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ABSTRACT

In monotone classification, the input is a set P of n points in d-

dimensional space, where each point carries a label 0 or 1. A point p

dominates another point q if the coordinate of p is at least that of q

on every dimension. A monotone classifier is a function h mapping

each d-dimensional point to {0, 1}, subject to the condition that

h(p) ≥ h(q) holds whenever p dominates q. The classifier h mis-

classifies a point p ∈ P if h(p) is different from the label of p. The

error of h is the number of points in P mis-classified by h. The

objective is to find a monotone classifier with a small error. The

problem is fundamental to numerous database applications in entity

matching, record linkage, and duplicate detection.

This paper studies two variants of the problem. In the first active

version, all the labels are hidden in the beginning; an algorithm

must pay a unit cost to probe (i.e., reveal) the label of a point in P . We

prove that Ω(n) probes are necessary to find an optimal classifier

even in one-dimensional space (d = 1). On the other hand, given

an arbitrary ϵ > 0, we show how to obtain (with high probability)

a monotone classifier whose error is worse than the optimum by at

most a 1 + ϵ factor, while probing Õ(w/ϵ2) labels, wherew is the

dominance width of P and Õ(.) hides a polylogarithmic factor. For

constant ϵ , the probing cost matches an existing lower bound up

to an Õ(1) factor. In the second passive version, the point labels in

P are explicitly given; the goal is to minimize CPU computation

in finding an optimal classifier. We show that the problem can be

settled in time polynomial to both d and n.
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•Theory of computation→Approximation algorithms anal-

ysis; Active learning.

KEYWORDS

Active Learning; Monotone Classification; Entity Matching

∗Yu Wang, who passed away in 2019, was a Ph.D. student of Yufei Tao at the Chinese
University of Hong Kong. The paper is in memory of Yu’s contributions in the early
phase of this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00
https://doi.org/10.1145/3452021.3458324

ACM Reference Format:

Yufei Tao and |Yu Wang |. 2021. New Algorithms for Monotone Classifica-

tion. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems (PODS ’21), June 20–25, 2021, Virtual Event,

China. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3452021.

3458324

1 INTRODUCTION

We consider two problems fundamental in entity matching, record

linkage, and duplicate detection. A common goal behind these

applications is to decide whether a pair of objects is amatch or a non-

match based on their similarity scores on selected dimensions. This

requires learning a function h that, given a set of similarity scores,

outputs a binary verdict: 1 (i.e., accepting the corresponding objects

as a match) and 0 (rejecting them). The function is explainable if

it never accepts a less similar pair while rejecting a more similar

pair. Finding such a function with high accuracy introduces various

challenges. Next, we formalize two problems to tackle some of those

challenges.

1.1 Problem Definitions

Active monotone classification. The input is a set P of n points

in Rd where d ≥ 1 is the dimensionality. Each point p ∈ P is

associated with a binary label, represented as label(p) (= 0 or 1).

Denote by p[i] the coordinate of p on dimension i ∈ [1,d].

A point p dominates another (different) point q if p[i] ≥ q[i] for

all i ∈ [1,d]; note that p , q implies that p[i] > q[i] holds on at

least one i . We will use p < q to indicate p dominating q.

A classifier is a function h : Rd → {0, 1}, namely, h(p) maps a

point p ∈ Rd to either label 0 or 1. Given a point p ∈ P , we say

that h correctly classifies p if h(p) = label(p), or mis-classifiers p

otherwise. We define the error of h on P as

errP (h) = |{p ∈ P | h(p) , label(p)}| (1)

that is, the number of points in P mis-classified.

A classifier h is monotone if h(p) ≥ h(q) holds for any distinct

points p,q ∈ Rd such that p < q. Denote by Hmono the set of all

possible monotone classifiers. Our objective is to find a monotone

classifier with the minimum error on P . Note that the minimum

error may not be zero because P does not need to obeymonotonicity.

Define

k∗ = min
h∈Hmono

errP (h) (2)

namely, the minimum error of all monotone classifiers on P . A clas-

sifier h ∈ Hmono is c-approximate if errP (h) ≤ ck∗. A 1-approximate

classifier is optimal.
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Figure 1: Example input sets

As an example, consider Figure 1(a), which shows a 2D input

set P where a black (or white) point has label 1 (or 0, respectively).

Consider the monotone classifier h that maps (i) all the black points

to 1 except p1, and (ii) all the white points to 0 except p11 and

p15. Therefore, errP (h) = 3. No other monotone classifiers have a

smaller error on P ; in other words, k∗ = 3.

In the beginning, the labels of all the points in P are hidden. An

algorithm can probe an arbitrary point p ∈ P by asking an oracle to

reveal label(p). In the end, the algorithm must return a monotone

classifier. The algorithm’s probing cost is the total number of points

probed. Obviously, with probing cost n, an algorithm acquires all

the labels and, thus, can always return an optimal classifier (after

sufficient CPU computation). The challenge, however, is to achieve

the purpose with the minimum probing.

This brings us to the first problem studied in this work:

Problem1 (activemonotone classification):Given P and

a value ϵ ≥ 0, find a (1+ ϵ)-approximate monotone classifier

while minimizing the probing cost.

Although CPU efficiency is not an explicit concern in Problem

1, an algorithm suitable for practical use should have a tractable

running time, i.e., polynomial to n, d , and 1/ϵ .

Passive weighted monotone classification. A fully-labeled

weighted set refers to a set P of points in Rd where each point

p ∈ P is associated with

• (as before) label(p), which is either 0 or 1;

• a positive finite real-valued weight, denoted as weight(p).

Given a classifier h ∈ Hmono , define its weighted error on P as:

w-errP (h) =

∑

p∈P

weight(p) · ✶h(p),label(p) (3)

where, in general, ✶π equals 1 if predicate π holds or 0 otherwise.

Note that w-err(h) captures the err(h) in (1) as a special case where

every p has weight 1.

Let us use Figure 1(b) to illustrate the above concepts. The input

set P is the same as in Figure 1(a), butp1 now carries a weight of 100,

p11 and p15 have weight 60, and all the other points have weight 1.

Consider the aforementioned monotone classifier h optimal under

Problem 1. Recall that h correctly classifies all the points except p1,

p11, and p15. The weighted error of h on P is w-errP (h) = 100+60+

60 = 220. This is far from being optimal under Problem 2. Consider

instead another monotone classifier h′ that maps p10,p12,p16 to 1

and everything else to 0. It is easy to verify thatw-errP (h) = 104 (the

weight sum of p1,p4,p9, p13, and p14). This is actually an optimal

classifier under Problem 2.

We now introduce the second problem studied in this work:

Problem 2 (passive weightedmonotone classification):

Given a fully-labeled weighted set P , find a monotone classi-

fier with the smallest weighted error on P while minimizing

the CPU time.

As before, set n = |P |. It is worth emphasizing that (i) while Prob-

lem 1 concerns only the probing cost, Problem 2 focuses exclusively

on CPU time; (ii) no approximation is allowed in Problem 2.

Connections to similarity-based matching. Consider two (pos-

sibly infinite) sets of objects: X and Y . We want to devise a method

that, given x ∈ X and y ∈ Y , can determine whether x and y

form a match. This is a core problem behind many applications,

e.g., matching the advertisements on Amazon with those on eBay

selling the same product, identifying records from two databases

describing the same entity, determining whether a document pla-

giarizes another, etc. A popular approach is to calculate the sim-

ilarity scores of x and y on a number d of carefully-chosen met-

rics: sim1(x ,y), sim2(x ,y), ..., simd (x ,y) (a higher score indicates

greater similarity). We want to learn a function that casts a ver-

dict (on whether x matches y) based on these scores. If we define

px,y = (sim1(x ,y), ..., simd (x ,y)), such a function can be regarded

as a classifier that maps Rd to {0, 1} with 1 representing a match.

To carry out learning, we are given a sample set S ⊆ X × Y

following some unknown distribution D over X × Y . Define

P = {px,y | (x ,y) ∈ S}

where each point px,y carries a label 1 if x and y are a match, and 0

otherwise. The goal of learning is to find a classifierh : Rd → {0, 1}

to minimize errP (h). Such a classifier is expected to perform well

on a general object pair (x ,y) (not necessarily in S) drawn from D.

Problems 1 and 2 suit different scenarios under the above settings.

