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ABSTRACT

Let D be a set of n elements each associated with a real-
valued weight, and Q be the set of all possible predicates
allowed on those elements. Given a predicate in Q and
integer k, a top-k query returns the k elements with the
largest weights among the elements of D satisfying q. The
corresponding data structure problem aims to store D in
small space to allow every query to be answered efficiently. It
is already known that, before settling the problem, one must
be able to solve two degenerated accompanying problems:
(i) prioritized reporting: given a predicate q ∈ Q and a real
value τ , return all the elements of D satisfying q and having
weights at least τ ; (ii) max reporting: top-k queries with k
fixed to 1.

In this paper we prove general reductions in external mem-
ory that explore the opposite direction. Our first reduction
shows that, (under mild conditions) any prioritized reporting
structure yields a static top-k structure with only a slow-
down in query time by a factor of O(logB n), where B is the
block size. Our second reduction shows that if one addition-
ally has a max reporting structure, then combining the two
structures yields a top-k structure with no performance slow
down (in space, query, and update) in expectation. These re-
ductions significantly simplify the design of top-k structures,
as we showcase on numerous problems including halfspace
reporting, circular reporting, interval stabbing, point enclo-
sure, and 3d dominance. All the techniques proposed work
directly in the RAM model as well.
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1. INTRODUCTION
Reporting queries—which constitute a main type of opera-

tions in database systems—can be abstracted at a high level
as follows. The input is a set D of n elements drawn from a
certain domain D. Let Q be the set of all possible predicates
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that are allowed on the elements of D. A query chooses a
predicate q ∈ Q, and reports all the elements e ∈ D such that
e satisfies q—we denote the set of such elements as q(D).

The result size |q(D)| of a reporting query is often ex-
ceedingly large, especially in today’s big-data era. In many
applications, on the other hand, a user is interested only
in those elements of q(D) with high “priorities”. This moti-
vates the augmentation of each element e in D with a weight
w(e) ∈ R (where R represents the real domain). Accordingly,
every reporting query spawns two variants:

• Prioritized Reporting: Given a predicate q ∈ Q and
a real value τ , a query reports all the elements e ∈ q(D)
such that w(e) ≥ τ .

• Top-k Reporting: Given a predicate q ∈ Q and an
integer k ≥ 1, a query reports the k elements in q(D)
with the highest weights; specially, if |q(D)| < k, then
the entire q(D) is reported.

For each query type, the corresponding indexing problem
aims to store D in a data structure of small space to guar-
antee attractive query efficiency. Note that a structure for
prioritized reporting must support queries with any q and τ ,
while a structure for top-k reporting must support queries
with any q and k.

1.1 Computation Models and Math
Conventions

We will carry out most of our analysis in the standard
external memory (EM) model [8]. A machine is equipped
with M words of memory, and a disk that has been formatted
into blocks of B words each (this paper assumes B ≥ 64).
The values of M and B satisfy M ≥ 2B. An I/O either reads
a disk block into memory, or writes B words of memory into
a disk block. The time of an algorithm is measured in the
number of I/Os performed, while the space of a structure is
measured in the number of disk blocks occupied.

By setting M and B to appropriate constants, all our EM
results also hold in the classic RAM model, whose definition
can be found in almost every textbook on algorithms, e.g.,
[16].

We consider that each element is stored in O(1) words,
and that the elements of D have distinct weights, as is a
standard assumption in the top-k literature (whose purpose is
to avoid ambiguity in the top-k result caused by tie-breaking
in weights).

All complexities by default hold in the worst case. We



(i) define log∗(n) as the number of times that we need to
perform log2(.) on n to get a value no more than 2, and (ii)

use notation Õ(.) to hide a factor polylogarithmic to n when
such a factor is insignificant. All the logarithm bases are
equal to 2 if omitted.

Finally, we say that a function f(n) is geometrically con-
verging if it satisfies two conditions:

• For any n ≥ B:

h
∑

i=0

f
( n

ci

)

= O(f(n))

for any value c ≥ 2, where h is the largest integer i
satisfying n/ci ≥ B.

• For any n < B, f(n) = O(1).

1.2 Motivation
Recent years have witnessed considerable research aiming

to design top-k data structures for a large variety of problems
(see Section 2 for a survey), which differ in their concrete
specifications of D and Q. Most solutions, interestingly, share
a common two-step process:

• First, design a structure for prioritized reporting.

• Second, reduce top-k reporting to prioritized reporting.

Typically, the prioritized-reporting structure is easy to obtain
(if not readily available), such that the challenge lies in the
second step.

The community has come to realize that this process is
necessary. Specifically, it has been shown [26, 28, 29] that pri-
oritized reporting can be reduced to top-k reporting. Suppose
that there is a structure that consumes Stop(n) space on n ele-
ments, and answers a top-k query in Qtop(n) +O(k/B) I/Os.
Then, there is a prioritized-reporting structure of Spri(n)
space that answers a query in Qpri(n)+O(t/B) I/Os—where
t is the number of reported elements—such that

Spri(n) = O(Stop(n))

Qpri(n) = O(Qtop(n)).

The reduction does not rely on the underlying problems,
i.e., prioritized reporting is no harder than top-k reporting,
regardless of D and Q. Therefore, if one does not even have
a structure for the former, there is no hope for the latter.

What is much more intriguing is the opposite: how much
harder is top-k reporting than prioritized reporting? To phrase
this differently, let us assume that we already have a structure
of Spri(n) space that answers a prioritized query in Qpri +
O(t/B) time. We want to use the structure as a black box
to design a top-k structure of space Stop(n) and query cost
Qtop + O(k/B). The question is how good the functions
Stop(n) and Qtop(n) can be.

Resolving the question has an important technical implica-
tion. Since prioritized reporting structures are already known
for numerous problems, such a black-box reduction will give
us top-k structures immediately for all those problems! Un-
fortunately, not much progress has been made towards this
direction. The best understanding is the rather primitive

relationships below1 [28]:

Stop(n) = O(Spri(n)) (1)

Qtop(n) = O(Qpri(n) log2 n) +O

(

k

B
log2 n

)

(2)

The multiplicative term log2 n on k/B essentially prevents the
reduction from producing any structure with linear output-
sensitive cost O(k/B).

Ideally, we would like to have Stop(n) = O(Spri(n)) and
Qtop(n) = O(Qpri(n))—in order words, no performance
deterioration—which would prove the asymptotic equiva-
lence of prioritized and top-k reporting. If such a strong
reduction still remains elusive, the next obvious question is
what other “assisting problem” needs to be settled to make a
no-deterioration reduction possible.

