
Entity Matching with Quality and Error Guarantees

Yufei Tao
∗

Chinese University of Hong Kong
Hong Kong

taoyf@cse.cuhk.edu.hk

ABSTRACT
Given two sets of entities X and Y , entity matching aims
to decide whether x and y represent the same entity for
each pair (x, y) ∈ X × Y . In many scenarios, the only way
to ensure perfect accuracy is to launch a costly inspection
procedure on every (x, y), whereas performing the procedure
|X| · |Y | times is prohibitively expensive. It is, therefore,
important to design an algorithm that carries out the pro-
cedure on only some pairs, and renders the verdicts on the
other pairs automatically with as few mistakes as possible.
This article describes an algorithm that achieves the pur-
pose using the methodology of active monotone classification.
The algorithm ensures an asymptotically optimal tradeoff
between the number of pairs inspected and the number of
mistakes made.

1. INTRODUCTION
Given two sets of entities X and Y , entity matching aims

to decide whether x and y form a match, i.e., whether they
represent the same entity, for each pair (x, y) ∈ X × Y . For
example, X (or Y) can be a set of advertisements placed
at Amazon (or eBay, resp.), where each advertisement has
attributes like prod-name, prod-description, year, price,
and so on. The goal is to decide whether advertisements x
and y are about the same product, for all (x, y) ∈ X × Y .

What makes the problem challenging is that the aforemen-
tioned decision cannot be made through a simple comparison
on the attributes of x and y, because even a pair of matching
x and y may still disagree on the attribute values. This is
obvious for prod-description and price since x and y can
introduce the same product in different ways, and price it dif-

The original version of this article was published in PODS
2018, titled “Entity Matching with Active Monotone Classifi-
cation”.
∗This work was partially supported by a direct grant (Project
Number: 4055079) from CUHK and by a Faculty Research
Award from Google.

c©ACM 2018. This is a minor revision of the work published in PODS’18,
ISBN 978-1-4503-4706-8/18/06... $15.00, June 10-15, 2018, Houston, TX,
USA. DOI: https://doi.org/10.1145/3196959.3196984. Per-
mission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

ferently. In fact, x and y may not agree even on a“supposedly
standardized” attribute like prod-name (e.g., x.prod-name =
“MS Word” vs. y.prod-name = “Microsoft Word Processor”),
although it would be reasonable to expect x.year = y.year
because advertisements are required to be correct.

In applications like the above one, the only way to ensure
perfect accuracy is to call upon human experts to inspect
each pair (x, y) ∈ X×Y . This is, however, expensive because
the amount of manual efforts, e.g., reading advertisements x
and y in detail, is huge. It is, therefore, important to design
an algorithm that asks humans to look at only some pairs,
and renders the verdicts on the other pairs automatically,
perhaps at the expense of a small number of errors.

Towards the above purpose, a dominant methodology be-
hind existing approaches (e.g., [1, 3, 6, 7, 12,14,21, 22,24,25])
is to transform the task into a multidimensional classification
problem with the following preprocessing:

1. First, shrink the set of all possible pairs to a subset
T ⊆ X × Y , by eliminating the pairs that obviously
cannot be matches. This is known as blocking, which is
carried out based on application-dependent heuristics.
This step is optional; if skipped, then T = X × Y . In
the Amazon-eBay example, T may involve only those
advertisement pairs (x, y) with x.year = y.year.

2. For each remaining entity pair (x, y) ∈ T , create a mul-
tidimensional point p(x,y) using a number d of similarity
functions

sim1, sim2, . . . , simd,

each evaluated on a certain feature. The i-th coordinate
of p(x,y) equals simi(x, y): a higher value means that x
and y are more similar on the i-th feature. This creates
a d-dimensional point set P = {p(x,y) | (x, y) ∈ T}.
In our example, from a numerical attribute such as
price, one may extract a feature that equals−|x.price−
y.price| (the purpose of the negation is to be consis-
tent with “larger means more similar”). From a text
attribute (such as prod-name and prod-description)
one may extract a feature by evaluating the similarity
between the corresponding texts of x and y using an
appropriate metric, e.g., edit distance for short texts,
and cosine similarity for long texts. Multiple feature
dimensions may be derived even on the same attribute.
For instance, one can extract two features by computing
the edit-distance and Jaccard-distance of x.prod-name
and y.prod-name separately.

Every point p(x,y) ∈ P carries a label, which is 1 if (x, y) is

a match, or 0 otherwise. The original entity matching task
on X and Y is thus converted to inferring the labels of the
points in P . Still, human inspection is the last resort for
revealing the label of each p(x,y) with no errors.

1.1 Problem Formalization
Let P be a set of points in Rd, where R is the real domain,

and d is a positive integer. Each point p ∈ P carries a
label, denoted as label(p), which equals either 0 or 1. The
point labels need not follow any geometric patterns, namely,
label(p) can be 0 or 1 regardless of the labels of the other
points.

All the labels are hidden at the beginning. There is an
oracle which an algorithm can call to disclose the label of a
point p ∈ P selected by the algorithm. When this happens,
we say that p is probed. The algorithm’s cost is defined as
the number of points probed.

A classifier is a function F : Rd → {0, 1}. Its error on P
is the number of points mis-labeled, namely:

error(F , P) = |{p ∈ P | F(p) 6= label(p)}|.

F is monotone if F(p) ≥ F(q) for any points p, q ∈ P
satisfying p[i] ≥ q[i] on all i ∈ [1, d], where p[i] is the i-th
coordinate of p. Denote by Cmono the set of all possible
monotone classifiers; note that |Cmono | is infinite.