Problem 1 applies when the label of px,y is costly to obtain. For

example, determining whether two advertisements are about the

same product requires human inspection, which is both time and

money consuming; it can be prohibitively expensive to do so for

all advertisement pairs in S . Thus, the chief objective is to find

an accurate classifier by minimizing the amount of label probing.

Problem 2, on the other hand, applies when all the labels are already

available (e.g., this happens usually when S is small). The goal is

then to find an optimal classifier by minimizing computation.

Demanding the monotonicty of h avoids the strange situation

of classifying (x ,y) as a non-match but (x ′,y′) as a match when

p(x,y) < p(x ′,y′). This oddity is difficult to explain because the

former pair is at least as similar as the latter on every dimension.



Math conventions. Given two non-negative integers x and y, we

use notation x ≤ϵ y to represent the fact that x ≤ (1 + ϵ)y where

ϵ ≥ 0. Given a real value x > 0, we use logx as a short form for

1 + log2 x .

1.2 Previous Results

Tao [25] showed that a key parameter characterizing the hardness

of Problem 1 is the dominance width w of P . Formally, w is the

size of the largest subset S ⊆ P such that no two points in S have

a dominance relationship (e.g., for the input set P in Figure 1(a),

w = 6, as is witnessed by S = {p10,p11,p12,p13,p14,p16}). The

focus of [25] was to study algorithms with small “expected errors”.

Formally, let A be a randomized algorithm and h be the classifier

it returns on P . As h is a random variable, so is errP (h), whose

expectation is the expected error of A on P . The results of [25] are:

• There is an algorithm that probes O(w log n
w ) labels in ex-

pectation, and has an expected error of at most 2k∗, where

k∗ is the optimal error (see (2)).

• Any algorithm with expected error ck∗, regardless of the

constant c ≥ 1, must probe Ω(w log n
(1+k∗)w

) labels in expec-

tation. This matches the above upper bound up to a small

factor (and essentially tight when k∗ is small).

However, the error guarantee of Tao’s algorithm [25] is weak in

two ways. First, it fails to come close to (1 + ϵ)k∗ for an arbitrarily

small ϵ > 1 (the approximation ratio 2 is already tight). Second,

even the 2k∗ error bound holds only in expectation, as opposed to

with high probability.

Currently, the A2 algorithm (see [2, 4, 9, 15] for the history of its

development) is the best approach for finding a monotone classifier

of error at most (1 + ϵ)k∗ with high probability. The algorithm

probes Õ(θ · λ · 1
ϵ 2
) labels, where λ is the VC dimension [22] of P

under the set Hmono of monotone classifiers, θ is the disagreement

coefficient [15] of Hmono on P , and the notation Õ(.) hides a factor

polylogarithmic tod,n, and 1/ϵ . We do not need the exact meanings

of λ and θ , except to note that both of λ and θ are Ω(w), as shown

in [25]. This means that the probing bound of the A2 algorithm is

Ω(w2/ϵ2) at the very best.

No previous work exists on Problem 2. A naive solution is to

examine every possible subset S ⊆ P . Specifically, we checkwhether

mapping the entire S to 1 and the entire P \S to 0 makes a monotone

classifier h. If so, we proceed to compute w-errP (h) and maintain

the best classifier seen so far. This shows that Problem 2 is decidable,

but the solution’s running time is exponential to n. Later, we will

prove that Problem 2 can be settled in polynomial time.

The work of [25] also considered a variant of Problem 1 called

active monotone classification with exceptions, which differs from

Problem 1 in how the expected error of an algorithmA is calculated.

Finally, it is worth mentioning that entity matching, record linkage,

duplicate detection, and other similar problems have attracted a

huge amount of attention from the system community; see [1, 3, 5–

7, 11, 12, 17–21, 24, 26] and the references therein. When viewed

through the lens of theory, however, those papers do not provide

formal findings that can rival the aforementioned results.

1.3 Our Results

Our first contribution is to a new hardness result on active mono-

tone classification:

Theorem 1. For Problem 1, any algorithm promising to find an

optimal classifier with probability over 2/3 must probe Ω(n) labels in

expectation. This is true even if the dimensionality is 1.

As mentioned, with n probes, an algorithm can reveal the labels

of all the points in P , after which it can always discover an optimal

monotone classifier (CPU time is not a concern here). Theorem 1

suggests that the naive approach is already optimal up to a constant

factor. This justifies the studies on finding approximate classifiers

with fewer probes. Our second contribution is a new algorithm that

achieves an approximation ratio arbitrarily close to 1:

Theorem 2. For any ϵ ∈ (0, 1], with probability at least 1 − 1/n2

we can solve Problem 1 by probingO(w
ϵ 2

· log n
w · logn) points, where

n,d , andw are the size, dimensionality, and dominance width of the

input set P , respectively.

Several remarks are in order:

• The failure probability 1/n2 can be reduced to 1/nc for an ar-

bitrarily large constant c > 2 without affecting the theorem’s

asymptotic claim.

• If the optimal error k∗ (see (2)) is 0, our algorithm finds an

optimal classifier with high probability.

• When k∗ > 0, the ability of returning a classifier with error

at most (1 + ϵ)k∗ with high probability implies that our

algorithm can ensure an expected error (1 + ϵ)k∗, noticing

that n is the maximum possible error for a classifier1.

• The probing cost bound holds for every run of our algorithm

(with probability 1). For a constant ϵ , the bound becomes

O(w log n
w · logn), which is higher than the lower bound

Ω(w log n
(1+k∗)w

) of [25] (see Section 1.2) by only a small

factor.

• Compared to the existing results (Section 1.2), our algorithm

enjoys much stronger error guarantees than [25] and im-

proves the probing cost of the A2-algorithm by nearly a

factor of O(w).

The algorithm of Theorem 2, if implemented directly, may en-

tail expensive CPU overhead (exponential tow). To improve CPU

efficiency, we observe a connection between active and passive

monotone classification:

Theorem 3. If Problem 2 can be settled inTprob2(d,n) time, we can

solve Problem 1 with the guarantees in Theorem 2 and the CPU time

Õ(dn2 +n2.5 +w/ϵ2)+Tprob2(d,N ), where N = O(w
ϵ 2

· logn · log n
w )

and Õ(.) hides a factor polylogarithmic to d , n, and 1/ϵ .

In other words, as long as passive weighted monotone classifica-

tion can be settled in polynomial time, the proposed algorithm in

Theorem 2 runs in time polynomial to d , n, and 1/ϵ . Our final con-

tribution is to settle Problem 2 in polynomial time by connecting it

to the max-flow problem (to be reviewed in Section 2):

1Suppose that the goal is to achieve expected error 1.5k∗ . We can set ϵ to 0.4, in
which case the expected error is at most 1.4k∗(1 − 1/n2) + n/n2 < 1.5k∗ , assuming
n ≥ 10.



Theorem 4. Problem 2 can be solved in O(dn2) + Tmaxflow(n)

time, where n and d are the size and dimensionality of the input set

P , respectively, and Tmaxflow(n) is the time of solving the max-flow

problem on a graph of n vertices.

The results of this paper complement those of [25] in providing

a systematic theory on passive and active monotone classification.

2 PRELIMINARIES

Estimation up to an absolute error. Let us start with a funda-

mental lemma (proof in the appendix):

Lemma 5. Let X1,X2, ...,Xt be t independent Bernoulli variables

such that Pr[Xi = 1] = µ for each i ∈ [1, t] (and hence, Pr[Xi = 0] =

1 − µ). For any ϕ ∈ (0, 1] and δ ∈ (0, 1],

Pr

[

�

�

�µ −
1

t

t
∑

i=1

Xi

�

�

� ≥ ϕ

]

≤ δ (4)

as long as t ≥ ⌈max{
µ

ϕ2 ,
1
ϕ
} · 3 ln 2

δ
⌉.

Consider the input set P of Problem 1. Suppose that we want to

estimate the number nπ of points in P satisfying an (arbitrary) pred-

icate π . We can draw, with replacement, a set S of t = O( 1
ϕ2 log

1
δ
)

points from P uniformly at random. If x is the number of points in

S satisfying π , Lemma 5 assures us that (x/t) · n approximates nπ
up to absolute error ϕn, with probability at least 1 − δ .

As a further corollary, given any h ∈ Hmono , we can utilize S to

estimate errP (h) (see (1)) up to absolute error ϕn, by formulating π

as follows: a point p ∈ P satisfies π if and only if label(p) , h(p).