1.3 Our Results 1: Reductions
Our first contribution is to show that, under mild condi-

tions, there only needs to be an O(logB n) gap in the query
cost between top-k and prioritized reporting:

Theorem 1. Suppose that there is a prioritized struc-
ture of Spri(n) space and query cost Qpri(n) + O(t/B)
such that Spri(n) is geometrically converging, and

Qpri(n) ≥ logB n.

Furthermore, suppose that the problem is polynomially
bounded, namely, for any input D of n elements, there
are only nO(1) distinct outcomes for q(D) over all the
possible predicates q ∈ Q.

Then, there is a top-k structure of space Stop(n) and
query time Qtop(n) +O(k/B) with

Stop(n) = O(Spri(n)) (3)

Qtop(n) = O



Qpri(n) ·
log n

logB + log
Qpri (n)

logB n



 (4)

It is worth mentioning that most of the known reporting
problems are polynomially bounded. Consider, for example,
D to be a set of n points in R2. In halfspace reporting, given
a halfspace q (the region on one side of a line), we want to
report the set q(D) of points in D∩ q. It is easy to see that
O(n2) different subsets q(D) exist, ranging over all possible q,
because there are only

(

n
2

)

different lines passing two points
in D.

Two remarks are in order:

• Since the denominator in (4) is at least logB, it holds
that Qtop(n) = O(Qpri(n) · logB n).

• If Qpri(n) ≥ (n/B)ǫ for an arbitrarily small constant
ǫ > 0, (4) becomes Qtop(n) = O(Qpri(n)). In other
words, top-k reporting is asymptotically as difficult as
prioritized reporting for “hard” queries.

Our techniques for establishing Theorem 1 are drastically
different from those behind (1) and (2), which are obtained
by binary search on the weight threshold τ [28]. We prove

1Assuming that Spri(n) is geometrically converging.



Theorem 1 mainly with two new ideas. The first one is to
show the existence of a core-set that allows us to process
queries with large k through prioritized reporting. The
second one is a recursive mechanism that “fine-tunes” the
results of queries with small k using nested core-sets.

An important special case of top-k reporting is max report-
ing where all queries have k = 1. Before solving queries of all
k, one must at least be able to design an efficient structure for
max reporting. In other words, just like prioritized reporting,
max reporting is also a necessary step towards settling top-k
reporting. Our second contribution is to show that the two
necessary structures are sufficient as well:

Theorem 2. Suppose that there is

• A prioritized-reporting structure of Spri(n) space
that answers a query in Qpri(n) +O(t/B) I/Os;

• A max-reporting structure of Smax (n) space that
answers a query (i.e., k = 1) in Qmax (n) I/Os. It is
required that

– Smax (n) = O(n2/B) for any n ≥ B.

– Smax (n) is geometrically converging.

Then, there is a top-k structure of expected space Stop(n)
and expected query time Qtop(n) +O(k/B) with

Stop(n) = O

(

Spri(n) + Smax

(

6n

B ·Qpri(n)

))

(5)

Qtop(n) = O (Qpri(n) +Qmax (n)) . (6)

Furthermore, if the prioritized and max structures sup-
port an update in Upri(n) and Umax (n) I/Os respec-
tively, then the top-k structure supports an update in
O(Upri(n) + Umax (n)) expected I/Os. If any of Upri(n)
and Umax (n) is amortized, the update cost of the top-k
structure is amortized expected. In the above, every ex-
pectation is taken over the random choices made by our
algorithms.

Three remarks are in order:

• The above reduction is optimal in the sense that there
is no performance degradation (in expectation): the
space, query, and update costs of the top-k structure
are all determined by the worse between the prioritized
and max structures.

• Somewhat surprisingly, Stop(n) may even be smaller
than O(Smax (n)). For instance, consider Spri(n) =
O(n/B), Smax (n) = O((n/B) logB n), while Qpri(n)
≥ logB n—which will give Stop(n) = O(n/B). This
implies, interestingly, that one does not need to try
very hard to minimize the space of the max structure:
our reduction comes with “bootstrapping power” that
automatically reduces the expected space of the final
top-k structure.

• The condition Smax (n) = O(n2/B) essentially captures
all the max structures useful in practice. The power
2 is not compulsory at all; it can be replaced by any
larger constant by adjusting the other constants in our
analysis appropriately.

We establish Theorem 2 by sampling from the input set
D so that the element with the highest weight in the sample
set is approximately the k-th in D. This, at the conceptual
level, may be reminiscent of a method by Aronov and Har-
Peled [9] that reduces approximate counting to emptiness
queries. However, our approach differs substantially in both
algorithmic and technical details, a quick proof of which
is the following fact: the counting structure of [9] suffers
from performance degradation by a logarithmic factor com-
pared to the emptiness structure, while as pointed out earlier
Theorem 2 incurs no performance degradation.

Both theorems are applicable in RAM by setting B to
appropriate constants.

1.4 Our Results 2: New Top-k Structures
The reduction results in the preceding subsection lead

to top-k structures for a large number of problems. We
discuss several representatives that (i) are of immediate
interest to database systems, (ii) are either new or improve
previous work, and (iii) nicely demonstrate the applications
of Theorems 1 and 2.

Halfspace and Circular Range Reporting. In halfspace
reporting, D is the set of points in Rd, where d is a fixed
integer. Each predicate in Q specifies a halfspace, i.e., all
the x satisfying x · q ≥ c, where q and c are the query
parameters (x and q are d-dimensional vectors, and c a real
value). An element e ∈ D satisfies the predicate if e falls in
the halfspace. The importance of halfspace reporting—in
general, searching with linear constraints—has long been
recognized in the database community; e.g., see [6]. We
obtain:

Theorem 3. For top-k halfspace reporting:

• When d = 2, there is a RAM structure of O(n log n)
space and O(log n+ k) query time, both in expecta-
tion.

• When d ≥ 4, there is a RAM structure of O(n log n)

space and Õ(n1−1/⌊d/2⌋) +O(k) query time, both in
the worst case.

• When d ≥ 4, there is an EM structure of O(n/B)

space and O((n/B)1−1/⌊d/2⌋+ǫ + k/B) query time,
both in the worst case, where ǫ > 0 is an arbitrarily
small constant.

The first bullet compares favorably to a structure obtained
by combining [5], [15], and [28] that uses O(n logn) space,
and answers a query in O(log2 n+ k) time. For d ≥ 4, [28]
gave a RAM structure that, when matching our query time,
requires O(n1+ǫ) space for some constant ǫ > 0; no EM
structures were known previously.

