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ABSTRACT

Dynamic clustering—how to efficiently maintain data clusters along
with updates in the underlying dataset—is a difficult topic. This
is especially true for density-based clustering, where objects are
aggregated based on transitivity of proximity, under which deciding
the cluster(s) of an object may require the inspection of numerous
other objects. The phenomenon is unfortunate, given the popular
usage of this clustering approach in many applications demanding
data updates.

Motivated by the above, we investigate the algorithmic princi-
ples for dynamic clustering by DBSCAN, a successful represen-
tative of density-based clustering, and ρ-approximate DBSCAN,
proposed to bring down the computational hardness of the former
on static data. Surprisingly, we prove that the ρ-approximate ver-
sion suffers from the very same hardness when the dataset is fully

dynamic, namely, when both insertions and deletions are allowed.
We also show that this issue goes away as soon as tiny further relax-
ation is applied, yet still ensuring the same quality—known as the
“sandwich guarantee”—of ρ-approximate DBSCAN. Our algorithms
guarantee near-constant update processing, and outperform existing
approaches by a factor over two orders of magnitude.

CCS Concepts

•Theory of computation → Data structures and algorithms for

data management;
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1. INTRODUCTION
Clustering is one of the most important topics in data mining

and machine learning, and has been very extensively studied (see
[13,22] and their bibliographies). An important but notoriously
difficult issue is how to update the clusters when objects are inserted
and deleted from the underlying dataset [4,8,15,17–21]. This is
especially true when the clustering problem is mass-correlated,
namely, the cluster of an object o cannot be decided by looking
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Figure 1: Dynamic density-based clustering

at o alone, but instead, must also take into account a potentially
large number of other objects as well. Adding to the difficulty is the
fact that, a single update may even affect more than one cluster: an
insertion causing multiple clusters to merge, or a deletion breaking
up a cluster into several.

Density-based clustering, which aggregates objects by “transitiv-
ity of proximity”, is heavily mass-correlated. A highly successful
representative in this category is the DBSCAN method by Ester et
al. [9]. Figure 1a shows an example dataset, where intuitively there
are three clusters—each being a “cloud of points” with an irregular
shape. Figure 1b demonstrates the effect of 3 insertions shown in
boxes, which merge the left two clusters by creating a “connection
path”. Deleting those 3 boxes reverses the effect by breaking up a
cluster into two.

A New Operation: Cluster-Group-By Query. We are interested
in algorithms for maintaining density-based clusters on a dynamic
set P of d-dimensional points. An immediate question is how
to properly approach the problem in the first place. An obvious
attempt is to define the problem as: “an algorithm should support
fast updates, and in the meantime be prepared to return all the
clusters any time upon requested”. However, the cluster reporting
itself already demands Ω(n) cost, where n is the number of points
in P . This is at odds with the conventional database wisdom that
“queries” should have response time significantly shorter than O(n).

We eliminate the issue by introducing a novel query type called
cluster-group-by (C-group-by), which makes the dynamic clustering
problem much more interesting:

Given an arbitrary subset Q of P , a C-group-by query groups
the points of Q by the clusters they belong to.

Figure 1a shows a query with Q = {q1, q2, q3, q4, q5}, which
should return {q1}, {q2, q3}, and {q4, q5} indicating how they
should be divided based on the clustering. The same query on
Figure 1b returns {q1, q4, q5} and {q2, q3}.



method update C-group-by query remark reference

exact DBSCAN d = 2 Õ(1) Õ(|Q|) fully dynamic this paper

exact DBSCAN d ≥ 3 either Ω(n1/3) insertion or Ω(|Q|4/3) query† even if insertions only corollary of [10]

ρ-approx. DBSCAN d ≥ 3 Õ(1) insertion Õ(|Q|) insertions only this paper

ρ-approx. DBSCAN d ≥ 3 either Ω̃(n1/3) update or Ω̃(n1/3) query† even if |Q| = 2 fully dynamic this paper

ρ-double-approx. DBSCAN d ≥ 3 Õ(1) Õ(|Q|) fully dynamic this paper
†subject to the hardness of unit-spherical emptiness checking (USEC)

Table 1: Dynamic hardness of DBSCAN variants

By simply setting Q to P , the C-group-by query degenerates
into returning all the clusters. In practice, however, a user is rarely
interested in the entire dataset. Instead, s/he is much more likely to
raise questions regarding selected objects, e.g., “are stocks X, Y in

the same cluster?”, or “break the 10 stocks by the clusters that their

profiles belong to in the entire stock database.” C-group-by queries
aim to answer these questions with time proportional only to |Q|,
as opposed to |P |.

Hardness of Dynamic DBSCAN and Approximation. Recently,
Gan and Tao [10] proved that, when d ≥ 3, any DBSCAN algo-
rithm must incur Ω(n4/3) worst-case time to cluster n static points
(subject to the USEC hardness as will be reviewed in Section 2).
Unfortunately, this implies that no dynamic DBSCAN algorithm
can be fast in both insertions and queries, as explained below.

Suppose, on the contrary, that an algorithm could process an
insertion in Õ(1) time (where notation Õ(·) hides a polylog factor),

and a query in Õ(|Q|) time. We would be able to solve the static

DBSCAN problem using the dynamic algorithm by performing n
insertions followed by a C-group-by query with Q = P . The total
cost would be only Õ(n) which, however, is o(n4/3)—violating
the impossibility result of [10]! To be practically useful, a dynamic
algorithm must support an update in Õ(1) time and a query in

Õ(|Q|) time. The above reduction suggests that no such algorithms
can exist for DBSCAN, even if all the updates are insertions.

DBSCAN admits a ρ-approximate version [10] that can be settled
in only O(n) expected time, and thus avoids the above pitfall. As re-
viewed in the next section, the approximate version returns provably
the same clusters as DBSCAN, unless the DBSCAN clusters are
unstable: they change even under small perturbation to the cluster-
ing parameters. The unstable situation turns out to be the culprit for
the hardness of (exact) DBSCAN. Indeed, accepting slightly altered
results in those situations allows huge improvement from Ω(n4/3)
to O(n) [10].

Our Contributions. Lack of understanding on the computational
efficiency of dynamic DBSCAN has become a serious issue, given
the vast importance of this clustering technique, and the dynamic
nature of numerous practical datasets in modern applications. Moti-
vated by this, the current paper presents a comprehensive study on
dynamic density-based clustering algorithms. Our contributions can
be summarized as follows.

• Fully Dynamic 2D Exact Algorithm: When d = 2, we present
an algorithm for (exact) DBSCAN that supports each inser-
tion in Õ(1) amortized time, and answers a C-group-by query

in Õ(|Q|) time.

• Fast Insertion-Only ρ-Approximate Algorithms: A dataset is
semi-dynamic, if data points are only appended, but never
deleted. In this case, we propose a ρ-approximate DBSCAN
algorithm that supports each insertion in Õ(1) amortized time,

and answers a C-group-by query in Õ(|Q|) time. The result
holds for any fixed dimensionality d.

• Fully Dynamic ρ-Approximate DBSCAN Is Hard! A dataset
is fully-dynamic, if data points can be inserted and deleted
arbitrarily. We prove that, when d ≥ 3, no ρ-approximate
DBSCAN algorithm can be efficient in both updates and C-
group-by queries at the same time! Specifically, such an
algorithm must use Ω̃(n1/3) time either to process an update,
or to answer a query—neither complexity is acceptable in
practice (notation Ω̃(.) hides a polylog factor). This is true
even if |Q| = 2 for all queries!

• ρ-Double-Approx. DBSCAN and Fully Dynamic: We show
how to slightly relax ρ-approximate DBSCAN—into what we
call ρ-double-approximate DBSCAN—to remove the above
computational hardness. The relaxation leads to a fully-
dynamic algorithm that processes an update in Õ(1) amor-

tized time, and answers a C-group-by query in time Õ(|Q|).
The new proposition preserves the clustering quality of (exact)
DBSCAN in the same way (known as the “sandwich guaran-

tee”) as ρ-approximate DBSCAN! In other words, the double
approximation offers an alternative way to reach the same

goal as ρ-approximate DBSCAN, without sharing the latter’s
deficiencies. The result holds for any fixed dimensionality d.

• Empirical Evaluation: We present experiments with the strin-
gent requirement that ρ-double-approximate DBSCAN should
always guarantee the same result as the ρ-approximate coun-
terpart. The new algorithms demonstrate excellent running
time for both updates and queries, and outperform the state of
the art by a factor up to over two orders of magnitude.

The dynamic hardness of different DBSCAN variants is summarized
in Table 1. With these results, the dynamic tractability (i.e., polylog
vs. polynomial) in all the fixed dimensionalities and update schemes
has become well understood.