Chain decomposition and dominance width. Let P be a set of

points in Rd . A subset S ⊆ P is an anti-chain if there do not exist

any distinct points p,q ∈ S such that p < q. The dominance width

w of P , introduced earlier in Section 1.2, is the essentially size of

the largest anti-chain.

In contrast, a chain is a subset C ⊆ P such that it is possible to

arrange the points in C into a sequence p1,p2, ...,p |C | such that

pi+1 < pi for each i ∈ [2, |C |]. A chain decomposition of P divides

P into t disjoint chains C1,C2, ...,Ct , namely,
⋃t
i=1Ci = P and

Ci ∩Cj = ∅ for any distinct i, j ∈ [1, t].

Dilworth’s theorem [10] gives a connection between the domi-

nance width and chain decompositions: w is the smallest number

of chains that P can be partitioned into. Specifically, there must ex-

ist a chain decomposition withw chains; conversely, every chain

decomposition must have at leastw chains.

To illustrate these concepts, let us look at the input set P in

Figure 1(a) again. We can divide P into 6 chains: C1 = {p1, p2, p3,

p4, p10}, C2 = {p11}, C3 = {p5, p9, p12}, C4 = {p16}, C5 = {p13},

and C6 = {p6,p7, p8,p14,p15}. No chain decompositions can have

fewer chains, as is evidenced by the size 6 of the anti-chain

{p10,p11,p12,p16,p13,p14}. The dominance widthw of P is 6.

We prove in the appendix:

Lemma 6. Given a set P of n points in Rd , we can compute in

O(dn2 + n2.5) time a chain decomposition of P containingw chains.

The max-flow problem. The max-flow problem is a classic prob-

lem in computer science. The input is a directed graph G = (V ,E)

where V contains a source vertex v⊏ with in-degree 0 and a sink

vertex v⊐ with out-degree 0. Every edge e ∈ E is associated with a

non-negative value cap(e) called its capacity. Sometimes, we may

represent an edge from vertex u to vertex v as (u,v); accordingly,

cap(u,v) denotes the edge’s capacity.

A flow on G is a function F : E → [0,∞) satisfying:

• (capacity constraint) F (e) ≤ cap(e) for every e ∈ E;

• (conservation constraint) for every vertex u ∈ V other than

v⊏ and v⊐ :
∑

in-edge e of u

F (e) =

∑

out-edge e of u

F (e).

The value of the flow F equals
∑

out-edge e of v⊏

F (e).

The goal of the problem is to find an F of the maximum value.

Numerous algorithms exist for solving the problem with various

time complexities (see [13, 14] for an extensive list). In particular,

Goldberg and Tarjan [14] gave an algorithm of O(|V |3) time, ap-

plying which the function Tmaxflow(n) in Theorem 4 evaluates to

O(n3).

A source-sink cut is a pair (V⊏,V⊐) where

• V⊏ and V⊐ are disjoint subsets of V such that V⊏ ∪V⊐ = V ;

• v⊏ ∈ V⊏ and v⊐ ∈ V⊐ .

The capacity of the source-sink cut is the capacity sum of all the

“cross edges” (u,v) ∈ E satisfying u ∈ V⊏ and v ∈ V⊐ , or formally:
∑

(u,v)∈E∩(V⊏×V⊐)

cap(u,v).

The following result is known as the max-flow min-cut theorem:

Lemma 7 (Theorem 26.7 of [8]). The maximum value of all flows

equals the minimum capacity of all source-sink cuts.

For our purposes, it will be easier to work with an alternative

interpretation of minimum source-sink cuts. We call a subset Ecut ⊆

E a cut-edge set if the removal of Ecut disconnects s and t , i.e., no

paths exist from s to t in the graph induced by E \ Ecut . Define

the weight of Ecut as the capacity sum of all the edges in Ecut , or

formally:

weight(Ecut ) =

∑

e ∈Ecut

cap(e). (5)

The following should be folklore (see the appendix for a proof):

Lemma 8. The minimum capacity of all source-sink cuts equals

the minimum weight of all cut-edge sets.

Lemmas 7 and 8 together indicate that the maximum value of

flows is precisely the minimum weight of cut-edge sets. Any al-

gorithm solving the max-flow problem can be used to construct

an optimal cut-edge set with the smallest weight with Õ(|E |) extra

time (the proof of Lemma 8 gives such a construction explicitly).



3 ACTIVE CLASSIFICATION IN 1D SPACE

In this section, we will discuss Problem 1 (active monotone clas-

sification) for d = 1 and a strictly positive ϵ . Each point p ∈ P is

simply a real value. In 1D space, a monotone classifier h has a very

specific form:

h(p) =

{

1 if p > τ

0 otherwise.
(6)

Note that each h ∈ Hmono is parameterized by a real value τ ; our

discussion will make the parameter explicit by representing the

classifier as hτ . Even though Hmono has an infinite size, it suffices

to consider a set of “effective” classifiers:

Hmono(P) = {hτ | τ ∈ P or τ = −∞}. (7)

Every other classifier has the same error as one of the classifiers in

Hmono(P). We will prove:

Lemma 9. For any ϵ ∈ (0, 1] and any δ > 0, with probability at

least 1 − δ we can solve Problem 1 in 1D space by probing O((1/ϵ2) ·

logn · log n
δ
) points and paying CPU time Õ(1/ϵ2), where Õ(.) hides

a factor polylogarithmic to n, 1/ϵ , and 1/δ .

3.1 The Rationale

Our algorithmwill produce (with probability at least 1−δ ) a function

f : Hmono → [0,∞) that ensures:

the ϵ-comparison property: for any classifiers hx ,hy ∈

Hmono , f (h
x ) ≤ f (hy ) implies errP (h

x ) ≤ϵ errP (h
y ).

See Section 1.1 for the meaning of ≤ϵ . Once f is known, we can

simply return the classifier hτ ∈ Hmono(P) with the smallest f (hτ ),

which is guaranteed to have an error on P at most k∗(1 + ϵ), where

k∗ is the optimal error (see (2)).

Specifically, for any hτ ∈ Hmono , our function f guarantees

| f (hτ ) − errP (h
τ )| ≤ ϵ |P |/64 (8)

and

errP (h
τ ) ·

(

1 −
ϵ

4

)

+ ∆ ≤ f (hτ ) ≤ errP (h
τ ) ·

(

1 +
ϵ

4

)

+ ∆ (9)

where ∆ satisfies

|∆| ≤ ϵ |P |/16. (10)

If the exact value of ∆ were available, f (hτ ) − ∆ would serve as

an estimate of errP (h
τ )with relative error at most ϵ/4. However, as

shown in [25] it is impossible to obtain such an estimate without a

probing cost ofΩ(|P |). Our key idea is to ensure (9)without knowing

∆ precisely.

The ϵ-comparison property is a corollary of (9). Indeed, by ap-

plying (9), we get

errP (h
x ) ≤

1

1 − ϵ/4
· (f (hx ) − ∆)

(by f (hx ) ≤ f (hy )) ≤
1

1 − ϵ/4
· (f (hy ) − ∆)

(applying (9) again) ≤
1 + ϵ/4

1 − ϵ/4
· errP (h

y )

≤ (1 + ϵ) · errP (h
y )

where the last inequality used the fact that
1+ϵ/4
1−ϵ/4

≤ 1 + ϵ for all

ϵ ∈ (0, 1].

3.2 An Algorithmic Framework

This subsection will describe a strategy to obtain a function f

satisfying (8)-(10). Later, Section 3.4 will instantiate the framework

into a concrete algorithm by resorting to random sampling. Our

discussion assumes that |P | ≥ 8. Otherwise, we probe the entire P

and return f (hτ ) = errP (h
τ ) for all τ ∈ R.

Our framework demands a function

д1 : Hmono → R

that approximates errP up to absolute error ϵ |P |/256, namely,

|д1(h
τ ) − errP (h

τ )| ≤ ϵ |P |/256 (11)

for any hτ . We defer the construction of д1 to Section 3.4.

Define:

• α = the smallest τ ∈ R with д1(h
τ ) < |P | · ( 14 − ϵ

256 );

• β = the largest τ ∈ R with д1(h
τ ) < |P | · ( 14 − ϵ

256 ).

When α and β do not exist. This happens because д1(h
τ ) ≥

|P |( 14 − ϵ
256 ) for all τ ∈ R. We simply return

f (hτ ) = д1(h
τ ). (12)

When α and β exist. By definition, it holds that α ≤ β . Obtain

P ′ = P ∩ [α , β]. (13)

Lemma 10. When |P | ≥ 8, |P ′ | ≤ 5
8 |P |.