We consider two problems closely related to active learning:

Problem 1 (Active Monotone Classification):
Find a monotone classifier F with small error(F , P)
by paying a low probing cost.

Problem 2 (Active Monotone Classification
with Exemptions): Probe a small set Z of points
in P to find a monotone classifier F with small
error(F , P \ Z).

Note that the two problems differ in whether the set Z of
points probed is exempted from calculating the error of the
returned classifier F . The challenges behind these problems
can be seen from the following extreme solutions:

• For Problem 1, one can simply probe all the points of P ,
paying the worst possible cost |P |, and then take all the
time needed to find the best classifier F∗ ∈ Cmono with
the smallest error on P (we do not explicitly constrain
CPU computation). Note that the error of F∗ need not
be zero because P may not—actually most likely will
not—fully obey monotonicity. In the other extreme, we
can choose to probe nothing and return some classifier
F by “wild guessing”, which has the smallest cost 0,
but risks suffering from the worst error |P | for F . The
main challenge is to achieve the lowest error with as
few probes as possible.

• For Problem 2, we can trivially achieve the minimum
value 0 for error(F , P \ Z) by probing all the points of
P , noticing that in this case P \ Z = ∅. In the other
extreme, one can return a wild guess F with no probes
at all, but again may suffer from the largest error |P |
for error(F , P \ Z). The main challenge is to strike an
attractive tradeoff between |Z| and error(F , P \ Z).

The above definitions extend in a natural way to a ran-
domized algorithm Aran . Both the classifier F returned

by Aran and the set Z of points probed by Aran are ran-
dom variables. For Problem 1, the expected error of Aran

is defined as E[error(F , P)], and its expected cost as E[|Z|].
Likewise, for Problem 2, the expected error of Aran is defined
as E[error(F , P \Z)], and its expected cost still as E[|Z|]. In
all cases, expectation is over the random choices made by
the algorithm.

Remarks. The input P to both problems corresponds to the
set of points obtained from the set T in the entity matching
framework explained earlier. Problems 1 and 2 are designed
for two different scenarios that arise frequently in practice:

• Scenario 1: the entity sets X and Y are “training sets”
that represent the distributions DX and DY of entities
to be encountered from two sources, respectively. The
purpose of finding a classifier F is to apply it on new
(x̃, ỹ) /∈ X × Y to be received online where x̃ (or ỹ)
follows DX (or DY , resp.). That F is accurate on P
(a.k.a. T) implies that F should also work statistically
well on (x̃, ỹ). This is the application backdrop of
Problem 1.

• Scenario 2: unlike the previous scenario, here X and
Y are already the “ground sets”. In other words, there
are no future pairs, such as (x̃, ỹ) in Scenario 1, to be
cared for; and it suffices to match only the elements of
X and Y . Thus, the “overall accuracy” of F on all the
points in P is unimportant because if a point already
has its label revealed, it does not need to be guessed by
F , and thus should be excluded from error calculation.
This is the application backdrop behind Problem 2.

The rationale behind monotonicity is that, if x and y form
a match according to the features picked, then any pair
(x′, y′) more similar than (x, y) on every feature should also
be regarded as a match. Indeed, any classifier that defies
monotonicity is awkward because it indicates that at least
some of the features have been selected inappropriately.

1.2 Relevant Research
This subsection will first give an introduction to several

key findings in active learning that are relevant to Problems 1
and 2, and then review the existing entity matching solutions
we are aware of.

Active Learning. Classification is a fundamental topic in
machine learning. Let U be a possibly infinite set of points
in Rd. The input is an infinite stream of pairs (p, label(p))
where p is a point from U , and label(p) is its binary label,
i.e., either 0 or 1. Each pair is sampled independently from
an unknown distribution D on U × {0, 1}. A classifier is a
function F : U → {0, 1}, whose error probability equals

Pr{p ∼ D | F(p) 6= label(p)}

namely, the probability of wrongly predicting the label of
a point p drawn from D. Let C be a candidate class of
classifiers, and ν be the smallest error probability of all
the classifiers in C. The learning objective is the achieve
the following probabilistically approximately correct (PAC)
guarantee:

With probability at least 1− δ, find a classifier F from
C with error probability at most ν + ε, where δ > 0
and ε > 0 are input parameters.

In the more traditional passive setup, label(p) is directly
disclosed in every pair (p, label(p)), where the efficiency goal
is to minimize the sample cost, which equals the number of
stream pairs that an algorithm needs to see before ensuring
the PAC guarantee. In practice, deciding the label of a point
can be so expensive that its cost far dominates the cost of
learning. This motivated active learning, where point labels
are all hidden originally. Given an incoming point p, an
algorithm can choose whether to probe p, i.e., paying a unit
cost for the revelation of label(p). The primary efficiency
goal is to perform the least number of probes; efforts should
still be made to avoid a high sample cost, although this now
becomes a secondary goal.

Active learning has been extensively studied; see excellent
surveys [16, 23]. A main challenge is to identify the intrinsic
parameters that determine the label complexity, i.e., the
number of probes mandatory to ensure the PAC guarantee.
Considerable progress has been made in various scenarios
[4, 8, 15]. Our subsequent discussion will concentrate on
agnostic active learning, where (i) ν > 0, meaning that even
the best classifier in C cannot perfectly separate points of
the two labels because, intuitively, D has “noise”, and (ii) no
assumptions are made on that noise. This is the branch of
active learning most relevant to our work.