The rest of the paper is organized as follows. The next sec-
tion reviews the basic concepts and properties of DBSCAN and
its ρ-approximate version. Then, Section 3 formally defines the
dynamic clustering problem studied in this work. Section 4 presents
a generic framework that captures all the algorithms proposed in
this paper. Section 5 elaborates on our semi-dynamic solutions to
ρ-approximate DBSCAN. Section 6 proves our impossibility re-
sult for fully dynamic ρ-approximate DBSCAN, and introduces our
“double-approximate” version of DBSCAN, for which Section 7 de-
scribes fast fully-dynamic algorithms. Section 8 reports the results
of our experimental evaluation. Finally, Section 9 concludes the
paper with a summary of our findings.

2. PRELIMINARIES
This section paves the foundation for our technical discussion by

clarifying the basic concepts and properties of DBSCAN and its
ρ-approximate version.

DBSCAN. Let P be a set of points in d-dimensional space R
d.

DBSCAN [9] defines a unique set of clusters on P based on two
parameters: (i) a positive real value ǫ, and (ii) a small positive integer
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Figure 2: Illustration of DBSCAN and ρ-approximate DBSCAN (ρ = 0.5,MinPts = 3)

MinPts , which can be regarded as a constant. Next, we review how
the clusters are formed using graph terminology.

Given a point p ∈ P , we use B(p, r) to represent the ball that is
centered at p, and has radius r. The point is said to be a core point

if B(p, ǫ) covers at least MinPts points of P (including p itself);
otherwise, it is a non-core point. To illustrate, consider the dataset
of 18 points in Figure 2a, where ǫ is the radius of the inner solid
circle, and MinPts = 3. The core points have been colored black,
while the non-core points colored white. The dashed circle can be
ignored for the time being.

DBSCAN clusters are defined in two steps. The first one focuses
exclusively on the core points, and groups them into preliminary
clusters. The second step determines how the non-core points should
be assigned to the clusters. Next, we explain the two steps in detail.

Step 1: Clustering Core Points. It will be convenient to imagine an
undirected core graph G on P—this graph is conceptual and need
not be materialized. Specifically, each vertex of G corresponds
to a distinct core point in P . There is an edge between two core
points (a.k.a. vertices) p1, p2 if and only if dist(p1, p2) ≤ ǫ, where
dist(·, ·) represents the Euclidean distance between two points. Fig-
ure 2b shows the core graph for the dataset of Figure 2a.

Each connected component (CC) of G constitutes a preliminary
cluster. In Figure 2b, there are 3 CCs (a.k.a. preliminary clusters).
Note that every core point belongs to exactly one preliminary cluster.

Step 2: Non-Core Assignment. This step augments the preliminary
clusters with non-core points. For each non-core point p, DBSCAN
looks at every core point pcore ∈ B(p, ǫ), and assigns p to the (only)
preliminary cluster containing pcore . Note that, in this manner, p
may be assigned to zero, one, or more than one preliminary cluster.
After all the non-core points have been assigned, the preliminary
clusters become final clusters.

It should be clear from the above that the DBSCAN clusters are
uniquely defined by the parameters ǫ and MinPts , but they are
not necessarily disjoint. A non-core point may belong to multiple
clusters, while a core point must exist only in a single cluster. It is
possible that a non-core point is not in any cluster; such a point is
called noise.

In Figure 2a, there are two non-core points o13 and o18. Since
B(o13, ǫ) covers o14, o13 is assigned to the preliminary cluster of
o14. B(o18, ǫ), however, covers no core points, indicating that o18 is
noise. The final DBSCAN clusters are {o1, o2, ..., o5}, {o6, o7, ...,
o12}, {o13, o14, ..., o17}.

Remark. DBSCAN can also be defined under the notion of “density-

reachable”; see [9]. The above graph-based definition is equiv-

alent, perhaps more intuitive, and allows a simple extension to
ρ-approximate DBSCAN, as we will see later.

Hardness of DBSCAN and USEC. It is easy to see that the DB-
SCAN clusters on a set P of n points can be computed in O(n2)
time, noticing that the core graph G has O(n2) edges. However,
clever algorithms should produce the clusters without generating all
the edges, and thus, avoid the quadratic trap. Indeed, when d = 2,
the clusters can be computed in only O(n log n) time [11].

It would be highly desired to find an algorithm of Õ(n) time for
d ≥ 3, but recently Gan and Tao [10] have essentially dispelled
the possibility. They proved an O(n)-time reduction from the unit-

spherical emptiness checking (USEC) problem to DBSCAN. In
other words, any T (n)-time DBSCAN algorithm implies that USEC
problem can be solved with O(T (n)) time.

In USEC, we are given a set Sred of red points and a set Sblue

of blue points in R
d. All the points have distinct coordinates on

every dimension. The objective is to determine whether there exist a
red point pred and a blue point pblue such that dist(pred , pblue) ≤ 1
(the distance threshold 1 can be replaced with any positive value by
scaling). The problem has a lower bound of Ω(n4/3) for d ≥ 5 in a
broad class of algorithms [6,7]. For d = 3 and 4, beating the bound
has been a grand open problem in theoretical computer science, and
is widely believed [6] to be impossible. By the reduction of [10],
no DBSCAN algorithm can have running time o(n4/3) in d ≥ 5;
in d = 3 and 4, this is also true unless unlikely ground-breaking
improvements could be made on 3D USEC.

Approximation and the Sandwich Guarantee. Gan and Tao [10]
developed ρ-approximate DBSCAN, which returns almost the same
clusters as exact DBSCAN by offering a strong sandwich guarantee

that will be introduced shortly. In contrast to the high time complex-
ity of the latter, the approximate version takes only O(n) expected
time to compute for any constant ρ > 0.

Besides the parameters ǫ and MinPts inherited from DBSCAN,
the approximate version accepts a third parameter ρ, which is a small
positive constant less than 1, and controls the clustering precision.
Its clusters can also be defined in the same two steps as in exact
DBSCAN, as explained below.

Step 1: Clustering Core Points. It will also be convenient to follow
a graph-based approach. Let us define an undirected ρ-approximate

core graph Gρ on the dataset P—again, this graph is conceptual
and need not be materialized. Each vertex of Gρ corresponds to a
distinct core point in P . Given two core points p1, p2, whether or
not Gρ has an edge between their vertices is determined as:

• The edge definitely exists if dist(p1, p2) ≤ ǫ.



• The edge definitely does not exist if dist(p1, p2) > (1 + ρ)ǫ.

• Don’t care, otherwise.

Each preliminary cluster is still a CC, but of Gρ. Unlike the core
graph G, Gρ may not be unique. This flexibility is the key to the
vast improvement in time complexity [10].

To illustrate, consider the dataset of Figure 2a again with the ǫ
shown and MinPts = 3, but also with ρ = 0.5 (the radius of the
dashed circle indicates the length of (1 + ρ)ǫ). Figure 2c illustrates
a possible ρ-approximate core graph. Attention should be paid
to the edge (o4, o10). Note (from the circles in Figure 2c) that
ǫ < dist(o4, o10) < (1 + ρ)ǫ—this belongs to the “don’t-care”
case meaning that there may or may not be an edge (o4, o10). If
the edge exists (as in Figure 2c), there are 2 CCs (i.e., preliminary
clusters); otherwise, the ρ-approximate core graph is the same as in
Figure 2b, giving 3 preliminary clusters.

Step 2: Non-Core Assignment. Each non-core point p may be as-
signed to zero, one, or multiple preliminary clusters. Specifically,
let S be a CC of Gρ. Whether p should be added to the preliminary
cluster of S is determined as:

• Yes, if S has a core point in B(p, ǫ).

• No, if S has no core point in B(p, (1 + ρ)ǫ).

• Don’t care, otherwise.

The preliminary clusters after all the assignment constitute the final
clusters.

As mentioned, o13 and o18 are the only two non-core points in
Figure 2a. While o18 is still a noise point, the case of o13 is more
interesting. First, it must be assigned to the preliminary cluster of
o14, just like exact DBSCAN. Second, it may or may not be assigned
to the preliminary cluster of o12 (also the cluster of o14). Either case
is regarded as a correct result.

Sandwich Guarantee. Recall that the clusters of exact DBSCAN
are uniquely determined by the parameters ǫ and MinPts . Now
imagine we slightly increase ǫ by an amount no more than ρǫ. Have
the clusters of DBSCAN changed? If yes, it means that the origi-
nal choice of ǫ is unstable—clusters are susceptible even to a tiny
perturbation to ǫ. If no, then the sandwich guarantee asserts that
ρ-approximate DBSCAN returns precisely the same clusters as DB-
SCAN. In Figure 2, the clusters changed because ǫ was deliberately
set to be a large value of 0.5. In [10], the recommended value for
practical data is actually 0.001.

