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ABSTRACT
The previous literature of privacy preserving data publication has
focused on performing “one-time” releases. Specifically, none of
the existing solutions supportsre-publicationof the microdata, af-
ter it has been updated with insertions anddeletions. This is a se-
rious drawback, because currently a publisher cannot provide re-
searchers with the most recent dataset continuously.

This paper remedies the drawback. First, we reveal the charac-
teristics of the re-publication problem that invalidate the conven-
tional approaches leveragingk-anonymity andl-diversity. Based
on rigorous theoretical analysis, we develop a new generalization
principle m-invariance that effectively limits the risk of privacy
disclosure in re-publication. We accompany the principle with an
algorithm, which computes privacy-guarded relations thatpermit
retrieval of accurate aggregate information about the original mi-
crodata. Our theoretical results are confirmed by extensiveexperi-
ments with real data.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Retrieval Models.
General Terms: Algorithms, Theory.
Keywords: Privacy, Generalization,m-invariance.

1. INTRODUCTION
Privacy preservation has received considerable attentionfrom the

database community in the past few years. Depending on the roles
of the underlying server, the previous research can be classified
into two categories:centralized publicationanddistributed collec-
tion. The first category assumes that the dataset, calledmicrodata,
is stored at atrustableserver. The server releases the data in a man-
ner that protects personal privacy, and permits effective mining on
the microdata. The second category addresses a different scenario,
where anun-trustableserver independently contacts a set of indi-
viduals, and solicits a tuple from each person. The objective is to
devise an approach that allows each person to randomize her/his tu-
ple, such that the server can use the collected dataset for research,
yet cannot accurately infer the original form of any tuple.

This paper concerns centralized publication. Consider that a
hospital releases the diagnosis records in Table 1a to medical re-
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searchers, after discarding the attributeName(we include this col-
umn for row referencing). ColumnDiseaseis sensitive, as it con-
tains patients’ private data to be protected. Assume that anadver-
sary knows Bob’s age 21, Zipcode 12000, and the fact that Bob
has been hospitalized before (and thus has a tuple in the micro-
data). S/he can find out that the first tuple is associated withBob,
namely, Bob must have contracteddyspepsia. Here, columnsAge
andZipcodearequasi-identifier(QI) attributes, since they can be
combined to pinpoint an individual.

Generalization[19] is a popular methodology of privacy preser-
vation. Its rationale is to divide the tuples into severalQI groups,
and then generalize the QI values in each group to a uniform for-
mat. A generalized version of Table 1a is presented in Table 1b.
The transformation is based on five QI groups, each of which is
assigned a group ID as indicated in the first column of Table 1b.
Imagine that the hospital publishes Table 1b instead. The previous
adversary can no longer uniquely decide Bob’s disease, since either
of the first two tuples can belong to Bob, i.e., his disease maybe
dyspepsiaor bronchitis.

A generalized table is considered privacy preserving, if itsatis-
fies ageneralization principle. The earliest principle,k-anonymity
[18, 20], requires each QI group to include at leastk tuples (e.g.,
Table 1b is 2-anonymous). Machanavajjhala et al. [15] propose
an improved principle,l-diversity, which demands every QI group
to contain at leastl “well-represented” sensitive values. The no-
tion of well-represented can be interpreted in several ways[15]. A
popular interpretation is that, in each QI group, at most1/l of the
tuples should possess the same sensitive value. By this definition,
Table 1b is 2-diverse. In general, stronger privacy protection is en-
sured, when a largerk or l is deployed.

1.1 Motivation
With a single exception [6], all the existing methods for cen-

tralized publication focus on static microdata. Specifically, they
are restricted to only one-time publication, and do not support
re-publication, after new (existing) tuples are inserted in (deleted
from) the microdata. The seminal work by Byun et al. [6] is the
first to identify possible privacy attacks due to re-publication, and
develops a solution to effectively prevent those attacks. However,
that solution supports only insertions, and is inapplicable in the
presence of deletions. Privacy preserving re-publicationof a fully-
dynamic dataset remains an open problem.

To explain the difficulty of the problem, consider that a hospital
releases patients’ records quarterly, but each publication includes
only the results of diagnoses in the 6 months preceding the pub-
lication time. Table 1a shows the microdata for the first release,
at which time the hospital publishes the generalized relation in Ta-
ble 1b. The microdata at the second release is presented in Table 2a.
The tuples of Alice, Andy, Helen, Ken, and Paul have been deleted



Name Age Zip. Disease
Bob 21 12000 dyspepsia
Alice 22 14000 bronchitis
Andy 24 18000 flu
David 23 25000 gastritis
Gary 41 20000 flu
Helen 36 27000 gastritis
Jane 37 33000 dyspepsia
Ken 40 35000 flu

Linda 43 26000 gastritis
Paul 52 33000 dyspepsia
Steve 56 34000 gastritis

(a) MicrodataT (1)

G. ID Age Zip. Disease
1 [21, 22] [12k, 14k] dyspepsia
1 [21, 22] [12k, 14k] bronchitis
2 [23, 24] [18k, 25k] flu
2 [23, 24] [18k, 25k] gastritis
3 [36, 41] [20k, 27k] flu
3 [36, 41] [20k, 27k] gastritis
4 [37, 43] [26k, 35k] dyspepsia
4 [37, 43] [26k, 35k] flu
4 [37, 43] [26k, 35k] gastritis
5 [52, 56] [33k, 34k] dyspepsia
5 [52, 56] [33k, 34k] gastritis

(b) GeneralizationT ∗(1)

Table 1: Microdata and its generalization at the 1st release

Name Age Zip. Disease
Bob 21 12000 dyspepsia

David 23 25000 gastritis
Emily 25 21000 flu
Jane 37 33000 dyspepsia
Linda 43 26000 gastritis
Gary 41 20000 flu
Mary 46 30000 gastritis
Ray 54 31000 dyspepsia

Steve 56 34000 gastritis
Tom 60 44000 gastritis
Vince 65 36000 flu

(a) MicrodataT (2)

G. ID Age Zip. Disease
1 [21, 23] [12k, 25k] dyspepsia
1 [21, 23] [12k, 25k] gastritis
2 [25, 43] [21k, 33k] flu
2 [25, 43] [21k, 33k] dyspepsia
2 [25, 43] [21k, 33k] gastritis
3 [41, 46] [20k, 30k] flu
3 [41, 46] [20k, 30k] gastritis
4 [54, 56] [31k, 34k] dyspepsia
4 [54, 56] [31k, 34k] gastritis
5 [60, 65] [36k, 44k] gastritis
5 [60, 65] [36k, 44k] flu

(b) GeneralizationT ∗(2)

Table 2: Microdata and its generalization at the 2nd release

(as they describe diagnoses over six months ago), while 5 newtu-
ples (with names italicized) have been inserted. Accordingly, the
hospital publishes the generalized relation in Table 2b.

Even though both published relations (Tables 1b and 2b) are 2-
anonymous and 2-diverse, an adversary can still precisely deter-
mine the disease of a patient, by exploiting the correlationbetween
the two “snapshots”. To illustrate this, assume, again, an adver-
sary who has Bob’s age and Zipcode, and knows that Bob has a
record in both Tables 1b and 2b (i.e., Bob was admitted for treat-
ment, within 6 months before both publication times). Basedon
Table 1b, the adversary is certain that Bob must have contracted
eitherdyspepsiaor bronchitis. From Table 2b, s/he finds out that
Bob’s disease must be eitherdyspepsiaor gastritis. By combining
the above knowledge, the adversary correctly captures Bob’s real
diseasedyspepsia.

The situation in practice, unfortunately, is much worse. Since
each tuple in the microdata may be involved in any number of sub-
sequent publications (until the tuple is deleted), there are simply
too many potential correlations among various snapshots that may
be utilized to derive sensitive values. Therefore, we need anew
generalization principle, which guards privacy against inferences
leveraging any possible correlations. The dilemma, however, is that
such a principle may not exist at all, due to a phenomenon we refer
to ascritical absence.

Let us explain the phenomenon by re-examining the first release
from the hospital. Given Table 1b, an adversary (having Bob’s
QI particulars) is sure that Bob contracteddyspepsiaor bronchitis.
The valuebronchitis, unfortunately, is absent in the microdata (Ta-
ble 2a) at the second release. As a result,no matter how Table 2a is
generalized, publishing the generalized version always enables the
adversary to eliminate the possibility that Bob contractedbronchi-
tis. Therefore, Bob’s privacy will necessarily be breached after the
second release.

Note that critical absence never occurs, if only insertionsare al-

Name G. ID Age Zip. Disease
Bob 1 [21, 22] [12k, 14k] dyspepsia
c1 1 [21, 22] [12k, 14k] bronchitis

David 2 [23, 25] [21k, 25k] gastritis
Emily 2 [23, 25] [21k, 25k] flu
Jane 3 [37, 43] [26k, 33k] dyspepsia
c2 3 [37, 43] [26k, 33k] flu

Linda 3 [37, 43] [26k, 33k] gastritis
Gary 4 [41, 46] [20k, 30k] flu
Mary 4 [41, 46] [20k, 30k] gastritis
Ray 5 [54, 56] [31k, 34k] dyspepsia

Steve 5 [54, 56] [31k, 34k] gastritis
Tom 6 [60, 65] [36k, 44k] gastritis
Vince 6 [60, 65] [36k, 44k] flu

(a)T ∗(2) with counterfeits

Group-ID Count
1 1
3 1

(b) Published
counterfeit statistics

Table 3: Remedying critical absence with counterfeits

lowed in the microdata. This is why re-publication is more chal-
lenging, when deletions must also be supported. One straightfor-
ward attempt to tackle deletions is to simply ignore them. Namely,
deleted tuples are allowed to remain in the microdata, and pub-
lished in future releases together with the authentic tuples that have
not been deleted. Although this approach allows the application of
the insertion-only solution in [6], it has two obvious defects. First,
the amount of data published at each release grows monotonically
with time, due to the increasingly-large number of garbage tuples
that have been removed. Second, it becomes questionable whether
the privacy guarantees in [6] are still valid, when an adversary is
aware of tuples’ deletion timestamps.

