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ABSTRACT

Orthogonal range reporting (ORR) is a classic problem in
computational geometry and databases, where the objective
is to preprocess a set P of points in R

2 such that, given
an axis-parallel rectangle q, all the points in P ∩ Q can be
reported efficiently. This paper studies a natural variant
of the problem called top-k ORR, where each point p ∈ P
carries a weight w(p) ∈ R. Besides q, a query also specifies
an integer k ∈ [1, |P |], and needs to report the k points
in q ∩ P with the largest weights. We present optimal or
near-optimal structures for solving the top-k ORR problem
in the pointer machine and external memory models. As a
side product, our structures give new space-query tradeoff
for the orthogonal range max problem, which is a special
case of top-k ORR with k = 1.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; H.3.1 [Information storage
and retrieval]: Content analysis and indexing—indexing
methods

Keywords

Top-k; Range Reporting; Approximate Weight Threshold

1. INTRODUCTION
In the orthogonal range reporting (ORR) problem, we

want to preprocess a set P of points in R
2 into a struc-

ture such that, given an axis-parallel rectangle q, all the
points in P ∩ q can be reported efficiently. This is a classic
problem in computational geometry that has been very well
understood.

In this work, we study a natural variant of the prob-
lem called top-k orthogonal range reporting (or top-k ORR)
which is defined as follows. Each point p ∈ P is associated
with a distinct weight w(p) ∈ R. Besides q, a query also
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Figure 1: The number beside each point indicates
its weight. A top-k ORR query with k = 2 and
a search region q as shown returns the points with
weights 20 and 25.

specifies an integer k ∈ [1, n] where n = |P |. The query
returns the k points in q ∩P with the largest weights (see
Figure 1).1 The objective, as before, is to store P in a struc-
ture of small size to answer all queries efficiently.

As an interesting special case, top-1 ORR (i.e., fixing k =
1) is also known as the orthogonal range max problem.

Pratical Motivation. Top-k ORR is important in applica-
tions where a user is interested in only the best few objects in
terms of weights, as opposed to all the objects in a query re-
gion. As a representative example in spatial databases, con-
sider each point as the location of a hotel, with the point’s
weight corresponding to the restaurant’s rating. A top-10
ORR query that would be frequently issued at a website
like hotel.com is “find the 10 best rated hotel in the Man-
hattan area”. It is not hard to see plenty of other applica-
tions of this sort in various domains. In particular, top-k
ORR serves as a top-k extension of queries of the following
form in relational databases: select max(A1) from table

where A2 ∈ [x1, x2] and A3 ∈ [y1, y2].

Computation Models. We are interested in structures of
both internal and external memory. For internal memory,
our structure works under the pointer machine model. De-
pending on the types of CPU calculation allowed, Chazelle
[9] refined the model into several variants. Unless otherwise
stated, by “pointer machine”, we refer to the most primitive
of his variants—called elementary pointer machine (EPM)—
which allows only comparisons and +.

For external memory, we resort to the standard model
defined by Aggarwal and Vitter [6]. In this model, a machine

1That objects have distinct weights is a standard assump-
tion in the previous top-k studies [4, 21]. Otherwise, what
would be a top-k result becomes ambiguous (just imagine
the extreme case where all objects have the same weight).



problem space query source model remark

2-sided top-k ORR
O(n) O(log n+ k) new EPM optimal

O(n/B) O(logB n+ k/B) new EM optimal

3-sided top-k ORR
O(n log n

log log n
) O(log n+ k) new EPM optimal

O( n
B

log n
log logB n

) O(logB n+ k/B) new EM optimal

4-sided top-k ORR

O(n log2 n) O(log2 n+ k) [18] EPM
O(n log2 n) O(log n+ k log log n) [18] EPM ordered reporting