We refrain from elaborating on the formal description of the
sandwich guarantee at this moment. We will come back to this
in Section 6 where we prove that our new “double-approximate”
DBSCAN offers just the same guarantee.

Remark. Note, interestingly, that when ρ = 0, there are no “don’t-
care” scenarios such that ρ-approximate DBSCAN degenerates into
exact DBSCAN. Hence, the former actually subsumes the latter as a
special case.

3. PROBLEM DEFINITION AND STATE OF

THE ART
The Problem of Dynamic Clustering. We now provide a formal
formulation of dynamic clustering, using the C-group-by query as
the key stepping stone. Our approach is to define the problem in
a way that is orthogonal to the semantics of clusters, so that the
problem remains valid regardless of whether we have DBSCAN or
any of its approximate versions in mind.

Let P be a set of points in R
d that is subject to updates, each of

which inserts a new point to P , or deletes an existing point from P .
We are given a clustering description which specifies correct ways
to cluster P . The description is what distinguishes DBSCAN from,
e.g., ρ-approximate DBSCAN.

Suppose that, by the clustering description, C(P ) is a legal set
of clusters on the current contents of P . Without loss of generality,
assume that C(P ) = {C1, C2, ..., Cx}, where x is the number of
clusters, and Ci (1 ≤ i ≤ x) is a subset of P . Note that the clusters
do not need to be disjoint.

Given an arbitrary subset Q of P , a cluster-group-by (C-group-by)
query must return for every Ci ∈ C(P ) (i ∈ [1, x]):

• Nothing at all, if Ci ∩Q = ∅
• Ci ∩Q, otherwise.

This definition has several useful properties:

• It breaks only the points of Q by how they should appear
together in the clusters of P . Points in P \Q are not reported
at all, thus avoiding “cheating algorithms” that use “expensive
report time” as an excuse for high processing cost.

• When Q = P , the query result Q(P ) is simply C(P ).

• All the query results must be based on the same C(P ). This
prevents another form of “cheating” when the clustering de-
scription permits multiple legal possibilities of C(P ). Specifi-
cally, the algorithm can no longer argue that the results Q1(P )
and Q2(P ) of two queries Q1 and Q2 should both be “cor-
rect” because Q1(P ) is defined on one possible C(P ), while
Q2(P ) is defined on another. Instead, they must be consis-
tently defined on the same C(P )—the one output by the query
with Q = P .

Our objective is to design an algorithm that is fast in processing
both updates and queries. We distinguish two scenarios: (i) semi-

dynamic: where all the updates are insertions, and (ii) fully-dynamic,
where the updates can be arbitrary insertions and deletions.

We consider that the dimensionality d is small such that (
√
d)d is

an acceptable hidden constant. All our theoretical results will carry
this constant, and hence, are suitable only for low dimensionality.
Our experiments run up to d = 7.

Dynamic Exact DBSCAN [8]. Dynamic maintenance of density-
based clusters has been studied by Ester et al. [8] for exact DB-
SCAN. Next, we review their method—named incremental DB-

SCAN (IncDBSCAN)—assuming MinPts = 1 so that all the points
of P are core points. This allows us to concentrate on the main ideas
without the relatively minor details of handling non-core points.

Insertion. Recall that, for exact DBSCAN, the clusters C(P ) are
uniquely determined by the input parameters ǫ and MinPts . Given
a new point pnew , the insertion algorithm retrieves all the points in
B(pnew , ǫ), and then merges the clusters of those points into one.

The correctness can be seen from the core graph G, where ef-
fectively an edge is added between pnew and every other point in
B(pnew , ǫ) (remember: this view is conceptual, and G does not
need to be materialized). Figure 3a shows the G before the insertion,
which has two CCs. To insert point o as in Figure 3b, the algorithm
finds the points o11, o12, and o13 in B(pnew , ǫ). The two clusters of
those points are merged—the newly added edges (o, o11), (o, o12),
(o, o13) in Figure 3b connect the two CCs into one.

In merging the clusters, IncDBSCAN does not modify the cluster
ids of the points in the affected clusters, which can be prohibitively
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Figure 3: Illustration of the IncDBSCAN method

expensive because the number of such points can be exceedingly
high. Instead, it remembers the “merging history” of the cluster ids.

Deletion. The deletion algorithm, in general, reverses the steps of
insertion, except for a breadth first search (BFS) that is needed to
judge whether (and how) a cluster has split into several.

Let pold be the point being deleted. IncDBSCAN retrieves all the
points in B(pold , ǫ). In (the conceptual) G, all the edges between
such points and pold are removed, after which the CC of pold may
or may not be broken into separate CCs (e.g., in Figure 3b, the
CC is torn into two only if o13, o14, or o is deleted). To find out,
the deletion algorithm performs as many threads of BFS on G
as the number of points in B(pold , ǫ). If two threads “meet up”,
they are combined into one because they must still be in the same
CC. As soon as only one thread is left, the algorithm terminates,
being sure that no cluster split has taken place. Otherwise, the
remaining threads continue until the end, in which case each thread
has enumerated all the points in a new cluster that is spawned by the
deletion. All those points can now be labeled with the same cluster
id.

For example, suppose that we delete o in Figure 3b, which starts
three threads of BFS from o11, o12 and o13, respectively. The re-
sulting core graph reverts back to Figure 3a. The threads of o11
and o12 meet up into one, which eventually traverses the entire CC
containing o11 and o12. Similarly, the other thread traverses the
entire CC containing o13.

When a thread of BFS needs the adjacent neighbors of a point p1
in G, the algorithm finds all the other points p2 ∈ B(p1, ǫ) through
a range query [3,12]. Every such p2 is an adjacent neighbor of p1.
This essentially “fetches” the edge between p1 and p2.

Query. The algorithm of [8] can easily answer a C-group-by query
Q by grouping the points of Q by their cluster ids (some ids need to
be obtained from the merging history).

Drawbacks of IncDBSCAN. Both insertion and deletion start with
a range query to extract the points in B(p, ǫ), which are called the
seed points [8]. The query is expensive when p falls in a dense
region of P where there are many seed points. The issue is more
serious in a deletion, because multiple range queries are needed to
perform BFS. The worst situation happens in a cluster split, where
the number of range queries is simply huge.

4. THE OVERALL FRAMEWORK
All the DBSCAN variants (including the new one to be proposed

in Section 6.2) accept parameters ǫ, MinPts , and ρ (for exact DB-
SCAN, ρ = 0). This permits us to extract a common structural
framework behind all our solutions, as we describe in this section.
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The components of the framework will be instantiated differently in
later sections for individual variants.

4.1 A Grid Graph Approach
The key idea behind our framework is to turn dynamic clustering

into the problem of maintaining CCs (connected components) of a
special graph.

Grid and Cells. We impose an arbitrary grid D in the data space Rd,
where each cell is a d-dimensional square with side length ǫ/

√
d on

every dimension. This ensures that any two points in the same cell
are within distance at most ǫ from each other.

Given a cell c of D, we denote by P (c) the set of points in P that
are covered by c. We call c

• A non-empty cell if P (c) contains at least one point.

• A core cell if P (c) contains at least one core point.

• A dense cell if |P (c)| ≥ MinPts , and a sparse cell if 1 ≤
|P (c)| < MinPts .

Given two cells c1, c2, we say that they are ǫ-close if the smallest
distance between the boundary of c1 and that of c2 is at most ǫ.

Consider for instance the grid in Figure 4a, imposed on a set P of
18 points. Again, the radii of the solid and dashed circles indicate
ǫ and (1 + ρ)ǫ, respectively; and MinPts = 3. The only non-core
points are o13 and o18. The core cells are shaded in Figure 4b. The
non-core cells are (5, 4) and (7, 2); note that the minimum distance
between the two cells is ǫ—hence, they are ǫ-close.

Grid Graph. In a grid graph G = (V,E), V is the set of core
cells of D, while E is a set of edges satisfying the following CC

requirement:

Let p1, p2 be two core points of P , and c1 (or c2, resp.) be
the core cell that contains p1 (or p2, resp.). Then, p1 and p2
are in the same cluster if and only if c1 and c2 are in the same
CC of G.

The above requirement is fulfilled by using the following rules to
decide if E should have an edge between two core cells c1, c2 ∈ V:

• Yes, if there is a pair of core points (p1, p2) ∈ P (c1)×P (c2)
satisfying dist(p1, p2) ≤ ǫ.

• No, if there is no pair of core points (p1, p2) ∈ P (c1)×P (c2)
satisfying dist(p1, p2) ≤ (1 + ρ)ǫ.

