

query set Q in O ( |Q |) time, plus the time to sort O ( |Q |) integers
from the domain of [1,n].

As a �nal remark, it takes O ( |Q | log log |Q |) to sort O ( |Q |) in-
tegers each of which is between 1 and n [2]; furthermore, if

|Q | ≥ n0.01, the sorting time can be reduced to O ( |Q |) [18].

6 EXPERIMENTS

6.1 Setup

Datasets. We deployed 5 real datasets. The �rst three — named

PAMAP2, Farm, Household, respectively — were obtained from [14],

where they were used for studying ρ-approximate DBSCAN. We

refer the reader to [14] for a detailed description of those datasets.

The fourth dataset, HT, was produced in [15]4, collecting readings

of home sensors monitoring temperature, humidity, and the concen-

tration levels of several gases. The last one, Chem, was produced in

[12]5, and again a collection of sensor readings, but of Ethylene and

CO levels in a chemical environment. Their key meta information

of all these datasets can be found in Table 1.

From each dataset, we also obtained sample sets of various sizes.

These sample sets were used to study the scalability of the examined

algorithms (to be elaborated next), and the similarity between the

OPTICS diagram of a full dataset and that of a sample set.

Competing Methods. We compared the proposed approximate

OPTICS solution to 5 methods, each of which is representative in a

unique sense, as explained below:

• ABKS: The original OPTICS algorithm of [3], named after

the initials of the authors.

• DeliClu: The state-of-the-art algorithm [1] for computing

exact OPTICS diagrams (ideas reviewed in Section 2.2).

• 40-thread: A multi-core algorithm [19] for computing an OP-

TICS diagram by leveraging the parallelism of 40 threads on

20 CPU cores.

• HDBSCAN: The hierarchical version [8] of DBSCAN; as men-

tioned in Section 1, an OPTICS diagram can be extracted

from the clustering encodings.

• SOPTICS: An algorithm [20] that (just like our solution)

achieves a sub-quadratic time complexity by resorting to

approximation.

4Https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring.
5Https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures.

dataset dim. number of points domain of each dim.

PAMAP2 4 3,850,505 [0, 105]

Farm 5 3,627,086 [0, 105]

Household 7 2,049,280 [0, 105]

HT 10 928,991 [0, 106]

Chem 16 4,208,261 [0, 106]

Table 1: Meta information of our datasets

Our comparisons with the above methods aimed at di�erent pur-

poses. With respect to the exact algorithms — namely ABKS, Deli-

Clu, 40-thread, and HDBSCAN6 — we focused on evaluating the

e�ciency gains achieved by approximation. It should be noted that,

other than 40-thread, all the other algorithms use a single thread.

Nevertheless, as we will see, our algorithm (as well as SOPTICS)

outperformed 40-thread signi�cantly in most cases anyway, thereby

demonstrating the power of approximation.

With respect to SOPTICS, we carried out the comparison on both

diagram quality and CPU e�ciency. Our main objective is to demon-

strate two phenomena. First, the approximate OPTICS diagrams

we produced were robustly accurate (thanks to the valley preser-

vation lemma, i.e., Lemma 4.2), as opposed to those by SOPTICS

which, although reasonably good overall, were inaccurate in some

scenarios. Second, our algorithm, besides its accuracy superiority,

also demonstrated a clear performance advantage over SOPTICS.

It is worth pointing out that the inclusion of HDBSCAN also

serves one more purpose. As explained in Section 1, C-group-by

queries trivially realize the functionality of extracting clusters at

speci�c ϵ values (but with respect to ρ-approximate DBSCAN).

Hence, by showing that our algorithm is much faster than HDB-

SCAN, we provide practitioners with another attractive option for

encoding clusterings.

The parameter minPts was set to 10 for all the competing meth-

ods throughout the experiments.

Approximation Quality Metrics. We will assess the quality of

approximate OPTICS diagrams with two approaches. The �rst one

is to present the diagrams in full to enable a direct visual comparison.

This approach, however, fails to quantify the degree of similarity.

To remedy the defect, we introduce the notion of valley-preservation

ratio (VP-ratio, for short) as follows.