1.2 Contributions
This paper presents the first study on privacy preserving pub-

lication of fully-dynamic datasets, which can be modified byany
sequence of insertions and deletions. The core of our solution is
the integration of two novel concepts:m-invarianceandcounter-
feited generalization. The former is a new generalization principle,
whose satisfaction ensures strong protection of sensitiveinforma-
tion in re-publication. The latter is a technique that facilitates the
enforcement ofm-invariance, in the presence of critical absence.

To illustrate the idea, let us revisit the scenario, where the hospi-
tal has published Table 1b (with respect to the microdata Table 1a),
and tries to release an anonymized version of Table 2a. Our method
leads to publication of Table 3a, and an auxiliary Table 3b. Specif-
ically, Table 3a involves a generalized tuple for every row in Ta-
ble 2a, together with twocounterfeit tuplesc1 andc2 (names are
not published; they are included for row referencing). The 13 tu-
ples are partitioned into six QI groups. Table 3b indicates that a
counterfeit is placed in QI groups 1 and 3, respectively (thepur-
pose of releasing such statistics is to enhance the effectiveness of
data analysis).

From an adversary’s perspective, a counterfeit tuple is indistin-
guishable from the other rows in the QI group (that contains the
counterfeit). Let us consider once more the adversary who has the
precise QI details of Bob, and attempts to infer the disease of Bob
from Tables 1b, 3a, and 3b. S/he knows that the tuple of Bob must
have been generalized to the first QI groups of Tables 1b and 3a,
respectively. These groups encompass the same set of sensitive
values{dyspepsia, bronchitis}. Therefore, the adversary cannot
eliminate any disease that Bob cannot have contracted. Notethat,
although the adversary learns (from Table 3b) that a counterfeit ex-
its in QI group 1 of Table 2a, s/he still cannot narrow down the
possible diseases of Bob. In fact, to the adversary, there isa 50%
chance that the first tuple of Table 2a would be the counterfeit.

The two releases (Tables 1b and 3a) have an important property.
If a tuple appears in the microdata at both publication timestamps,



it is generalized to two QI groups (one per timestamp) containing
the same sensitive values. For instance, the tuple〈Jane, 37, 33k,
dyspepsia〉 belongs to both Tables 1a and 2a. It is generalized to QI
groups 4 and 3 in Tables 1b and 3a, respectively. The two groups
include an equivalent set of diseases:{dyspepsia, flu, gastritis} (as
is achieved via a counterfeitc2). As a result, even if an adversary
finds out both QI groups, s/he can only conjecture that Jane’sdis-
ease may be an element in that equivalent set.

Indeed, the key to privacy preserving re-publication is to ensure
certain “invariance” in all the QI groups that a tuple is generalized
to in different snapshots. In this paper, we establish this finding
through a systematic study of the re-publication problem. First, we
formalize several important concepts that constitute the foundation
of investigating privacy disclosure in re-publication. Our formal-
ization captures all the existing generalization schemes (such as full
domain/subtree generalization, single-/multi-dimension recoding,
global/local recoding; see [12] for the semantics of these schemes),
and generalization principles (e.g.,k-anonymity,l-diversity, etc.).

As the second step, we present a careful analysis on the theory
of privacy protection. Specifically, we elaborate how an adversary
can reconstruct the microdata by combining all the published ta-
bles. This allows us to calculate the risk of privacy disclosure in an
educated manner. The resulting formulae explain the failure of the
previous generalization principles, and lead to the development of
m-invariance. We show that the new principle effectively limits the
disclosure risk.

Finally, we design an efficient algorithm for computing publish-
able relations that conform tom-invariance. Our algorithm maxi-
mizes the utility of the released data, by minimizing (i) thenumber
of counterfeit tuples, and (ii) the amount of generalization on the
QI attributes. Furthermore, the algorithm isincremental, namely, it
enables the publisher to complete then-th publication, by consult-
ing only the data of the last release. As a result, information related
to thej-th publication (for any1 ≤ j ≤ n− 2) does not need to be
retained.

The rest of the paper is organized as follows. Section 2 for-
malizes the underlying concepts and the re-publication problem.
Section 3 presents our theoretical results on privacy preservation.
Section 4 proposes an algorithm for findingm-invariant general-
ization. Section 5 experimentally demonstrates the inadequacy of
k-anonymity andl-diversity, and the effectiveness of the proposed
technique. Section 6 reviews the previous research relatedto ours.
Section 7 concludes the paper with directions for future work.

2. FUNDAMENTAL DEFINITIONS
Let T be a microdata table maintained by the publisher. We clas-

sify the columns ofT into: (i) an identifier attributeAid, which is
the primary key ofT , (ii) d quasi-identifier (QI) attributesAqi

1 , ...,
Aqi

d , and (iii) a sensitive attributeAs. Following the literature’s
convention [15], we requireAs to be categorical, while the other
attributes can be either numerical or categorical. For eachtuple t,
t[A] denotes its value on attributeA.

As time evolves,T is updated with insertions and deletions,
which can arrive in any order. The publisher may release an
anonymized version ofT at any time, as long as it is possible to
do so without compromising privacy. We use an integerj to denote
the timestamp of thej-th publication.

Let T (j) be the snapshot ofT at time j. The publisher re-
leases a pair of relations{T ∗(j), R(j)}, whereT ∗(j) anonymizes
T (j), andR(j) is an auxiliary table providing some statistics about
T ∗(j). In particular, anonymization is achieved throughcounter-
feited generalization. Before formalizing this new concept, we
clarify several basic notions:

DEFINITION 1 (QI GROUP / PARTITION). For a microdata
tableT (j), a QI group is a subset of the tuples inT (j). A par-
tition of T (j) consists of disjoint QI groups whose union equals
T (j). Each QI group is assigned an ID that is unique in the parti-
tion.

For a tuplet ∈ T (j), t.QI(j) denotes the QI group that contains
t. We refer tot.QI(j) as thehosting group of t in T (j).

We are ready to formulate theT ∗(j) published at timej.

DEFINITION 2 (COUNTERFEITEDGENERALIZATION).
The anonymized versionT ∗(j) of T (j) is computed based on a
partition ofT (j), and has the following properties:

1. T ∗(j) contains a columnAg named “Group-ID”, and all
attributes inT (j) exceptAid.

2. Each tuplet ∈ T (j) has ageneralized tuple t∗ ∈ T ∗(j)
such thatt∗[As] = t[As], t[Ag] is the ID of the hosting group
of t in T (j), andt∗[Aqi

i ] (1 ≤ i ≤ d) is an interval1 covering
t[Aqi

i ]. The value oft∗[Aqi
i ] also satisfies Property 4.

3. For each QI groupQI of T (j), T ∗(j) may contain any num-
ber of counterfeit tuples t∗c such thatt∗c [A

s] is a value in
the domain ofAs, t∗c [A

g] equals the ID ofQI , andt∗[Aqi
i ]

(1 ≤ i ≤ d) is an interval subject to Property 4.

4. All tuples inT ∗(j) with the sameAg have an identical value
on every QI attribute. These tuples form aQI group in T ∗(j)
whose ID is theAg value in the group.

For a tuplet ∈ T (j), t.QI∗(j) denotes the QI group inT ∗(j) that
contains the generalized tuple oft. We refer tot.QI∗(j) as the
generalized hosting group of t in T ∗(j).

Clearly, counterfeited generalization captures existinggeneral-
ization schemes in the literature as special cases, when there is no
counterfeit. The next definition clarifies theR(j) released along
with T ∗(j):

DEFINITION 3 (AUXILIARY RELATION). The auxiliary re-
lation R(j) accompanyingT ∗(j) has two columns “Group-ID”
and “Count”. For each QI groupQI∗ in T ∗(j) that contains at
least a counterfeit, there is a row〈g, c〉 in R(j), whereg is the ID
of QI∗ andc is the number of counterfeit tuples inQI∗.

R(j) is empty, if no counterfeit is present inT ∗(j). As explained
in Section 5.2, the counterfeit information inR(j) is necessary for
a researcher to derive accurate understanding about the microdata
from the published data.

EXAMPLE 1. We illustrate the previous definitions by setting
T (j) to Table 2a,T ∗(j) to Table 3a, andR(j) to Table 3b. Con-
sidert as the tuple〈Bob, 21, 12k,dyspepsia〉 in T (j). Its hosting
group t.QI(j) consists of the first two rows ofT (j). Its gener-
alized tuple inT ∗(j) is 〈1, [21, 22], [12k, 14k],dyspepsia〉. The
generalized hosting groupt.QI∗(j) of t contains the two rows with
Group-ID = 1 in T ∗(j). In particular, the tuplec1 in t.QI∗(j) is a
counterfeit, which does not have any corresponding tuple inT (j).
There is another counterfeitc2 in the QI group with ID 3. R(j)
summarizes the number of counterfeits in each QI group.
1To make the interval well-defined on a categoricalAqi

i , we trans-
form Aqi

i into a numerical attribute, by placing a total ordering on
its values. When there is a generalization hierarchy onAqi

i (a com-
mon assumption in the literature [12]), this ordering listsall the
leaves of the hierarchy from left to right.



DEFINITION 4 (GENERALIZATION PRINCIPLE). A general-
ization principle is a set of constraints that must be satisfied by
the QI groups inT ∗(1), ...,T ∗(n).