Circular range reporting is a closely related problem. Again,
D is the set of points in Rd, but each predicate in Q specifies
a ball in Rd, i.e., all the x satisfying dist(x, q) ≤ r, where
dist is the Euclidean distance between vectors x and q, and
r is a positive real value (query parameters are q and r).
Circular reporting is fundamental in spatial databases and
similarity retrieval; e.g., see [36]. By the standard “lifting
trick” [17], we obtain directly from Theorem 3:



Corollary 1. For top-k circular reporting with d ≥
3, there is:

• A RAM structure of O(n logn) space and

Õ(n1−1/⌊(d+1)/2⌋) + O(k) query time, both in the
worst case.

• An EM structure of O(n/B) space and

O((n/B)1−1/⌊(d+1)/2⌋+ǫ + k/B) query time,
both in the worst case, where ǫ > 0 is an arbitrarily
small constant.

The RAM structure improves a structure of [28], which
again requires O(n1+ǫ) space to match our query time. No
EM structures were known for this problem.

Interval Stabbing. This problem is among the most classic
problems in the database area; e.g., see [21]. Here, D is the
set of all intervals in R, namely, D = {[x, y] | x, y ∈ R}.
Each predicate in Q specifies a point q, such that an element
e = [x, y] in D satisfies the predicate if q ∈ [x, y]. We obtain:

Theorem 4. For top-k interval stabbing, there is an
EM structure of

• O(n/B) space and O(logB n + k/B) query time,
both in expectation. The structure can be updated
in O(logB n) I/Os amortized expected per insertion
and deletion.

• O(n/B) space and O(log2B n + k/B) query time,
both in the worst case.

The second bullet improves a structure of [28] that uses
O((n/B) log n) space to ensure query time O(log n · logB n+
k/B).

2D Point Enclosure. In this problem, D is the set of all
rectangles in R2, namely, D = {[x1, x2]×[y1, y2] | x1, x2, y1, y2 ∈
R}. Each predicate in Q specifies a point q ∈ R2, such that
an element e ∈ D satisfies the predicate if q ∈ e.

To emphasize on the relevance of a top-k query of this
type to databases, let us consider a dating website, where
a person registers requirements on her/his ideal significant
other: age in [x1, x2], and height in [y1, y2]. A reasonable
top-k point enclosure query from, say, a lady is:

“Find the 10 gentlemen with the highest salaries such
that my age and height fall into their preferred ranges.”

We obtain:

Theorem 5. For top-k point enclosure, there is a
RAM structure of

• O(n log∗(n)) space and O(log n log log n+ k) query
time, both in expectation.

• O(n log∗(n)) space and O(log2 n log logn
log log logn

+ k)
query time, both in the worst case.

Both structures compare favorably to a structure obtained
by combining [28] and [13] that uses O(n logn) space, and
answers a query in O(log2 n+ k) time.

3D Dominance. In this problem, D is the set of points in
R3. Each predicate in Q specifies a point q = (x, y, z), such
that an element e = (ex, ey, ez) in D satisfies the predicate if
ex ≤ x, ey ≤ y, and ez ≤ z. A practical top-k query of this
type is

“Find the 10 best-rated hotels whose (i) prices are at
most x dollars per night, (ii) distances from the town
center are at most y km, and (iii) security rating is at
least z.”

We obtain:

Theorem 6. For top-k 3D dominance, there is
a RAM structure of O(n logn/ log logn) space and
O(log1.5 n+ k) query time, both in expectation.

This compares favorably to a structure obtained by combin-
ing [28] and [5] that uses O(n log n) space and O(log2 n+ k)
query time.

2. PREVIOUS WORK
The existing research on top-k can be classified into two

categories: (i) general reductions (to which this paper be-
longs) and (ii) exploration of individual problems.

The first category, to our knowledge, contains only the
work by Rahul and Janardan [28]. Besides the reduction
giving (1) and (2), they also showed that top-k reporting
can be converted to approximate counting2 and conventional
reporting queries. Specifically, consider a reporting problem
defined by D and Q as formulated in Section 1. Given a
predicate q ∈ Q, an approximate counting query returns a
value that is guaranteed to be between |q(D)| and c|q(D)|
where c > 1 is a constant integer fixed for all queries. Suppose
that we have:

• A structure that uses space Srep(n) and answers a
query in the original (unweighted) problem in Qrep(n)+
O(t/B) time, where t is the number of elements re-
ported;

• A structure that uses Scnt(n) space and answers an
approximate counting query in Qcnt(n) time.

Then, there is a top-k structure with space Stop(n) and query
time Qtop(n) +O(k/B) such that

Stop(n) = O((Srep(n) + Scnt(n)) log2 n)

Qtop(n) = O((Qrep(n) +Qcnt(n)) log2 n).

The reduction also works in RAM by setting B to an appro-
priate constant. The competing results in Section 1.4 are
obtained from the above reduction by plugging in suitable
reporting and counting structures.

2[28] requires exact counting; our discussion here in fact
improves that of [28].



Regarding the second category, [20] is an excellent survey
on top-k research that focuses on system implementation
that does not necessarily have attractive performance guar-
antees. In the theory line, the work of [10] appears to be
the first attempt to incorporate top-k features into conven-
tional reporting queries. Since then, the topic has grown
into a sizable literature. The most extensively studied (and
hence, the best understood) problem is top-k range reporting,
whose 1D version was studied in [3, 11, 12, 33, 35], and 2D
(orthogonal) version in [28, 29]. See also [25] for a colored
version of the problem in 1D. The work [30] investigated more
sophisticated colored top-k versions of several computational
geometry problems. Finally, top-k queries on text retrieval
problems have been considered in [19, 24, 25, 32]; see also a
recent survey [22].

3. REDUCTION WITH WORST-CASE

EFFICIENCY
This section serves as a proof of Theorem 1. We will need

the Chernoff bounds given in the appendix.

3.1 Top-k Core-Set
Rank Sampling. Let S be a set of elements. By indepen-
dently sampling each element of S with probability p, we
obtain a p-sample set R. Furthermore, let us further assume
that the elements of S are distinct, and drawn from an or-
dered domain. We say that an element e ∈ S has rank i, if e
is the i-th greatest in S. Intuitively, given an integer k that
is reasonably large, the element with rank kp in R ought to
have rank roughly k in S. The next lemma formalizes this
intuition.

Lemma 1. Let S be a set of n elements, and R be a p-
sample set of S. Suppose that integer k ≥ 1 and real value
δ ∈ (0, 1) satisfy kp ≥ 3 ln(3/δ) and n ≥ 4k. Then, the
following hold simultaneously with probability at least 1− δ:

• |R| > 2kp

• The element with rank ⌈2kp⌉ in R has rank between k
and 4k in S.