Proof. P ′ must have less than |P |/4 points of label 1. Other-

wise, P has at least |P |/4 label-1 points in [α , β], which indicates

errP (h
β ) ≥ |P |/4. By (11), we ought to have д1(h

β ) ≥ |P | · ( 14 −
ϵ
256 ),

contradicting the definition of β . Similarly, P ′ \ {α } must have less

than |P |/4 points of label 0. Otherwise, errP (h
α ) ≥ |P |/4, leading

to д1(h
α ) ≥ |P | · ( 14 −

ϵ
256 ), also a contradiction. Therefore, the size

of P ′ is less than |P |/4+ |P |/4+1 = |P |/2+1, where the “+1” counts

point α itself. When |P | ≥ 8, |P |/2 + 1 ≤ 5
8 |P |. �

Our framework demands another function

д2 : Hmono → R

satisfying two requirements:

(1) д2 approximates errP\P ′ up to absolute error ϵ |P |/256,

namely, it holds for any τ

|д2(h
τ ) − errP\P ′(hτ )| ≤ ϵ |P |/256; (14)

(2) for any τ ∈ [α , β], д2(h
τ ) = д2(h

β ).

We defer the construction of д2 to Section 3.4.

From P ′, we recursively obtain a function f ′ : Hmono → [0,∞)

such that for any hτ ∈ Hmono:

| f ′(hτ ) − errP ′(hτ )| ≤ ϵ |P ′ |/64 (15)

and

errP ′(hτ ) ·
(

1 −
ϵ

4

)

+ ∆
′ ≤ f ′(hτ ) ≤ errP ′(hτ ) ·

(

1 +
ϵ

4

)

+ ∆
′ (16)



where ∆′ is an (unknown) real value satisfying

|∆′ | ≤ ϵ |P ′ |/16. (17)

After this, the desired function f is finalized as:

f (hτ ) = д2(h
τ ) + f ′(hτ ). (18)

3.3 Correctness of the Framework

This subsection will prove that our framework always produces

a function f obeying (8)-(10). This is obvious when |P | ≤ 7. The

subsequent analysis assumes |P | ≥ 8.

3.3.1 When α and β Do Not Exist. In this scenario, the constructed

f is given in (12). We will show that f satisfies (8)-(9) with ∆ = 0

(which trivially obeys (10)).

Proof of (8). This directly follows from (11) and the fact that

f (hτ ) = д1(h
τ ).

Proof of (9). The absence of α and β indicates thatд1(h
τ ) ≥ |P |( 14−

ϵ
256 ) for all τ ∈ R. Equipped with this, we can derive from (11):

errP (h
τ ) ≥ д1(h

τ ) −
ϵ |P |

256
≥

|P |

4
−
ϵ |P |

256
−
ϵ |P |

256
≥

31|P |

128
(19)

Applying (11) again yields:

|д1(h
τ ) − errP (h

τ )| ≤
ϵ |P |

256

(by (19)) ≤
ϵ

256
·
128 · errP (h

τ )

31
<

ϵ · errP (h
τ )

4
.

Hence, the above indicates

errP (h
τ ) ·

(

1 −
ϵ

4

)

≤ f (hτ ) ≤ errP (h
τ ) ·

(

1 +
ϵ

4

)

which satisfies (9) with ∆ = 0.

3.3.2 Whenα and β Exist. Inductively, assuming that (15)-(17) hold

on P ′, we will show that the function f produced in (18) satisfies

(8)-(10) with

∆ = ∆
′
+ д2(h

β ) − errP\P ′(hβ ). (20)

Proof of (8). For any hτ ∈ Hmono , it holds that:

errP (h
τ ) = errP ′(hτ ) + errP\P ′(hτ ). (21)

Equipped with the above and (18), we have:

| f (hτ ) − errP (h
τ )| ≤ | f ′(hτ ) − errP ′(hτ )| + |д2(h

τ ) − errP\P ′(hτ )|

(by (14) and (15)) ≤
ϵ |P ′ |

64
+

ϵ |P |

256

(by Lemma 10) ≤
ϵ |P |

64
·
5

8
+

ϵ |P |

256
<

ϵ |P |

64
.

Proof of (10). From (14), (17), and (20), we know

|∆| = |∆′
+ д2(h

β ) − errP\P ′(hβ )| ≤
ϵ |P ′ |

16
+

ϵ |P |

256

(by Lemma 10) ≤
ϵ |P |

16
·
5

8
+

ϵ |P |

256

=

11ϵ |P |

256
(22)

< ϵ |P |/16.

Proof of (9). We will prove that f (hτ ) satisfies (9) for all τ ∈ R by

combining the next two lemmas.

Lemma 11. (9) holds when τ < α or τ > β .

Proof. By the definitions of α and β , when τ < α or τ > β , we

have д1(h
τ ) ≥ |P |( 14 − ϵ

256 ). Therefore, the same derivation in (19)

also applies to errP (h
τ ).

We will first prove

f (hτ ) ≤ errP (h
τ )(1 + ϵ/4) + ∆. (23)

Combining (19) and (22) leads to

ϵ · errP (h
τ )

4
+ ∆ ≥

31ϵ |P |

128 · 4
−
11ϵ |P |

256
=

9ϵ |P |

512
. (24)

As proved earlier, f satisfies (8). Hence, we have:

f (hτ ) − errP (h
τ ) ≤

ϵ |P |

64
<

9ϵ |P |

512
(25)

(applying (24)) ≤
ϵ · errP (h

τ )

4
+ ∆

which gives (23).

Next, we will prove

f (hτ ) ≥ errP (h
τ )(1 − ϵ/4) + ∆. (26)

From (19) and (22), we have

ϵ · errP (h
τ )

4
− ∆ ≥

31ϵ |P |

512
−
11ϵ |P |

256
=

9ϵ |P |

512
.

Therefore, (8) tells us

errP (h
τ ) − f (hτ ) ≤

ϵ |P |

64
<

9ϵ |P |

512
≤

ϵ · errP (h
τ )

4
− ∆

which gives (26). �

Lemma 12. (9) holds when α ≤ τ ≤ β .

Proof. For any τ ∈ [α , β], we must have

errP\P ′(hτ ) = errP\P ′(hβ ). (27)

The second requirement of д2 ensures that д2(h
τ ) = д2(h

β ) for all

such τ . This, together with (18), yields f (hτ ) = д2(h
β ) + f ′(hτ ).

We can thus derive:

errP (h
τ )(1 + ϵ/4) + ∆

(by (21) and (27)) =

(

errP ′(hτ ) + errP\P ′(hβ )
)

(1 + ϵ/4) + ∆

≥ errP ′(hτ )(1 + ϵ/4) + errP\P ′(hβ ) + ∆

(by (20)) = errP ′(hτ )(1 + ϵ/4) + ∆′
+ д2(h

β )

(by (16)) ≥ f ′(hτ ) + д2(h
β )

= f (hτ ).



Similarly:

errP (h
τ )(1 − ϵ/4) + ∆

=

(

errP ′(hτ ) + errP\P ′(hβ )
)

(1 − ϵ/4) + ∆

≤ errP ′(hτ )(1 − ϵ/4) + errP\P ′(hβ ) + ∆

= errP ′(hτ )(1 − ϵ/4) + ∆′
+ д2(h

β )

(by (16)) ≤ f ′(hτ ) + д2(h
β )

= f (hτ ).

This establishes (9). �

3.4 A Concrete Algorithm

To instantiate our framework of Section 3.2 into an actual algorithm,

we need to explain how to obtain the required functions д1 and д2.

The next discussion sets h to the number of levels in the recursion;

clearly, h = O(logn) due to Lemma 10.

Obtaining д1. Take with replacement a uniform sample S1 of P

with size |S1 | = O(
1
ϵ 2

log
|P |h
δ

), and define

д1(h
τ ) =

|P |

|S1 |
· errS1 (h

τ ).

The discussion in Section 2 indicates that, for one hτ ∈ Hmono(P),

д1(h
τ ) satisfies (11) with probability at least 1 − δ

2h( |P |+1)
. Since

|Hmono(P)| = |P | + 1, д1 satisfies (11) on the whole Hmono(P) (and

hence, the whole Hmono) with probability at least 1 − δ/(2h).