For instance,k-anonymity andl-diversity are two generalization
principles. Specifically, the former imposes the constraint that each
QI group inT ∗(j) (1 ≤ j ≤ n) must have at leastk tuples; the
latter demands that the sensitive values in each QI group arewell-
represented. In general, a generalization principle may also require
that the QI groups of multipleT ∗(j) (with different j ∈ [1, n])
should jointly fulfill certain conditions.

When the publisher is preparing{T ∗(n), R(n)} (wheren ≥ 1),
it must take into account the information that an adversary can com-
bine withT ∗(n) to intrude privacy. Apparently, such information
includes all the data inT ∗(1), ..., T ∗(n − 1) released previously.
Furthermore, the adversary may also possess “background knowl-
edge” that does not exist in those relations. To formalize such
knowledge, we first introduce a notationU(n):

DEFINITION 5 (HISTORICAL UNION). At time n ≥ 1, the
historical union U(n) contains all the tuples inT at timestamps
1, 2, ...,n, respectively. Formally:

U(n) =

n
⋃

j=1

T (j). (1)

Each tuplet ∈ U(n) is implicitly associated with alifespan [x, y],
wherex (y) is the smallest (largest) integerj such thatt appears
in T (j).

U(n) can be regarded as a table with the same schema asT .
Note that, if a tuple appears in severalT (j) with different j, it is
included only once inU(n). Now we can define the background
knowledge that can be tackled by our technique.

DEFINITION 6 (PRIOR KNOWLEDGE). At timen, an adver-
sary’sprior knowledge includes

• the deployed generalization principle, and

• a knowledge table B(n), which has a columnAg named
“Group-ID”, a column Al named “Lifespan”, and all the
attributes ofU(n) exceptAs.

For every tuplet ∈ U(n), there is a rowb ∈ B(n) such
that b[Ag ] = ∗, b[Aid] = t[Aid], b[Aqi

i ] = t[Aqi
i ] for all

1 ≤ i ≤ d, andb[Al] equals the lifespan oft.

For every counterfeittc in eachT ∗(j) (where1 ≤ j ≤ n),
there is a rowbc ∈ B(n) such thatbc[A

g] = tc[A
g], bc[A

id]
is any counterfeit identification unique inB(n), bc[A

qi
i ] = ∅

for all 1 ≤ i ≤ d, andbc[A
l] = [j, j].

Equivalently,B(n) incorporates (i) everything inU(n) except
column As, (ii) the lifespan of each tuple inU(n), and (iii) the
published details of all the counterfeits.

EXAMPLE 2. We explain Definitions 5 and 6 by assumingn =
2, and that Tables 1a, 1b, 2a, 3a, and 3b areT (1), T ∗(1), T (2),
T ∗(2), andR(2) respectively.

U(2) includes all the tuples inT (1) andT (2), after eliminating
the duplicates. The lifespan of the tuple〈Bob, 21, 12k,dyspepsia〉
is [1, 2], since it remains inT during the entire history. On the other
hand, the lifespan of〈Alice, 22, 14k,bronchitis〉 is [1, 1], because
the tuple is inserted at time 1 and deleted at time 2.

Table 4 demonstrates part of the knowledge tableB(n). As an
example, for tuplet = 〈Bob, 21, 12k,dyspepsia〉 in U(2), the corre-
sponding rowb ∈ B(n) is the first tuple of Table 4.b[Group-ID]=∗

Group-ID Name Age Zip Lifespan
∗ Bob 21 12000 [1, 2]
∗ Alice 22 14000 [1, 1]
... ... ... ... ...
∗ Helen 36 27000 [1, 1]
∗ David 23 25000 [2, 2]
... ... ... ... ...
1 c1 ∅ ∅ [2, 2]
3 c2 ∅ ∅ [2, 2]

Table 4: Adversaries’ background knowledge

means that the adversary is not sure about the generalized hosting
groups oft. In general, foreveryindividual involved inU(n), the
adversary knows her/his identity, exact QI particulars, and which
of the published relations contain her/his record.

Let tc be the counterfeitc1 in Table 3a. Its corresponding row
bc ∈ B(n) is the last-but-one tuple in Table 4. The adversary
knowsbc[Group-ID] = 1 because this value is explicitly indicated
in R(2). The QI values ofbc are∅, since, in general, counterfeits
do not have any “original QI values” before generalization.The
lifespan of every counterfeit covers only a single timestamp. For
instance,bc[Lifespan] implies thattc is in T ∗(2).

Notice that, if we eliminateGroup-ID andLifespan, B(n) de-
generates into an external database (most popularly, a voter regis-
tration list) commonly assumed [18, 20] as the adversary’s prior
knowledge, for carrying out privacy attacks on ak-anonymous/l-
diverse relation. In reality, an adversary’s knowledge is typically
much weaker than that represented inB(n). In the application
context of Table 1, for instance,B(n) essentially includes (i) the
names, ages and Zipcodes ofall patients, and (ii) the exact dates
of their visits to the hospital! In other words, by guarding against
attacks leveraging the background knowledge in Definition 6, we
aim at privacy preservation under more hostile circumstances than
would be encountered in practice.

Observe that all the information inR(1), ...,R(n) has been cap-
tured byB(n). Thus, we formulate privacy disclosure as follows:

DEFINITION 7 (PRIVACY BREACH). A privacy breach oc-
curs if an adversary correctly finds out the sensitive value of any
tuplet ∈ U(n), utilizingT ∗(1), ...,T ∗(n), andB(n).

For instance, in Example 2, it is a privacy breach, if an adversary
can reconstruct the sensitive valuedyspepsiain tuplet = 〈Bob, 21,
12k,dyspepsia〉 ∈ U(2), from Tables 1b, 3a, and 4.

We close this section with an inductive definition of the re-
publication problem.

DEFINITION 8 (RE-PUBLICATION). Assume that the pub-
lisher has releasedn− 1 anonymized versions of the microdataT :
{T ∗(1), R(1)} ...,{T ∗(n − 1), R(n − 1)}, wheren is an integer
≥ 1, and{T ∗(j), R(j)} (1 ≤ j ≤ n − 1) is defined in Defini-
tions 2 and 3. The objective ofprivacy preserving re-publication
is to compute a pair of{T ∗(n), R(n)} that minimizes the risk of
privacy disclosure, yet captures as much information in themicro-
data as possible.

3. THEORY OF PRIVACY PROTECTION
Before releasingT ∗(n), the publisher must guarantee that the

privacy of every tuple inU(n) has been adequately protected. This
section provides the underlying theory towards that objective. In
Section 3.1, we quantify the risk of privacy disclosure. Then, Sec-
tion 3.2 establishes the importance of ensuring “persistent invari-
ance” in re-publication, which leads to the development of anovel
generalization principle in Section 3.3.



t*�={1, [21, 22], [12k, 14k], dyspepsia, 1}
t*�={1, [21, 22], [12k, 14k], bronchitis, 1}

t*�={1, [21, 22], [12k, 14k], dyspepsia, 2}
t*�={1, [21, 22], [12k, 14k], gastritis, 2}

...

...

b�={*, Bob, 21, 12k, [1, 2]}
b�={*, Alice, 22, 14k, [1, 1]}

b�={1, c�, , , [2, 2]}

...

...

fU*(2) B(2)

b�={*, Helen, 36, 27k, [1, 1]}
...

t*�={4, [37, 43], [26k, 35k], flu, 1}
...

t*�={1, [21, 22], [12k, 14k], dyspepsia, 1}
...

fU*(2)

...

t*�={1, [21, 23], [12k, 25k], gastritis, 2}

t*�={1, [21, 22], [12k, 14k], dyspepsia, 1}
...

fU*(2)

t*�={1, [21, 22], [12k, 14k], bronchitis, 1}

B(2)

b�={*, Bob, 21, 12k, [1, 2]}
...

B(2)

...

(a) Reasonable surjection 

(b) Unreasonable surjection violating Condition 1.1 of Definition 13

(c) Unreasonable surjection violating Condition 1.2

b�={*, Bob, 21, 12k, [1, 2]}

Figure 1: Microdata reconstruction from surjective functions

3.1 Microdata Reconstruction
We will explain how an adversary can reconstruct the microdata

tablesT (1), ...,T (n) from the publishedT ∗(1), ...,T ∗(n) and the
knowledge tableB(n). For this purpose, we need a generalized
counterpart of Definition 5:

DEFINITION 9 (GENERALIZED HISTORICAL UNION).
Given a generalized relationT ∗(j) (1 ≤ j ≤ n), we convert each
row t∗ ∈ T ∗(j) to a timestamped tuple 〈t∗, j〉, which augments
t∗ with another attributeAtm, called “Timestamp”, storingj.

Thegeneralized historical union U∗(n) includes all the times-
tamped tuples converted fromT ∗(1), ...,T ∗(n), or formally:

U∗(n) =
n
⋃

j=1

(

⋃

t∗∈T∗(j)

〈t∗, j〉
)

. (2)

Note that counterfeits inT ∗(j) (1 ≤ j ≤ n) also have converted
tuples inU∗(n). RegardingU∗(n) andB(n) as two sets, next we
define a class of surjective functions fromU∗(n) to B(n).

DEFINITION 10 (REBUILDING SURJECTION). Mapping f :
U∗(n) → B(n) is a rebuilding surjective function if it fulfills
these requirements:

1. it maps each tuplet∗ ∈ U∗(n) to a rowb ∈ B(n), which is
represented asf(t∗) = b;

2. for any rowb ∈ B(n), there exists at least a tuplet∗ ∈
U∗(n) such thatf(t∗) = b;

3. if f(t∗) = b, then

3.1. b[Al] containst∗[Atm];

3.2. t∗[Ag]=b[Ag] (the equality always holds ifb[Ag]=∗);

3.3. t∗[Aqi
i ] coversb[Aqi

i ] along every QI attributeAqi
i (the

covering relationship always holds ifb[Aqi
i ] = ∅).

Conditions 1 and 2 constitute the standard mathematical defi-
nition of surjection. Conditions 3.1-3.3 will be explainedwith a
concrete example.