• Don’t care, otherwise.
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G differs significantly from the core graph G and the ρ-approximate
core graph of Gρ as reviewed in Section 2. G has at most n vertices
because there are at most n non-empty cells. If G has an edge
between core cells c1, c2, they must be ǫ-close. A core cell can

have O
((

ǫ

ǫ/
√

d

)d )

= O((
√
d)d) = O(1) ǫ-close core cells (re-

call that our target is low dimensionality). Hence, G can have only
O(n) edges, which makes it suitable for materialization when the
dimensionality d is low.

Figure 4b demonstrates the grid graph for the dataset in Figure 4a.
Note that the edge between cells (2, 4) and (3, 3) fall into the don’t-
care case, because ǫ < dist(o4, o10) ≤ (1 + ρ)ǫ. That G satisfies
the CC requirement can be seen together with the ρ-approximate
core graph in Figure 2c. For example, o3 and o6 are in the same
cluster, consistent with the fact that cells (2, 5) and (3, 1) are in the
same CC of G. Conversely, as cells (2, 5) and (6, 5) are in different
CCs of G, we know o3 and o14 must be in different clusters.

4.2 Query Algorithm
All our solutions actually use the same algorithm to answer C-

group-by queries. We explain the algorithm in this subsection, as
well as the necessary data structures.

Core-Status Structure. We explicitly record whether each point
in P is a core or non-core point. This structure maintains these
core-status labels under insertions and deletions of the points in P .
A semi-dynamic structure only needs to support insertions.

ρ-Approximate ǫ-Emptiness. Given a point q and a core cell c, an
emptiness query empty(q, c) returns:

• 1, if P (c) has a core point p satisfying dist(p, q) ≤ ǫ.

• 0, if no core point p ∈ P (c) satisfies dist(p, q) ≤ (1 + ρ)ǫ.

• 1 or 0 (don’t care), otherwise.

As a furthermore requirement, if the output is 1, the query must
also return a proof point p ∈ P (c), which is a core point satisfying
dist(q, p) ≤ (1 + ρ)ǫ.

For example, for q = o13 and c = cell (6, 5), the emptiness query
must return 1 due to the presence of o14. If c changes to cell (3, 2),
then the query must return 0. Setting q = o4 and c = cell (3, 3)
gives a don’t-care case.

We maintain an emptiness structure on every core cell c to support
(i) such queries efficiently, and (ii) insertions/deletions of core points
in P (c). Deletions are not needed if the structure is semi-dynamic.

CC Structure. We maintain a structure on G to support:

• EdgeInsert(c1, c2): Add an edge between core cells c1, c2 to
G.

• EdgeRemove(c1, c2): Remove the aforementioned edge.

• CC-Id(c): Given a core cell c, return a unique id of the CC of
G where c belongs.

If a CC structure is semi-dynamic, it does not need to support
EdgeRemove.

C-Group-By Query. Next, we clarify how to answer a C-group-by
query Q. Divide Q into a set Q1 of core points, and a set Q2 of non-
core points. This takes O(|Q|) time using the core-status structure.
For every core point q ∈ Q1, we retrieve the core cell c covering q,
perform CC-Id(c), and set the CC id as the cluster id of q.

A non-core point q ∈ Q2, on the other hand, is “snapped” to the
nearby core cells. Again, obtain the cell c covering q. If c is a core
cell, assign the cluster id CC-Id(c) to q. In any case, we enumerate
all the ǫ-close core cells c′ of c. For every c′, issue an emptiness
query empty(q, c′). If the emptiness query returns 1, assign the
output of CC-Id(c′) as a cluster id of q. Note that q may get assigned
multiple cluster ids.

We can now group the points in Q by cluster id. A non-core point
belongs to as many groups as the number of its distinct cluster ids;
if a non-core point has no cluster ids, it is a noise point.

Consider Q = {o13, o14, o8} in the dataset of Figure 4a. Q1

includes core points o14 and o8, which are in cells (6, 5) and (3, 2),
respectively. Invoking CC-Id on (6, 5) returns 2 (see Figure 4b),
while doing so to (3, 2) returns 1. Q2 has only a single non-core
point, in cell (5, 4), whose ǫ-close core cells are (4, 3), (3, 3), (3, 2),
(6, 5), and (7, 5). We perform an emptiness query using o13 on each
of those 5 cells. Suppose that the emptiness queries on (4, 3) and
(6, 5) return 1, while the others 0. We thus assign two distinct CC
ids to o13: 1 and 2. The final result of the C-group-by query is
therefore {o14, o13}, and {o8, o13}.

4.3 Graph Maintenance
To guarantee correctness, we must keep the grid graph G up-

to-date along with the insertions and deletions on the underlying
dataset P . This is accomplished through the collaboration of the
core-status structure, GUM (see below), and the CC structure.

Graph Update Module (GUM). This module is responsible for
maintaining the vertices and edges in G.

Remark. Figure 5 illustrates the data flow in the internal work-
ings of our update mechanism. The point insertions and deletions
in P are fed into the core-status structure, which informs GUM
about which cells have turned into core/non-core cells. Utilizing
such information, GUM updates G by generating the necessary
edge changes, which are passed to the CC structure for properly
maintaining the CCs of G.

Overall, our design will focus on GUM and the core-status struc-
ture. CC and emptiness structures have been well-studied in graph
theory and computational geometry, respectively; it suffices to plug
in the best existing structures suiting our purposes.

5. SEMI-DYNAMIC ALGORITHMS
This section presents maintenance algorithms for exact/approximate

DBSCAN clustering when all the updates are insertions. We will do
so by specializing the framework of the last section.



The Core-Status Structure. For each non-core point p ∈ P ,
we remember a vicinity count vincnt(p) which equals the num-
ber of points of P covered by B(p, ǫ). By non-core definition,
vincnt(p) < MinPts . Once vincnt(p) reaches MinPts , p be-
comes a core point, after which we no longer keep track of such a
count.

Let us see how to maintain the above information when a new
point pnew is inserted. Let cnew be the cell of D that contains pnew .
We start by checking if pnew is a core point as follows:

1 If cnew is dense, pnew must a core point (all the points in cnew
are within distance ǫ from pnew ).

2 Otherwise, we simply enumerate all the O(1) ǫ-close cells
c of cnew , and calculate the distances from pnew to all the
points in P (c). This way, we obtain the precise number of
points in B(pnew , ǫ), noticing that any point within distance ǫ
from pnew must be in an ǫ-close cell. The core-status of pnew
can now be decided.

The appearance of pnew may increase the vicinity count vincnt(p)
of some non-core points p. Such p must be covered in cells c that
are (i) sparse, and (ii) ǫ-close to cnew . We find all these points by
simply visiting the P (c) of all such c.

GUM. In general, whenever we have a new core point pcore (it may
be pnew , or a point p that just has its vincnt(p) increased), G may
need to be updated. Let ccore be the cell covering pcore . If ccore just
became a core cell, we add it into V. In any case, new edges are
potentially added to E as follows:

1 For every ǫ-close cell c of ccore that currently has no edge
with ccore in G

1.1 Perform an emptiness query empty(pcore , c).

1.2 If the query returns 1, add (c, ccore) to E and call EdgeIn-

sert (c, ccore).

Performance Guarantees. Using the best CC and emptiness struc-
tures under the semi-dynamic scheme, we prove in the appendix:

THEOREM 1. For any fixed dimensionality d and fixed constant

ρ > 0, there is a semi-dynamic ρ-approximate DBSCAN algorithm

that processes each insertion in Õ(1) amortized time, and answers

a C-group-by query Q in Õ(|Q|) time.

The same insertion and query efficiency can also be achieved in

2D space for exact DBSCAN.

6. DYNAMIC HARDNESS AND DOUBLE

APPROXIMATION
We now come to perhaps the most surprising section of the pa-

per. Recall that ρ-approximate DBSCAN was proposed to address
the computational hardness of DBSCAN on static datasets. In
Section 6.1, we will show that the ρ-approximate version suffers
from the same hardness on fully dynamic datasets. Interestingly,
the culprit this time is the definition of core point. This motivates
the proposition of ρ-double-approximate DBSCAN in Section 6.2,
where we also prove that the new proposition has a sandwich guar-
antee as strong as the ρ-approximate version.