The state-of-the-art understanding on agnostic learning is
based on two intrinsic parameters:

• the VC dimension λ of C on U ;

• the disagreement coefficient θ of C under D.

We will not delve into the precise definitions of the above
parameters (the interested reader may see [24] for details).
For this article, it suffices to understand that a higher λ or θ
indicates the necessity of probing more labels.

The dominant solution to agnostic active learning is an al-
gorithm named A2. Its initial ideas were developed by Balcan
et al. [2], and have been substantially improved/extended sub-
sequently [4, 9, 16]. As shown in [16], the algorithm achieves
the PAC guarantee with a probing cost of

Õ

(
θ · λ · ν

2

ε2

)
(1)

where Õ(.) hides factors polylogarithmic to θ, 1/ε, and 1/δ.
On the lower bound side, extending an earlier result of Kaari-
ainen [17], Beygelzimer et al. [4] proved that the probing cost
needs to be

Ω

(
ν2

ε2
·
(
λ+ log

1

δ

))
. (2)

There is a gap of θ between the upper and lower bounds.
When this parameter is O(1), the two bounds match up to
polylog factors. Indeed, most success stories in the literature
are based on candidate classes C and distributions D that
give rise to a small θ (e.g., see [8, 10,13,26]).

Unfortunately, as will be explained later in Section 1.3, the
class Cmono of monotone classifiers can have a very high VC
dimension λ, and simultaneously, a very large disagreement
coefficient θ. The consequences are two-fold:

• The θ gap between (1) and (2) becomes significant,
suggesting that agnostic active learning has not been
well understood on monotone classifiers.

• With both θ and λ being large, the A2 algorithm incurs
expensive probing costs on Cmono , and may no longer
be attractive.

The reader may have noticed that Problem 1 can be cast
as agnostic active learning by setting U (in active learning)
to P (in Problem 1), and generating an input stream (for
active learning) by repeatedly sampling P . This makes A2

a viable solution to entity matching. We will discuss its
performance guarantees in relation to our results in the next
subsection.

Entity Matching. There is a rich literature on entity
matching; see [1, 3, 5–7,12,14,18–22,25] and the references
therein. Most of these works focused on designing heuris-
tics that perform well in practice, instead of establishing
theoretical bounds. The papers [1,3] are exceptions. In [1],
Arasu et al. observed that entity matching can be approached
using active learning. They presented algorithms to solve
some subproblems that arose in their framework. Unfortu-
nately, their overall solutions do not have attractive bounds
for Problem 1 or 2. In [3], Bellare et al. showed that if one
can solve Problem 1, the algorithm can be utilized to attain
small errors of other types, e.g., those based on recalls and
precisions, under certain assumptions.

1.3 Our Contributions
An Intrinsic Parameter. Recall that Problems 1 and 2
are defined on a set P of points in Rd. Given two points
p, q ∈ P , we say that p dominates q if p[i] ≥ q[i] holds on
all i ∈ [1, d]. Notice that a point dominates itself by this
definition. The dominance relation

R = {(p, q) ∈ P × P | p dominates q}

is a poset (partially ordered set).
It turns out that an intrinsic parameter characterizing the

hardness of both problems is the width w of R. Formally, w
is the size of the largest S ⊆ P such that no two different
points in S dominate each other; we will sometimes refer to
it as the dominance width of P . Any one-dimensional P has
w = 1. When d ≥ 2, w can be anywhere between 1 and n;
see Figure 1 for two extreme examples.

Problem 1. Denote by F∗ an optimal monotone classifier
on P , namely, this is a classifier in Cmono with the smallest
error on P . Set k = error(F∗, P) and n = |P | throughout
the article. Our first main result is:

Theorem 1. For Problem 1:

• there is a randomized algorithm that has expected er-
ror at most 2k, and probes O(w(1 + log n

w
)) points in

expectation;

• there exists a constant c such that, when w ≥ 2 and
k ≤ cn/w, any algorithm with expected error O(k) must
have an expected probing cost of Ω(w log n

(k+1)w
).

Several observations can be made. First, when k = 0—
the noise-free scenario where the label-1 points of P can
be perfectly separated from the label-0 ones by a monotone
classifier—our algorithm in the first bullet always returns
such a classifier. Second, when w = Ω(n), our lower bound
in the second bullet evaluates to Ω(n), meaning that the

(a) A point set of width 1 (b) A point set of width n

Figure 1: Illustration of dominance width

naive solution of probing all points in P can no longer be
improved by more than a constant factor in cost, for the
purpose of ensuring the smallest error asymptotically. Third,
we improve the aforementioned naive solution as long as
w = o(n), because for such w the upper bound in the first
bullet is o(n). Fourth, our upper and lower bounds nearly
match each other for k = O(n/w). Remember that no
algorithms can have an expected error less than k. Therefore,
under k = O(n/w), our solution is asymptotically optimal in
both expected error and expected probing cost.

As explained in Section 1.2, one can apply the A2 algorithm
of agnostic active learning to solve Problem 1 by repeatedly
sampling from P uniformly. To see its performance, let us
fit in the appropriate values for ν, ε, λ, and θ, as are defined
in Section 1.2. First, ν = k/n, according to the definition
of error(F∗, P). Second, to match our expected error 2k,
ε should be no more than ν = k/n; setting ε to this value
makes ν2/ε2 = 1. As we proved in [24], when k = O(n/w),
both θ and λ can reach w even in 2D space. By (1), A2 has

expected probing cost Õ(w2), which Theorem 1 improves by

a factor of Õ(w).
Note that (2) does not give a lower bound on Problem 1.