EXAMPLE 3. We illustrate Definitions 9 and 10 by settingn to
2, T ∗(1) andT ∗(2) to Tables 1b and 3a respectively, andB(2) to
Table 4.

The left box in Figure 1a encloses five timestamped tuplest∗1, ...,
t∗5 in the generalized historical unionU∗(2). For instance,t∗1 = 〈1,
[21, 22], [12k, 14k],dyspepsia, 1〉 augments the first tuple inT ∗(1)
with timestamp 1, that is,t∗1[A

tm] = 1. Similarly, t∗4 augments the
first tuple inT ∗(2) with timestamp 2. The right box contains four
rowsb1, ... b4 from B(2), including a counterfeitb4.

The arrows depict five mappings in a surjective functionf ,
namely,f(t∗1) = b1, f(t∗2) = b2, f(t∗3) = b3, f(t∗4) = b1 and
f(t∗5) = b4. Mappingf(t∗1) = b1, for example, qualifies Condi-
tion 3.1 in Definition 10 becauseb1[A

l] = [1, 2] enclosest∗1[A
tm]

= 1. It satisfies Condition 3.2 asb1[A
g ] = *. Finally, it fulfills Con-

dition 3.3 sincet∗1[Age] = [21, 22] andt∗1[Zipcode] = [12k, 14k]
containb1[Age] = 21 andb1[Zipcode] = 12k, respectively.

Rebuilding surjection can be used to reconstruct a possiblever-
sion of the microdata tablesT (1), ...,T (n):

DEFINITION 11 (POSSIBLEM ICRODATA INSTANCE). Let f
be a function in Definition 10. For each mappingf(t∗) = b such
that bid is not counterfeit identification, we first obtain the times-
tampj = t∗[Atm], and then reconstruct a tuple inT (j) as

〈b[Aid], b[Aqi
1 ], ..., b[Aqi

d ], t∗[As]〉. (3)

All the reconstructed tuples constitute apossible microdata in-
stance.

The instance rebuilt fromf is a possible version of the microdata
that can result inT ∗(1), ...,T ∗(n) through counterfeited general-
ization (Definition 2), as elaborated next.

DEFINITION 12 (POSSIBLEGENERALIZATION INSTANCE).
Let f be a rebuilding surjective function. For any rowb ∈ B,
f−1(b) denotes the set of tuplest∗ ∈ U∗(n) satisfyingf(t∗) = b.

Mappingf−1: B(n) → U∗(n) determines a counterfeited gen-
eralization process of obtainingT ∗(1), ...,T ∗(n) from the possible
microdata instance rebuilt byf . Specifically, given eachb ∈ B(n),
we distinguish two cases:

• [bid is personal identification] For everyt∗ ∈ f−1(b), regard
t∗ as the generalized tuple inT ∗(j) of the microdata tuple in
Formula 3 (reconstructed from mappingf(t∗) = b), where
j = t∗[Atm].

• [bid is counterfeit identification] For everyt∗ ∈ f−1(b), re-
gard t∗ as a counterfeit tuple inT ∗(j) wherej = t∗[Atm].

The above process is apossible generalization instance.

EXAMPLE 3 (CONTINUED). We explain Definitions 11 and 12
using Figure 1a. The meanings oft∗1, ..., t∗5, b1, ..., b4 are as men-
tioned in Example 3.

The five mappings (indicated by arrows) reconstruct four tuples
in the microdata tablesT (1) and T (2) (no reconstruction from
f(t∗5) = b4, asb4[A

id] = c1 is counterfeit identification). For
example,f(t∗1) = b1 implies taking the QI values inb1 as the
original forms of those int∗1 before generalization. This way, we
reconstruct a tuple〈Bob, 21, 12k,dyspepsia〉 in T (1), conforming
to Formula 3. Similarly,f(t∗4) = b1 rebuilds the same tuple in
T (2); f(t∗2) = b2 indicates a tuple〈Alice, 22, 14k,bronchitis〉 in
T (2).

Reconstruction is not always accurate. For instance,f(t∗3) = b3

gives〈Helen, 36, 27k,flu〉 in T (1), but the real disease of Helen



is gastritis. In other words, for eachj ∈ [1, n], functionf decides
only a possible, but not necessarily the actual,T (j).

We proceed to illustrate the counterfeited generalizationdeter-
mined byf−1. f−1(b1) equals{t∗1, t

∗
4}. Hence, by Definition 12,

t∗1 is the generalized tuple of〈Bob, 21, 12k,dyspepsia〉 in T ∗(1),
which, as mentioned earlier, is restored fromf(t∗1) = b1. By
the same reasoning,t∗4 is the generalized tuple of〈Bob, 21, 12k,
dyspepsia〉 in T ∗(2). As another example, considerf−1(b4) =
{t∗5}. Sinceb4[A

id] is counterfeit identificationc1, t∗5 is a counter-
feit tuple added toT ∗(2) in the generalization process.

There is agenuine surjective function, which exactly recon-
structs the original microdata. If the adversarywere able to dis-
cover this surjection, s/he would reveal the sensitive information of
all individuals. Fortunately, as the tuples inU∗(n) have been gen-
eralized, there exist a huge number of possible surjective functions
from U∗(n) to B(n). The best the adversary can do is to eliminate
as many “unreasonable” functions as possible, in order to increase
her/his chance of identifying the genuine surjection.

DEFINITION 13 (REASONABLE SURJECTION). A functionf
in Definition 10 isreasonable, if it satisfies these conditions:

1. the following holds for each rowb ∈ B(n): Given the set
f−1(b) of tuplest∗ ∈ U∗(n) satisfyingf(t∗) = b, then

1.1. all tuples inf−1(b) carry the same sensitive value;

1.2. for any timestampj in the lifespanb[Al] of b, there
exists a unique tuplet∗ ∈ f−1(b) with t∗[Atm] = j.

2. f−1 decides a possible generalization instance that con-
forms to the deployed generalization principle (Definition4).

EXAMPLE 4. Condition 2 in Definition 13 is straightforward.
Next we clarify Conditions 1.1 and 1.2 by assuming the samen,
T ∗(1), T ∗(2) andB(2) as in Example 3.

Consider the surjection in Figure 1b, where tuplest∗1, t∗5 andb1

are identical to those in Figure 1a. In the reconstructed possible mi-
crodata instance, Bob has two different records inT (1) andT (2),
carrying sensitive valuesdyspepsiaandgastritis, respectively. This
contradicts the semantic ofb1, whose lifespan[1, 2] indicates that
Bob should have the same tuple inT (1) andT (2). Thus, the sur-
jection is unreasonable, which is captured by Definition 13.Specif-
ically, both t∗1 andt∗5 belong tof−1(b1); hence, Condition 1.1 is
violated.

The surjection in Figure 1c is also unreasonable. Here,f−1(b1)
equals{t∗1 , t∗2} (both tuples have timestamp 1), which breaches
Condition 1.2 for two reasons. First, more than one tuple inT (1)
is mapped tob1. This is impossible, because Bob (in general, any
individual) has at most one record in the microdata at time 1.Sec-
ond, no tuple inT (2) is mapped tob1, contradicting the fact that
Bob has a record at time 2.

Naturally, we arrive at the following formulation of privacy leak-
age risk.

DEFINITION 14 (PRIVACY DISCLOSURERISK). Let t be a
tuple in the historical unionU(n). Theprivacy disclosure risk
risk(t) of t is represented as

risk(t) = nbreach(t)/ntotal, (4)

wherentotal is the number of reasonable surjective functions, and
nbreach(t) is the number of those functions that correctly recon-
struct the sensitive value oft.

A surjective function may correctly reconstruct the sensitive
value of a tuple, but at the same time, incorrectly reconstruct that
of another. For instance, the surjection in Figure 1a precisely re-
stores the diseasedyspepsiaof Bob, but indicates a wrong disease
flu of Helen, as explained in Example 3. Therefore, various tuples
in U(n) can have different privacy disclosure risks.

Specially, ifnbreach(t) = ntotal (equivalently,risk(t) = 1), an
adversary (with the background knowledge inB(n)) will discover
the true sensitive value oft with 100% confidence. In general, un-
der the random-world assumption [4] where every reasonablesur-
jection is equally likely,risk(t) is the probability that an adversary
can breach the privacy oft.

3.2 Persistent Invariance
In the sequel, we use the analysis in Section 3.1 to discuss

the properties that should be possessed by privacy preserving re-
publication. Our discussion utilizes a crucial concept:

DEFINITION 15 (CANDIDATE SENSITIVE SET). Let t be a
tuple inU(n). Thecandidate sensitive set t.CSS(j) of t at time
j is the union of the sensitive values in each QI groupQI∗ of
T ∗(j), such thatQI∗[Aqi

i ] containst[Aqi
i ] on every attributeAqi

i

(1 ≤ i ≤ d), whereQI∗[Aqi
i ] is theAqi

i value inQI∗.

The next result points out the tuples inU(n) whose privacy is
the most vulnerable in re-publication.

LEMMA 1. Let t be a tuple inU(n) with a lifespan[x, y]. Re-
gardless of the generalization principle applied,risk(t) = 1, if
only a single element exists int.CSS(x) ∩ t.CSS(x + 1) ∩ ... ∩
t.CSS(y).

PROOF. The proofs of all lemmas can be found in the ap-
pendix.

EXAMPLE 5. We demonstrate the lemma, by settingn to 2,
T (1) andT (2) to Tables 1a and 2a respectively,T ∗(1) to Table 1b,
andT ∗(2) to Table 2b (note:not Table 3a).