Let σ ∗ be an (exact) OPTICS sequence (De�nition 2.3), and σ be

the height-augmented permutation (De�nition 3.1) output by an

approximation algorithm. Fix a value of ϵ . Intuitively, if σ and σ ∗

are similar, then (i) the ϵ-valleys in σ ∗ should be present in σ , and

(ii) vice versa. We quantify the preservation in these two directions

as ρ1 and ρ2 respectively, both of which — as de�ned below — are

at least 1, with higher values indicating worse preservation quality:

• To de�ne ρ1, let V
∗ be the set of ϵ-valleys in σ ∗ (all these

valleys are disjoint by de�nition). For each valley ϒ∗ ∈ V ∗,
check whether σ has an ϵ-valley that contains the back-

bone of ϒ∗. If so, de�ne ρ1 (ϒ∗) = 1. Otherwise, let ϵ ′ be the
lowest value such that σ has an ϵ ′-valley whose backbone

contains ϒ∗ (it can be veri�ed that ϵ ′ must be greater than

ϵ); accordingly, de�ne ρ1 (ϒ
∗) = ϵ ′/ϵ . In both cases, ρ1 (ϒ

∗)

6Strictly speaking, the diagrams created by 40-thread and HDBSCAN are not precisely
the same as OPTICS. However, the discrepancies are minor and could be ignored in
practice.
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Figure 12: E�ects of ρ on the approximation quality of our techniques
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Figure 13: Exact OPTICS diagrams vs. our approximate diagrams
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Figure 14: Two approximate diagrams illustrating defects of SOPTICS

indicates how well ϒ∗ is retained in σ . Finally, de�ne ρ1 as

the maximum of ρ1 (ϒ
∗) for all ϒ∗ ∈ V ∗.

• To de�ne ρ2, let V be the set of ϵ-valleys in σ . For each ϵ-

valley ϒ ∈ V , ρ2 (ϒ) is de�ned in the same way as ρ1 (ϒ
∗),

except for replacing σ with σ ∗. The value of ρ2 is the maxi-

mum of ρ2 (ϒ) for all ϒ ∈ V .

The VP-ratio of σ is now �nalized as max{ρ1, ρ2}. Note that the
VP-ratio is a function of ϵ : indeed, it indicates the resemblance of

ϵ-valleys between σ ∗ and σ .

The VP-ratio thus de�ned is determined by a single valley in

V ∗ or V (i.e., the most poorly preserved valley); we therefore refer

to it as the worst-case VP-ratio. We also de�ne a weighted version

to measure the overall similarity of ϵ-valleys. For this purpose,

rede�ne ρ1 as the weighted sum of ρ1 (ϒ
∗) for all ϒ∗ ∈ V ∗, where

the weight of ϒ∗ equals how much percent of the ϵ-core points (of

the whole dataset) appear in ϒ∗. With ρ2 rede�ned analogously, the

weighted VP-ratio of σ is the maximum of the (new) ρ1 and ρ2.



Fast Euclidean OPTICS with Bounded Precision in Low Dimensional Space SIGMOD’18, June 10–15, 2018, Houston, TX, USA

0.5-approx OPTICS 0.001-approx-OPTICSSOPTICS

 0.5

 1

 1.5

 2

 2.5

 3

0.3k 0.5k 0.9k 1.4k 2.4k 4.0k
ε

ratio

 0.5

 1

 1.5

 2

 2.5

 3

0.1k 0.2k 0.3k 0.5k 0.8k 1.3k
ε

ratio

 0.5

 1

 1.5

 2

 2.5

 3

0.5k 0.8k 1.4k 2.4k 4.1k 6.7k
ε

ratio

 0.5

 1

 1.5

 2

 2.5

 3

6.0k 10k 17k 28k 48k 80k
ε

ratio

 0.5

 1

 1.5

 2

 2.5

 3

1.2k 2.0k 3.4k 5.8k 9.8k 16k
ε

ratio

(a) PAMAP2 (b) Farm (c) Household (d) HT (e) Chem

Figure 15: VP-ratios vs. ϵ (each dot on a curve represents the weighted VP-ratio, and its bar represents the worst-case VP-ratio)

The proposed ρ-approximate OPTICS technique has the feature

that it guarantees a VP-ratio of at most 1+ ρ even in the worst case

(let alone the weighted case); see Lemma 4.2.

Machine and OS. All experiments were run on a server equipped

with two CPUs, each being an Intel Xeon Processor (E5-2630 v4 a

2.2Ghz). Each CPU had 10 cores; and each core was able to support

2 threads concurrently. This made 40 the largest number of “real”

threads. All the cores shared a memory of 128GB. The operating

system was Ubuntu 16.04.

6.2 Approximation Quality of Diagrams

We start by demonstrating the e�ects of Lemma 4.2 — the valley

preservation lemma (our quality guarantee) — under di�erent val-

ues of ρ. The best dataset for this purpose is Household, for which

Figure 12a shows the exact OPTICS diagram, and Figures 12b and

12c give our approximate diagrams under ρ = 0.5 and 0.001, re-

spectively. Both approximate diagrams are similar in shape, but

di�er in a manner that manifests bene�ts of a smaller ρ. Consider

ϵ = 3.1k; and focus on the four valleys marked as A, B, C, and

D in the exact diagram. In the ρ = 0.5 diagram, even though the

four valleys are still there, their heights are lower such that, at ϵ =

3.1k, the four valleys have merged into a single one. This can be

problematic in cluster analysis: by relying on Figure 12b, a user

obtains wrong information about the number and the sizes of the

clusters at ϵ = 3.1k. The issue is avoided by the ρ = 0.001 diagram;

the aforementioned “height distortion” is visually undetectable in

Figure 12c, which looks almost the same as Figure 12a (except for

the ordering of some smaller valleys inside Valley D).