Proof. The first bullet fails with probability

Pr[|R| ≤ 2kp] = Pr[|R| ≤ (2k/n) · np]
≤ Pr[|R| ≤ (1/2)np]

(Chernoff bound (16)) ≤ exp(−np/12)

≤ exp(−kp/3)

≤ δ/3.

Let e be the element with rank ⌈2kp⌉ in R, and k̂ be the
rank of e in S. Next, we bound the probability of the event
k̂ > 4k. For i ∈ [1, 4k], define xi to be 1 if the i-th greatest

element in S is sampled, or 0 otherwise. Let X =
∑4k

i=1 xi,

and thus, E[X] = 4kp ≥ 12 ln(3/δ). Event k̂ > 4k implies
X ≤ ⌈2kp⌉ − 1. We have:

Pr[k̂ > 4k] ≤ Pr[X ≤ ⌈2kp⌉ − 1]

= Pr[X < 2kp]

= Pr[X < (1/2) ·E[X]]

(Chernoff bound (16)) ≤ exp(−E[X]/12).

≤ δ/3.

Finally, we bound the probability of the event k̂ < k.
Define Y =

∑k
i=1 xi, and thus, E[Y ] = kp ≥ 3 ln(3/δ).

Event k̂ < k implies that Y ≥ ⌈2kp⌉. We have:

Pr[k̂ < k] ≤ Pr[Y ≥ 2kp]

= Pr[Y ≥ 2E[Y ]]

(Chernoff bound (17)) ≤ exp(−E[Y ]/3)

≤ δ/3.

By the union bound, the two bullets in the lemma hold
simultaneously with probability at least 1− δ.

Core-Set. As stated in Theorem 1, suppose that the under-
lying problem is polynomially bounded. More specifically,
we say that the problem is λ-polynomially bounded if for
any input D of n elements, there are at most nλ distinct
outcomes for q(D) over all q ∈ Q, where λ is a constant.

Given a subset R of D, we say that an element e ∈ R has
weight rank i in R if it has the i-th greatest weight in R.
The next lemma proves the existence of a small-size core-set
that approximately captures a specific rank for all the “large”
queries whose predicates are satisfied by many elements.

Lemma 2 (Top-k Core-Set Lemma). For any integer
K ≥ 4λ lnn, there is a subset R of D such that

• |R| ≤ 12λ · (n/K) lnn.

• For any q ∈ Q satisfying |q(D)| ≥ 4K, it holds that

– |q(R)| > 8λ lnn

– The element with weight rank ⌈8λ lnn⌉ in q(R)
has weight rank between K and 4K in q(D).

Proof. Set p = 4(λ/K) lnn, and δ = 1/(2nλ). These
values ensure:

Kp = 4λ lnn ≥ 3 ln(3/δ). (7)

Let R be a p-sample set of D. We will prove that R satisfies
all the conditions in the lemma with a non-zero probability.

Fix a q ∈ Q satisfying |q(D)| ≥ 4K. Clearly, q(R) is a
p-sample set of q(D). Applying Lemma 1 on S = q(D) (the
application is enabled by (7)), we know that with probability
at least 1− δ, the following hold simultaneously:

• |q(R)| > 2Kp = 8λ lnn.

• The element with rank ⌈2Kp⌉ has rank between K and
4K in q(D).

By λ-polynomially boundedness and the union bound, the
above holds for all queries with probability at least 1−δnλ =
1/2.

Finally, as |R| equals np in expectation, by Markov’s in-
equality, |R| ≤ 3np = 12λ(n/K) lnn with probability at least
2/3. It thus follows that all the conditions of the lemma hold
with probability at least 1− (1/2 + 1/3) > 0.

3.2 Structure
We proceed to explain how to use a prioritized reporting

structure to design a top-k reporting structure on a problem
that is λ-polynomially bounded for a constant λ. Recall
that the former structure consumes space Spri(n) space on n



elements, and answers a prioritized query in Qpri(n)+O(t/B)
I/Os.

Define:

g =
Qpri(n)

logB n
(8)

f = 12λB · Qpri(n). (9)

Note that g ≥ 1 (as required by Theorem 1), and for B ≥ 64,
both the following are fulfilled:

12λ

f
· lnn ≤ 1

g
√
B

(10)

f ≥ ⌈8λ lnn⌉. (11)

To prove Theorem 1, next we first describe our solution to
top-k queries with k ≤ f , and then, queries with larger k.

Queries with k ≤ f . It suffices, in fact, to consider k = f .
Given a query q with k < f , we first treat it as a top-f
query, i.e., retrieving the set of f elements with the greatest
weights in q(D). Then, the final result of q can be easily
obtained by performing k-selection [8] on these elements
in O(f/B) = O(Qpri(n)) I/Os. Apart from this, the cost
depends only on the top-f query.

Given a top-f query q, we answer it directly using a pri-
oritized structure on D, if |q(D)| ≤ 4f . We do not need
any counting structure for estimating q(D). Instead, we
can achieve the purpose by issuing a prioritized query with
predicate q and threshold τ = −∞ in a cost monitoring
manner:

• Either the query terminates by itself

• Or we terminate it manually as soon as 4f +1 elements
have been reported.

In both cases, the number of I/Os performed by the query is
at most Qpri(n) +O(f/B) = O(Qpri(n)). In the former case,
we obtain the final result of the top-f query by performing
k-selection on the elements fetched by the prioritized query.
In the latter case, it must hold that |q(D)| > 4f ; we answer
such queries with a structure constructed as follows.

Take a core-set R1 of D using Lemma 2 with K = f , and
build a prioritized structure on R1. This process is then
carried out recursively: for every i ≥ 2, we take a core-set
Ri+1 of Ri with the same K = f , and build a prioritized
structure on Ri+1. The recursion ends at some i = h where
|Rh| ≤ 4f .

For convenience, let us treat D as R0. For each Ri (0 ≤
i ≤ h− 1), it holds that f ≥ 4λ lnn ≥ 4λ ln |Ri|; hence, by
Lemma 2:

|Ri+1| ≤
12λ · |Ri|

f
ln |Ri| ≤ 12λ · |Ri|

f
lnn

(by (10)) ≤ |Ri|
g
√
B
. (12)

The total space of all the prioritized structures is therefore
O(Spri(n)) by the fact that Spri(n) is geometrically converg-
ing. Furthermore, (12) indicates that

h = O(logg
√
B n).