Let t be the tuple〈Bob, 21, 12k,dyspepsia〉, which belongs
to U(2) and has a lifespan[1, 2]. The candidate sensitive set
t.CSS(1) at time 1 includes the sensitive valuesdyspepsiaand
bronchitis in QI group 1 of T ∗(1). Similarly, t.CSS(2) is
{dyspepsia, gastritis}. Therefore, by Lemma 1, the privacy dis-
closure risk oft is 1. Namely, an adversary can precisely derive its
real disease, confirming the discussion in Section 1.1.

Lemma 1 reveals the reason behind the failure ofk-anonymity
and l-diversity in re-publication:neither generalization principle
can prevent the situation stated in the lemma. Each principle con-
straints only individualt.CSS(j) (for j ∈ [x, y]), but ignores
the relationships among these sets. Specifically,k-anonymity en-
sures that eacht.CSS(j) has a size at leastk, while l-diversity
guarantees that the sensitive values in everyt.QI∗(j) are well-
represented. Nevertheless, it is still possible that only asingle value
appears in∩y

j=xt.CSS(j).
A general version of Lemma 1 is:

LEMMA 2. ∩y
j=xt.CSS(j) includes all the possible sensitive

values oft, reconstructed from reasonable surjective functions.

The lemma theoretically justifies our intuition: fromT ∗(1), ..,
T ∗(n) and B(n), an adversary can learn that the real sensitive
value oft must fall in∩y

j=xt.CSS(j). Hence, to protect privacy,
re-publication must ensure a sufficiently large∩y

j=xt.CSS(j) af-
ter every publication. In other words, aninvariant set of sensi-
tive values shouldpersistentlyappear in∩y

j=xt.CSS(j) at each



publication timestamp, untilt is deleted from the microdata. This
persistent-invarianceobservation motivates a new generalization
principle in the next subsection.

3.3 m-Invariance
We will need the following concept frequently.

DEFINITION 16 (SIGNATURE). Let QI∗ be a QI group in
T ∗(j) for anyj ∈ [1, n]. Thesignature of QI∗ is the set of distinct
sensitive values inQI∗.

Note that if a sensitive value is carried by multiple tuples in QI∗,
the value appears only once in the signature. Next, we propose m-
invariance, which is the key to privacy protection in re-publication.

DEFINITION 17 (m-INVARIANCE ). A generalized table
T ∗(j) (1 ≤ j ≤ n) is m-unique, if each QI group inT ∗(j)
contains at leastm tuples, and all the tuples in the group have
different sensitive values.

A sequence of published relationsT ∗(1), ...,T ∗(n) (wheren ≥
1) is m-invariant if the following conditions hold:

1. T ∗(j) is m-unique for allj ∈ [1, n].

2. For any tuplet ∈ U(n) with lifespan [x, y], t.QI∗(x),
t.QI∗(x + 1), ..., t.QI∗(y) have the same signature, where
t.QI∗(j) is the generalized hosting group (see Definition 2)
of t at timej ∈ [x, y].

m-uniqueness demands that each sensitive value should appear
at most once in every QI-group. Apparently,m-uniqueness implies
m-diversity, but not the vice versa. The rationale ofm-invariance
is that, if a tuplet (from the microdata) is published several times,
all its generalized hosting groups must contain the same sensitive
values. In Example 5, Tables 1b and 2b are 2-unique, but they do
not constitute a 2-invariant sequence. To understand this, lett be
the tuple of Bob in the microdata.t.QI∗(1) andt.QI∗(2) are the
first QI-group in Tables 1b and 2b, respectively. The two QI-groups
do not encompass the same sensitive values, thus violating the sec-
ond condition of Definition 17. On the other hand, in Example 3,
{Table 1b, Table 2b} is a 2-invariant sequence.

LEMMA 3. If {T ∗(1), ...,T ∗(n)} is m-invariant, then

risk(t) ≤ 1/m

for anyt ∈ U(n), whererisk(t) is given in Equation 4.

Therefore, the publisher can simply setm to a sufficiently large
value to achieve the target extent of privacy preservation.

LEMMA 4. If {T ∗(1), ..., T ∗(n − 1)} is m-invariant, then
{T ∗(1), ...,T ∗(n−1), T ∗(n)} is alsom-invariant if and only if:

1. T ∗(n) is m-unique;

2. for any tuplet ∈ T (n − 1) ∩ T (n), its generalized hosting
groupst.QI∗(n−1) andt.QI∗(n) have the same signature.

Lemma 4 points to an incremental approach for performing re-
publication. Specifically, to prepareT ∗(n), the publisher only
needs to consult the microdata tablesT (n − 1), T (n), and the
last released versionT ∗(n − 1). The older microdata tablesT (1),
..., T (n − 2), as well as their published counterpartsT ∗(1), ...,
T ∗(n − 2), do not even need to be retained.

4. M-INVARIANT GENERALIZATION
This section elaborates computation of the{T ∗(n), R(n)} re-

leased at then-th publication. We focus onT ∗(n) because once
it is ready, producingR(n) is trivial, as shown in Definition 3.
Section 4.1 first describes our solution at a high level. Then, Sec-
tions 4.2 and 4.3 provide detailed explanation to two components
of the solution. Finally, Section 4.4 clarifies the recodingscheme
underlying our solution.

4.1 The Algorithm
We aim at achieving two intuitive goals. First, the number of

counterfeit tuples should be minimized, because they do notcor-
respond to any records in the microdata. Second, we use the least
generalization to distort QI values. Specifically, for eachtuplet, we
attempt to reduce, as much as possible, the length oft∗[Aqi

i ] (for
each1 ≤ i ≤ d), wheret∗ is the generalized tuple oft in T ∗(n).
Clearly, a shortert∗[Aqi

i ] implies less information loss.
We permit then-th publication, only ifT (n) − T (n − 1) is m-

eligible, that is, at most1/m of the tuples inT (n)−T (n−1) have
an identical sensitive value. Note thatT (n) − T (n − 1) is essen-
tially the set of new tuples inT (n). For example, ifm = 10, in the
application of Table 1, the requirement is that at most 10% ofthe
new patients inT (n) contracted the same disease, which is fairly
reasonable. Note that this publishability constraint actually already
exists in the literature [15]: no “recursive( 1

m−1
, 2)-diverse” publi-

cation is possible, if the microdata is notm-eligible.
According to Lemma 4, calculation ofT ∗(n) requires only mi-

crodata tablesT (n − 1), T (n), and the last published relation
T ∗(n − 1). Let us divide the tuples inT (n) into two disjoint sets
S∩ = T (n)∩T (n−1) andS− = T (n)−T (n−1). Our algorithm
ensures two properties:

1. For any tuplet ∈ S∩, its generalized hosting groups
t.QI∗(n − 1) and t.QI∗(n) have the same signature (see
Definition 16).

2. For any tuplet ∈ S−, its generalized tuplet∗ in T ∗(n) is
in a QI group which has at leastm tuples, and all the tuples
have distinct sensitive values.

By Lemma 4, these properties establish the correctness ofT ∗(n).
We produceT ∗(n) in four phases:division, balancing, assign-

ment, andsplit. The rest of this subsection elaborates each phase in
turn. We use a running example wherem = 2, n = 2, T (1) and
T ∗(1) are Tables 1a and 1b, respectively. GivenT (2) = Table 2a,
we will show howT ∗(2) = Table 3a is computed.

Division. For eacht ∈ S∩, we define itssignatureas the signature
of its generalized hosting group inT ∗(n − 1). This phase simply
partitionsS∩ into severalbuckets, such that each bucket contains
only the tuples with the same signature.

In the running example,S∩ contains the tuples of Bob, David,
Jane, Linda, Gary, and Steve. Figure 2a shows the contents ofthe
buckets after this phase. The tuple of Bob, for example, has asig-
nature{dyspepsia, bronchitis} (i.e., the sensitive values in Group
1 of Table 1b). It is the only element in bucketBUC3. A bucket
can have multiple tuples. For example,BUC1 contains Gary and
David, since they share an equivalent signature{flu, gastritis}.

Balancing. Unlike in the previous phase, we will work with tu-
ples’ sensitive values, as opposed to their signatures. We say that
a bucketBUC is balanced, if every sensitive value in its signature
is owned by the same number of tuples inBUC. For example, in
Figure 2a,BUC1 is balanced, since its signature has two valuesflu
andgastritis, each of which is possessed by a tuple. The objective
of this phase is to balance all buckets.



Gary David
flu gast.

BUC1

Steve
dysp. gast.

BUC2

Bob
dysp. bron.

BUC3

Jane Linda
dysp. flu gast.

BUC4

(a) Bucket contents after the division phase

Gary David
flu gast.

BUC1

Ray Steve
dysp. gast.

BUC2

Bob c1
dysp. bron.

BUC3

Jane c2 Linda
dysp. flu gast.

BUC4

(b) After the balancing phase
Vince Tom
Emily Mary
Gary David
flu gast.

BUC1

Ray Steve
dysp. gast.

BUC2

Bob c1
dysp. bron.

BUC3

Jane c2 Linda
dysp. flu gast.

BUC4

(c) After the assignment phase

Figure 2: Illustration of our generalization algorithm

Each bucketBUC is inspected in turn. IfBUC is not balanced,
there is a “shortage” of some sensitive values inBUC. In this case,
we attempt to fill the shortage by moving the tuples inS− into
BUC, as long as the resultingS− is still m-eligible (the reason
will be clear in a while).

In Figure 2a,BUC2 is unbalanced, because there is one (tuple
with) gastritis but no dyspepsia. S− equals{Emily, Mary, Ray,
Tom, Vince}. We can move Ray (whoseDiseasevalue isdyspep-
sia) to BUC2, because there remain 2flu and 2gastritis in S−,
which is still 2-eligible. The updatedBUC2, shown in Figure 2b,
becomes balanced.

If S− cannot be used to fix an unbalanced bucketBUC, there are
two possibilities: (i) no tuple inS− carries the required sensitive
value(s), or (ii)S− is no longerm-eligible after a tuple removal. In
both cases, we insert counterfeits to balanceBUC.