Next, we explain the above phenomenon with Lemma 4.2. Notice

that each of A, B, C, and D is a 2.1k-valley in Figure 12b. The 2nd

bullet of the lemma assures us that these valleys must also be

present in the exact diagram, but perhaps with a larger height of

(1 + ρ)· 2.1k = 3.15k (ρ = 0.5 for Figure 12b). In other words, there

can be a distortion factor of 1.5, which is indeed what we saw. This

immediately implies that Figure 12c has a distortion factor of only

1.001, which is why it can preserve all the valleys to a level that

cannot be discerned with naked eyes.

Henceforth, we set ρ = 0.001 by default for our techniques. Fig-

ure 13 presents the exact and our approximate diagrams produced

on PAMAP2, FARM, HT, and Chem, respectively.

Let us turn attention to SOPTICS. In general, this method pro-

duced reasonably accurate approximate diagrams. In particular,

its diagrams on Household, HT, and Chem looked as good as our

diagrams. The same, however, cannot be said on PAMAP2 and Farm,

for which the diagrams of SOPTICS are presented in Figure 14. They

exhibit two typical defects of SOPTICS:

• Valley disappearance: As shown in Figure 13a, PAMAP2 has

four sizable valleys A, B, C, and D, as indicated with arrows.

Some of these valleys are absent from the SOPTICS diagram

in Figure 14a.

• Height distortion: SOPTICS su�ers from the same issue as

our ρ = 0.5 diagram in Figure 12b. By looking at Figure 14b,

a user would think that Farm has two major clusters marked

as A and B at ϵ = 0.7k. This is not true: Figure 13c shows

that the two clusters in fact have merged at this ϵ .

The fundamental reason behind the above is that SOPTICS lacks a

quality guarantee similar to Lemma 4.2. To establish this argument

further, we measured the VP-ratios of the approximate diagrams

produced by SOPTICS and our algorithm with ρ = 0.5 and 0.001,

respectively. Figure 15 plots the VP-ratios as a function of ϵ for

each dataset. Each dot on a curve gives the weighted VP-ratio, and

is associated with a vertical bar that indicates the corresponding

worst-case VP-ratio (see Section 6.1 for the de�nitions of these

ratios). For example, for PAMAP2, at ϵ = 0.3k our 0.5-approximate

diagram had a weighted VP-ratio of around 1.1, and a worst-case

VP-ratio of 1.5. As expected, our ρ-approximate diagrams always

ensure a worst-case VP-ratio of 1 + ρ (explaining the high quality

of our ρ = 0.001 diagrams). The VP-ratios of SOPTICS in general

are consistently worse (i.e., greater) in all scenarios. In particular,

its worst-case VP-ratio can be very bad (again, because it has no

valley-preservation guarantees).

Appendix F contains additional experiments that assess the qual-

ity of diagrams obtained from sample sets.

6.3 Computation E�ciency

Cost of Diagram Computation. In an exact OPTICS diagram,

some points may have ∞ as their heights. The number of such

unde�ned points depends on the ϵmax parameter of OPTICS. In

general, the smaller ϵmax is, the faster it would be to compute an

OPTICS diagram, but at the expense of more unde�ned points. For

each of the 5 real datasets deployed, we identi�ed the smallest

value of ϵmax at which there were no more than 1% unde�ned

points. Speci�cally, these values were 6k, 2k, 10k, 120k, and 24k for

PAMAP2, Farm, Household, HT, and Chem respectively; they were

chosen as the default value of ϵmax on the corresponding datasets.

Figure 16 plots the execution time of all the competing methods

as a function of ϵmax . For our algorithm, we inspected its cost at

both ρ = 0.5 and 0.001. We considered three values of ϵmax : half
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Figure 16: Running time vs. ϵmax
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Figure 17: Running time vs. sampling rate (scalability test)
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Figure 18: Running time vs. ρ

the default, default, and ∞. Note that ϵmax = ∞ generates the

“complete” OPTICS diagram (although a part of the diagram may

concern uninterestingly high values of ϵ that have been trimmed

o� in the diagrams in Section 6.2). Some methods have no results

in the diagrams of Figure 16; this means that they did not terminate

within 10 hours in the corresponding settings.