Obtaining д2. After P
′ has been obtained (using д1), take with

replacement a uniform sample S2 of P \ P ′ with size |S2 | =

O( 1
ϵ 2

log
|P\P ′ |h

δ
) = O( 1

ϵ 2
log

|P |h
δ

), and define

д2(h
τ ) =

|P \ P ′ |

|S2 |
· errS2 (h

τ ). (28)

An argument analogous to the one for д1 shows that д2 satisfies (14)

on thewholeHmono with probability at least 1−δ/(2h). Furthermore,

д2 satisfies the second requirement prescribed in Section 3.2 because

S2 contains no points in [α , β].

Total cost. In summary, by probing O( 1
ϵ 2

log
|P |h
δ

) points at each

level of the recursion, we can find the desired functions д1 and д2
with probability at least 1 − δ/h. As there are h levels, the overall

probing cost is O( h
ϵ 2

log n
δ
) = O(

logn
ϵ 2

· log n
δ
), and the success

probability is at least 1 − δ . It is rudimentary to implement our

algorithm in Õ(1/ϵ2) time (by creating augmented binary search

trees2 on the sample points). This completes the proof of Lemma 9.

3.5 A Weighted View

We close this section by providing a “weighted view” of our algo-

rithm, which will become useful in the later sections.

Consider our algorithm (combining Sections 3.2 and 3.4) again.

• When |P | ≥ 8, for each level of recursion, define a fully-

labeled weighted sample as follows:

2See Section 14.1 of [8].

– If α and β do not exist, the fully-labeled weighted sample

is the set S1 explained in Section 3.4, with every point

p ∈ S1 assigned a weight of |P |/|S1 |.

– Otherwise, the fully-labeled weighted sample is S2 (again,

see Section 3.4), with every point p ∈ S2 assigned a weight

of |P \ P ′ |/|S2 |.

In either case, our algorithm probes all the points in the fully-

labeled weighted sample. It is easy to verify that, if α and β

do not exist, д1(h
τ ) = w-errS1 (h

τ ) (see (3) for the definition

of w-err); otherwise, д2(h
τ ) = w-errS2 (h

τ ).

• When |P | ≤ 7, also define a full-labeled weighted sample,

which is simply P , with every point assigned a weight of 1.

Thus, each recursion level produces a fully-labeled weighted

sample. Define:

Σ = the union of all the fully-labeled weighted samples.

Our algorithm returns Σ as a side product. The lemma below states

an interesting fact:

Lemma 13. The function f returned by our algorithm satisfies

f (hτ ) = w-errΣ(h
τ ) for any hτ ∈ Hmono .

Proof. The claim obviously holds when |P | ≤ 7. Assuming that

the claim is true for all P with at least t ≥ 7 points, next we prove

the correctness for |P | = t + 1.

When α and β do not exist, f (hτ ) = д1(h
τ ) and no recursion

occurs. In this case, Σ is simply the set S1 in Section 3.4. Hence,

f (hτ ) = д1(h
τ ) = w-errS1 (h

τ ) = w-errΣ(h
τ ).

When α and β exist, the algorithm recursively processes P ′ (see

(13)) whose size is strictly smaller than |P | (Lemma 10). Suppose that

the recursion returns a function f ′ and a fully-labeled weighted

set Σ′. By the inductive assumption, f ′(hτ ) = w-errΣ′(h
τ ). The

final fully-labeled weighted set returned for P is Σ = S2 ∪ Σ
′. Thus,

f (hτ ) = д2(h
τ )+ f ′(hτ ) = w-errS2 (h

τ )+w-errΣ′(h
τ ) = w-errΣ(h

τ ).

�

4 ACTIVE CLASSIFICATION IN
MULTI-DIMENSIONAL SPACE

This section will extend our 1D algorithm to solve the active mono-

tone classification problem in Rd for arbitrary d ≥ 1 and ϵ > 0, and

prove Theorems 2 and 3.

4.1 The Algorithm

This subsection serves as a proof of:

Lemma 14. By probingO((w/ϵ2)·logn·log(n/w)) points in P , with

probability at least 1 − 1/n2 we can obtain a fully-labeled weighted

set Σ of size O((w/ϵ2) · logn · log(n/w)) having the property below

for any classifiers h and h′ in Hmono :

w-errΣ(h) ≤ w-errΣ(h
′) implies errP (h) ≤ϵ errP (h

′)

where w-err is defined in (3) and ≤ϵ is defined in Section 1.1. Our

algorithm runs in Õ(dn+n2.5+w/ϵ2) time, where Õ(.) hides a factor

polylogarithmic to d , n, and 1/ϵ .



As before, denote by n andw the size and the dominance width

of the input set P , respectively (see Section 2 for the definition of

w). We start by using Lemma 6 to obtain a chain decomposition of

P with preciselyw chains: C1,C2, ...,Cw .

For every i ∈ [1,w], we will compute a fully-labeled weighted

set Σi , which is a subset of Ci ensuring:

errCi (h) ·
(

1 −
ϵ

4

)

− ∆i ≤ w-errΣi (h) ≤ errCi (h) ·
(

1 −
ϵ

4

)

+ ∆i (29)

for every h ∈ Hmono , where ∆i is some fixed real value unknown

to our algorithm. Once this is done, we obtain

Σ =

w
⋃

i=1

Σi . (30)

It must hold that

errP (h) ·
(

1 −
ϵ

4

)

− ∆ ≤ w-errΣ(h) ≤ errP (h) ·
(

1 −
ϵ

4

)

+ ∆ (31)

where ∆ equals
∑w
i=1 ∆i and remains unknown. Indeed, (31) follows

from (29), plugging in errP (h) =
∑w
i=1 errCi (h) and w-errΣ(h) =

∑w
i=1 w-errΣi (h). By the same argument in Section 3.1 (about how

(9) leads to the ϵ-comparison property), we can show that the prop-

erty in Lemma 14 is a corollary of (31).

Next, we will concentrate on finding Σi for chain Ci . Observe

that this is in fact a 1D problem. To explain, let us sort the points of

Ci according to <, i.e., each pointp in the sortedCi dominates all the

points after p. Every classifier h ∈ Hmono maps only a prefix of the

points in the sorted Ci to 1 and, therefore, can be regarded as a 1D

classifier onCi of the form (6). By combining Lemmas 9 and 13, we

conclude that we can produce the desired Σi with probability at least

1 − 1
w ·n2 by probing O( 1

ϵ 2
· log |Ci | · log(wn

2)) = O(
logn
ϵ 2

log |Ci |)

points in Ci .

Considering all thew chains C1, ...,Cw , we now claim that the

target Σ1, ..., Σw can be produced with probability at least 1 − 1/n2

with a total probing cost of

O

(

logn

ϵ2

w
∑

i=1

log |Ci |

)

= O

(

logn

ϵ2
·w log

n

w

)

where the inequality used the fact that
∑w
i=1 log |Ci | is maximized

when all the chains have the same size. The same bound also applies

to the size of Σ (see (30)).

Finally, let us analyze the CPU time. Lemma 6 shows that finding

the chain decomposition takes O(dn + n2.5) time. By Lemma 9, the

computation of each Σi requires Õ(1/ϵ
2) time; hence, the produc-

tion of all Σ1, ..., Σw incurs Õ(w/ϵ2) time. This completes the proof

of Lemma 14.

4.2 Proof of Theorem 2

Since all the points in the Σ of Lemma 14 have their labels re-

vealed, we can identify the classifierh# ∈ Hmono having the smallest

w-errΣ(h
#) with no more probing (CPU time is not a concern here).

The property in Lemma 14 guarantees that errP (h
#) ≤ (1 + ϵ)k∗,

where k∗ is the error on P of the optimal monotone classifier. This

establishes Theorem 2.

4.3 Proof of Theorem 3

Identifying the classifier h# mentioned in Section 4.2 is an instance

of Problem 2 (passive weighted monotone classification). Provided

that we can solve the instance in Tprob2(d,N ) time where N =

O((w/ϵ2) · logn · log(n/w)), our algorithm for Problem 1 runs in

Õ(dn2 + n2.5 +w/ϵ2) + Tprob2(d,N ) time overall. This completes

the proof of Theorem 3.

The next section will prove that Tprob2(d,N ) = Õ(dN 2
+ N 3).

5 PASSIVE MONOTONE CLASSIFICATION

Now that we have already established Theorems 2 and 3, the last

missing piece in our overall solution to Problem 1 is an algorithm

for solving Problem 2 (passive weighted monotone classification)

efficiently. This section will complete the piece by proving Theo-

rem 4.