6.1 Hardness of Dynamic ρ-Approximation
USEC with Line Separation. Next, we introduce the USEC with

line separation (USEC-LS) problem, which has a subtle connection
with ρ-approximate DBSCAN, as shown later.

pred pblue

1

pred pblue p′ (dummy)

(a) USEC-LS (b) Reduction to dynamic clustering

Figure 6: Illustration of our hardness proof

In USEC-LS, we are given a set Sred of red points and a set Sblue

of blue points in R
d, which are separated by a d-dimensional plane

ℓ perpendicular to the first dimension, such that all the red points are
on one side of ℓ, and all the blue points on the other. All the points
have distinct coordinates on the first dimension. The objective, as
with USEC (see Section 2), is to determine whether there exist
pred ∈ Sred and pblue ∈ Sblue such that dist(pred , pblue) ≤ 1. We
define n = |Sred |+ |Sblue |. Figure 6a shows an example where the
answer is “yes”.

Recall from Section 2 that USEC is computationally hard. In the
appendix, we prove that this is also true for USEC-LS:

LEMMA 1. If we can solve USEC-LS in o(n4/3) time, then we

can solve USEC in o(n4/3) time.

Dynamic Hardness. Suppose that we have a ρ-approximate DB-
SCAN algorithm that handles an update (insertion/deletion) in
Tupd(n) amortized time, and answers a C-group-by query with
|Q| = 2 in Tqry(n) amortized time. Then:

LEMMA 2. We can solve the USEC-LS problem in O(n·(Tupd(n)+
Tqry(n)) time.

PROOF. Let x be the coordinate where the separation plane ℓ
in USEC-LS intersects dimension 1. Without loss of generality,
let us assume that the red points are on the left of ℓ, i.e., having
coordinates less than x on dimension 1. Conversely, the blue points
are on the right of ℓ. We solve USEC-LS using the given dynamic
ρ-approximate DBSCAN algorithm A as follows.

1. Initialize a ρ-approximate DBSCAN instance with ǫ = 1,
MinPts = 3, and an arbitrary ρ ≥ 0. Let P be the input set,
which is empty at this moment.

2. Use A to insert all the red points into P .

3. For every blue point p = (x1, x2, ..., xd) (hence, x1 > x),
carry out the following steps:

3.1 Use A to insert p into P .

3.2 Use A to insert a dummy point p′ = (x1+1, x2, ..., xd)
into P . That is, p′ has the same coordinates as p on all
dimensions i ∈ [2, d], except for the first dimension
where p′ has coordinate x1 + 1. See Figure 6b for an
illustration (where p = pblue ).

3.3 Use A to answer a C-group-by query with Q = {p, p′}.
If the query returns the same cluster id for p and p′,
terminate the algorithm, and return “yes” to the USEC-
LS problem.

3.4 Use A to delete p′ and p from P .

4. Return “no” to the USEC-LS problem.



The running time of the algorithm is O(n · (Tupd(n) + Tqry(n))
because we issue at most 2n insertions and 2n deletions, as well as
n queries, in total. Next, we prove that the algorithm is correct.

Consider Lines 3.1-3.4. A crucial observation is that the dummy
point p′ must be a non-core point, because B(p′, ǫ) contains only
two points p, p′. Therefore, p′ and p are placed into the same cluster
by ρ-approximate DBSCAN if and only if p is a core point. However,
p is a core point if and only if B(p, ǫ) covers at least 3 points, which
must include p, p′, and at least one point p′′ on the other side of
ℓ—red point p′′ and blue point p are therefore within distance 1.

It is now straightforward to verify that our algorithm always
returns the correct answer for USEC-LS.

THEOREM 2. For any ρ ≥ 0 and any dimensionality d ≥ 3, any

ρ-approximate DBSCAN algorithm must incur Ω(n1/3) amortized

time either to process an update, or to answer a C-group-by query

(even if |Q| = 2), unless the USEC problem in R
d could be solved

in o(n4/3) time.

PROOF. Suppose that the algorithm were able to process an up-
date and a query both in o(n1/3) amortized time. By Lemma 2, we

would solve USEC-LS in o(n4/3) time which, by Lemma 1, means

that we would solve USEC in o(n4/3) time.

As explained in Section 2, for USEC, a lower bound of Ω(n4/3) is

known [7] in d ≥ 5, whereas beating the O(n4/3) bound in d = 3, 4
is a major open problem in theoretical computational geometry, and
believed to be impossible [6].

This is disappointing because DBSCAN succumbing to the hard-
ness of USEC was what motivated ρ-approximate DBSCAN. Theo-
rem 2 shows that the latter suffers from the same hardness when both
insertions and deletions are allowed! Note that the theorem does not
apply to the semi-dynamic update scheme because the deletions at
Line 3.4 are essential. In fact, Theorem 1 already proved that effi-
cient semi-dynamic algorithms exist for ρ-approximate DBSCAN.

Finally, it is worth pointing out that Theorem 2 holds even for
ρ = 0, i.e., it is applicable to exact DBSCAN as well.

6.2 ρ-Double-Approximate DBSCAN and
Sandwich Guarantee

The New Proposition. To enable both (fully-dynamic) update
and query efficiency, we propose ρ-double-approximate DBSCAN,
which takes the same parameters ǫ,MinPts , and ρ as ρ-approximate
DBSCAN. Whether a point p ∈ P is a core point is now decided in
a relaxed manner:

• Definitely a core point if B(p, ǫ) covers at least MinPts

points of P .

• Definitely not a core point if B(p, (1 + ρ)ǫ) covers less than
MinPts points of P .

• Don’t care, otherwise.

A good example to illustrate this is point o13 in Figure 4a. Since
B(o13, ǫ) covers 2 < MinPts = 3 points, o13 is not a core point
under exact or ρ-approximate DBSCAN. Under double approxima-
tion, however, it falls into the don’t-care case for ρ = 0.5, because
B(p, (1 + ρ)ǫ) covers 7 points.

The clusters of ρ-double-approximate DBSCAN are defined by
the same two-step approach of ρ-approximate DBSCAN (see Sec-
tion 2), but with respect to the above core-point semantics. Swaying
o13 into a core point, Figure 7a shows the ρ-double-approximate
core graph (defined precisely as the ρ-approximate version), while
Figure 7b gives the corresponding grid graph.
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Figure 7: Illustration of ρ-double approximation

Sandwich Guarantee. Recall that this is an attractive feature of ρ-
approximate DBSCAN. Next, we prove that ρ-double-approximate
DBSCAN provides just the same guarantee. Following the style
of [10], we define:

• C1 as the set of clusters of exact DBSCAN with parameters
(ǫ,MinPts).

• C2 as the set of clusters of exact DBSCAN with parameters
(ǫ(1 + ρ),MinPts).

• C as a set of clusters that is a legal result of ρ-double-approximate
DBSCAN with parameters ǫ, MinPts , and ρ.

Then, the sandwich guarantee is:

THEOREM 3. The following statements are true: (i) For any

cluster C1 ∈ C1, there is a cluster C ∈ C such that C1 ⊆ C, and

(ii) for any cluster C ∈ C , there is a cluster C2 ∈ C2 such that

C ⊆ C2.

The proof can be found in the appendix. Note that the theorem is
purposely worded exactly the same as Theorem 3 of [10].

7. FULLY DYNAMIC ALGORITHMS
This section presents our algorithms for maintaining ρ-double-

approximate DBSCAN clusters under both insertions and deletions
(again, exact DBSCAN is captured with ρ = 0). We will achieve the
purpose by instantiating the general framework in Section 4. The
reader is reminded that the core-point definition has changed to the
one in Section 6.2.

7.1 Approximate Bichromatic Close Pair
We now take a short break from clustering to discuss a computa-

tional geometry problem which we name the approximate bichro-

matic close pair (aBCP) problem. In this problem, we have two
disjoint axis-parallel squares c1, c2 in R

d. There is a set S(c1) of
points in c1, and a set S(c2) of points in c2. The two sets are subject
to insertions and deletions. Let ǫ and ρ be positive real values. We
are asked to maintain a witness pair of (p∗1, p

∗
2) such that

• It may be an empty pair (i.e., p∗1 and p∗2 are null).

• If it is not empty, we must have dist(p∗1, p
∗
2) ≤ (1 + ρ)ǫ.

• The pair must not be empty, if there exist a point p1 ∈ S(c1)
and a point p2 ∈ S(c2) such that dist(p1, p2) ≤ ǫ. Note that
the pair does not have to be (p1, p2) though.

We have at our disposal an emptiness structure (as defined in
Section 4.2) on each cell, so that an emptiness query (q, c) with

c = c1 or c2 can be answered with cost Õ(τ) for some time function
τ . The objective is to minimize the cost of (i) finding an initial
witness pair, and (ii) maintaining the pair along with updates in
S(c1) and S(c2).



LEMMA 3. For the aBCP problem, an initial witness pair can

be found in Õ(τ ·min{|S(c1)|, |S(c2)|}) time. After that, the pair

can be maintained by Õ(τ) amortized time when a point is inserted

or deleted in S(c1) or S(c2).