Except for a single exception (ϵmax = 12k on Chem), approxi-

mation algorithms (i.e., ours and SOPTICS) outperformed the exact

algorithms signi�cantly — often by a factor of at least an order of

magnitude — con�rming the computational bene�ts of approxima-

tion. Compared to SOPTICS, we lost out mainly when ϵmax was

set to ∞ on the dataset of the highest dimensionality: Chem (16

dimensions). The proposed techniques are designed for relatively

low dimensionalities, as predicted by its time complexity analysis.

We also lost to SOPTICS slightly on Farm when ϵmax was large. But

in the other scenarios, our algorithms were considerably faster.

Figure 17 demonstrates the scalability of each algorithm by plot-

ting the running time as a function of the sample rate. The relative

superiority of alternative algorithms follows the patterns in Fig-

ure 16. Figure 18 gives the running time of our algorithm under vari-

ous ρ values. The in�uence of ρ tended to be more signi�cant when

the dimensionality d was higher (as can also been seen in Figure 16),

although we did not observe a growth of (1/ρ)d/2 (remember that

theoretical analysis is conservative, and hence, typically pessimistic

on practical data).

Cost of C-Group-By Queries. The last set of experiments evalu-

ated the e�ciency of C-group-by queries (see Section 5.1). For this

purpose, we generated query workloads, each containing 100,000

PAMAP2 Farm Household HT Chem

1.0
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2 8 32 128 512
query size

average query time (micro-sec)

Figure 19: Performance of C-group-by queries

queries satisfying three conditions: (i) their sets Q all had the same

size (hence, |Q | is a workload parameter), (ii) each Q was a random

subset (of the speci�ed size) of the underlying dataset, and (iii) their

ϵ values were decided uniformly at random from 0 to ϵmax/(1 + ρ).

Figure 19 plots, as a function of |Q |, the average cost of all queries
in the same workload. Note that the y-axis is in micro (i.e., 10−6)
seconds. The query time increased linearly with |Q | on each dataset;
all queries were answered with negligible cost.

7 CONCLUSIONS

OPTICS is a popular method for visualizing clusterings of multidi-

mensional points. All the existing algorithms for implementing the

method su�er from a quadratic time complexity in the worst case,

and thus, may not be applicable to massive datasets. This paper

has discussed how to alleviate the problem with approximation.

Our key proposition is a new concept called ρ-approximate OP-

TICS, which de�nes a class of clustering visualizations that have

strong guarantees in their resemblance to exact OPTICS diagrams.

We have described an algorithm that �nds such a visualization in

O (n logn + (1/ρ)d/2 · n) time, where n is the size of the input, and

d is the dimensionality. Experiments have con�rmed that high-

quality visualizations can be obtained for real datasets with cost

signi�cantly lower than that of the state-of-the-art algorithms for

computing exact/approximate OPTICS diagrams. Our techniques

produce as a side product a linear-space index structure that is

capable of answering ad-hoc C-group-by queries e�ciently under

the semantics of ρ-approximate DBSCAN.
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APPENDIX

A PROOF OF LEMMA 3.4

Denote (as before) by G the base graph (De�nition 2.1) of P . De�ne

a path in G as an H -path if all its edges have weights at most H .

Lemma A.1. Let p1,p2, ...,pℓ be an H -path. If core-dist (pℓ ) ≤ H ,

then pℓ ,pℓ−1, ...,p1 is also an H -path.

Proof. For each i ∈ [1, ℓ − 1], since w (pi ,pi+1) ≤ H ,

core-dist (pi ) ≤ H and dist (pi ,pi+1) ≤ H . Combining this with

core-dist (pℓ ) ≤ H shows that w (pi+1,pi ) ≤ H for every i ∈
[1, ℓ − 1]. �

Given two pointsp1,p2 ∈ P , we say they are stronglyH -connected

if G has an H -path from p1 to p2, and an H -path from p2 to p1.

Lemma A.2. Two points p1,p2 are both in the backbone of the

sameH -valley in the OPTICS sequence if and only if they are strongly

H -connected.

Proof. The if direction. Let π1 be the H -path from p1 to p2, and

π2 the H -path from p2 to p1. The concatenation of π1 and π2 makes

a cycle. Let u be the �rst vertex in the cycle that appears in the OP-

TICS sequence. Denote by ϒ the H -valley where u belongs. Let the

H -valley be (ox ,hx ), (ox+1,hx+1), ...(oy ,hy ) where the subscripts

indicate their positions in the OPTICS sequence. We will prove that

both p1 and p2 are in the backbone of ϒ.