O(n log n
log log n

) O(log n+ k) new EPM optimal

O( n
B

log n·(log logB)2

log logB n
) O(logB n+ k/B) new EM

O(n/B) O(
√

n/B + k/B) new EM non-replicate, optimal

O(n) O(log3 n) [9] EPM
O(n) O(log2 n) [9] APM

O(n log2 n) O(log n) folklore EPM
orthogonal range max O(n log n

log log n
) O(log n) new EPM

O(n/B) O(log2
B n) [5] EM

O( n
B
log n) O(logB n) [20] EM

O( n
B

log n
log logB n

) O(logB n) new EM

Table 1: Comparison of our and previous results (EPM = elementary pointer machine, APM = arithmetic
pointer machine, and EM = external memory)

has memory of M words, and a disk that has been formatted
into blocks of size B words (it always holds that M ≥ 2B).
An I/O exchanges a block of data between the disk and the
memory. The space of a structure is the number of blocks
occupied, whereas the cost of an algorithm is the number of
I/Os performed. CPU calculation is free.

1.1 Previous Results
In this subsection, we will review the existing structures

on the top-k ORR problem and the orthogonal range max
problem. Focus will be placed on the pointer-machine and
external memory models, but we will also briefly mention
the state-of-the-art relevant results in the RAM (random
access machine) model for the two problems.

Top-k ORR. This problem, in spite of its practical impor-
tance, has not been extensively studied. On pointer ma-
chines, the only results we are aware of are due to Rahul
et al. [18]. They propose two structures, both consuming
O(n log2 n) space2, but answering a query in O(log2 n + k)
and O(log n + k log log n) time, respectively. On a RAM,
Navarro and Nekrich [15] gave a structure of O(n) space
and O(log1+ǫ n+ k logǫ n) query time.

On the other hand, one-dimensional top-k ORR—where
the points of P are on a line and a query region q is an
interval—has received more attention. On pointer machines,
combining Frederickson’s heap selection algorithm [11] with
a priority search tree [14] gives a structure of O(n) size and
O(log n + k) query time. In external memory, Afshani et
al. [4] presented a structure of O(n/B) space that answers
a query in O(logB n + k/B) I/Os. In the scenario where
the n points of P are in the range [1, O(n)], Brodal et al.
[8] developed an optimal RAM structure of O(n) space and
O(k) query time. See also the work of Karpinski and Nekrich
[13] for a colored version of 1d top-k ORR.

In this work, the k points in the result of a top-k query
can be reported in an arbitrary order. In the ordered version
of the problem, the result points must be output in ascend-
ing order of weight. In 2D space, the O(log n + k log log n)

2All logarithms have base 2 by default.

query time structure of [18] and the structure of [15] (both
mentioned earlier) were actually designed for the ordered
version. See [4, 8, 13] for the corresponding results in 1D
space. Furthermore, while the current paper assumes that
the input set is static, update-efficient top-k structures have
also appeared in the literature recently, e.g., [19, 23].

Orthogonal Range Max. For this problem, Chazelle
[9] developed a pointer-machine structure of O(n) size and
O(log3 n) query time. In a more powerful model—arithmetic
pointer machine (APM) which allows comparisons, +, −, ×,
÷, and bit-shifting—he [9] also gave an O(n)-size structure
with O(log2 n) query time. In the same paper, Chazellel [9]
also gave several RAM structures with different space-query
tradeoffs.

When the search region q is 2-sided—namely, in the form
(−∞, x]×(−∞, y]—orthogonal range max can be reduced to
the point location problem, which can be solved by a pointer
machine structure of O(n) size and O(log n) query time. Us-
ing range-tree ideas, this leads to a pointer machine struc-
ture of O(n log2 n) size and O(log n) query time for general
(i.e., 4-sided) queries.

In external memory, Agarwal et al. [5] presented a struc-
ture of O(n/B) space and O(log2B n) query cost. When the
query region is 3-sided—in the form [x1, x2] × (−∞, y]—
Sheng and Tao [20] obtained a structure of O(n/B) space
and O(logB n) query cost. This gives rise to a structure of
O( n

B
log n) space that answers a 4-sided query in O(logB n)

I/Os.