We now explain inductively how to answer a top-f query
on any Ri for i ∈ [0, h] in no more than

c · (h− i+ 1) · Qpri(n) (13)

I/Os, for some constant c ≥ 1. At the bottom level i = h, the
purpose can be easily achieved by scanning the entire Rh in
O(f/B) I/Os, which is at most c1 ·Qpri(n) for some constant
c1 ≥ 1. Assuming that this can be done for all i ≥ j + 1,
consider i = j, at which level we distinguish two scenarios:

• |q(Rj)| ≤ 4f : Answer the query in the cost monitor-
ing manner as explained earlier using the prioritized
structure on Rj . The cost is Qpri(|Rj |) + O(f/B) ≤
c2 · Qpri(n) for some constant c2 ≥ 1.

• |q(Rj)| > 4f : According to Lemma 2, q(Rj+1) must
have size at least ⌈8λ ln |q(Rj)|⌉. By (11), it must hold:

f ≥ ⌈8λ ln |q(Rj)|⌉.
Therefore, we can retrieve the element e with weight
rank ⌈8λ ln |q(Rj)|⌉ in q(Rj+1) by issuing a top-f query
on Rj+1 in at most

c · (h− i) · Qpri(n)

I/Os. Lemma 2 indicates that the weight rank of e in
q(Rj) is between f and 4f . We deploy the prioritized
structure on Rj to fetch all the elements of q(Rj) with
weights at least w(e) in Qpri(|Rj |) + O(f/B) ≤ c2 ·
Qpri(n) I/Os. The result of the top-f query can be
obtained from these objects with “k-selection” in no
more than c3 · Qpri(n) I/Os for some constant c3 ≥ 1.

We choose c to be max{c1, c2 + c3}, which ensures:

c · (h− i) · Qpri(n) + (c2 + c3) · Qpri(n)

≤ c · (h− i+ 1) · Qpri(n)

and hence, completing our claim in (13). It thus becomes
clear that the cost of answering a query on D is

O(h · Qpri(n)) = O(Qpri(n) · logg√B n).

Plugging in the definition equation (8) of g gives the claimed
complexity in Theorem 1.

Queries with k > f . We apply Lemma 2 to take a core-set
R[i] of D with K = 2i−1f , for i = 1, 2, ..., h, where h is the
largest integer i satisfying 2i−1f ≤ n. It is easy to verify
from (9) that

h = O(log(n/B)). (14)

Our structure has two components:

• A prioritized structure on D.

• On each R[i] where 1 ≤ i ≤ h, build a top-f structure,
namely, the structure we just explained for answering
queries with k ≤ f . Since |R[i]| ≤ 12λ(n/(2i−1f)) lnn,
all these top-f structures use in total

O

(

h
∑

i=1

Spri

(

12λ · n lnn

2i−1f

)

)

= O(Spri(n) + h) = O(Spri(n))

space, where the derivation used the facts that (i)
Spri(n) is geometrically converging, (ii) Spri(n) obvi-
ously needs to be Ω(n/B), and hence, by (14), h =
O(Spri(n)).



The total space of our structure is therefore O(Spri(n)).

Now consider a top-k query q with f < k ≤ n. First, if
k ≥ n/2, we answer it by simply scanning the entire D in
O(n/B) = O(k/B) I/Os. Next, we consider k < n/2.

Identify the smallest i ∈ [1, h] such that 2i−1f ≥ k. Fix
the value of K to 2i−1f in the rest of the section. Note that
k ≤ K < 2k. We then proceed as follows:

• If |q(D)| ≤ 4K, we answer the query with cost monitor-
ing through the prioritized structure on D in Qpri(n)
+ O(K/B) I/Os.

• If |q(D)| > 4K, Lemma 2 indicates that q(R[i]) has size
at least ⌈8λ lnn⌉, and that the element e with weight
rank ⌈8λ lnn⌉ in q(R[i]) has weight rank between K
and 4K in q(D).

Retrieve e by issuing a top-f query on R[i]. By search-
ing the top-f structure on R[i], the query finishes
in O(Qpri(n) logg

√
B n) I/Os, as proved earlier. Ex-

tract from the prioritized structure on D the elements
in q(D) whose weights are at least w(e); this entails
Qpri(n) +O(K/B) I/Os. Finally, the query result can
be produced with k-selection in O(K/B) I/Os.

Overall, the query performs O(Qpri(n) logg
√

B n+K/B) I/Os.
This completes the whole proof of Theorem 1.

4. REDUCTION WITH EXPECTED

EFFICIENCY
In this section, we provide a reduction to establish the

correctness of Theorem 2. Our discussion focuses on n ≥ B ·
Qmax (n); otherwise, a top-k query can be trivially answered
by performing k-selection on the whole D in O(n/B) =
O(Qmax (n)) I/Os.

Rank Sampling, Again. Our current rank sampling lemma,
i.e., Lemma 1, falls short for the subsequent discussion.
That lemma governs the behavior of the sample with rank
⌈2kp⌉ which—given the working condition kp ≥ 3 ln(3/δ)—
is strictly greater than 1. Intuitively, this is problematic
because, to apply max (i.e., top-1) queries, we need to un-
derstand the behavior of rank 1 in the sample set, i.e., the
largest sample.

Fortunately, we are able to get around the obstacle by
proving an alternative result, which is less general than
Lemma 1, but serves exactly the purpose that Lemma 1 does
not.

Lemma 3. Let S be a set of n elements, and K ≥ 2 a real
value satisfying n ≥ 4K. For a (1/K)-sample set R of S, the
following hold simultaneously with probability at least 0.09:

• |R| ≥ 1

• The largest element in R has rank in S greater than K
but at most 4K.

Proof. The first bullet fails only if none of the elements
in D were sampled, which occurs with a probability

(1− 1/K)n ≤ (1− 1/K)4K ≤ 1/e4

where the last inequality used the fact that (1− x)1/x < 1/e
for all x ≥ 0.

Let e be the largest element in R (note: this should be dis-
tinguished from the base of natural logarithm; the semantics
of each occurrence of “e” should be clear from the context
throughout the paper). Denote by K̂ the rank of e in D.

Next, we bound the probability of the event K̂ > 4K, which
occurs only if none of the 4K largest elements in D were
sampled. Hence:

Pr[K̂ > 4K] = (1− 1/K)4K ≤ 1/e4.

Finally, we bound the probability of the event K̂ ≤ K,
which occurs only if at least one of the K largest elements
in D was sampled. Hence:

Pr[K̂ ≤ K] = 1− (1− 1/K)K .

Applying the fact that (1− 1/x)x ≥ 1/e2 for all x ≥ 2, we
know:

Pr[K̂ ≤ K] ≤ 1− 1/e2.

The union bound now shows that the probability of vio-
lating at least one bullet of Lemma 3 is at most

2/e4 + (1− 1/e2) < 0.91.

We thus complete the proof.