Let S be the set of points before ox in the OPTICS sequence, i.e.,

S = {o1,o2, ...,ox−1}. Recall that ox can be removed from Vunseen
at either Line 4 or Line 8 of the OPTICS procedure. In both cases,

it must hold that, in G, all the edges from S to P \ S have weights

greater thanH . This is obvious if the removal of ox happens at Line

4, in which case S has no edges to P \ S at all. Suppose that (p,ox )

is the edge at Line 6 that got ox deleted at Line 8. We thus know

that (p,ox ) is the lightest among all the edges from S to P \S , while
the de�nition of H -valley saysw (p,ox ) = hx > H .

That no edges from S to P \ S have weights at most H implies:

• Fact 1: For any vertex v in ϒ, there is an H -path from ox to

v passing only the vertices outside S .

• Fact 2: If there is an H -path from ox to a vertex v < S that

passes only vertices outside S , v must appear in ϒ.

By de�nition of u, none of the vertices on π1 and π2 belong to S .

Combining this with Fact 1, we know that ox hasH -paths to p1 and

p2 respectively: these paths reach u �rst, and then use the edges of

π1 and π2; they include only vertices outside S . Hence, both p1 and

p2 are in ϒ according to Fact 2.

The existence of π1 and π2 indicates that core-dist (p1) ≤ H and

core-dist (p2) ≤ H . Hence, p1 and p2 are in the backbone of ϒ.

The only-if direction. Let ϒ = ((ox ,hx ), (ox+1,hx+1), ...(oy ,hy ))

be the H -valley with p1,p2 in the backbone. Fact 1 still holds on

S = {o1,o2, ...,ox−1}; hence, ox can reach any of ox+1, ox+2, ...,

oy with an H -path. By Lemma A.1, if oi (i ∈ [x + 1,y]) is in the

backbone of ϒ, reversing the H -path from ox to oi gives an H -path

from oi to ox . Thus, any two backbone vertices of ϒ can reach each

other via H -paths (through ox ), which completes the proof. �

Recall from Section 2.1 that the DBSCAN clusters can be de�ned

over an undirected graph G (H ). Two points p1,p2 are strongly H -

connected in G if and only if they can reach each other in G (H ).

Both statements in Lemma 3.4 follow directly from Lemma A.2 and

the way that clusters are formed (as explained in Section 2.1).

B PROOF OF LEMMA 4.2

We need the following property of height-augmented permutations:

Lemma B.1. Let σ be any height-augmented permutation on a

set P of points. Consider any distinct points p1,p2,p3 ∈ P . For any
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value H , if we know that (i) p1,p2 are in the same H -valley and (ii)

p1,p3 are in the sameH -valley, then p1,p2,p3 must all be in the same

H -valley.

Proof. Consider �rst that the relative ordering of the three

points in σ is p1,p2,p3. In this case, the lemma is obviously true,

because p2 is on the subsequence from p1 to p3, while the subse-

quence must be a part of theH -valley covering p1 and p3. The same

argument applies to any relative ordering where p1 ranks either

the �rst or last among the three points.

It su�ces to discuss on the scenario where the ordering is

p2,p1,p3 (as p3,p1,p2 is symmetric). As the subsequence from p2 to

p1 is a part of an H -valley, the height of p1 must be at most H . This,

in turn, proves that the entire subsequence from p2 to p3 must be a

part of an H -valley. �

Lemma 4.2 follows from De�nition 4.1 and the above lemma.

C CORRECTNESS PROOF FOR OUR
ALGORITHM IN SECTION 4.2

We will prove that the sequence returned by our algorithm in Sec-

tion 4.2 ful�lls the two requirements in De�nition 4.1. Recall that

our algorithm constructs a λ-WSPD (U1,V1), ..., (Um , Vm ), about

which we have:

Lemma C.1. Fix an arbitrary (Ui ,Vi ) (i ∈ [1,m]). Let H be the

distance between an arbitrary point inUi and an arbitrary point in

Vi . If |Ui | ≥ minPts (or |Vi | ≥ minPts), then every point p ∈ Ui (or
Vi , resp.) has core-dist (p) less than H .

Proof. We consider onlyp ∈ Ui due to symmetry. By Lemma 2.6

(and applying λ ≥
√
8 > 2), any two points inUi have distance less

than H . If |Ui | ≥ minPts, then p has distance less than H to at least

minPts points. �

We inherit from Appendix A the de�nition of H -paths in G,
and also the de�nition of two points being strongly H -connected in

G. Consider the graph G̃ constructed by Step 1 of our algorithm;

remember that all edges are undirected, and that their weights are

de�ned in (3). Similar to H -paths in G, de�ne a path in G̃ as an

H -path if all its edges have weights at most H .

Lemma C.2. Both statements are true for any H ≤ ϵmax/(1 + ρ):

• If two points are connected by anH -path in G̃, they are strongly
H (1 + ρ)-connected in G.
• If two points are stronglyH -connected in G, they are connected
by an H -path in G̃.