Recall that (2) applies to agnostic active learning which is
just one possible way to approach Problem 1.

Problem 2. If an algorithm returns a monotone classifier F
by probing a set Z of points, it always holds that error(F , P \
Z) ≤ error(F , P). Hence, Theorem 1 implies:

Corollary 1. For Problem 2, there is a randomized al-
gorithm that has expected error at most 2k, and expected
probing cost O(w(1 + log n

w
)).

What is intriguing is the opposite: can we substantially
reduce the error of Problem 2 without significantly increasing
the probing cost? This, subtly, is a question on the usefulness
of exempting Z from the error calculation. After all, the
intended purpose of Z is to push error(F , P \ Z) below k
(recall that, in Problem 1, the best achievable error is k).
Unfortunately, we are able to show:

Theorem 2. Fix any integers k and n such that k ≥ 1,
and n/k is an integer at least 2. There is a set S of one-
dimensional (i.e., d = 1) inputs to Problem 1 with the same
n and k such that any algorithm guaranteeing an expected
error at most k/2 on every input in S must entail an expected
probing cost of Ω(n/k) on at least one input in S.

Corollary 1 and Theorem 2 together point out a surprising
fact. If we are satisfied with an expected error of 2k, the
expected probing cost is no more than O(w(1 + log n

w
)) uni-

versally for all values of k. Even better, in the context of The-
orem 2 where d = 1, w equals 1, making O(w(1 + log n

w
)) =

O(logn). However, if we demand an expected error of k/2,
the expected probing cost surges to Ω(n/k), which is worse
than O(logn) for any k = o(n/ logn).

Theorem 2 also implies that, for k ≤ n/(w log2
n
w

), the
expected error must be at least Ω(k) if the expected probing
cost has to be O(w log(n/w)). Thus, on those values of k, our
algorithm in Corollary 1 is already asymptotically optimal.
Phrased differently, subject to O(w log n

w
) expected probing

cost, the hardness of the problem comes from guessing the la-
bels of points that have not been probed, such that excluding
Z from error calculation makes little difference.

Content of This Article. We will focus on establishing
the upper bound for Problem 1 in Theorem 1 by describing
our algorithm and its analysis in full. The proofs for the
lower bounds in Theorems 1 and 2, which can be found
in [24], are omitted from the article.

2. THE PROPOSED ALGORITHM
Our algorithm for Problem 1—named random probe with

elimination (RPE)—can be described in 6 lines as shown
in Figure 2. If Z is the set of points probed, the algorithm
produces a classifier F defined as:

F(p) =

{
1 if p dominates a label-1 point in Z
0 otherwise

(3)

To illustrate, consider that P consists of the 16 points in
Figure 3, where the black (or white) points carry label 1
(or 0, resp.). Here, k equals 3, noticing that no monotone
classifiers can have an error 2 or less, while it is easy to design
a monotone classifier with error 3, e.g., such a classifier would
correctly capture the labels of all points except p1, p11, and
p15. Assume that, at Step 2, RPE happens to probe p1
first, after which it eliminates the entire P except p6, p7,
and p8. Suppose also that, when Step 2 is executed again,
the algorithm chooses to probe p8, which removes all the
remaining points in P . With Z = {p1, p8}, the classifier of
(3) has an error 5 because it incorrectly maps p2, p3, p5, p11,
and p15 to 1.

Lemma 1. The classifier F in (3) is monotone.

Proof. Suppose that there exist points p, q such that p
dominates q, but F(p) = 0 and F(q) = 1. By (3), F(q) = 1
means that Z has a label-1 point that is dominated by q, and
hence, also dominated by p. This contradicts F(p) = 0.

The next lemma, together with (3), indicates a sense of
symmetry between labels 0 and 1 with respect to the classifier
F returned by RPE.

Lemma 2. For any p ∈ P , F(p) = 0 if and only if p is
dominated by a label-0 point in Z.

Algorithm RPE(P)

/* P is the input set of Problem 1 */

1. while P 6= ∅
2. pick a point p from P uniformly at random
3. probe p
4. if label(p) = 1 then
5. discard from P the points dominating p

else
6. discard from P the points that p dominates

Figure 2: The RPE algorithm

1 2 3 4 5 6 7 8 9 10 11 12

2
3

4

5

6

7

8

9

10

11

12

1

p1

p2

p3

p4

p5

p6 p7

p8

p9

p10
p11

p12
p13

p14

p15

p16

Figure 3: An input to Problem 1 where k = 3; black
and white points have label 1 and 0, respectively.

Proof. By (3), F(p) = 0 means that p does not dominate
any label-1 point in Z. Hence, the deletion of p from P
must have been triggered by RPE probing a label-0 point
p′ dominating p (note that p′ could be p and that a point
is considered to dominate itself). This proves the “only-if”
direction.

To establish the “if” direction, we first need to prove that Z
obeys monotonicity, namely, for any p, q ∈ Z, if p dominates
q, then label(p) ≥ label(q). Assume, on the contrary, that
this is not true, meaning that label(p) = 0 and label(q) = 1.
If p was probed before q, then q must have been discarded
after discovering that p has label 0. Likewise, if q was probed
before p, then p must have been discarded after discovering
that q has label 1. This contradicts the fact that both p and
q were probed.

The monotonicity of Z suggests that, if p is dominated by
a label-0 point in Z, p cannot dominate any label-1 point in
Z. Hence, F(p) = 0, thus establishing the “if” direction.