1.2 Our Contributions

Results. Table 1 compares our main results to the relevant
existing results. It is worth mentioning that our pointer
machine structure for the orthogonal range max problem is
the first achieving a space-query-time product of o(n log2 n).

New Technique: ∆-AWT. A common approach [4, 21] to
answer a top-k ORR query is to find a threshold σ, such that
at least k but at most O(k) points p ∈ P (i) fall in the query
region q, and (ii) have weights w(p) ≥ σ. After this, one can



retrieve all the points satisfying conditions (i) and (ii) using
a 5-sided3 orthogonal range query in the 3D space of x, y,
and weight. The 5-sided range query can report only O(k)
points, and incurs O(log n) additional time by resorting to a
structure of [3]. Finally, the top-k points can be found from
those O(k) points with k-selection.

In this work, we extend the above methodology, and pro-
pose to look at a new type of queries:

Given an axis-parallel rectangle q and an integer k, a
∆-approximate weight threshold (∆-AWT) query re-
turns a value σ such that at least k but at most
O(k+∆) points p ∈ P satisfy: p ∈ q, and w(p) ≥ σ (if
|P ∩ q| < k, then the query should return −∞). Here,
∆ is an integer in [1, n] that is fixed for all queries.

Note that σ does not need to be the weight of any point in
P .

To see the relevance of ∆-AWT to top-k ORR, fix ∆ =
log n. Given a top-k ORR query, we first answer a ∆-AWT
query with the same q and k. Let σ be the ∆-AWT out-
put. Proceed with a 5-sided query as described in the con-
ventional approach. This 5-sided query returns at most
O(k + ∆) = O(log n + k) points, which has no impact on
the overall running time O(log n+ k).

∆-AWT turns out to be an interesting problem in itself.
When ∆ = ω(1), it may be possible to use structures of
sublinear sizes to process ∆-AWT queries efficiently. In par-
ticular, when q is 2-sided, a ∆-AWT query can be answered
in O(log(n/∆)) time using a pointer machine structure of
O(n/∆) space—both the space and query costs are optimal,
as we will prove in the next section. It is such space sav-
ings that allow us to obtain neat 3- and 4-sided ∆-AWT
structures that pave the way to solving top-k ORR.

2. 2-SIDED ∆-AWT
This section serves as a proof for our first main result:

Theorem 1. The following statements are true:

1. Any structure correctly solving 2-sided ∆-AWT queries
must store Ω(n/∆) words in the worst case. Restrict-
ing to the pointer machine model, any structure must
incur Ω(log(n/∆)) query time in the worst case.

2. There is a pointer machine structure of O(n/∆) size
that answers a 2-sided ∆-AWT query in O(log(n/∆))
time.

Lower Bounds. To prove Statement 1 of the above theo-
rem, we consider that a machine word has t bits, and that
the weight domain is the integer range [0, 2t − 1]. Let c be a
constant such that, given a ∆-AWT query with parameters q
and k, the structure returns a value σ ensuring at least k but
at most c(k +∆) points p ∈ P satisfy p ∈ q and w(p) ≥ σ,
provided that |P ∩ q| ≥ k. Define λ = c(1 +∆)+1. We will
assume that n is multiple of λ, that 2t is a multiple of both
n and n/λ, and that 2t ≥ n2.

It suffices to look at a set P of one-dimensional points,
where the i-th (i ∈ [1, n]) point pi has coordinate i. To
decide the weights of these points, we divide P into n/λ
groups of equal size: P1, ..., Pn/λ, where Pj (j ∈ [1, n/λ])

3A 5-sided rectangle in 3D space has the form [x1, x2] ×
[y1, y2]× [z,∞).

consists of the points from coordinate (j − 1)λ + 1 to jλ.
Likewise, divide the weight domain into n/λ chunks of equal
size s = 2tλ/n, such that the j-th chunk (j ∈ [1, n/λ]) is the
range [(j − 1)s, js − 1].