Proof. The 1st bullet is straightforward. Let u1,u2, ...,uℓ be the

vertices on an H -path in G̃ between p1 = u1 and p2 = uℓ . By (3),

max{core-dist (ui ), core-dist (ui+1), dist (ui ,ui+1)} ≤ H (1 + ρ) ≤ ϵmax

holds for every i ∈ [1, ℓ − 1]. Hence, in G, both w (ui ,ui+1) and

w (ui+1,ui ) are at most H (1 + ρ), proving that p1,p2 are strongly

H (1 + ρ)-connected.

The rest of the proof concentrates on the 2nd bullet. De�ne

X = {{u,v} | u,v ∈ P , u , v , dist (u,v ) ≤ H , core-dist (u) ≤ H , and

core-dist (v ) ≤ H }. Note that each member of X is an unordered pair

{u,v}, and that u and v are strongly H -connected. It su�ces7 to

prove the claim:

For any {u,v} in X , there is an H -path between u and v in G̃.

Sort all the {u,v} in X by dist (u,v ). We will prove the above claim

by induction on dist (u,v ).

Base Case. Let {u,v} be an unordered pair in X with the smallest

dist (u,v ). The combination of core-dist (u) ≤ H , core-dist (v ) ≤ H ,

and dist (u,v ) ≤ H gives w̃ (u,v ) ≤ H . We will prove that the edge

(u,v ) exists in G̃, and hence, makes an H -path between u and v

in G̃. Let (Ui ,Vi ) be the pair in the λ-WSPD of P with u ∈ Ui and
v ∈ Vi . We claim that |Ui | < minPts and |Vi | < minPts. This means

that Step 1 of our algorithm processes (Ui ,Vi ) as Case IV, and hence,

adds the edge (u,v ) to G̃.
Due to symmetry, we prove only |Ui | < minPts. Assume that this

is not true. Then, Lemma C.1 asserts that core-dist (p) < dist (u,v ) ≤
H for any point p ∈ Ui . For any distinct points p1,p2 in Ui ,

Lemma 2.6 tells us that dist (p1,p2) < dist (u,v ) ≤ H . Hence, {p1,p2}
is an unordered pair in X , contradicting the de�nition of (u,v ).

Inductive Case. Fix an arbitrary unordered pair {u,v} ∈ X . As-

suming that the 2nd bullet holds for any {u ′,v ′} ∈ X satisfying

dist (u ′,v ′) < dist (u,v ), next we prove that the bullet is also true

on {u,v}, namely, u and v are connected by an H -path in G̃.
Let (Ui ,Vi ) be the pair in the λ-WSPD of P with u ∈ Ui and

v ∈ Vi . Recall that Step 1 of our algorithm processes (Ui ,Vi ) by

distinguishing Cases I-IV. We discuss each case in turn.

Case I. By the 2nd bullet in Lemma 2.5:

dist (rep(Ui ), rep(Vi )) ≤ (1 + 8/λ2) · dist (u,v )
= (1 + ρ) · dist (u,v ) ≤ (1 + ρ)H

where the last inequality used (2). Applying Lemma C.1 with

dist (u,v ) ≤ H , we get core-dist (rep(Ui )) < H and similarly,

core-dist (rep(Vi )) < H . Hence, w̃ (rep(Ui ), rep(Vi )) ≤ 1
1+ρ · (1 +

ρ)H = H < ϵmax . This proves that G̃ has an edge (rep(Ui ), rep(Vi )).

Lemma 2.6 shows that dist (u, rep(Ui )) < dist (u,v ). Hence, by

the inductive assumption, u and rep(Ui ) must be connected by an

H -path in G̃.8 Similarly, this is also true forv and rep(Vi ). Thus, we

have found an H -path to connect u and v in G̃.
Case II. G̃ has an edge (u, rep(Vi )). By the 3rd bullet of Lemma 2.5:

dist (u, rep(Vi )) ≤ (1 + 8/λ2) · dist (u,v ) ≤ (1 + ρ) · H .

As explained in Case I, core-dist (rep(Vi )) < H which, together with

core-dist (u) ≤ H , leads to w̃ (u, rep(Vi )) ≤ 1
1+ρ (1 + ρ)H = H .

If v = rep(Vi ), we are done because the edge (u, rep(Vi )) itself is

an H -path in G̃ between u and v . Otherwise, as in Case I, the induc-

tive assumption shows the existence of an H -path in G̃ between v

and rep(Vi ), thus also giving an H -path between u and v .

Case III. Symmetric to Case II.