Continuing our example in Figure 2a, bothBUC3 andBUC4

are unbalanced, but neither of them can be remedied withS−.
Specifically, BUC3 needs abronchitis, which is absent inS−.
BUC4 needs aflu; although there are tuples withflu in S−, re-
moving any of them leaves 2gastritisand 1flu in S−, violating the
2-eligibility constraint. Therefore, as in Figure 2b, two counterfeits
c1 and c2 (with sensitive valuesbronchitis and flu) are added to
BUC3 andBUC4 respectively, both of which are now balanced.
Recall that each counterfeit has a value∅ on every QI attribute.

Assignment. In this phase, we assign the remaining tuples inS−

to buckets, subject to two rules. First, each tuplet ∈ S− can be
placed only in a bucket whose signature includest[As]. Second, at
the end of the phase, all buckets are still balanced. If necessary, new
buckets (each bucket’s signature contains at leastm values) may
be generated, and they also obey these rules. As proved later, such
an assignment scheme always exists, as long asS− is m-eligible
(which is why we insist on itsm-eligibility in balancing).

In the running example,S− = {Emily, Mary, Tom, Vince} af-
ter the balancing phase. Figure 2c illustrates the buckets after all
assignments. The 4 tuples inS− are all placed inBUC1, which
remains balanced. We will discuss assignment in detail in Sec-
tion 4.2.

Split. This last phase processes each bucketBUC individually. It
splitsBUC into |BUC|/s QI groups, wheres (≥ m) is the num-
ber of values in the signature ofBUC. Each group hass tuples,
taking thes sensitive values in the signature, respectively.

Splitting optimizes the quality of generalization. Lett1, t2, ...,ts

be the tuples in a group. Their generalized tuples form a QI group
QI∗ in the publishedT ∗(n). On each QI attributeAqi

i (1 ≤ i ≤ d),

QI∗[Aqi
i ] is theminimum intervalenclosing allt1[A

qi
i ], ...,ts[A

qi
i ].

Therefore, splitting aims at minimizing the length sum of intervals
QI∗[Aqi

1 ], ...,QI∗[Aqi
d ], as will be explained in Section 4.3.

GivenBUC1 in Figure 2c, our split algorithm creates three QI
groups:{David, Emily}, {Gary, Mary}, and{Vince, Tom}. They
lead to QI groups 2, 4, and 6 in Table 3a. Similarly,BUC2, BUC3,
andBUC4 result in QI groups 5, 1, 3, respectively.

A few last words concern the age [21, 22] of QI group 1 in Ta-
ble 3a. This group covers the tuple of Bob (age 21) and a counter-
feit (age∅). We would have published 21, if the minimum-interval
generalization were followed. In practice, however, personal par-
ticulars should not be released directly, for several reasons dis-
cussed in [16]. Hence, we require each QI value inT ∗(n) to be an
interval whose length is at least a threshold (e.g., 2 forAge). This
threshold may vary for different QI attributes (e.g., 2k forZipcode).

4.2 The Assignment Phase
The algorithm of the assignment phase accepts as a parameterthe

setS− passed from the previous phase, and runs in iterations. Each
iteration moves a setSrmv of α·β tuples fromS− to a bucketBUC
whose signature containsβ (≥ m) sensitive values.BUC perhaps
already exists (since it may have been generated in the balancing
phase or an earlier iteration of this phase); otherwise, we create it.
To keepBUC balanced,Srmv must satisfy a property: every value
in the signature ofBUC should be possessed by exactlyα tuples
in Srmv.

The crucial part is the selection of the integersα, β, and the
signature ofBUC. We aim at maximizingα to reduce the num-
ber of iterations. On the other hand, we should minimizeβ, since
m-invariance can be enforced more easily on QI groups with less
sizable signatures. The constraint is that, after eliminating the tu-
ples inSrmv, S− must remainm-eligible, to make sure that all
its remaining tuples can be eventually assigned (see the proof of
Lemma 5).

The above observations motivate the following strategy. Let v1,
v2, ..., vλ be the distinct sensitive values inS−. At the beginning
of an iteration, we collect the numberni (1 ≤ i ≤ λ) of tuples
in the currentS− that have valuevi, and sort those numbers in
descending order. The sorted order may vary in each iteration, and,
without loss of generality, is assumed to ben1, n2, ...,nλ. We use
γ to denote

∑λ
i=1 ni.

Now suppose thatβ has been determined (its determination will
be clarified shortly). We choose theβ most frequent sensitive val-
uesv1, ...,vβ to form the signature ofBUC. For eachi ∈ [1, β],
we randomly pickα tuples inS− having the valuevi, and add them
to Srmv. Since there are onlynβ tuples with valuevβ , we have

α ≤ nβ. (5)

After Srmv is discarded, theremainingS− has cardinalityγ−α·β.
In thatS−, (i) there aren1 − α tuples with valuev1, and (ii) the
most frequent sensitive value can only be eitherv1 andvβ+1. For
the remainingS− to bem-eligible, we need

n1 − α ≤ (γ − α · β)/m (6)

nβ+1 ≤ (γ − α · β)/m. (7)

α is set to the largest positive integer that satisfies Inequalities 5-7.
It remains to clarify the decision ofβ. Initially, we set it to the

smallest possible valuem, and attempt to solveα from the above
three inequalities. Ifα exists, then the formulation ofα and β
is completed. Otherwise,β is increased by 1, and we again try to
solveα. This process is repeated, untilβ reaches the first value that
yields a solution ofα. As proved in Lemma 5, the process always



Algorithm Assign(S−)
1. λ = the number of distinct sensitive values inS−

2. whileS− is not empty //start an interation
3. γ = |S−|
4. obtainn1, n2, ...,nλ whereni (1 ≤ i ≤ λ) is the number of tuples

having thei-th most frequent sensitive valuevi in the currentS−

5. β = m
6. α = the largest positive integerα satisfying Inequalities 5-7
7. if α does not exist
8. β = β + 1; go to Line 6
9. BUC = a bucket whose signature is{v1 , ...,vβ} (createBUC if it

does not exist yet)
10. for i = 1 toβ
11. randomly moveα tuples with valuevi from S− to BUC

Figure 3: The assignment algorithm

terminates with a pair of appropriateα andβ. Figure 3 formally
presents the assignment algorithm.

LEMMA 5. If S− is m-eligible, the algorithm in Figure 3 as-
signs all tuples inS− to balanced buckets.

4.3 The Split Phase
Let BUC be a balanced bucket output by the assignment phase,

whose signature hass ≥ m sensitive valuesv1, v2, ...,vs. The split
phase starts by initiating a setSbuc = {BUC}. If BUC includes
more thans tuples, we remove it fromSbuc, and split (the tuples in)
BUC into two balanced bucketsBUC1 andBUC2 with the same
signature asBUC. BUC1 andBUC2 are then added toSbuc.

If any bucket inSbuc still has a size overs, we setBUC to
that bucket, and repeat the above procedures. The phase terminates
when all the buckets inSbuc contain exactlys tuples. They are
returned as the QI groups for generalization, as discussed in Sec-
tion 4.1. Totally|BUC|

s
−1 bucket splits are performed (notice that

the cardinality of each bucket inSbuc is always a multiple ofs).
Next we clarify the details of splittingBUC. We organizeBUC

into s groups, such that thej-th (1 ≤ j ≤ s) group contains only
the tuples with the sensitive valuevj . Clearly, every group has
size |BUC|/s. Then, the tuples in each group are sorted in as-
cending order of theirAqi

1 values (∅ precedes all non-empty values
in sorting). Let us deployLj to denote the sorted list of thej-th
(1 ≤ j ≤ s) group.

Suppose that we include the first tuple of eachLj (1 ≤ j ≤ s)
into BUC1, and the other tuples intoBUC2. This determines a
split scheme. Similarly, we can obtain an alternative scheme by
placing the first 2 (or 3, 4, ...,|BUC|/s− 1) tuples of eachLj into
BUC1, and the rest intoBUC2. This way,s−1 different schemes
have been defined. Recall thatL1, ...,Ls were computed based on
attributeAqi

1 . By generating these sorted lists with respect to each
otherAqi

i (2 ≤ i ≤ d), we derive anothers − 1 schemes in the
same manner.

Among all thed · (|BUC|/s − 1) schemes, we pick the “best”
one as the final split, which minimizes the perimeter sum of
BUC1 andBUC2. Specifically, theperimeterof BUC1 equals
|BUC1| ·

∑d
i=1 li, whereli (1 ≤ i ≤ d) is the length of the mini-

mum interval, which encloses theAqi
i values of all tuples inBUC1.

The perimeter ofBUC2 is defined symmetrically. To make the
lengths of minimum intervals along differentAqi

i comparable, we
normalize the domain of eachAqi

i to [0, 1].

4.4 Discussion
The QI-groups output by our algorithm conform to thelocal-

recoding generalization scheme [12], in contrast to theglobal-
recodingscheme often adopted in the literature. We employ the
local-recoding scheme because it provides higher flexibility in

attribute Age Gender Education Birthplace Occupation Income
domain size 79 2 17 57 50 50

Table 5: Attribute domain sizes

forming QI-groups. Apparently, the concept ofm-invariance can
also be implemented under global-recoding, although it demands
the development of another generalization algorithm. In any case,
the choice of a scheme is not important, as long as the published
information has good utility. In the next section, we will show that
the anonymized data produced by our technique permit accurate
aggregate analysis.

5. EXPERIMENTS
All the experiments are performed on a machine running a 3Ghz

CPU with 1 Giga-byte memory. We deploy two real databases
OCC and SAL downloadable fromhttp://ipums.org. Each database
contains 600k tuples, each storing the information of an American
adult. OCC includes four QI attributes,Age, Gender, Education,
andBirthplace, and a sensitive attributeOccupation. SAL contains
the same QI attributes, but a different sensitive attributeIncome.
All columns are discrete, and the sizes of their domains are given
in Table 5.