5.1 The Algorithm

Recall that the input to Problem 2 is a fully-labeled weighted set P

of n points in Rd . We say that a point p ∈ P is contending in either

situation below:

• label(p) = 0 but there is a label-1 point q ∈ P such that p < q;

• label(p) = 1 but there is a label-0 point q ∈ P such that q < p.

Define

P con = {p ∈ P | p is contending}.

As an example, Figure 2(a) shows all the contending points in Fig-

ure 1(b).

Lemma 15. If there is a monotone classifier h whose weighted error

on P con is k , then there is a monotone classifier whose weighted error

on P is k .

Proof. First, construct a function h′ as follows: (i) h′(p) = h(p)

for every p ∈ P con, and (ii) h′(p) = label(p) for every p < P con. We

claim that there do not exist p,q ∈ P such that p < q, but h′(p) = 0

and h′(q) = 1. The claim implies the correctness of the lemma.

Suppose, on the contrary, that such p,q exist. They cannot both

belong to P con due to the monotonicity of h′. Assume that p <

P con, which means label(p) = h′(p) = 0. We can then assert that

label(q) = 0 (otherwise, p would be contending). The fact h′(q) ,

label(q) indicates that q must be contending. Hence, there must be

a label-1 point q′ satisfying q < q′. Because p < q′, the presence

of q′ violates the assumption that p < P con. A symmetric argument

shows that q < P con.

Thus, we know that neither p nor q can be contending. Hence,

label(p) = h′(p) = 0 and label(q) = h′(q) = 1, but this is impossible

when p and q are non-contending. We now conclude that such p

and q cannot exist. �
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Figure 2: Illustration of our algorithm for Problem 2

Lemma 15 indicates that it suffices to solve the passive weighted

monotone classification problem on P con.3 We partition P con into:

P con0 = {p ∈ P con | label(p) = 0}

P con1 = {q ∈ P con | label(q) = 1}.

Construct a graph G = (V ,E) for the max-flow problem (Section 2)

as follows:

• V = P con ∪ {v⊏,v⊐} where v⊏ and v⊐ are special vertices

being the source and sink, respectively.

• (Edge type 1) For each point p ∈ P con0 , add to E an edge

e = (v⊏,p) with cap(e) = weight(p).

• (Edge type 2) For each point q ∈ P con1 , add to E an edge

e = (q,v⊐) with cap(e) = weight(q).

• (Edge type 3) For each (p,q) ∈ P con0 × P con1 such that p < q,

add to E an edge e = (p,q) with cap(e) = ∞.

Notice that all edges in E have positive capacities. Furthermore,

every path from v⊏ to v⊐ must have the form v⊏ → p → q → v⊐ ,

where p ∈ P con0 and q ∈ P con1 .

Figure 2(b) demonstrates the graph G constructed for the set

P con of points in Figure 2(a). There are five type-1 edges: fromv⊏ to

p2, p3, p5, p11, and p15 with weights 1, 1, 1, 60, and 60, respectively.

There are five type-1 edges: from p1, p4, p9, p13, p14 to v⊐ with

weights 100, 1, 1, 1, and 1, respectively. The other edges, shown in

bold, are of type 3.

Now, run a max-flow algorithm to obtain a cut-edge set E∗cut
with the minimum weight (see the discussion in Section 2 for why

this is possible). Then, construct a classifier h∗cut based on E∗cut :

• For each point p ∈ P con0 , h∗cut (p) = 1 if (v⊏,p) ∈ E∗cut ; other-

wise, h∗cut (p) = 0.

3If the optimal weighted error on P is k , then obviously the optimal weighted error on
P con is at most k . Combining this with Lemma 15 shows that P and P con must have
the same optimal weighted error.

• For each point q ∈ P con1 , h∗cut (q) = 0 if (q,v⊐) ∈ E∗cut ; other-

wise, h∗cut (p) = 1.

In the example of Figure 2(b), an optimal E∗cut includes 5 edges:

(p1,v⊐), (p4,v⊐), (p9,v⊐), (p13,v⊐), and (p14,v⊐). Note that the

weight of E∗cut , as defined in (5), equals 104. Accordingly, the con-

structed h∗cut maps all the points in Figure 2(b) to 0.

The next two lemmas, which we will prove in the subsequent

sections, indicate that h∗cut is exactly what we are looking for.

Lemma 16. These do not exist p,q ∈ P con such that p < q but

h∗cut (p) = 0 and h∗cut (q) = 1.

Lemma 17. The weight ofh∗cut on Pcon equals the smallest weighted

error on Pcon of all monotone classifiers.

Regarding the CPU time, the generation of G can be easily ac-

complished in O(dn2) time. We need to add the running time of

the max-flow algorithm, which is Tmaxflow(n). Thus, subject to the

correctness of Lemmas 16 and 17, we complete the proof of Theo-

rem 4.

5.2 Proof of Lemma 16

Let us start with a property of E∗cut :

Lemma 18. E∗cut does not contain any edge of type 3.

Proof. All the edges of type 3 have an infinite capacity, while

the other edges have finite capacities. Suppose that E∗cut has an edge

(p,q) of type 3. Then, we can obtain another cut-edge set of lower

weight by removing (p,q) and adding all the incoming edges of

p. �

Henceforth, denote by G the graph induced by the edges in

E \ Ecut ; the definition of Ecut indicates that G should contain no

paths fromv⊏ tov⊐ . Suppose that Lemma 16 is incorrect, i.e., points

p and q in the lemma’s statement actually exist. We will prove a

contradiction in each of the following 4 cases.



Case 1: label(p) = 0 and label(q) = 1. This means that h∗cut cor-

rectly classifies both p and q. Hence, neither (v⊏,p) nor (q,v⊐) is

in E∗cut . However, since (p,q) is not in E∗cut either (Lemma 18), we

have found a path v⊏ → p → q → v⊐ in G , giving a contradiction.

Case 2: label(p) = 0 and label(q) = 0. This means that h∗cut cor-

rectly classifies p but mis-classifies q. Therefore, (v⊏,p) < E
∗
cut but

(v⊏,q) ∈ E∗cut . Now, construct

Ecut = E∗cut \ {(v⊏,q)}.

We argue that Ecut is a still a cut-edge set, thus contradicting the

fact that E∗cut is a cut-edge set of the minimum weight (recall that

all edges in E have positive capacities).

Suppose that Ecut is not a cut-edge set. This indicates the exis-

tence of a path π fromv⊏ tov⊐ after removing all the edges in Ecut .

As π does not exist in G, π must definitely use the edge (v⊏,q).

Without loss of generality, write π as v⊏ → q → q′ → v⊐ , for

some q′ ∈ P con1 . This means that the edge (q′,v⊐) does not belong

to E∗cut .

The existence of edge (q,q′) implies that q < q′. Therefore,

p < q < q′, which means that the edge (p,q′) must be an edge in E.

As (p′,q) cannot belong to E∗cut (Lemma 18), we have found a path

v⊏ → p → q′ → v⊐ in G, giving a contradiction.

Case 3: label(p) = 1 and label(q) = 1. This case can be dealt with

using an argument symmetric to the one for Case 2.

Case 4: label(p) = 1 and label(q) = 0. This means that h∗cut mis-

classifies both p and q. Therefore, both (v⊏,q) and (p,v⊐) belong

to E∗cut .

We claim:

every point q′ ∈ P con1 with q < q′ must have its edge

(q′,v⊐) included in E∗cut .

Otherwise, i.e., (q′,v⊐) < E∗cut , h
∗
cut correctly classifies q′, i.e.,

h∗cut (q
′) = 1. But then we have found p,q′ such that p < q′,

h∗cut (p) = 0, h∗cut (q
′) = 1, label(p) = 1, and label(q′) = 1. This

is a Case-3 scenario, which has been shown to be impossible.

Now, construct

Ecut = E∗cut \ {(v⊏,q)}.

We argue that Ecut is a still a cut-edge set, thus contradicting the

definition of E∗cut .

Suppose that Ecut is not a cut-edge set. Hence, a path π exists

from v⊏ to v⊐ after removing the edges in Ecut . As π is absent inG ,

π must use the edge (v⊏,q). Without loss of generality, write π as

v⊏ → q → q′ → v⊐ , for some q′ ∈ P con1 . This means that the edge

(q′,v⊐) does not belong to E
∗
cut . However, this violates our earlier

claim that (q′,v⊐) must appear in E∗cut .