7To see why, consider any distinct points u′, v ′ that are strongly H -connected, but
{u′, v ′ } is not in X . Let p1, p2, ..., px (where u′ = p1, v ′ = px , and x ≥ 3) be an
H -path from p1 to px . By Lemma A.1, px , px−1, ..., p1 is an H -path. It follows that

{pi , pi+1 } is in X , for each i ∈ [1, x − 1]. Thus, if we can prove that G̃ has an H -path
between pi and pi+1 for every i , the concatenation of all these paths is an H -path
between u′ and v ′.
8If u = rep(Ui ), the path is a trivial one with no edges.
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Case IV. G̃ has an edge (u,v ). The 2nd bullet is true because

w̃ (u,v ) = max{core-dist (u), core-dist (v ), dist (u,v )1+ρ } ≤ H . �

Regarding the MSF F from Step 2 of our algorithm, we have:

Lemma C.3. For anyH > 0, two points are connected by anH -path

in G̃, if and only if they are connected by an H -path in F .

Proof. The if direction is trivial. Next, we prove the only-if

direction. Suppose that there exist points p1,p2 violating the lemma.

Let u1,u2, ...,uℓ be an H -path in G̃ between p1 = u1 and p2 = uℓ .

Let i be the smallest integer such thatui andui+1 are not connected

by an H -path in F . This means that the path from ui to ui+1 in F
contains an edge with weight (as calculated by (3)) greater than

H . Removing this edge and adding (ui ,ui+1) will produce another

spanning forest with a smaller weight than F , contradicting that

F is an MSF. �

Consider the height-augmented sequence σ produced by Step 3.

The valleys in σ have the following pattern:

Lemma C.4. Two points p1,p2 are in the backbone of the same

H -valley in σ if and only if there is an H -path between them in F .

Proof. All the “weights” in this proof are calculated by (3).

The if direction. Let π be an H -path between p1 and p2 in F .

Let u be the �rst vertex on π that appears in σ . Denote by ϒ the

H -valley in σ where u belongs; let ϒ be (ox ,hx ), (ox+1,hx+1), ...

(oy ,hy ) where the subscripts indicate their positions in σ . We will

prove that both p1 and p2 are in the backbone of ϒ.

Let S be the set of points before ox in σ , i.e., S = {o1,o2, ...,ox−1}.
Recall that ox can be removed from Vunseen at either Line 4 or Line

7 of the approximate OPTICS procedure. In both cases, it must hold

that, in F , all the edges from S to P \ S have weights greater than

H . This is obvious if the removal of ox happens at Line 4, in which

case S has no edges to P \ S at all. Suppose that (p,ox ) is the edge

at Line 6 that got ox deleted at Line 7. We thus know that (p,ox ) is

the lightest among all the edges from S to P \S , while the de�nition
of H -valley says w̃ (p,ox ) = hx > H .

This implies:

• Fact 1: For any vertex v in ϒ, F has an H -path between ox
and v that involves only the vertices outside S .

• Fact 2: For any vertex v < S , if F has an H -path between ox
and v that includes only vertices outside S , v appears in ϒ.

By de�nition ofu, none of the vertices on π belong to S . Combining

this with Fact 1, we know that, in F , ox has H -paths to p1 and p2
respectively: these paths reach u �rst, and then use the edges of π ;

they include only vertices outside S . Hence, both p1 and p2 are in ϒ

according to Fact 2.

The existence of π tells us core-dist (p1) ≤ H and core-dist (p2) ≤
H (otherwise, any edges of p1,p2 in G̃ must have weights greater

than H ). We thus know that p1 and p2 are in the backbone of ϒ.

The only-if direction. Let ϒ = ((ox ,hx ), (ox+1,hx+1), ...(oy ,hy ))

be the H -valley containing p1,p2 in the backbone. Fact 1 still holds

on S = {o1,o2, ...,ox−1}; hence, ox can reach any of ox+1, ox+2, ...,

oy with an H -path in F . Hence, there is an H -path between any

two vertices of ϒ, thus completing the proof. �

The correctness of our algorithm becomes obvious:

Corollary C.5. σ is a ρ-approximate OPTICS sequence.

Proof. From LemmaA.2, and the 2nd bullet of LemmaC.2, if two

pointsp1,p2 are in the backbone of the sameH -valley of the OPTICS

sequence, they are connected by an H -path in G̃. By Lemmas C.3

and C.4, p1,p2 must be in the backbone of the same H -valley in σ .

Hence, σ satis�es the 1st requirement of De�nition 4.1.

From Lemmas C.4, C.3, and the 1st bullet of Lemma C.2, if two

points p1,p2 are in the backbone of the same H -valley in σ , they

are strongly H (1 + ρ)-connected in G. By Lemma A.2, p1,p2 must

be in the backbone of the same H (1 + ρ)-valley in the (exact) OP-

TICS sequence. This proves that σ ful�lls the 2nd requirement of

De�nition 4.1. �

D PROOF OF LEMMA 5.2

Recall from Section 2.1 the de�nitions of graphs G (ϵ ) and G̃ (ϵ, ρ)

used to formulate exact DBSCAN and ρ-approximate DBSCAN,

respectively. Both of them are undirected graphs de�ned only on

ϵ-core points. It su�ces to prove the existence of a G̃ (ϵ, ρ) whose

CCs (connected components) correspond to exactly the clusters of

ϵ-core points decided by Steps (1) and (2) in the lemma’s statement.