The weights of the points in each group are generated in-
dependently. To describe the generation for group Pj (for
any j ∈ [1, n/λ]), let π1, ..., πλ be the points of Pj in ascend-
ing order, and v1, ..., vs the values of chunk j in descending
order. Then:

• The weight w(π1) of π1 is picked from {vzλ | z =
1, 2, ..., s/λ} uniformly at random. Define Xj = w(π1)
for the purpose of our analysis later.

• Then, for each z′ = 2, ..., λ, the weight w(πz′) of πz′ is
set to w(π1)− (z′ − 1).

The above construction endows P with two properties:

• For any j1 < j2, the points of group Pj1 have weights
strictly smaller than those of group Pj2 .

• In group Pj (of any j), the points have weights
Xj , Xj−1, ..., Xj−(λ−1), respectively, with Xj being
a multiple of λ.

Now consider a one-dimensional ∆-AWT query with q =
(−∞, jλ] (note that this is a degenerated 2-sided rectangle)
and k = 1, where j is an integer from 1 to n/λ. The structure
must return a value σj ∈ (Xj−(λ−1),Xj ] due to the reasons
below:

• P has a point (in group j) that is covered by q, and
has weight Xj . Hence, no value higher than Xj can be
returned.

• If σj ≤ Xj−(λ−1), then all the points of Pj are covered
by q, and have weights at least σj . This violates the
requirement ∆-AWT because |Pj | = λ > c(1 + ∆).

It thus follows that, the query algorithm can decide precisely
the value of Xj as the nearest multiple of λ that is at least
σj .

Therefore, the structure serves as an encoding of ran-
dom variables (X1, X2, ..., Xn/λ). Note that each Xj (j ∈
[1, n/λ]) has an entropy of log2(s/λ) bits. Due the indepen-
dence of the n/λ variables, we know that the structure must
contain (n/λ) log2(s/λ) = (n/λ) log2(2

t/n) bits in the worst
case. When 2t ≥ n2, this is at least Ω((n/λ) log(2t)) bits,
namely, Ω(n/∆) words.

The query lower bound in Statement 1 can be established
by the following argument. First recall that any pointer ma-
chine structure can be modeled as a directed graph where
each node stores O(1) words. Consider running the n/λ
queries as mentioned earlier, one for each j ∈ [1, n/λ]. Re-
move from the structure all nodes that are never touched
by any of the queries. From the space lower bound, we
know that at least Ω(n/∆) nodes remain. Any query al-
gorithm must start from a unique node (called the root)
of the structure, and at each node, can choose from any
of its out-neighbors as the next hop. Since each node has
O(1) out-neighbors, we know that at least one node requires
Ω(log(n/∆)) hops from the root.

Remark. Note that the Ω(n/∆) space lower bound is not
restricted to pointer machine structures. It holds for any



RAM/EM structure. Furthermore, our information the-
oretic argument essentially has shown that randomization
does not help: any structure must use Ω(n/λ) space in ex-
pectation.

Upper Bounds. Inspired by [4], we now describe a
pointer machine structure matching the aforementioned
lower bounds, assuming without loss of generality that n/∆
is a power of 2. First, convert each point p = (x, y) in P
to a 3D point (x, y, z) where z = w(p). Let P ′ be the set
of 3D points thus obtained. In general, given two 3D points
p1 = (x1, y1, z1) and p2 = (x2, y2, z2), we say that p1 dom-
inates p2 if x1 ≤ x2, y1 ≤ y2, z1 ≤ z2, and at least one
equality does not hold. Also, we say that p1 is lower than
p2 if z1 < z2.

Let S be a set of points in R
3. We say that S is a shallow

τ -cutting of P ′ if it has the following properties:

P1: S has O(n/τ ) points.

P2: Each point in S dominates O(τ ) points in P ′.