5.3 Proof of Lemma 17

The classifier h∗cut constructed by our algorithm mis-classifies (i) a

point p ∈ P con0 if and only if (v⊏,p) ∈ E∗cut and (ii) a point p ∈ P con1
if and only if (p,v⊐) ∈ E∗cut . Therefore, the weighted error of h∗cut

on P con is precisely the weight of E∗cut , that is, w-errP con (h∗cut ) =

weight(E∗cut ).

Suppose that Lemma 17 is wrong such that some monotone

classifier h has a weighted error on P con strictly smaller than h∗cut .

Next, we will construct a cut-edge set Ecut of G whose weight is

strictly less than that of E∗cut , thus contradicting the optimality of

E∗cut .

Specifically, for every point p ∈ P con mis-classified by h, we add

to Ecut an edge

• (v⊏,p) if label(p) = 0;

• (p,v⊏) otherwise.

Next, we argue that Ecut is indeed a cut-edge set of G. As it is easy

to verify that w-errP con (h) = weight(Ecut ), we have weight(Ecut ) <

weight(E∗cut ), giving the desired contradiction.

Suppose that a path exists from v⊏ to v⊐ after removing all the

edges in Ecut from G . Let the path be v⊏ → p → q → v⊐ for some

p ∈ P con0 and q ∈ P con1 . As neither (v⊏,p) nor (q,v⊐) belongs to Ecut ,

h must classify both p and q correctly, i.e., h(0) = 0 and h(q) = 1.

This, however, violates the monotonicity of h because p < q.

6 OPTIMAL ACTIVE MONOTONE
CLASSIFICATION NEEDS Ω(n) PROBES

This section will establish Theorem 1 by proving a lower bound for

Problem 1. Henceforth, the dimensionality d will be fixed to 1; thus,

each “point” is merely a real value. The value of ϵ will be fixed to 0

(the goal is to find an optimal classifier).

6.1 The Proof Framework

Our proof will assume that the input size n is an even number. Let

us define a family P of n inputs, which are based on the same set

of points {1, 2, ...,n}, but differ in the design of labels. By default,

assign label 1 (or 0) to each odd (or even, resp.) number in [1,n].

Then, for every integer i ∈ [1,n/2], define two inputs:

• P00(i), where all points take the default lablels except 2i − 1,

which is assigned label 0;

• P11(i), where all points take the default lablels except 2i ,

which is assigned label 1.

The constructed P is {P00(1), P00(2), ..., P00(n/2), P11(1), P11(2), ...,

P11(n/2)}. Every P00(i) or P11(i) will be referred to as a 00-input or

11-input, respectively.

We can understand the inputs in P in a different manner. Chop

the points 1, 2, ...,n into n/2 pairs (1, 2), (3, 4), ..., (n − 1,n). In a

normal pair (x − 1,x), points x − 1 and x carry labels 1 and 0,

respectively. Each input P ∈ P contains exactly one anomaly pair

(x − 1,x). If P is a 00-input, both x − 1 and x are assigned label 0;

otherwise, they are assigned label 1.

For each P ∈ P, an optimal monotone classifier has an error

of n/2 − 1. Indeed, every monotone classifier must mis-classify at

least one point of each normal pair in P . On the other hand, we can

achieve the error of n/2 − 1 by mapping all the points to 1 (for a

11-input) or 0 (for a 00-input).



Fix an arbitrary deterministic algorithm A designed for Problem

1. We say that A errs on P ∈ P if the output classifier of A is non-

optimal for P . Denote by costP (A) the number of probes performed

by A when executed on P . Define:

nonoptcnt(A) =

∑

P ∈P

✶A errs on P

totalcost(A) =

∑

P ∈P

costP (A).

Note that if A is randomized, then both nonoptcnt(A) and

totalcost(A) are random variables. We will prove a crucial lemma

in Section 6.2:

Lemma 19. Fix any non-negative constant c < 1. When n ≥

max{4, 1/c}, the following holds for any deterministic algorithmAdet :

if nonoptcnt(Adet ) ≤ cn/2, then totalcost(Adet ) = Ω(n2).

The lemma leads to:

Corollary 20. When n ≥ 4, the following holds for any

randomized algorithm Aran: if E[nonoptcnt(Aran)] ≤ n/3, then

E[totalcost(Aran)] = Ω(n2).

The proof uses an argument in [25] and can be found in the ap-

pendix. The corollary implies Theorem 1. Indeed, ifAran guarantees

finding an optimal solution with probability at least 2/3 on any

input, then E[nonoptcnt(Aran)] ≤ n/3. Thus, the corollary tells us

that, when n is sufficiently large, E[totalcost(Aran)] = Ω(n2). This

means that the expected cost of Aran is Ω(n) on at least one input

in P because P has n inputs.

6.2 Proof of Lemma 19

We start by proving an important property of the family P con-

structed earlier:

Lemma 21. No monotone classifier can be optimal for both P00(i)

and P11(i) simultaneously.

Proof. Recall that a 1D monotone classifier h has the form of

(6), which takes a parameter τ ∈ P ∪ {−∞}. We will show that

no value of τ can make h optimal for both P00(i) and P11(i). As

mentioned earlier, for each input, an optimal classifier should have

an error of n/2 − 1.

• Case τ < 2i − 1: on P00(i), h mis-classifies both 2i − 1 and 2i ,

and has a non-optimal error of n/2 + 1.

• Case τ = 2i − 1: on P00(i), h mis-classifies 2i , and has a

non-optimal error of n/2.

• Case τ ≥ 2i: on P11(i), h mis-classifies both 2i − 1 and 2i , and

has a non-optimal error of n/2 + 1.

The absence of τ implies the lemma’s correctness. �

For the rest of the proof, we will increase the power of Adet in

two ways. First,Adet knows that the input comes from the family P.

Second, we will give Adet some free labels. Specifically, every time

Adet probes a point of some pair (2i − 1, 2i) (where 1 ≤ i ≤ n/2),

we will reveal the label of the other point (in that pair) voluntarily.

Next, by “Adet probing pair i”, we mean that Adet has acquired the

labels of both 2i − 1 and 2i . If Lemma 19 holds even on such an

“empowered” Adet , it must hold on the original Adet because an

empowered algorithm can choose to ignore the extra information.

We consider that Adet terminates immediately after probing an

anomaly pair, i.e., catching the pair with the same label. Once the

anomaly pair is found, there are no reasons to continue because

Adet knows exactly the labels in all the normal pairs and, hence,

can return an optimal classifier with full confidence.

With the above, we can modelAdet as probing according to a pre-

determined sequence: pair x1, pair x2, ..., pair xℓ for some integer ℓ

∈ [0,n/2]. Specifically, for each j ∈ [1, ℓ−1], if pair x j is an anomaly,

the algorithm terminates; otherwise, it moves on to pair x j+1. If all

the ℓ pairs have been probed and no anomaly has been found, Adet

outputs a fixed classifier hdet .

Consider runningAdet on all the inputs in the family P. For each

i ∈ {1, 2, ...,n/2} \ {x1,x2, ...,xℓ} (32)

Adet never probes pair i . Thus, the output of Adet must be hdet for

both P00(i) and P11(i). By Lemma 21, we know that hdet cannot be

optimal for both P00(i) and P11(i). Hence, Adet must err on either

P00(i) or P11(i). This means that:

nonoptcnt(Adet ) ≥ n/2 − ℓ. (33)

To calculate totalcost(Adet ), notice that Adet performs ℓ probes for

P00(i) and P11(i) of every i satisfying (32), and j ∈ [1, ℓ] probes for

P00(x j ) and P11(x j ). Hence:

totalcost(Adet ) = 2ℓ · (n/2 − ℓ) + 2

ℓ
∑

j=1

j

= nℓ − ℓ2 − ℓ. (34)

For nonoptcnt(Adet ) to be at most cn/2 (see the statement of

Lemma 19), (33) tells us that ℓ ≥ n
2 (1 − c). Under such ℓ and the

condition n ≥ 1/c , (34) is at least

n2

4
(1 − c2) −

n

2
(1 − c)

which is at least n2(1 − c2)/8 for n ≥ 4. This completes the proof of

Lemma 19.