RPE can be implemented in O(n polylog n) time for fixed
dimensionality d. By maintaining P in a binary search tree,
we can draw a random point p ∈ P at Step 2 in O(logn)
time, such that in total we spend O(n log n) time on this step.
By maintaining a range tree [11] on P , Steps 5 and 6 can be
implemented in O(x logd n) time, if x points are eliminated
from P . Each point contributes to the x-term exactly once
(it can be deleted only once). Hence, the total CPU time
spent on these two steps is bounded by O(n logd n).

The above is everything that a practitioner needs to know
in order to apply the RPE algorithm in practice. We will
delve into the theory behind RPE in the next two sections.

3. ANALYZING THE COST OF RPE
An Attrition-and-Elimination Game. We will now take
a detour to discuss a relevant problem. Consider the following
game between two players Alice and Bob. At the beginning,
Alice is given the set S = {1, 2, . . . , s} for some integer s ≥ 1.
The game goes in rounds. In each round:

• Bob performs “attrition” first, by either doing nothing
or arbitrarily deleting some elements from S.

• Alice then performs “elimination” by picking a number
p ∈ S uniformly at random, and deleting from S all
the numbers larger than or equal to p.

The game ends when S becomes empty. The number of
rounds is a random variable depending on Bob’s strategy.

How should Bob play in order to maximize the expectation
of that variable?

It is fairly intuitive that Bob should do nothing at all in
every round, in which case the expected number of rounds
is Θ(1 + log s). To prove this, denote by function f(s) the
largest real number such that Bob has a strategy to make
the expected number of rounds equal f(s). Consider the first
attrition of Bob. Clearly, what matters is the number x of
elements that Bob decides to remove (what those elements
actually are is not relevant due to symmetry). If x < s,
the game continues for Alice to work on a set S of size
s − x. After her elimination, S has i elements—for each
i ∈ [0, s− x− 1]—left with probability 1/(s− x). Therefore:

f(s) = 1 +
s−1
max
x=0

{
1

s− x

s−x−1∑
i=0

f(i)

}
.

As the base case, f(0) = 0. Solving the recurrence gives
f(s) = O(1 + log s) for s ≥ 1, regardless of the value of x.

Dominance Width and Chain Decomposition. Let us
return to Problem 1. Given a non-empty subset C of the
input P , we say that C is:

• A chain, if it is possible to linearize the points of C into
a sequence p1, p2, . . . , p|C| such that pi+1 dominates pi
for every i ∈ [1, |C| − 1]. We will refer to the sequence
as the ascending order of C.

• An anti-chain, if none of the points in C dominate each
other.

In Figure 3, {p6, p8, p10} is a chain, whereas {p4, p12, p13,
p14} is an anti-chain.

A chain decomposition is a collection of disjoint chains C1,
C2, . . ., Ct (for some t ≥ 1) whose union equals P . How to
determine the smallest number t is a fundamental result in
order theory:

Dilworth’s Theorem: Consider any poset; let w be
the largest size of all anti-chains. Then, (i) there is a
chain decomposition that contains w chains, and (ii)
no chain decompositions can have less than w chains.

For instance, the input set P of Figure 3 can be divided
into 6 chains: C1 = {p1, p2, p3, p4, p10}, C2 = {p11}, C3 =
{p5, p9, p12}, C4 = {p16}, C5 = {p13}, and C6 = {p6, p7,
p8, p14, p15}. This is a smallest chain decomposition due to
the anti-chain {p10, p11, p12, p16, p13, p14}. Hence, the domi-
nance width w of P is 6.

Probing Cost of RPE. Let {C1, C2, . . . , Cw} be an arbi-
trary smallest chain decomposition (which is not known to
RPE). We will prove that in expectation RPE probes O(1 +
log |Ci|) points in Ci for all i ∈ [1, w]. It will then follow that
the total expected number of probes is O(

∑w
i=1(1+log |Ci|)),

which peaks at O(w(1 + log n
w

)) when all the chains have the
same size n/w.

Without loss of generality, let us focus on C1. Break C1

into (i) the set Ctrue
1 of points with label 1, and (ii) the set

Cfalse
1 of points with label 0. Due to symmetry, it suffices to

prove that RPE probes O(1 + log |Ctrue
1 |) points from Ctrue

1

in expectation.
Set s = |Ctrue

1 |. List the points of Ctrue
1 in ascending order

p1, p2, . . . , ps. The operations that RPE performs on this

chain can be captured as an attrition-and-elimination game
on an initial input S = {p1, p2, . . . , ps}:

• Bob formulates his strategy by observing the execution
of RPE. Suppose that the algorithm probes a point
p /∈ Ctrue

1 , and shrinks P at Step 5 or 6. Bob deletes
from S all those points of Ctrue

1 that are discarded in
the shrinking.

• When RPE probes a point p ∈ Ctrue
1 , Bob finishes his

attrition in this round, and passes S to Alice. Condi-
tioned on p ∈ Ctrue

1 , p was chosen uniformly at random
from the current S, i.e., the set of points from Ctrue

1

that are still in P . Hence, p can be regarded as the
choice of Alice. When RPE shrinks P at Step 5, Alice
discards p, as well as all the points behind p, from S.
This finishes a round of the game. The control is passed
back to Bob to start the next round.

By our earlier analysis on the attrition-and-elimination
game, RPE probes O(1 + log s) points from Ctrue

1 in expec-
tation. This establishes the upper bound in Theorem 1 on
the cost of RPE.