The proof can be found in the appendix.

7.2 Edges in the Grid Graph and aBCP
Returning to ρ-double-approximate DBSCAN clustering, let us

recall that in the grid graph G, if there is an edge between core
cells c1 and c2, then the two cells must be ǫ-close. Such an edge
may disappear/re-appear as the core points of P (c1) and P (c2)
are deleted/inserted. Maintaining this edge can be regarded as an
instance of the aBCP problem, where S(c1) is the set of core points
in P (c1), and S(c2) is the set of core points in P (c2)—the edge
exists if and only if the witness pair is not empty!

We run a thread of the aBCP algorithm of Lemma 3 on every pair
of ǫ-close core cells c1 and c2. Those threads will be referred to as
the aBCP instances of c1 (or c2). Whenever the edge between c1
and c2 (re-)appears, we call EdgeInsert(c1, c2) of the CC structure;
whenever it disappears, we call EdgeRemove(c1, c2).

7.3 The Core-Status Structure
Given a point q, an approximate range count query [10] returns

an integer k that falls between |B(q, ǫ)| and |B(q, (1 + ρ)ǫ)|. The

query can be answered in Õ(1) time by a structure that can be

updated in Õ(1) time per insertion and deletion [16]. Under the
relaxed core-point definition of ρ-double-approximation, whether a
point p ∈ P is a core point can be decided directly by issuing such
a query with p. If the query returns k, we declare p a core point if
and only if k ≥ MinPts .

Leveraging this fact, next we describe how to explicitly update
the core-status of all points in P along with insertions and deletions:

• To insert a point pnew in cell cnew , we first check whether
pnew itself is a core point. Remember that the insertion may
turn some existing non-core points into core points. To iden-
tify such points, we look at each of the O(1) ǫ-close sparse
cells c of cnew . Simply check all the points p ∈ P (c) to see
if p is currently a core point.

• The deletion of a point pold from cell cold may turn some
existing core points into non-core points. Following the same
idea in insertion, we look at every ǫ-close sparse cell c of cold ,
and check all the points p ∈ P (c) for their current core status.

7.4 GUM
When a point pcore (say, in cell ccore ) has turned into a core point,

we check whether ccore is already in V:

• If so, simply insert pcore into every aBCP instance (Lemma 3)
of ccore—as explained in Section 7.2, this properly maintains
the edges of ccore .

• Otherwise, it must hold that |P (ccore)| ≤ MinPts = O(1).
We add ccore to V. Then, for every ǫ-close core cell c of
ccore , decide whether to create an edge between c and ccore
by using the algorithm of Lemma 3 to find an initial witness
pair (thereby starting the aBCP instance on ccore and c).

Consider now the scenario where a core point p in cell ccore has
turned into a non-core point. If ccore is still a core cell, we remove p
from all the aBCP instances of ccore . Otherwise, we simply remove
ccore from V, and destroy all its aBCP instances.

7.5 Performance Guarantees
Utilizing the best CC and emptiness structures under the fully-

dynamic scheme, we prove in the appendix our last main result:

THEOREM 4. For any fixed dimensionality d and fixed constant

ρ > 0, there is a fully-dynamic ρ-double-approximate DBSCAN

algorithm that processes each insertion and deletion in Õ(1) amor-

tized time, and answers a C-group-by query Q in Õ(|Q|) time.

The same update and query efficiency can also be achieved in 2D

space for exact DBSCAN.

8. EXPERIMENTS
Section 8.1 describes the setup of our empirical evaluation. Then,

Sections 8.2 and 8.3 report the results on semi-dynamic and fully-
dynamic algorithms, respectively.

8.1 Setup
Workload. We evaluate a clustering algorithm by its efficiency
in processing a workload, which is a mixed sequence of updates
and queries. Each update or query is collectively referred to as an
operation. A workload is characterized by several parameters:

• N : the total number of updates.

• %ins : the percentage of insertions. In other words, the work-
load has N ·%ins insertions, and N(1−%ins) deletions. This
parameter is fixed to 1 in semi-dynamic scenarios.

• fqry : the query frequency, which is an integer controlling how
often a C-group-by query is issued.

The production of a workload involves 3 steps, as explained below.

Step 1: Insertions. The sequence of insertions is obtained by first
generating a “static dataset” of I = N · %ins points, and then,
randomly permuting these points (i.e., if a point stands at the i-th
position, it is the i-th inserted). We generate static datasets whose
clusters are the outcome of a “random walk with restart”, as was
the approach suggested in [10], and will be reviewed shortly. Note
that the random permutation mentioned earlier allows the clusters
to form up even at an early stage of the workload.

The data space is a d-dimensional square that has range [0, 105]
on each dimension. A static dataset is created using the seed

spreader technique in [10], which generates around 10 clusters
and 0.0001 · I noise points as follows. First, place a spreader at a
random location p of the data space. At each time tick, the spreader
adds to the dataset a point that is uniformly distributed in B(p, 25).
Whenever the spreader has generated 100 points while stationed at
the same p, it is forced to move towards a random direction by a
distance of 50. Finally, with probability 10/(0.9999I), the spreader
“restarts” by jumping to another random location of the data space.
Regardless of whether a restart happens, the current time tick fin-
ishes, and the next one starts. The spreader works for 0.9999I time
ticks (thus producing 0.9999I points). After that, 0.0001 ·I random
points are added to the dataset as noise.

Step 2: Deletions. First, append to the insertion sequence D =
N − I deletion tokens, where each token is simply a “place-holder”

parameter value

d 2, 3, 5, 7
ǫ 50d, 100d, 200d, 400d, 800d

%ins
2
3
, 4
5
,5/6, 8

9
, 10
11

fqry 0.01N, 0.02N, 0.03N, ...,0.1N

Table 2: Variable parameter values (defaults in bolds)
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into which we will later fill a concrete point to delete. Then, ran-
domly permute the resulting sequence (which has length N ). Check
whether the permutation is bad, namely, if any of its prefixes has
more tokens than insertions. If so, we attempt another random
permutation until a good one is obtained.

Now we have a good sequence of insertions and deletion tokens.
To fill in the tokens, scan down the sequence, and add each inserted
point into S, until coming across the first token. Select a random
point in S as the one deleted by the token, and then remove the point
from S. The scan continues in this fashion until all the tokens have
been filled.

Step 3: Queries. We simply insert a C-group-by query after every
fqry updates in the sequence. Recall that the query specifies a
parameter Q, which is generated as follows. Let S be the set of
“alive” points that have been inserted, but not yet deleted before
the query. We first decide the value of |Q| by choosing an integer

uniformly at random from [2, 100]. Then, Q is populated by random
sampling |Q| points from S without replacement.

DBSCAN Algorithms. Our experimentation examined:

• IncDBSCAN [8]: the state-of-the-art dynamic algorithm for
exact DBSCAN, as reviewed in Section 3.

• 2d-Semi-Exact: our semi-dynamic algorithm in Theorem 1
for exact DBSCAN in 2D space.

• Semi-Approx: our semi-dynamic algorithm in Theorem 1 for
ρ-approximate DBSCAN in d-dimensional space with d ≥ 2.

• 2d-Full-Exact: our fully-dynamic algorithm in Theorem 4 for
exact DBSCAN in 2D space.

• Double-Approx: our fully-dynamic algorithm in Theorem 4
for ρ-double-approximate DBSCAN in d-dimensional space
with d ≥ 2.

All the algorithms were implemented in C++, and compiled with
gcc version 4.8.4.



Semi-Approx IncDBSCAN2d-Semi-Exact

Semi-Approx 7d IncDBSCAN 7d

Semi-Approx 5d IncDBSCAN 5d

Semi-Approx 3d IncDBSCAN 3d

1 

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

1 

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

(a) d = 2 (b) d = 3, 5, 7

Figure 10: Semi-dynamic performance vs. ǫ

Parameters and Machine. We fixed N to 10 million, namely, each
workload contains this number of updates. The value of MinPts

in all the DBSCAN variants was 10. The value of ρ in the approxi-
mate variants was set to 0.001, under which ρ-double-approximate
DBSCAN is required to return precisely the same clusters as ρ-
approximate DBSCAN.

The other parameters were varied in different experiments. Their
values are as shown in Table 2; unless otherwise stated, a parameter
was set to its default as shown in bolds. Note that %ins = 5/6
indicates on average 1 deletion every 5 insertions.

Finally, all the experiments were run on a machine equipped with
an Intel Core i7-6700 CPU @ 3.40GHz × 8 and 16GB memory.
The operating system was Linux (Ubuntu 14.04.1).