Structure. We now describe how to design a top-k structure
from (i) a prioritized structure, which uses Spri(n) space on n
elements and answers a prioritized query in Qpri(n)+O(t/B)
I/Os, and (ii) a max structure, which uses Smax (n) space
and answers a max query in Qmax (n) I/Os.

Fix a constant σ = 1/20. For each integer i ≥ 1, define:

Ki = B · Qmax (n) · (1 + σ)i−1.

Let h be the largest i such that Ki ≤ n/4; clearly, h =
O(log(n/B)). We create a prioritized structure on D. Also,
for each i ∈ [1, h], we take a (1/Ki)-sample set Ri of D, and
create a max structure on Ri.

Query. Let us first eliminate queries with k < B · Qmax (n).
Given such a query q, we first treat it as a top-(B · Qmax (n))
query, i.e., extracting the B · Qmax (n) elements with the
greatest weights in q(D). Then, the final result of the original
query can be obtained by performing k-selection on those
elements. The total cost is O(Qmax (n)) plus the time of the
top-(B · Qmax (n)) query.

Let us now focus on a top-k query q with k ≥ B · Qmax (n).
If k > Kh, the query is answered naively by reading the
whole D in O(n/B) I/Os, which is O(k/B) because k >
Kh ≥ n/(4(1 + σ)) = Ω(n).

If k ≤ Kh, identify the smallest i such that Ki ≥ k; note
that Ki = Θ(k). Setting j = i, we carry out a round with
the steps below:

1. If |q(D)| ≤ 4Kj , solve the query with the prioritized
structure on D in the cost-monitoring manner (see
Section 3.2), which costs Qpri(n)+O(Kj/B) I/Os. The
algorithm declares the round succeeded and terminates.

2. Otherwise, identify the element e in q(Rj) with the
maximum weight from the max structure on Rj in
Qmax (n) I/Os. In the special case where q(Rj) is empty,
treat e as a dummy element with w(e) = −∞.



3. Perform a prioritized query on D with q and threshold
τ = w(e) in a cost-monitoring manner:

(a) Either the query terminates by itself—let S be the
set of elements retrieved,

(b) Or we terminate it as soon as 4Kj + 1 elements
have been reported.

In both cases, the cost is Qpri(n) +O(Kj/B).

4. Declare this round failed if either of the following is
true:

• Case 3(a) occurred, but |S| ≤ Kj .

• Case 3(b) occurred.

Otherwise, declare this round succeeded.

5. If succeeded, perform k-selection on S to produce the
k elements in q(D) with the largest weights, and ter-
minate the algorithm by returning them as the final
answer.

6. Otherwise (i.e., failed), increase j by 1.

(a) If j ≤ h, start the next round from Step 1.

(b) Else (i.e., j = h + 1), answer the top-k query
naively by reading the whole D in O(n/B) =
O(Kh/B) I/Os; the algorithm then terminates.
This is the only scenario where termination can
happen in a failed round.

To analyze the cost of the algorithm, notice that a round
fails only if (i) |q(|D|)| > 4Kj (otherwise, Line 1 terminates
the algorithm), and (ii) one of the two bullets in Step 4 is true.
Thus, Lemma 3 tells us that failure happens with probability
at most 0.91, noticing that q(Ri) is a (1/Kj)-sample set of
q(D). This implies that round j—for a specific j ≥ i—is
executed only with probability 0.91j−i, namely, only when
all the preceding rounds have failed. Also observe that round
j, regardless of whether it fails, performs at most

Qpri(n) +Qmax (n) +O(Kj/B)

I/Os. Thus, the expected cost of the algorithm is bounded
by

h
∑

j=i

O
((

Qpri(n) +Qmax (n) +
Kj

B

)

· 0.91j−i
)

= O
(

Qpri(n) +Qmax (n) +

h
∑

j=i

Kj

B
0.91j−i

)

(15)

Notice that Kj = Ki ·(1+σ)j−i = O(k) ·(1+σ)j−i. Plugging
these into (15) shows that the expected cost is

O

(

Qpri(n) +Qmax (n) +
k

B

h
∑

j=i

((1 + σ) · 0.91)j−i

)

which is O(Qpri(n)+Qmax (n)+k/B) because (1+σ)·0.91 < 1.

Space. The prioritized structure on D obviously takes up
Spri(n) space. We claim that all the max structures occupy
o(n/B) +O(Smax (

6n
B·Qmax (n)

)) expected space in total, which

implies the space result in Theorem 2 (because Spri(n) =
Ω(n/B)).

The claim is fairly intuitive because E[|Ri|] = n/Ki geo-
metrically decreases as i increases, which, together with the
fact that Smax (n) is geometrically converging, seems to yield
the claim immediately. The complication, however, is that
Smax (n) may be a convex function, such that E[Smax (|Ri|)]
is not necessarily O(Smax (E[|Ri|])). Next, we show how to
circumvent this obstacle.

We will prove that all the max structures occupy o(n/B)+
O(Smax (

6n
B·Qmax (n)

)) space in total with probability at least

1 − 1/n2. Combining this with the fact that all those
structures obvious demand no more than O(Smax (n) · h) =
O((n2/B) · log(n/B)) gives the target claim.

Let i∗ be the largest i such that Ki ≤ n/(3 lnn). Consider
an i ∈ [1, i∗]. Since |Ri| is the sum of n independent Bernoulli
variables each of which equals 1 with probability 1/Ki, by
Chernoff bound (17), we have:

Pr[|Ri| ≥ 6 ·E[|Ri|]] ≤ exp(−E[|Ri|])
= exp(−n/Ki) ≤ 1/n3.

Therefore, with probability at least 1− h/n3, the max struc-
tures on R1, R2, ..., Ri∗ use at most

i∗
∑

i=1

O

(

Smax

(

6n

B · Qmax (n) · (1 + σ)i−1

))

= O

(

h+ Smax

(

6n

B · Qmax (n)

))

space overall.

Let us now concentrate on i ∈ [i∗ +1, h]. Notice that there
are only O(log log n) such values of i. Also, by definition of
i∗, we know that E[|Ri|] = n/Ki is in the range from 4 to
O(log n). Again, by Chernoff bound (17), we have :

Pr[|Ri| ≥ (lnn4) ·E[|Ri|]] ≤ exp(−(lnn4) ·E[|Ri|]/6)
≤ exp(−(lnn4·2/3)

= 1/n8/3.

Hence, with probability at least 1 − O(log logn)/n8/3, it
holds that for all i ∈ [i∗ + 1, h]:

|Ri| ≤ 4 lnn ·E[|Ri|] = O(log2 n).