Once this is done, Step (3) assigns the non-ϵ-core points in the same

way as what ρ-approximate DBSCAN does based on the CCs of

G̃ (ϵ, ρ).

We construct such G̃ (ϵ, ρ) explicitly as follows:

• First, set G̃ (ϵ, ρ) to G (ϵ ).

• Then, for every edge (u,v ) in F (ϵ ), add an unweighted edge

(u,v ) to G̃ (ϵ, ρ) if it is not already there. The 1st bullet of

Lemma C.2 asserts that u and v must be strongly ϵ (1 + ρ)-

connected in G. In turn, this says that the edge (u,v ) must

belong to G (ϵ (1 + ρ)), as desired.

If two ϵ-core points p1,p2 are in the same cluster after Step (2),

they must belong to the same tree of F (ϵ ). In this case, p1,p2 must

be in the same CC of G̃ (ϵ, ρ) because all the edges of F (ϵ ) are in

G̃ (ϵ, ρ). To complete the proof, it remains to show that if two ϵ-core

points p1,p2 are in the same CC of G̃ (ϵ, ρ), they must be in the

same tree of F (ϵ ), i.e., in the same cluster after Step (2).

If p1,p2 are in the same CC of G (ϵ ), they must be strongly ϵ-

connected in G. By the 2nd bullet of Lemma C.2 and Lemma C.3,

this means that in F they are connected by a path having edges

with weights at most ϵ , and hence, are in the same tree of F (ϵ ).

Consider now the case where p1,p2 that are not in the same CC of

G (ϵ ). Let π be a path fromp1 top2 in G̃ (ϵ, ρ); denote byu1,u2, ...,uℓ
the vertices on π with p1 = u1 and p2 = uℓ . We can �nd a path on

F (ϵ ) from u1 to uℓ as follows. For each i ∈ [1, ℓ − 1], if ui and ui+1
are in the same CC ofG (ϵ ), we can de�nitely travel from ui to ui+1
on F (ϵ ) as proved earlier. Otherwise, (ui ,ui+1) is not an edge in

G (ϵ ), and must have come from F (ϵ ). This completes the whole

proof of Lemma 5.2.

E PROOF OF LEMMA 5.4

Lemma 5.2 directly gives:

Corollary E.1. For any value ϵ ≤ ϵmax/(1+ρ), two ϵ-core points

p1,p2 are in the same cluster in C (ϵ, ρ) if and only if, in F , they are

connected by a path containing only edges of weights at most ϵ .
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Figure 20: Exact OPTICS diagrams vs. our approximate diagrams on 10% sample sets
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Figure 21: VP-ratios on 10% sample sets

The corollary says that qi and qi+2 are connected by a path in F
with edges that have weights at most ϵ . By Lemma C.4, they belong

to the same ϵ-valley of the ρ-approximate OPTICS sequence that

produced F . As qi+1 is between qi and qi+2 in sequence rank, qi
and qi+1 are also in the same ϵ-valley, and hence, in the backbone

of the valley. It thus follows from Lemma C.4 and Corollary E.1 that

qi and qi+1 are in the same cluster of C (ϵ, ρ).

F EXTRA EXPERIMENTS: SAMPLING AND
APPROXIMATION QUALITY

For e�ciency reasons, it would be tempting to compute an OPTICS

diagram from a sample set, and use this diagram as a substitute for

the diagram on the original dataset. To explore this direction, we

present, in Figure 20, the exact and our 0.001-approximate OPTICS

diagrams on 10% sample sets of the �ve datasets. These diagrams

indeed seem to have similar shapes compared to those in Figures 12

and 13, except that they di�er quite considerably in the heights of

valleys. The ϵ values where signi�cant valleys are identi�ed in the

exact diagrams (see Figures 12 and 13) are almost all o� by a rather

large margin in these sample-set diagrams.

Even when a user decides to opt for sample-set diagrams, our pro-

posed approximation techniques still provide an appealing alterna-

tive choice, because our approximate diagrams are highly accurate

in all cases, and yet can be computed much faster. Regarding quality,

we complement the approximate diagrams in Figure 20 with the VP-

ratio results in Figure 21, which compares our 0.001-approximate

diagrams against SOPTICS and our own ρ = 0.5 diagrams in the

same style as in Figure 15. Regarding e�ciency, we refer the reader

to the scalability experiments (Figure 17) in Section 6.3.