4. ANALYZING THE ERROR OF RPE
We now proceed to analyze the number of points mis-

labeled by the classifier F returned by RPE.
Fix an arbitrary optimal monotone classifier F∗, i.e., k =

error(F ∗, P). Henceforth, a point p ∈ P is said to be an
ordinary point if F∗(p) = label(p), or a noise point, otherwise.
Define:

G∗1 = {p ∈ P | label(p) = 1 and p is ordinary}
G∗0 = {p ∈ P | label(p) = 0 and p is ordinary}.

Since P unions G∗1, G∗0, and the k noise points, we know:

error(F , P) ≤ error(F , G∗1) + error(F , G∗0) + k. (4)

Let k0 be the number of label-0 noise points, that is,
points p satisfying label(p) = 0 but F∗(p) = 1. The rest of
the section serves as a proof of:

Lemma 3. E[error(F , G∗1)] is at most k0.

By the symmetry shown in Lemma 2, the above lemma im-
plies that E[error(F , G∗0)] is at most the number k1 of label-
1 noise points. Equation (4) then gives E[error(F , P)] ≤
k0 + k1 + k = 2k, thus establishing the upper bound in
Theorem 1 on the error of RPE.

4.1 RPE by Permutation
To analyze error(F , G∗1), it will be convenient to consider

an alternative implementation of RPE named RPE-perm,
which is described in Figure 4. Compared to RPE, RPE-
perm differs only in how randomization is injected: this is
now done by randomly permuting P . We defer the proof of
the lemma below to Section 4.4.

Lemma 4. RPE and RPE-perm have the same expected
error and expected probing cost on every input P .

Algorithm RPE-perm(P)
1. randomly permute the points of P

/* if a point p ∈ P is the i-th (i ∈ [1, n]) in the
permutation, define its rank r(p) to be i */

2. while P 6= ∅
3. pick the point p ∈ P with the smallest rank
4. probe p
5. if label(p) = 1 then
6. discard from P the points dominating p

else
7. discard from P the points that p dominates

Figure 4: The permutation-version of RPE

4.2 Influence of Noise Points
Let us first gain some intuition on why error(F , G∗1) is

small in expectation. Consider the example in Figure 3,
and the optimal F∗ that mis-labels only p1, p11, and p15.
Here, G∗1 consists of all the black points except p1. The bad
news is that, if noise point p15 is probed first, the classifier
F output by RPE will map the ordinary points p9, p13, p14
to 0 incorrectly (see Lemma 2), causing an increase of 3
to error(F , G∗1). The good news is that, if p15 is probed
after any of the ordinary points p9, p13, p14, then p15 will be
discarded and can do no harm. Under a random permutation,
p15 has only 1/4 probability to rank before all of p9, p13, p14,
which seems to suggest that p15 could trigger an increase of
only 3/4 to error(F , G∗1) in expectation.

Unfortunately, the analysis is not as simple as this, due
to the presence of noise point p11, which complicates the
conditions for p15 to be probed. For example, observe that,
if p11 did not exist, p15 can never be probed when p9 ranks
before p15. This is no longer true with the presence of p11.
To see this, imagine that p11 ranks before p9, which in turn
ranks before p15. The probing of p11 evicts p9 from P . On
the other hand, p15 remains in P , and hence, gets a chance
to be probed later.

The above issue arises because p9 is dominated—and
thereby is “influenced”—by both noise points p11 and p15.
Separating and quantifying the influence of each noise point
turns out to be the most crucial idea behind our analysis.
Let N0 be the set of label-0 noise points, i.e., k0 = |N0|.
Next, we will describe a way to calculate the “exclusive influ-
ence” I(q) of each point q ∈ N0. In particular, we will do so
incrementally by observing how RPE-perm executes.

At the beginning, initialize I(q) = 0 for every q ∈ N0.
Whenever RPE-perm is about to probe a point q ∈ N0,
capture the set—denoted as P (q)—of points that are still in
P at this moment. Then, finalize I(q) as:

I(q) =
the number of points in P (q) ∩G∗1 that are
dominated by q.

At the end of RPE-perm, if a point q ∈ N0 is never probed,
define P (q) = ∅ and finalize its I(q) to be 0.

The next lemma explains why the set {I(q) | q ∈ N0}
separates and quantifies the influence of the noise points in
N0.

Lemma 5.
∑

q∈N0
I(q) = error(F , G∗1).

Proof. Consider an arbitrary q ∈ N0 that was probed
by RPE-perm. Let p be any point in P (q) ∩ G∗1 that is
dominated by q. By Lemma 2, F(p) = 0 because of q.

Thus, p contributes 1 to error(F , G∗1). Hence,
∑

q∈N0
I(q) ≤

error(F , G∗1).
Conversely, let p be a point contributing 1 to error(F , G∗1),

that is, label(p) = 1 but F(p) = 0. Let S be the set of label-0
points in Z that dominate p. By Lemma 2, |S| ≥ 1. Define
q to be the point in S that was probed the earliest. Because
p is an ordinary point with label 1 dominated by q, q must
be a noise point, i.e., q ∈ N0. Next, we argue that p must be
in P (q), meaning that p contributes 1 to I(q), which in turn
indicates error(F , G∗1) ≤

∑
q∈N0

I(q).

On the contrary, suppose that p /∈ P (q). Thus, p had
already disappeared when RPE-perm was about to probe q.
By definition of q, this implies that RPE-perm had probed a
label-1 point dominated by p; but doing so should have got
q discarded, giving a contradiction.