By the fact that Smax (n) = O(1+n2/B), the max structures
on Ri∗ , Ri∗+1, ..., Rh together consume no more than O(h+
(log log n·log4 n)/B) = o(n/B) space. We thus conclude that,

with probability at least 1− h/n3 −O(log log n)/n8/3 > 1−
1/n2, all the max structures use o(n/B)+O(Smax (

6n
B·Qmax (n)

))
space.

Update. It remains to discuss how to support insertions
and deletions on the input set D. This is in fact fairly easy,
if one observes that each element e ∈ D has in expecta-
tion only O(1) copies in the entire structure—recall that
the sampling rate of Ri equals 1/Ki, which geometrically
decreases as i increases. Hence, the insertion of e triggers
one insertion into the prioritized structure, and one insertion
into O(1) max structures in expectation. The total cost is
thus O(Upri + Umax ) expected. Also, we can record in O(1)
expected words which max structures include e. By hashing,
this “bookkeeping” itself can be maintained in O(1) expected
I/Os as e is inserted/deleted, without increasing the overall



space complexity. In this way, a deletion of e can also be
supported in O(Upri + Umax ) expected I/Os.

The above argument still works even if one or both of Upri

and Umax are amortized. This completes the whole proof of
Theorem 2.

5. NEW STRUCTURES FROM REDUCTIONS
Next, we utilize our reductions to derive the new top-k

structures claimed in Section 1.4, specifically, in Theorems 3-
6. While those theorems were presented essentially in de-
scending order of their importance to databases, next we will
prove them in a different order: from the least sophisticated
to the most.

5.1 Top-k Interval Stabbing (Theorem 4)
The theorem now becomes almost a pleasure to prove:

• The prioritized-reporting version of the problem has
been studied by Tao [34] (where the version is called
ray stabbing), who gave an O(n/B)-size structure that
answers a query in O(logB n+ t/B) I/Os, and supports
an update in O(logB n) amortized I/Os.

• The max-reporting version has been studied by Agar-
wal et al. [7], who gave an O(n/B)-size structure that
answers a query in O(logB n) I/Os, and supports an
update in O(logB n) amortized I/Os.

Therefore, the first and second bullets of Theorem 4 follow
from Theorems 2 and Theorem 1, respectively.

5.2 Top-k Point Enclosure (Theorem 5)
The prioritized-reporting version of the problem has been

studied by Rahul [27], who gave a structure of O(n log∗ n)
size and O(log n log log n+ t) query time.

Next, we explain how to solve the max-reporting version
with a structure that uses O(n logn) space and answers
a query in O(logn) time. Based on the above, the first
and second bullets of Theorem 5 follow from Theorems 2
and Theorem 1, respectively. Note that the application
of Theorem 2 demonstrates the “bootstrapping power” as
remarked in Section 1.4.

1D Stabbing Max. Section 5.1 already mentioned a dy-
namic structure for solving the max-reporting version of
interval stabbing. In fact, if the goal is to design a static
structure, that problem can be settled with a very simple
structure of O(n) space and O(logn) time. Although this
should be folklore, we give the details nonetheless because it
will be helpful later.

Let D be a set of n weighted intervals in R. The 2n
endpoints of the intervals divide R into at most 2n + 1
disjoint subintervals. With each subinterval I, we associate
the maximum weight of all the intervals in D that span I.
Given a value q ∈ R, a query returns the maximum weight of
the intervals of D containing q. This is precisely the weight
associated with the subinterval containing q. Finding the
subinterval is essentially predecessor search, which can be
carried out in O(log n) time by performing binary search on
the endpoints.

2D Stabbing Max (Point Enclosure Max). Now we
return to the max-reporting version of point enclosure. The

input is a set D of n weighted axis-parallel rectangles. Create
a segment tree T on the x-projections of those rectangles.
For each node u of T , define Du to be the set of segments
assigned to u. Build a 1D stabbing max structure on Du.
The overall space is clearly O(n log n).

Given a point q = (x, y), a query returns the maximum
weight of the rectangles of D containing q. To process the
query, we descend a root-to-leaf path Π of T according to
x, and then, on each node u ∈ Π, issue a 1D stabbing max
query on Du with y. The final answer is the maximum of the
results of these 1D queries. The algorithm takes O(log2 n)
time, which can be improved to O(logn) with fractional
cascading [14] because, as mentioned earlier, each 1D query
performs nothing but predecessor search on a sorted list.

5.3 Top-k 3D Dominance (Theorem 6)
The prioritized-reporting version of the problem has been

studied by Afshani et al. [2] (where the version is called
4D dominance reporting), who gave a structure with size
O(n log n/ log log n) and query time O(log1.5 n+ t).

Next, we explain how to solve the max-reporting version
with a structure that uses O(n) space and answers a query in
O(log1.5 n) time. Plugging in these bounds into Theorem 2
proves Theorem 6.

In this setting, D is a set of n weighted points in R3. Let
e1, e2, ..., en be the sequence of points in descending order
of weight. With each point ei, we associate a region ρi in
R3 satisfying the following constraint: any point q = (x, y, z)
belongs to ρi if and only if ei is the point with the maximum
weight in (−∞, x]×(−∞, y]×(−∞, z]. The region assignment
below ensures the constraint for all points ei = (eix, eiy, eiz):

• ρ1 = [e1x,∞)× [e1y,∞)× [e1z,∞).

• For i ∈ [2, n]:

ρi = [eix,∞)× [eiy,∞)× [eiz,∞) \
i−1
⋃

j=1

ρj .

Each non-empty region ρi is decomposed into axis-parallel
disjoint cuboids by performing a vertical decomposition. If
ρi has ni vertices, then the number of cuboids in the de-
composition of ρi will be O(ni). It can be verified [1] that
∑n

i=1 ni = O(n).

Therefore, the max reporting problem can be transformed
to a point location problem: Given a query point q, find
the cuboid (if any) containing q from a set of O(n) disjoint
axis-parallel cuboids. Rahul [27] presented a structure of size
O(n) to answer such a query in O(log1.5 n) time.

5.4 Top-k Halfspace Reporting: d = 2

(Theorem 3: 1st Bullet)
We will show:

• The prioritized-reporting version of the problem can
be settled by an O(n log n)-size structure that answers
a query in O(log n+ t) time.

• The max-reporting version can be settled by an O(n)-
size structure that answers a query in O(log n) time.

Plugging in these results into Theorem 2 proves the first
bullet of Theorem 3.



Prioritized Reporting. Chazelle et al. [15] settled the
original 2D halfspace reporting problem. Specifically, they
showed that n points in R2 can be stored in an O(n)-size
structure such that, given a halfspace q, all the t input points
falling in q can be reported in O(log n+ t) time. Their query
algorithm, in fact, starts with finding the predecessor of some
query value (that depends on q) in a pre-computed list of
real values. This accounts for the O(logn) term. Once the
predecessor is found, the rest of the algorithm finishes in
O(1 + t) time.