P3: Any point p (which is not necessarily in P ′) dominating
at most τ points in P ′ is dominated by at least a point
in S.

As shown in [1], such an S exists for any τ ∈ [1, n].

Let h = log2(n/∆). We obtain sets S1, ..., Sh+1 where
Si (i ∈ [1, h + 1]) is a shallow (2i−1∆)-cutting of P ′. On
each Si, we create a structure to answer probing queries of
the form: given a 2D point π = (x, y), find the lowest point
p ∈ Si such that x(p) ≤ x and y(p) ≤ y, where x(p) and y(p)
are the x- and y-coordinates of p, respectively. Note that
this is essentially a 2-sided orthogonal range max query, and
thus, can be answered in logarithmic time by a linear size
structure (see the literature review in Section 1). Since the
sizes of S1, ..., Sh+1 decrease geometrically, the total space of
all these structures is dominated by the one on S1, namely,
O(n/∆) by Property P1.

To answer a ∆-AWT query with parameters q = [x,∞)×
[y,∞) and k, we check whether k < ∆. If so, we manually
increase k to ∆ before proceeding. When k ≥ ∆, we first
determine the smallest i such that 2i∆ ≥ k. Then, perform
a probing query on Si+1 with π = (x, y). Let p be the point
returned by this probing query. We return z(p) (i.e., the z
coordinate of p) as the answer for the ∆-AWT query.

Lemma 1. The probing query definitely returns a point p.
Furthermore, z(p) is a correct answer for the ∆-AWT query.

Proof. Let z be a value such that p′ = (x, y, z) dom-
inates exactly k points in P ′; if z does not exist, we set
z = −∞. In any case, p′ dominates at most k ≤ 2i∆ points
in P ′. Hence, by Property P3, we know that Si+1 definitely
contains a point dominating p′, implying that the probing
query cannot return an empty result. Furthermore, it also
implies that p (that output of the probing query) definitely
dominates p′.

Next, we prove the second part of the lemma focusing on
the scenario where k ≥ ∆. First, if z = −∞, it follows
that |P ∩ q| < k and that z(p) must be −∞. Hence, our
algorithm correctly returns −∞.

The subsequent discussion considers z 6= −∞ (and hence,
p′ dominates k points in P ′). As z(p) ≤ z, point (x, y, z(p))
must dominate at least k points of P ′. On the other hand,

e

Figure 2: Two dyadic rectangles of e in solid edges

(x, y, z(p)) cannot dominate more points of P ′ than p does
(because x(p) ≤ x and y(p) ≤ y). Property P2 guarantees
that p dominates O(2i∆) = O(2k) = O(k+∆) points of P ′.
This completes the proof.

At first glance, the above query algorithm seems to require
division to determine the smallest i such that 2i∆ ≥ k, con-
tradicting our goal of designing a structure on an elemen-
tary pointer machine. This can be fixed by creating a binary
search tree on the h+1 values ∆, 2∆, 22∆, ... 2h∆ so that at
query time we can find i by finding the successor of k in this
tree using O(log h) time. In this way, the query algorithm
relies on only comparisons. The overall query cost is domi-
nated by the time of a probing query, which is O(log(n/∆)).
We now conclude the proof of Theorem 1.

3. 4-SIDED ∆-AWT AND TOP-K ORR
In this section, we will present a structure for solving 4-

sided ∆-AWT queries, and then, explain how the structure
can be utilized to settle top-k ORR. Let us start with an
easy lemma:

Lemma 2. There is a pointer machine structure of
O( n

∆
log n

∆
) size that answers a 3-sided ∆-AWT query in

O(log(n/∆)) time. There is also a pointer machine structure
of O( n

∆
log2 n

∆
) size that answers a 4-sided ∆-AWT query in

O(log(n/∆)) time.

Proof. By standard range-tree ideas.

The 4-sided structure in the above lemma is not powerful
enough for obtaining our final result on top-k ORR. Next, we
improve it by reducing its space to O( n

∆
log2 n

∆
/ log log n

∆
).