A dynamic microdata tableTocc (Tsal) is created from OCC
(SAL). It suffices to clarify the generation ofTocc, since the same
method is used forTsal. The first versionTocc(1) contains 200k
tuples randomly sampled from OCC. We initiate apool that con-
tains the other 400k tuples in OCC. At thej-th (j ≥ 2) timestamp,
Tocc(j) is obtained by arbitrarily deletingr tuples fromTocc(j−1),
and then inserting the same number of tuples randomly removed
from pool. Here, r is a parameter, calledupdate volume, con-
troling the update rate. We repeat this process up to timestamp
H = 1 + 400k/r (e.g., forr = 20k, the history has totallyH = 21
timestamps).

We refer to the sequence{Tocc(1), Tocc(2), ..., Tocc(H)} as a
Tocc-series(the concept ofTsal-seriesis defined similarly). Such
a series is characterized by the parameterr.

5.1 Failure of Conventional Generalization
In the first set of experiments, we aim at establishing our conjec-

ture that the existing generalization principles may lead to severe
privacy disclosure in re-publication. We usel-diversity as the rep-
resentative principle, since it is widely adopted and offers stronger
protection thank-anonymity.

Given aTocc-series, we adopt the algorithm in [13] to compute
an l-diverse versionT ∗

occ(j) of eachTocc(j) for all j ∈ [1, H ].
Then, we capture all the tuples (that ever appear inTocc) whose
sensitive values will definitely be revealed, i.e., their privacy re-
ceives no protection at all. Thesevulnerable tuplesare extracted
using Lemma 1. Note that, a generalization principle can be used
for re-publication, only if no vulnerable tuple can ever be found.

In Figure 4a, we plot the number of vulnerable tuples as a func-
tion of r, as this parameter changes from 5k to 40k. Each curve
corresponds to the result obtained with a differentl (varied from 2
to 10).

Obviously,l-diversity fails to support re-publication, because it
results in a large number of vulnerable tuples. For example,for
l = 2, there are nearly 100k tuples whose privacy is not preserved
at all, regardless ofr. Although fewer vulnerable tuples exist asl
increases, they still cannot be completely prevented even with the
largestl = 10. The number of vulnerable tuples decreases asr
grows. This is because, for a largerr, each tuple in the microdata
is published fewer times, and thus, has a lower chance of becoming
vulnerable (in the extreme case where each tuple is releasedonly
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Figure 5: Number of counterfeits vs. time (r = 5k, m = 10)

once, no tuple is vulnerable).
We repeat the experiment onTsal. The results are illustrated in

Figure 4b, confirming the same observations.

5.2 m-Invariance Evaluation
In the sequel, we examine the effectiveness and efficiency of

m-invariant generalization. Given aTx-series (wherex = occ or
sal), the counterfeited generalization (CG) algorithm in Section 4
is invoked to compute the generalized relationsT ∗

x (1), T ∗
x (2), ...,

T ∗
x (H) for m-invariant publication. We call the sequence{T ∗

x (1),
..., T ∗

x (H)} a T ∗
x -series, which is characterized by parametersr

andm.

Number of Counterfeits. We start by demonstrating that only a
small number of counterfeits are needed to enforcem-invariance.
We first deploy theT ∗

occ-series withr = 5k andm = 10. The se-
ries includes 81 releases. Figure 5a demonstrates the numbers of
counterfeits in those releases, in ascending order of the publication
timestamps. Figure 5b presents the results of a similar experiment
with respect toTsal. For Tocc (Tsal), the maximum number of
counterfeits at a timestamp is only 10 (12). Furthermore, at51 (33)
timestamps, no counterfeit is necessary at all.

Next, we focus on the average number of counterfeits per times-
tamp in aT ∗

x -series. Fixing m to 10, Figure 6a shows the averages
for bothT ∗

occ- andT ∗
sal-series as a function ofr. The average de-

creases quickly asr increases, such that CG does not generate any
counterfeit, forr ≥ 20k. This is expected, because critical absence
is less likely when a larger number of tuples are inserted at each
timestamp. In Figure 6b, we setr to 5k, and measure the average
by varyingm from 2 to 10. The average number never exceeds 2.5.

Utility of the Published Data. In the following set of experi-
ments, we will useT ∗

x -series (wherex = occ or sal) to answer
queries about the original microdata, and demonstrate the accu-
racy of query results. We concentrate onaggregate queries, since
they are the basic operation for numerous mining tasks (e.g., deci-
sion tree learning, association rule mining, etc.). Specifically, each
query has the form:

SELECT COUNT(*) FROM Tx(j)

WHERE pred(Aqi
1 ) AND ... AND pred(Aqi

4 ) AND pred(As)
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wherej is a timestamp in the history of the deployedT ∗
x -series,

Aqi
1 , ...,Aqi

4 denote the four QI attributes inTx, andAs the sensitive
attribute. For each attributeA, the conditionpred(A) has the form
A ∈ R. Here,R is a random range in the domain ofA, and has
length|A| · θ1/5, where|A| is the domain size ofA (see Table 5),
andθ a query parameter called theexpected selectivity. A larger
result is returned with a higherθ. A workload consists of 10000
queries with the samej ands.

Given a query, we obtain its actual resultact from the microdata
table Tx(j), and compute an estimated answerest from T ∗

x (j).
The computation ofest follows the algorithm in [23], except that
here the tableR(j) auxiliary toT ∗

x (j) is also taken into account.
Specifically, from each QI-groupQI∗ in T ∗

x (j), a partial answer
is calculated as follows. We define a 4-dimensional rectangle z
from QI∗, usingQI∗[Aqi

1 ], ...,QI∗[Aqi
4 ] as the extents ofz. Simi-

larly, a 4-dimensional rectanglez′ can be defined from the query’s
pred(Aqi

1 ), ...,pred(Aqi
4 ). We setc1 to the ratio between the areas

of z′ ∩ z andz, c2 to the percentage of the tuples inQI∗ whose
sensitive values qualifypred(As), andc3 to the number of coun-
terfeits inQI∗ (c3 is available fromR(j)). Then, the partial answer
of QI∗ equals(|QI∗| − c3) · c1 · c2. Our estimateest equals the
sum of the partial answers of all QI-groups.

The relative error of a query equals|act−est|/act. We measure
the workload erroras the median relative error of all the queries.
Adoptingm = 10, Figure 7a (7b) plots the workload error as a func-
tion of time, forT ∗

occ- (T ∗
sal-) series withr = 5k and 40k (i.e., the

two extreme values tested in Figure 6a), respectively. At all times-
tamps, the error is at most10%, indicating high utility of the gen-
eralized tables. Furthermore, the error does not vary significantly
with time, and is not sensitive to the update volumer.

In the experiments of Figure 8, we focus onT ∗
occ- (T ∗

sal-) se-
ries with r = 5k. We measure the average workload error of all
workloads performed at each timestamp in the history of the em-
ployed series. Figure 8a plots the average error as a function of
θ, for T ∗

occ- andT ∗
sal- series withm = 10. The accuracy improves

asθ increases. This is expected because a higherθ leads to larger
query results, whereas in general, aggregate analysis is effective for
sizable queries. Fixingθ at 10%, Figure 8b illustrates the average
error with respect tom. A smallerm requires less generalization,
and hence, permits even more accurate analysis.
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Computation Overhead. The last experiment evaluates the effi-
ciency of our CG algorithm. First, we setm to 10, and measure
the average time of computing a generalized relation inT ∗

x -series
(wherex = occ or sal) of different r. Figure 9a demonstrates the
time as a function ofr. The cost is more expensive whenr is higher,
because the algorithm needs to process more newly inserted tuples
at each timestamp.

Then, we fixr to 5k, and plot the cost as a function ofm in
Figure 9b. The overhead decreases asm increases, since a largerm
necessitates fewer buckets, and requires a smaller number of bucket
splits. In all cases, the algorithm terminates within 12 seconds.

6. RELATED WORK
The literature of centralized publication can be classifiedinto

three main categories. The first one aims at devising generalization
principles, which serve as the criteria for judging whethera pub-
lished relation provides sufficient privacy protection.k-anonymity
[18, 20] andl-diversity [15] are the two most widely accepted prin-
ciples, and hence, are used as the representatives in our discussion.
Li and Li [14] proposet-closeness, which requires the distribution
of sensitive values in each QI group to be analogous to the distri-
bution of the entire dataset. Aggarwal et al. [2] suggest twoprin-
ciples based on clustering. Xiao and Tao [23] adopt a personalized
approach, where each individual may request a tailored degree of
privacy preservation.

The second category includes algorithms for computing a gen-
eralized table under a generalization principle, which minimizes
some quality metric. With certain constraints [12] on the resulting
generalization, it is often feasible to enumerate all the possible gen-
eralized relations. In that case, the optimal relation can be found
efficiently by using several heuristics [5, 12] to prune the search
space. Greedy solutions have also been proposed [7, 8, 11, 13] to
obtain a suboptimal solution much faster. Several hardnessresults
have been derived. In particular, it is shown [3, 13, 17] thatcomput-
ing the optimal generalized table is NP hard, even when a simple
quality metric is deployed. Aggarwal [1] proves that, when the
number of QI attributes is high, enforcingk-anonymity necessarily
results in severe information loss, even fork = 2.

The third category concerns improving the utility of the pub-
lished dataset, without compromising privacy protection.Kifer

and Gehrke [9] advocate releasing themarginals, each of which
anonymizes the projection of the microdata table on a subsetof the
(QI and sensitive) attributes. Xiao and Tao [22] present theanatomy
technique, which publishes QI and sensitive values in two sepa-
rate tables. In this way, QI values do not need to be generalized,
since the separation already prevents privacy breaches. Koudas et
al. [10] exploit a similar idea for improving the accuracy ofaggre-
gate search.