8.2 Semi-Dynamic Results
This subsection will focus on insertion-only workloads. Con-

sider executing an algorithm on such a workload. We define the
algorithm’s average cost as a function of time: avgcost(t) =
1
t

∑t
i=1 cost [i], where cost [i] is the overhead of the algorithm in

processing the i-th operation of the workload. Similarly, define the
algorithm’s max update cost as: maxupdcost(t) = maxx

i=1 updcost [i],
where (i) x is the number of updates by the end of the t-th oper-
ation, and (ii) updcost [i] is the overhead of the algorithm for the
i-th update. Notice that query time is registered in avgcost but not
maxupdcost .

Focusing on 2D space, Figure 8a plots the average cost of IncDB-

SCAN, 2d-Semi-Exact, and Semi-Approx, whereas Figure 8b plots
their max update cost. 2d-Semi-Exact and Semi-Approx finished
the workload significantly faster than IncDBSCAN, achieving an
improvement of two orders of magnitude! Moreover, while the aver-
age cost of IncDBSCAN deteriorated continuously, the performance
of 2d-Semi-Exact and Semi-Approx remained stable throughout the
workload. This is expected because IncDBSCAN must perform a
range query per insertion (see Section 3), which tends to retrieve
more data points as time progresses. Our solutions do not suffer
from this drawback.

Turning to 3D space—where the competing methods are IncDB-

SCAN and Semi-Approx— Figure 9a compares their average cost
and max update cost simultaneously. Figures 9b and 9c present
the same results for d = 5 and 7, respectively. In all dimensionali-
ties, Semi-Approx consistently outperformed IncDBSCAN by a wide
margin even in logarithmic scale.

Interestingly, all the methods exhibited similar behavior when
it comes to the maxupdcost metric. We will return to this issue
later when we discuss the fully dynamic scenario, where contrasting
phenomena will be observed.
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Figure 11: Semi-dynamic performance vs. fqry

We define an algorithm’s average workload cost as avgcost(W ),
where W is the total number of operations in the workload of con-
cern. The next experiment demonstrates the effect of ǫ on the cost
of cluster maintenance—as discussed in [1,10], an algorithm of
density-based clustering should be able to find clusters at differ-
ent granularities of ǫ. Figure 10 shows the average workload cost
of each applicable method as a function of ǫ, for d = 2, 3, 5, 7,
respectively. It is evident that IncDBSCAN became prohibitively
expensive as ǫ increases. On the other hand, our solutions actually
performed even better for larger ǫ! This is not surprising because
a greater ǫ actually reduces the number of edges in the grid graph,
which in turn leads to substantial cost savings.

We conclude this subsection by giving the average workload cost
of all methods as a function of fqry in Figure 11. In general, query
cost is negligible compared to update overhead.

8.3 Fully-Dynamic Results
We now proceed to evaluate the algorithms that can handle both

insertions and deletions. Our strategy is similar to that in the previ-
ous subsection. Average cost and max update cost are defined in the
same way as before, except that operations/updates obviously also
include deletions here.

Figure 12 shows the results in experiments corresponding to those
in Figure 8, with respect to IncDBSCAN, 2d-Full-Exact, and Double-

Approx. Similarly, Figure 13 corresponds to Figure 9, with respect
to IncDBSCAN and Double-Approx. As before, our solutions were
two orders of magnitude faster than IncDBSCAN in average cost.
What is new, however, is that they also improved IncDBSCAN by
nearly 10 times in max update cost as well!

What has triggered the separation in maxupdcost? The hardness
of deletions! Recall from Section 3 that IncDBSCAN requires only
one range query (to find the seed objects) in an insertion, whereas
in a deletion, it demands multiple—actually perhaps many—such
queries to perform BFS. This stands in sharp contrast to Double-

Approx, which completely gets rid of BFS by novel ideas, in par-
ticular, deploying an aBCP algorithm (Lemma 3) to convert cluster
maintenance to updating the CCs of the grid graph (which has only
O(n) edges). In all scenarios, our algorithms ensured processing
an update in less than 0.1 seconds! The reader may have noticed
that IncDBSCAN did not finish the 5D and 7D workloads. Indeed,
we terminated it after 3 hours when its deficiencies had become
apparent.

Figure 14 presents the results that are the counterparts of Fig-
ure 10, confirming that IncDBSCAN is essentially inapplicable for
large ǫ. Note, again, that this method has no results for d = 5 and 7.
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Figure 12: Performance of fully-dynamic algorithms in 2D
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Figure 13: Performance of fully-dynamic algorithms in d ≥ 3 dimensions

The last set of experiments inspected the average workload cost
of these algorithms as the insertion percentage increased from 2/3
to 10/11. The results are reported in Figure 15. In general, the
efficiency of each method improved as insertions accounted for a
higher percent of the workload. Our new algorithms were the clear
winners in all situations.

9. CONCLUSIONS
This paper has presented a systematic study on dynamic den-

sity based clustering under the theme of DBSCAN. Our findings
reveal considerable new insight into the characteristics of the topic,
by providing a complete picture of the computational hardness
in various update schemes. Perhaps the most surprising result is
that ρ-approximate DBSCAN, which was proposed to address the
worst-case computational intractability of exact DBSCAN, suffers
from the same hardness when both insertions and deletions are al-
lowed. We have also shown how to eliminate the issue elegantly

with a tiny relaxation, which has led to the development of ρ-double-
approximate DBSCAN. Our algorithmic contributions involve a
suite of new algorithms that achieve near-constant update time in
cluster maintenance essentially in all the update schemes where this
is possible. The practical efficiency of our solutions has also been
confirmed with extensive experiments.
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APPENDIX

Proof of Theorem 1

We will prove the theorem first for ρ-approximate DBSCAN, and
then for 2D exact DBSCAN.

Implementing the CC-structure as the union-find structure of Tar-
jan [23], we can support both the EdgeInsert and CC-Id operations
in Õ(1) time amortized. For the emptiness structure of every core
cell, we can use the approximate nearest neighbor structure of Arya
et al. [2], which answers an emptyness query in Õ(1) time, and can

be updated in Õ(1) time.

Next, we prove that the algorithm processes n insertions in Õ(n)

time, that is, Õ(1) amortized time per insertion:

• In the core-status structure, Step 1 takes Õ(1) time per inser-
tion by resorting to a standard dictionary-search structure (e.g.,
a binary search tree) on the non-empty cells.

• The total cost of Step 2 for the whole update sequence is O(n).
To see this, notice that a cell c is involved in this step only if
it is an ǫ-close cell of cnew . Hence, with respect to the same
cnew , c can be involved only MinPts = O(1) times (after
which cnew becomes a core cell, and will not require Step 2
again). As c has O(1) ǫ-close cells, the total number of times
that c is involved for all the cnew is O(1).

• The same reasoning also explains that, the total cost incurred
by the execution of the paragraph below Step 2 is O(n) in the
whole algorithm.

• In GUM, Steps 1, 1.1, and 1.2 can insert O(n) edges in total,

and therefore, entails Õ(n) cost overall.

The query algorithm performs only O(|Q|) CC-Id operations,

and therefore, requires only Õ(|Q|) time.

The above proof holds verbatim also for 2D exact DBSCAN, with
the only difference that the structure of [2] should be replaced by
the 2D nearest neighbor structure of Chan [5].

Proof of Lemma 1

Suppose that A is an algorithm settling USEC-LS in T (n) time. We
can solve the USEC problem on a set P of n points (each red or
blue) using divide and conquer as follows. Divide P using a plane ℓ



orthogonal to dimension 1 into P1 and P2 each of which has n/2
points. Then, we recursively solve the USEC problem on P1, and
do the same on P2. If either of these sub-problems returns “yes”
(i.e., a red point within distance 1 from a blue point), we return “yes”
immediately.

If both sub-problems return “no”, we run A twice to solve two
instances of USEC-LS. Divide P1 into the set P1red of red points,
and the set P1blue of blue points. Let P2red and P2blue be defined
similarly with respect to P2. The first USEC-LS instance is defined
on P1red and P2blue , whereas the second on P1blue and P2red . If
either instance returns “yes”, we return “yes”; otherwise, we return
“no”.

Denote by f(n) the running time of our USEC algorithm. The
above description shows that

f(n) = 2f(n/2) + 2T (n)

with f(n) = O(1) when n = 1. It is rudimentary to verify that

when T (n) = o(n4/3), then f(n) = o(n4/3).