Next, we leverage the above structure to attack the prioritized-
reporting version. In this setting, the input is a set D of n
weighted points in R2. Create a balanced binary search tree
T on their weights, with each weight stored in a leaf, which
is associated with the corresponding point in D. For each
node u of T , denote by Du the set of points stored in the
subtree of u. Create a halfspace reporting structure of [15]
on Du. The total space is O(n log n).

Given a halfspace q and a threshold τ , a query returns all
the points e ∈ D such that e ∈ q and weight w(e) ≥ τ . We
answer it as follows. First, collect the canonical set U(τ) of
nodes u1, u2, ..., um with the smallest m such that Du1

, Du2
,

..., Dum
are disjoint, and their union equals {e ∈ D | w(e) ≥

τ}. It is rudimentary to find these m = O(logn) nodes in
O(logn) time. Then, perform a halfspace reporting query
using q on Dui

, for each i ∈ [1,m]. The final answer is the
union of the outputs of all these m queries.

As explained earlier, each halfspace reporting query spends
O(log n) time on a predecessor search, which makes the total
query time O(log2 n+t). A standard application of fractional
cascading reduces the time to O(log n+ t).

Max Reporting. The input is again a set D of n weighted
points. Given a halfspace q, a query returns the maximum
weight of the points of D covered by q. By standard duality,
we consider instead the following equivalent stabbing max
problem. The input is a set D′ of n weighted halfspaces in R2.
The goal is to store D′ in a data structure such that, given a
point q′ in R2, we can efficiently report the maximum weight
of the halfspaces of D′ containing q′. Below we describe an
O(n)-size structure with O(log n) query time.

Using the idea in Section 5.3, we can transform the problem
into a point location problem on a planar subdivision of
complexity O(n). Let e′1, e

′
2, ..., e

′
n be the halfspaces of D′, in

descending order of weight. For each e′i, define a region ρi in
R2 satisfying the following constraint: any point q belongs
to ρi if and only if e′i is the halfspace with the maximum
weight among all the halfspaces containing q. The region
assignment below ensures the constraint:

• ρ1 = e′1.

• For i ∈ [2, n], ρi = e′i \
⋃i−1

j=1 ρj .

ρ1, ρ2, ..., ρn are disjoint polygons such that the planar
subdivision they induce has at most n vertices. To see this,
imagine generating ρi in ascending order of i as follows. If
e′i falls entirely in

⋃i−1
j=1 ρj , then e′i introduces no vertex

on the subdivision. Otherwise, at least one point p on the
boundary line of e′i must be outside

⋃i−1
j=1 ρj . Walk from p

along the boundary line towards one direction, and stop as
soon as hitting the boundary line of any of the halfspaces

already considered. The stopping point is a new vertex on
the subdivision. Similarly, walking from p towards the other
direction will determine another new vertex.

Given a query point q′, it suffices to find the polygon of
the subdivision containing q′. This can be done in O(logn)
time with an O(n)-size structure [31].

5.5 Top-k Halfspace Reporting: d ≥ 4

(Theorem 3: 2nd and 3rd Bullets)
The subsequent discussion demonstrates the power of The-

orem 1 in showing the asymptotic equivalence between top-k
reporting and prioritized reporting, when the query time is
large.

RAM. We will show that the prioritized-reporting version
of the problem can be settled by an O(n log n)-size structure

that answers a query in Õ(n1−1/⌊d/2⌋)+O(t) time. Plugging
this into Theorem 1 yields the second bullet of Theorem 3.

In the original halfspace reporting problem, we want to
store n points in Rd in a structure such that, given any
halfspace q in Rd, all the input points falling in q can be
reported efficiently. Afshani and Chan [4] gave a structure

of O(n) space and query time Õ(n1−1/⌊d/2⌋) +O(t).

Recall that Section 5.4 presented a prioritized reporting
structure in 2D space, where there is a 2D halfspace reporting
structure on each Du. To obtain a prioritized reporting
structure for Rd, we simply replace that 2D structure with
the d-dimensional halfspace reporting structure of [4]. A
prioritized query is answered in the way as described in
Section 5.4, excluding the part about fractional cascading.
The claimed space and query bounds follow from the same
analysis as in Section 5.4.

EM. We will show that the prioritized-reporting version of
the problem can be settled by an O(n/B)-size structure that

answers a query in O((n/B)1−1/⌊d/2⌋+ǫ+t/B) time. Plugging
this into Theorem 1 yields the third bullet of Theorem 3.

For the original halfspace reporting problem, Agarwal
et al. [6] gave a structure of O(n/B) space and query time

O((n/B)1−1/⌊d/2⌋+ǫ′+t/B) for any arbitrarily small constant
ǫ′ > 0, which we utilize below to design the required structure
for prioritized reporting.

The input is a set D of n weighted points in Rd, which
we denote as e1, e2, ..., en in descending order of weight. Set
f = (n/B)ǫ/2. Build a B-tree T on the weights of the n
points with leaf capacity B and internal fanout f . Store
each point together with its weight in the corresponding
leaf. For each node u of T , denote by Du the set of points
stored in the subtree of u; we create a structure of [6] on
Du by setting ǫ′ = ǫ/2. The overall space consumption is
O(n/B)—noticing that T has O(1) levels.

To answer a query with halfspace q and threshold τ , we
collect the canonical set U(τ) of nodes u1, u2, ..., um with
the smallest m such that Du1

, ..., Dum
are disjoint, and their

union equals {e ∈ D | w(e) ≥ τ}. It is rudimentary to find
these m = O(f) nodes in O(1+f/B) I/Os. We then perform
a halfspace reporting query using q on Dui

, for all i ∈ [1,m].
The final answer is the union of the outputs of all these m



queries. The query cost is

O
(

m · (n/B)1−1/⌊d/2⌋+ǫ′ + t/B
)

= O
(

(n/B)1−1/⌊d/2⌋+ǫ + t/B
)

I/Os.
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Appendix: Chernoff Bounds

Let X1, ..., Xn be independent Bernoulli variables such that
Pr[Xi = 1] = pi. Let X =

∑n
i=1 Xi and µ = E[X] =

∑n
i=1 pi. It holds for any α ∈ (0, 1) that

Pr[X ≤ (1− α)µ] ≤ e−α2µ/3. (16)

For any α ≥ 2, it holds that

Pr[X ≥ αµ] ≤ e−αµ/6. (17)

The above inequalities can be found in many papers and
textbooks, e.g., [18, 23]