4.3 Proof of Lemma 3
Let us denote the points of N0 as q1, q2, . . . , qk0 in an

arbitrary order, and introduce a random variable

X =

k0∑
i=1

I(qi).

We will show E[X] ≤ |N0| = k0, which will prove Lemma 3
by way of Lemma 5. Given a subset S of P and any point
q ∈ P , define:

DS(q) = {p ∈ S | q dominates p}.

Our proof of E[X] ≤ k0 is inductive on k0.

4.3.1 The Base Case
Let us start with the case k0 = 1, namely, N0 = {q1}.

Lemma 6. I(q1) > 0 only if q1 has a smaller rank than
all the points in DG∗

1
(q1).

Proof. Suppose that DG∗
1
(q1) has a point p that ranks

before q1 in the permutation. We argue that RPE-perm will
not probe q1.

Suppose that RPE-perm probes q1. Consider the moment
right before the probing happens. Point p must have disap-
peared from P (otherwise, RPE-perm cannot have chosen to
probe q since the rank of p is smaller). Could it have been
discarded due to the probing of a label-0 point p′ 6= q1? No,
because otherwise, p ∈ G∗1 asserts that p′ must also be a
label-0 noise point, contradicting k0 = 1. Thus, p must have
been discarded due to the probing of a label-1 point that
p dominates. But this should have evicted q1 as well, also
giving a contradiction.

Hence, I(q1) > 0 with a probability at most 1/(1+|DG∗
1
(q1)|).

Since I(q1) obviously cannot exceed |DG∗
1
(q1)|, we have:

E[I(q1)] ≤
|DG∗

1
(q1)|

1 + |DG∗
1
(q1)| < 1.

4.3.2 The Inductive Case
Assuming E[X] ≤ k0 when k0 = t − 1 for some integer

t ≥ 2, we will prove that the same holds also for k0 = t.
Define J(i) (i ∈ [1, t]) as the event that qi has the largest

permutation rank among q1, q2, . . . , qt. We will show

E[X | J(i)] ≤ t (5)

for all i, which will give

E[X] =

t∑
i=1

E[X | J(i)] ·Pr[J(i)] ≤
t∑

i=1

t · 1

t
= t

as is needed to complete the inductive argument.
Due to symmetry, the subsequent discussion will prove (5)

only for i = t, and hence, will be conditioned on the event
J(t). Recall that RPE-perm probes points in ascending order
of rank. Let us define the watershed moment as:

• The moment right before RPE-perm probes the first
point with a larger rank than all of q1, q2, . . ., qt−1;

• End of RPE-perm, if it does not probe any point that
ranks after q1, q2, . . . , qt−1.

At the watershed moment, I(q1), . . . , I(qt−1) have been final-
ized. Set Y =

∑t−1
i=1 I(qi). Denote by Pwater the content of

P at this instant.
The inductive assumption implies that E[Y] ≤ t− 1. To

understand why, imagine deleting qt from P , after which the
input set P ′ has t− 1 label-0 noise points, but the same G∗1.
The permutation after removing qt is a random permutation
of P ′. Thus, Y is exactly the value of error(F , G∗1) on P ′.

The remainder of the proof shows E[I(qt) | J(t)] ≤ 1. This
will establish (5) because

E[X | J(t)] = E[Y] + E[I(qt) | J(t)].

I(qt) = 0 when qt is not in Pwater (and hence, will not be
probed). Hence, it suffices to prove

E[I(qt) | J(t), qt ∈ Pwater] ≤ 1.

Towards the purpose, we expand the left hand side over all
possible sets W that Pwater may be equal to:

E[I(qt) | J(t), qt ∈ Pwater]

=
∑
W

E[I(qt) | J(t), qt ∈ Pwater = W] ·Pr[W]. (6)

We will concentrate on proving that

E[I(qt) | J(t), qt ∈ Pwater = W] ≤ 1

regardless of W , with which (6) can be bounded from above
by
∑

W Pr[W] = 1.
Subject to the joint event “J(t) and qt ∈ Pwater = W”, the

elements of W are symmetric with respect to their relative
ordering in the permutation: any of the |W |! orderings can
take place with an equal probability. The analysis of E[I(qt)]
under that joint event is essentially the same as the base
case. By the same argument as in the proof of Lemma 6,
we assert that I(qt) > 0 only if qt ranks before all the
points in DW∩G∗

1
(qt), which happens with a probability of

1/(1 + |DW∩G∗
1
(qt)|). As I(qt) cannot exceed |DW∩G∗

1
(qt)|

under the joint event, we conclude that E[I(qt) | J(t), qt ∈
Pwater = W] is no more than

|DW∩G∗
1
(qt)|

1 + |DW∩G∗
1
(qt)|

≤ 1.

4.4 Proof of Lemma 4
Both RPE and RPE-perm can be described as a random-

ized decision tree T defined as follows. Each node u of T is
associated with a subset of P , denoted as u(P). If u is the
root, u(P) = P , whereas if u is a leaf, u(P) = ∅. An internal

node u has |u(P)| child nodes. Each directed edge (u, v)
from u to a child v stores a point—denoted as point(u, v)—of
u(P). Every point of u(P) is stored on one and exactly
one outgoing edge of u. For each child v, the set v(P) is
determined as:

• If label(p) = 0, v(P) is the set of points in u(P) that
are not dominated by point(u, v) (recall that a point
dominates itself).

• If label(p) = 1, v(P) is the set of points in u(P) that
do not dominate point(u, v).