The above works focus on one-time publication. Wang and Fung
[21] consider a re-publication scenario different from ours. They
assume a (again, static) microdata table that contains a large num-
ber of QI attributes. In the first publication, the publisherreleases
a subset of those attributes, together with the sensitive attribute.
Later, the publisher is requested to release a different subset of the
QI attributes (but not the sensitive attribute). The objective is to
anonymize the second publication, so that no adversary can infer
sensitive data by combining both releases. Unlike [21], we aim at
re-publication of microdata after its contents have been updated.

The work closest to ours is due to Byun et al. [6]. They pro-
pose an interesting technique that enables privacy-preserving re-
publication of a dataset, after new tuples have been inserted. De-
spite its pioneering role in tackling re-publication, the technique
has three shortcomings. First, it is inapplicable when deletions are
allowed in the microdata, unlike the proposed solution thatsup-
ports both insertions and deletions. Second, it enforces a simple
version ofl-diversity with weak privacy guarantees. Specifically,
let S be the set of sensitive values that an adversary thinks may be
the real sensitive valuev of an individual. The technique of [6]
ensures|S| ≥ l, but imposes no limit on the adversary’s confi-
dence aboutv taking a specific element inS. For instance, ifl =
2, an adversary may deriveS = {HIV, flu}, but have exceedingly
high (e.g., 99%) confidence aboutv = HIV. On the other hand,
under the same assumption of adversaries’ prior knowledge,m-
invariance guarantees that such confidence is bounded by1/m, as
proved in Lemma 3. Third, the technique of [6] requires consider-
ation of all the releases in history, in assessing the risk ofprivacy
disclosure of a new release. As a result, the space consumption (at
the publisher) increases continuously with time, due to theneed of
retaining every past release. Furthermore, the computation cost of
preparing a new release also grows monotonically, because more
information must be examined each time. Our solution does not
have this defect, since it demands storing only the last release, as
established in Lemma 4.

7. CONCLUSIONS
The existing centralized-publication methods do not support re-

publication of microdata in the presence of both insertionsand
deletions. This paper remedies the problem by developingm-
invariance, a novel concept that prevents an adversary fromus-
ing multiple releases to infer sensitive information. We present a
formal analytical study that elaborates the theoretical foundation
of m-invariance, and proves its effectiveness of limiting privacy
disclosure. As a second step, we provide an efficient algorithm
for computing anonymized versions of the microdata, which ade-
quately protect privacy and yet support effective data analysis.

This work also initiates several promising directions for future
work. First, it would be exciting to extend the proposed technique
to tackle alternative forms of background knowledge. Research
towards this direction may lead to the discovery of alternative gen-
eralization principles. Second, it may be worthwhile to study the
possibility of releasing marginal tables [9], in order to further im-
prove the utility ofm-invariant publication. Third, it would be in-
teresting to explore howm-invariant generalization can be adapted



to optimize a given workload [11].
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APPENDIX
Proof of Lemmas 1 and 2. Let b be the row inB(n) generated byt, and
Sj (x ≤ j ≤ y) be the set of tuples inT ∗(j) whose values alongAqi

i

coverb[Aqi
i ], for eachi ∈ [1, d]. Consider any reasonable surjectionf :

U∗(n) → B(n). For everyj ∈ [x, y], there exists exactly one tuplet∗j ∈

Sj satisfyingf(t∗j ) = b (Condition 1.1 of Definition 13). Furthermore,
t∗x, t∗x+1, ...,t∗y have the same sensitive value (Condition 1.2), which is the
sensitive valuev of t reconstructed byf . By Definition 15,v = t∗j [As] ∈

t.CSS(j) (x ≤ j ≤ y), which is equivalent tov ∈ ∩y
k=xt.CSS(k), and

thus establishes Lemma 2.
∩y

k=xt.CSS(k) definitely contains the real sensitive valuet[As] of t.
Hence, if∩y

k=xt.CSS(k) contains only one value, this value must equal
t[As]. In this case, any reasonable surjectionf reconstructst[As] correctly,
renderingnbreach(t) = ntotal. Hence, Lemma 1 is proved.

Proof of Lemma 3. Let t be an arbitrary tuple inU(n), and b be the
row in B(n) generated byt. Given any reasonable surjective functionf :
U∗(n) → B(n), we defineAQ(b, f) as the set of QI-groups inT ∗(1), ...,
T ∗(n) that contain at least a tuple inf−1(b).

Consider thentotal reasonable surjections fromU∗(n) to B(n). We
divide them intobatchessuch that, for any surjectionsf andf ′ in the same
batch,AQ(b, f) = AQ(b, f ′). Let nbat be the total number of resulting
batches. For thei-th (1 ≤ i ≤ nbat) batchFi, usecnt(Fi, v) to denote
the number of surjections inFi that reconstruct the sensitive value oft as

v. In the sequel, we will showcnt(Fi, t[A
s]) ≤

|Fi|
m

, which will establish
the lemma because

risk(t) =

∑nbat

i=1 cnt(Fi, t[A
s])

ntotal
≤

∑nbat

i=1 |Fi|

m · ntotal
=

1

m
.

Given any surjectionf ∈ Fi, all QI-groups inAQ(b, f) have an identi-
cal signature (Definition 16), due tom-invariance. Without loss of gen-
erality, assume that each QI-group inAQ(b, f) has x sensitive values
v1, v2, ..., vx. The value ofx is at leastm as required bym-invariance.

Let f1 be any surjection inFi that reconstructs the sensitive value of
t as v1. Let us design another surjectionf2 : U∗(n) → B(n) as fol-
lows. Initially, f2(t∗) is undefined for any tuplet∗ ∈ U∗(n). Then, we
inspect the QI-groups in eachT ∗(j) (1 ≤ j ≤ n). If a QI-group has
two tuplest∗1 and t∗2 satisfyingt∗1[As] = v1 and t∗2[As] = v2, we set
f2(t∗1) = f1(t∗2) andf2(t∗2) = f1(t∗1). After examining all QI groups,
for any tuplet∗ ∈ U∗(n) such thatf2(t∗) remains undefined, we set
f2(t∗) = f1(t∗). Subjectionf2 is a reasonable surjection, which satisfies
AQ(b, f1) = AQ(b, f2). Hence,f2 belongs toFi.

f2 reconstructs the sensitive value oft as v2. The existence off2

for any f1 implies cnt(Fi, v1) ≤ cnt(Fi, v2). By symmetry, we
can also derivecnt(Fi, v2) ≤ cnt(Fi, v1), and thus,cnt(Fi, v2) =
cnt(Fi, v1). Extending the analysis to all the elements of{v1, ..., vx},
we havecnt(Fi, v1) = cnt(Fi, v2) = ... = cnt(Fi, vx) = |Fi|/x.
Given x ≥ m andt[As] ∈ {v1, ..., vx}, it holds thatcnt(Fi, t[As]) ≤
|Fi|/x ≤ |Fi|/m.

Proof of Lemma 4. By Definition 17, if {T ∗(1), ..., T ∗(n)} is m-
invariant, then the two conditions in Lemma 4 hold. Conversely, as-
sume thatT ∗(n) satisfies both conditions in Lemma 4, we will show that
{T ∗(1), ...,T ∗(n)} is anm-invariant sequence.

Since allT ∗
j (1 ≤ j ≤ n) arem-unique, they satisfy the first require-

ment in Definition 17. Next we show that the second requirement holds for
any tuplet ∈ U(n). If t /∈ T (n), all the generalized hosting groups of
t must have the same signature, because{T ∗(1), ..., T ∗(n − 1)} is m-
invariant. If t ∈ T (n) but t /∈ T (n − 1), thent has only one generalized
hosting groupt.QI∗(n), which appears inT ∗(n). In that case, the second
requirement in Definition 17 trivially holds fort.

Now consider the case whent ∈ T (n) ∩ T (n − 1). Since
{T (1), ..., T (n − 1)} is m-invariant, the generalized hosting groups of
t in T ∗(1), ...,T ∗(n − 1) should share the same signature. By the second
condition in Lemma 4,t.QI∗(n − 1) andt.QI∗(n) also have an identi-
cal signature. Therefore, the second requirement in Definition 17 is also
fulfilled for t.

Proof of Lemma 5. Let us consider any iterationI of the algorithmAssign.
λ, α, β, γ, n1, n2, ...,nλ are as defined in Section 4.2. To prove the lemma,
it suffices to show that (again, for anyI) we can always find a pair of(α, β)
such thatα ≥ 1, β ∈ [m, λ], and they satisfy Inequalities 5-7. Leti′ be
the largest subscripti satisfyingni = n1 (specially,i = 1, if no element in
{n2, ...,nλ} is equivalent ton1). We will prove that the three inequalities
hold, givenα = 1 andβ = max{i′, m}.

In the sequel,S refers to the content ofS− beforeI starts. SinceS is
m-eligible, nm ≥ 1. Hence,nβ ≥ nmax{i′,m} ≥ nm ≥ 1 = α. Thus,
Inequality 5 holds.

By the wayβ is defined, we havenβ+1 ≤ nβ −1 = nβ −α ≤ n1−α.
Consequently, next we discuss only Inequality 6, since its satisfaction auto-
matically validates Inequality 7. For this purpose, an important observation
is n1 ≤ γ/β. This observation can be established by discussing two cases.
First, if β = m, by them-eligibility of S, we known1 ≤ γ/m = γ/β.

Second, ifβ > m, then n1 · β =
∑i′

i=1 ni ≤ γ, also resulting in
n1 ≤ γ/β. Hence:

n1 − α ≤ γ/β − 1 ≤ (γ − β)/β ≤ (γ − α · β)/m.

Namely, Inequality 6 holds.