7 CONCLUSIONS

Monotone classification is a fundamental topic at the core of many

applications, especially those related to entity matching, record

linkage, and duplicate detection. This paper has presented three

main results that complement existing work towards building a

systematic theory on the topic. The first two results concern active

classification, where all the labels are hidden until probed, and the

objective is to find an accurate monotone classifier with the least

probes. We first prove that finding an optimal monotone classifier

is hard, because the trivial solution of probing all labels is already

asymptotically optimal. The hardness result officially opens the

door to studying how to reduce the probing cost by aiming at near-

optimal classifiers. For this purpose, we develop a new algorithm

that returns (with high probability) a (1 + ϵ)-approximate classifier

and has a probing cost nearly matching a known lower bound.

Our third result concerns passive active classification, where all the

labels are directly given, and the objective is to discover an optimal



classifier with the least computation. We show that the problem

can be settled in polynomial time.

ACKNOWLEDGMENTS

This work was partially supported by GRF grant 14207820 from

HKRGC and a research grant from Alibaba Group.

REFERENCES
[1] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of

record matching packages. In Proceedings of ACMManagement of Data (SIGMOD).
783–794.

[2] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. 2009. Agnostic
active learning. Journal of Computer and System Sciences (JCSS) 75, 1 (2009),
78–89.

[3] Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi.
2013. Active Sampling for Entity Matching with Guarantees. ACM Transactions
on Knowledge Discovery from Data (TKDD) 7, 3 (2013), 12:1–12:24.

[4] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. 2009. Importance
weighted active learning. In Proceedings of International Conference on Machine
Learning (ICML). 49–56.

[5] Guilherme Dal Bianco, Renata Galante, Marcos Andre Goncalves, Sergio D.
Canuto, and Carlos Alberto Heuser. 2015. A Practical and Effective Sampling
Selection Strategy for Large Scale Deduplication. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 27, 9 (2015), 2305–2319.

[6] Peter Christen, Dinusha Vatsalan, and Qing Wang. 2015. Efficient Entity Reso-
lution with Adaptive and Interactive Training Data Selection. In Proceedings of
International Conference on Management of Data (ICDM). 727–732.

[7] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplica-
tion. Proceedings of the VLDB Endowment (PVLDB) 9, 11 (2016), 864–875.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms, Second Edition. The MIT Press.

[9] Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. 2007. A general agnostic
active learning algorithm. In Proceedings of Neural Information Processing Systems
(NIPS). 353–360.

[10] Robert P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered Sets.
The Annals of Mathematics 51, 1 (1950), 161–166.

[11] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
and Themis Palpanas. 2017. Parallel meta-blocking for scaling entity resolution
over big heterogeneous data. Information Systems 65 (2017), 137–157.

[12] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan
Rampalli, Jude W. Shavlik, and Xiaojin Zhu. 2014. Corleone: hands-off crowd-
sourcing for entity matching. In Proceedings of ACM Management of Data (SIG-
MOD). 601–612.

[13] Andrew V. Goldberg and Satish Rao. 1998. Beyond the Flow Decomposition
Barrier. Journal of the ACM (JACM) 45, 5 (1998), 783–797.

[14] Andrew V. Goldberg and Robert Endre Tarjan. 1988. A new approach to the
maximum-flow problem. Journal of the ACM (JACM) 35, 4 (1988), 921–940.

[15] Steve Hanneke. 2014. Theory of Disagreement-Based Active Learning. Founda-
tions and Trends in Machine Learning 7, 2-3 (2014), 131–309.

[16] John E. Hopcroft and Richard M. Karp. 1973. An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM Journal of Computing 2, 4 (1973), 225–231.

[17] Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Load Balancing for MapReduce-
based Entity Resolution. In Proceedings of International Conference on Data Engi-
neering (ICDE). 618–629.

[18] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016.
Magellan: Toward Building Entity Matching Management Systems. Proceedings
of the VLDB Endowment (PVLDB) 9, 12 (2016), 1197–1208.

[19] Hanna Köpcke and Erhard Rahm. 2010. Frameworks for entity matching: A
comparison. Data Knowledge Engineering (DKE) 69, 2 (2010), 197–210.

[20] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. Proceedings of the VLDB
Endowment (PVLDB) 3, 1 (2010), 484–493.

[21] Venkata VamsikrishnaMeduri, Lucian Popa, Prithviraj Sen, andMohamed Sarwat.
2020. A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching. In Proceedings of ACM Management of Data (SIGMOD). 1133–
1147.

[22] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations
of machine learning. MIT Press.

[23] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press.

[24] Sunita Sarawagi and Anuradha Bhamidipaty. 2002. Interactive deduplication
using active learning. In Proceedings of ACM Knowledge Discovery and Data

Mining (SIGKDD). 269–278.
[25] Yufei Tao. 2018. Entity Matching with Active Monotone Classification. In Pro-

ceedings of ACM Symposium on Principles of Database Systems (PODS). ACM,
49–62.

[26] Andreas Thor and Erhard Rahm. 2007. MOMA - A Mapping-based Object Match-
ing System. In Proceedings of Biennial Conference on Innovative Data Systems
Research (CIDR). 247–258.

A PROOF OF LEMMA 5

We will use the following standard form of Chernoff bounds [23]:

• for any γ ∈ (0, 1]:

Pr

[�

�

�

�

�

µ −
1

t

t
∑

i=1

Xi

�

�

�

�

�

≥ γ µ

]

≤ 2 exp

(

−
γ 2tµ

3

)

; (35)

• for any γ ≥ 0:

Pr

[

1

t

t
∑

i=1

Xi ≥ (1 + γ )µ

]

≤ exp

(

−
γ 2

2 + γ
tµ

)

. (36)

Case 1: µ ≥ ϕ.
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(by (35)) ≤ 2 exp

(

−
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3
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ϕ

µ

)2
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)

which is at most δ when t = ⌈
3µ
ϕ2 ln

2
δ
⌉.

Case 2: µ < ϕ.
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(by (36)) ≤ exp
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2 + ϕ/µ
· tµ

)

= exp
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tϕ2

2µ + ϕ

)

which is at most δ when t = ⌈
2µ+ϕ
ϕ2 ln 1

δ
⌉ ≤ ⌈ 3

ϕ
ln 1

δ
⌉.

B PROOF OF LEMMA 6

Construct an acyclic directed graphG = (V ,E) whereV = P (every

point in P is a vertex) and E = {(u,v) ∈ P × P | u , v and u < v}.

The construction can be easily completed inO(dn2) time. Finding a

chain decomposition of P with the least number (i.e.,w) of chains

is equivalent to computing the smallest number of vertex-disjoint

paths to coverV . The latter problem can be converted4 to computing

a maximum matching of a bipartite graph with O(|V |) vertices and

O(|E |) edges, which in turn can be solved by the Hopcroft-Karp

algorithm [16] in O(
√

|V | · |E |) time. The lemma now follows from

the fact that |V | = n and |E | = O(n2).

4See https://en.wikipedia.org/wiki/Maximum_flow_problem.
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C PROOF OF LEMMA 8

Let x be the minimum capacity of all source-sink cuts and y be the

minimum weight of all cut-edge sets. We will prove x = y.

Proof of x ≥ y. Let (V⊏,V⊐) be a source-sink cut with capacity

x . Construct Ecut = E ∩ (V⊏ ×V⊐). Ecut is a cut-edge set because

removing Ecut disconnects all paths fromV⊏ toV⊐ . Since the weight

of Ecut is x , it follows that y ≤ x .

Proof of x ≤ y. Let Ecut be a cut-edge set with weighty. Construct

V⊏ to include all vertices inV reachable from the source vertex, after

removing the edges in Ecut ; then, setV⊐ = V \V⊏ . Ecut must include

every edge (u,v) ∈ E such that u ∈ V⊏ and v ∈ V⊐ . Otherwise,

the source vertex must be able to reach v even with Ecut removed,

contradicting the fact that v < V⊏ . It thus follows that the capacity

of (V⊏,V⊐) is at most y, implying x ≤ y.

D PROOF OF COROLLARY 20

We can treat Aran as a random variable drawn from a set A of

deterministic algorithms. We call an algorithm Adet ∈ A accurate

if nonoptcnt(Adet ) ≤ (2/5)n. Define Aacc as the set of accurate

algorithms in A. Observe that Pr[Aran ∈ Aacc] must be at least

1/6; otherwise, with probability at least 5/6, nonoptcnt(Aran) >
5
6 · 2

5 · n = n/3, giving a contradiction. By Lemma 19, however,

every accurateAdet must satisfy totalcost(Adet ) = Ω(n2). Therefore,

E[totalcost(Aran)] ≥ Ω(n2) · Pr[Aran ∈ Aacc] = Ω(n2).