Proof of Theorem 3

Let Gǫ be the core graph of (ǫ,MinPts) exact DBSCAN, and
G(1+ρ)ǫ be the core graph of ((1 + ρ)ǫ,MinPts) exact DBSCAN.
Also, denote by Gǫ,ρ the ρ-approximate core graph of ρ-double-
approximate DBSCAN with the same ǫ and MinPts . A useful
observation is that every edge in Gǫ exists in Gǫ,ρ, and likewise,
every edge in Gǫ,ρ exists in G(1+ρ)ǫ.

Proof of Statement (i). Consider an arbitrary core point p1 in C1.
Let C be the (only) cluster in C that contains p1. Next, we will
prove that C1 ⊆ C.

Denote by Sǫ the CC of Gǫ containing p1, and by Sǫ,ρ the CC
of Gǫ,ρ containing p1. Clearly, Sǫ ⊆ Sǫ,ρ. This means that all the
core points of C1 also belong to C.

Consider now an arbitrary non-core point p2 in C1. There must
exist a core point p3 ∈ C1 such that p3 is covered by B(p2, ǫ).
Since p3 ∈ Sǫ ⊆ Sǫ,ρ, we know that p2 must also have been
assigned to the cluster of Sǫ,ρ, namely, C.

Proof of Statement (ii). Consider an arbitrary core point p1 in C.
Let C2 be the (only) cluster in C2 that contains p1. Next, we will
prove that C ⊆ C2.

Denote by Sǫ,ρ the CC of Gǫ,ρ containing p1, and by S(1+ρ)ǫ the
CC of G(1+ρ)ǫ containing p1. Clearly, Sǫ,ρ ⊆ S(1+ρ)ǫ. This means
that all the core points of C also belong to C2.

Consider now an arbitrary non-core point p2 in C. There must
exist a core point p3 ∈ C such that p3 is covered by B(p2, (1+ρ)ǫ).
Since p3 ∈ Sǫ,ρ ⊆ S(1+ρ)ǫ, we know that p2 must also have been
assigned to the cluster of S(1+ρ)ǫ, namely, C2.

Proof of Lemma 3

Finding the Initial Pair. Suppose, without loss of generality, that
|S(c1)| ≤ |S(c2)|. For every point p∗1 ∈ S(c1), we run an empti-
ness query empty(p∗1, c2). If the query returns 1 with a proof point
p∗2, we have found a witness pair (p∗1, p

∗
2), and hence, can termi-

nate immediately. The cost is clearly that of Õ(|S(c1)|) emptiness
queries.

We prove that the algorithm is correct. This is obvious if it finds
a pair. Consider, instead, that it does not, in which case we are
wrong only if there is a pair (p1, p2) ∈ S(c1) × S(c2) such that

dist(p1, p2) ≤ ǫ. However, this means that empty(p1, c2) must
return 1, thus contradicting the fact that we did not found a pair.

Maintaining the Pair. We store in a list L the points that have been
subsequently inserted in S(c1) ∪ S(c2) (the point ordering can be
arbitrary). Each point of L will be de-listed—the meaning of which
will be clear shortly—once, after which the point is removed from L.
Furthermore, we enforce the rule that, if the witness pair is empty,
L must be ∅.

Basic Operation: De-listing. This operation can only be performed
when the witness pair is empty—it will attempt to find such a pair
by issuing one emptiness query. For this purpose, the operation
starts by removing the first point p from L; assume, without loss
of generality, that p ∈ S(c1). It then issues empty(p, c2). If the
query returns 1 with a proof point p′ ∈ S(c2), (p, p

′) is taken as the
witness pair. Otherwise, the witness pair remains empty.

Insertion. Consider that a point p has been inserted in S(c1) (the
case with S(c2) is symmetric). Append p to L. If the witness pair is
not empty, we do nothing else. Otherwise, p must now be the only
element in L, in which case we perform a de-listing and finish.

Deletion. Consider that a point p has been deleted from S(c1) (a
symmetric algorithm works for S(c2)). Remove from L the entry
of p (if found). If the witness pair (p∗1, p

∗
2) is not empty and p 6= p∗1 ,

the deletion does not affect the pair; and we are done. Otherwise,
we proceed as follows:

1. Issue empty(p∗2, c1). If it returns 1 with a proof point p′, set
(p′, p∗2) as the new witness pair, and return.

2. Otherwise, do the following until L is empty or the algorithm
decides to return:

2.1 Perform a de-listing.
2.2 If the de-listing finds a witness pair, return.

3. (Now L is empty) set the witness pair to empty.

Correctness. Our algorithm is always correct if it finds a witness pair
Let us look at the case where it does not. This is wrong only if there
exists a pair (p1, p2) ∈ S(c1)× S(c2) such that dist(p1, p2) ≤ ǫ.
At least one of p1, p2 must have been inserted after the initial pair
was found. Without loss of generality, assume that p2 is the one;
and if both are, then assume that p2 was de-listed after p1.

Consider the moment when our algorithm de-listed p2 from L.
Since p1 was present in S(c1), the query empty(p2, c1) we issued
must have returned a proof point p′. The witness (p′, p2) must
have disappeared because p′ was deleted. But in this case, our
algorithm would immediately issue another empty(p2, c1), which
(again because p1 was present in S(c1)) must have returned another
proof point. The situation repeats itself, with the consequence that
we must be holding a witness pair, thus creating a contradiction.

Efficiency. Clearly, the total number of emptiness queries is at most
the number of point insertions and deletions in S(c1)∪ S(c2). This
concludes the proof of the lemma.

Remark: No Materialization of L. At first glance, it may seem that
a point of S(c1) (or S(c2)) needs to be duplicated in L. Such
duplication is space consuming if c1 is involved in many instances
of aBCP simultaneously. In fact, L does not need to be materialized,
and instead can be represented using only O(1) memory.

Let us store the points of S(c1) in a list, sorted by insertion order.
We can de-list these points by the sorted order, so that at any moment
the points not yet de-listed—namely, those in L—constitute a suffix



of the list. The suffix can be identified by remembering only the
first point in the suffix, which only needs a single pointer. The same
also holds for S(c2). Thus, two pointers suffice for L. To de-list a
point, simply pick the point referenced by either pointer, and then
shift the pointer down one position.

It is now evident that, no matter how many instances of aBCP c1
is involved in, S(c1) is stored just once, by keeping one pointer for
each instance.

Proof of Theorem 4

We prove only the update efficiency because the C-group-by query
time is obvious. We will consider first ρ-double-approximate DB-
SCAN, and then 2D exact DBSCAN.

Implementing the CC-structure as the structure of Holm et al. [14],
we can support EdgeInsert, EdgeRemove, and CC-Id all in Õ(1)
amortized time. For the emptiness structure, we can still use the
approximate nearest neighbor structure of [2], which answers an
emptyness query in Õ(1) time, and can be updated in Õ(1) time
per insertion and deletion.

Let us now analyze the update cost of the core-status structure.
Consider first the insertion of a point pnew . Let cnew be the cell of
pnew . In the worst case, we will check all the O(1) ǫ-close sparse
cells c of cnew . As c has at most MinPts = O(1) points, we need at
most O(1) approximate range count queries, whose total overhead

is Õ(1). An analogous argument shows that each deletion entails

Õ(1) time.

To account for the cost of GUM, we analyze how many of the
following events may happen during an insertion/deletion on P :

• J1: the number of aBCP instances created;

• J2: the number of aBCP instances destroyed;

• K: the number of aBCP insertions/deletions.

An insertion on P can turn at most O(1) points into core points—as
mentioned, they must be in cnew or the O(1) ǫ-close sparse cells
of cnew , while each of these cells has at most MinPts = O(1)
points. As c has at most O(1) aBCP instances, a new core point
in a cell c can trigger at most O(1) new aBCP instances and O(1)
aBCP insertions. Similarly, a deletion on P can destroy O(1) aBCP
instances and trigger O(1) aBCP core deletions. We thus conclude
that J1, J2 and K are all bounded by O(1).

The initialization of an aBCP instance takes Õ(1) time as it
requires O(1) emptiness queries by Lemma 3 and the fact that cnew
has O(1) points. Destroying an aBCP instance also takes only O(1)
time because it requires only discarding two pointers (see the remark
in the proof of Lemma 3). Furthermore, by Lemma 3, the cost of
the aBCP algorithm is proportional to K, now that each emptiness
query takes τ = Õ(1) time. Thus, J1, J2,K all bounded by O(1)

indicates that GUM entails Õ(1) amortized cost in each update.

Finally, the above discussion shows that an update can add/remove
O(1) edges of G. Therefore, the cost from the CC-structure is Õ(1)
time amortized per update. We thus conclude the whole proof for
ρ-double-approximate DBSCAN.

The above proof holds verbatim also for 2D exact DBSCAN, with
the only difference that the structure of [2] should be replaced by
the 2D nearest neighbor structure of Chan [5].