Each root-to-leaf path π represents a possible probing se-
quence of RPE or RPE-perm. Specifically, for each node u
on π, u(P) represents the content of P after the algorithm
probes the points stored on (the edges of) the root-to-u path.
We will prove that, for every leaf z of T , RPE and RPE-perm
reach z with exactly the same probability. This establishes
Lemma 4 because both error and probing cost are determined
by the sequence of points probed.

Let u1, u2, . . . , u` be the nodes on the root-to-z path (u1

is the root and z = u`). Obviously, RPE reaches z with
probability Π`−1

i=1
1

|ui(P)| . It remains to show that this is also

true for RPE-perm.
The execution of RPE-perm is a function of the permuta-

tion of P—denoted as Pperm—obtained at Step 1. For each
node u of T , denote by S(u) the set of all possible Pperm that
will bring the execution to u. When u is the root, S(u) is
the set of all n! permutations.

Lemma 7. For i ∈ [2, `], S(ui) is the set of permutations
π ∈ S(ui−1) such that point(ui−1, ui) has the smallest rank
in π among all the points in ui−1(P).

Proof. We prove the claim by induction. It holds for i =
2 because RPE-perm descends from u1 (the root) to u2 only
when point(u1, u2) is the first point of Pperm . Inductively,
assume that the claim is true for i = j − 1. As mentioned
before, uj−1(P) is the content of P after RPE-perm probes
the points stored on the root-to-uj−1 path. Hence, the
algorithm branches to uj only if point(uj−1, uj) is the next
to pick in Pperm among the points in uj−1(P). So the claim
holds also for i = j.

The lemma indicates that |S(ui)| = |S(ui−1)|/|ui−1(P)|.
Hence, |S(u`)| = |S(u1)| · Π`−1

i=1
1

|ui(P)| . The probability

that RPE-perm reaches u` equals |S(u`)|/n! which is simply
Π`−1

i=1
1

|ui(P)| . This concludes the proof of Lemma 4.

5. REFERENCES
[1] A. Arasu, M. Götz, and R. Kaushik. On active learning

of record matching packages. In SIGMOD, pages
783–794, 2010.

[2] M. Balcan, A. Beygelzimer, and J. Langford. Agnostic
active learning. JCSS, 75(1):78–89, 2009.

[3] K. Bellare, S. Iyengar, A. G. Parameswaran, and
V. Rastogi. Active sampling for entity matching with
guarantees. TKDD, 7(3):12:1–12:24, 2013.

[4] A. Beygelzimer, S. Dasgupta, and J. Langford.
Importance weighted active learning. In ICML, pages
49–56, 2009.

[5] G. D. Bianco, R. Galante, M. A. Goncalves, S. D.
Canuto, and C. A. Heuser. A practical and effective
sampling selection strategy for large scale deduplication.
TKDE, 27(9):2305–2319, 2015.

[6] P. Christen, D. Vatsalan, and Q. Wang. Efficient entity
resolution with adaptive and interactive training data
selection. In ICDM, pages 727–732, 2015.

[7] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864–875, 2016.

[8] S. Dasgupta. Coarse sample complexity bounds for
active learning. In NIPS, pages 235–242, 2005.

[9] S. Dasgupta, D. J. Hsu, and C. Monteleoni. A general
agnostic active learning algorithm. In NIPS, pages
353–360, 2007.

[10] S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis
of perceptron-based active learning. Journal of
Machine Learning Research (JMLR), 10:281–299, 2009.

[11] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[12] V. Efthymiou, G. Papadakis, G. Papastefanatos,
K. Stefanidis, and T. Palpanas. Parallel meta-blocking
for scaling entity resolution over big heterogeneous
data. Information Systems, 65:137–157, 2017.

[13] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee
algorithm. Machine Learning, 28(2-3):133–168, 1997.

[14] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone:
hands-off crowdsourcing for entity matching. In
SIGMOD, pages 601–612, 2014.

[15] S. Hanneke. A bound on the label complexity of
agnostic active learning. In ICML, pages 353–360, 2007.

[16] S. Hanneke. Theory of disagreement-based active
learning. Foundations and Trends in Machine Learning,
7(2-3):131–309, 2014.

[17] M. Kaariainen. Active learning in the non-realizable
case. In Proceedings of International Conference on
Algorithmic Learning Theory (ALT), pages 63–77, 2006.

[18] L. Kolb, A. Thor, and E. Rahm. Load balancing for
mapreduce-based entity resolution. In ICDE, pages
618–629, 2012.

[19] P. Konda, S. Das, P. Suganthan, A. Doan, A. Ardalan,
J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. F.
Naughton, S. Prasad, G. Krishnan, R. Deep, and
V. Raghavendra. Magellan: Toward building entity
matching management systems. PVLDB,
9(12):1197–1208, 2016.

[20] H. Kopcke and E. Rahm. Frameworks for entity
matching: A comparison. DKE, 69(2):197–210, 2010.

[21] H. Kopcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems.
PVLDB, 3(1):484–493, 2010.

[22] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In SIGKDD, pages
269–278, 2002.

[23] B. Settles. Active learning literature survey. Technical
Report, University of Wisconsin-Madison, 2010.

[24] Y. Tao. Entity matching with active monotone
classification. In PODS, pages 49–62, 2018.

[25] A. Thor and E. Rahm. MOMA - A mapping-based
object matching system. In CIDR, pages 247–258, 2007.

[26] L. Wang. Smoothness, disagreement coefficient, and the
label complexity of agnostic active learning. Journal of
Machine Learning Research, 12:2269–2292, 2011.