We achieve this by combining the standard approach of using
a logarithmic-fanout range tree with new ideas based on
dyadic rectangles.

Structure. Without loss of generality, we assume that n
is a multiple of ∆. Divide the data space into n/∆ vertical
slabs such that each slab covers exactly ∆ points of P . Set
f = log(n/∆). Create an f -ary tree T on these slabs, each of
which corresponds to a leaf node in T . Given a node u in T ,
we will use slab(u) to denote the slab of u (if u is an internal
node, slab(u) is the union of the slabs of its children). Define
Pu = P ∩ slab(u), and nu = |Pu|.

We associate each internal node u with several secondary
structures. Let m = ∆log3(n/∆). Impose an f × nu

m
grid

Gu on Pu, such that each column of Gu is the slab of a
child of u, whereas each row covers Θ(m) points in Pu. For
each column, create a column structure which is a 3-sided
structure of Lemma 2 on the points of Pu in the column.
For each row, create a row structure which which is a 4-
sided structure of Lemma 2 on the points of Pu in the row.



(a) Original query (b) Vertical 3-sided queries

(c) Horizontal 3-sided queries (d) Grid query

Figure 3: Partitioning a query rectangle

Now consider a cell e in Gu. Let r be a rectangle whose
edges are aligned with the column and row boundaries of
Gu. In other words, r is tiled by a set of cells in Gu. Let
a (b) be the number of columns (rows) of Gu that r covers.
We say that r is a dyadic a × b rectangle of e if it satisfies
two conditions:

• Both a and b are powers of 2.

• e is covered by r, and is located at one of the 4 corners
of r.

See Figure 2 for an example. Note that e has O(log f ·
log(nu/m)) = O(log log(n/∆) · log(n/∆)) dyadic rectangles.
For each such rectangle r, we store a sketch, which consists
of the ∆-th largest, (2∆)-th largest, (22∆)-th largest ... of
the weights of the points in r ∩P . In other words, e is
associated with O(log log(n/∆) · log(n/∆)) sketches, each of
size O(log(n/∆)).

Overall, the column structures of u occupy
O((nu/∆) log(nu/∆)) space, and its row structures
occupy O(nu

m
m
∆

log2 m
∆
) = O(nu

∆
(log log nu

∆
)2) space. Gu

has fnu/m cells, each of which needs O(log2 n
∆
log log n

∆
)

space for its sketches. Hence, all the sketches of all cells in
Gu occupy in total

O

(

log
n

∆
· nu

∆ log3(n/∆)
· log2 n

∆
log log

n

∆

)

= O
(nu

∆
log log

n

∆

)

space. In summary, all the secondary structures
at each level of T use O((n/∆) log(n/∆)) space.
T has O(log n

∆
/ log log n

∆
) levels, and thus, needs

O( n
∆
log2 n

∆
/ log log n

∆
) space.

Query. We now explain how to answer a 4-sided AWT
query with parameters q and k ≥ ∆ (if k < ∆, simply
increase k to ∆ before proceeding). If q completely falls
within the slab of a leaf node in T , we finish by returning
−∞. Otherwise, we use the following algorithm to answer
q at the highest node u at which q intersects at least two
columns in Gu. Note that u can be found in O(log(n/∆))
time.

If q is completely contained in a row of Gu, we answer
it using the corresponding row structure in O(logm) =
O(log log(n/∆)) time. Otherwise, q can be divided into two

vertical 3-sided queries, two horizontal 3-sided queries, and
a grid query, as illustrated in Figure 3. For each resulting
query—let q′ be its search rectangle—we compute the out-
come of the ∆-AWT query with parameters q′ and k on P .
Specifically, let σv1, σv2 be the outcomes of the two vertical
3-sided queries, σh1, σh2 be the outcomes of the two hori-
zontal 3-sided queries, and σg be the outcome of the grid
query. We return σ = max{σv1, σv2, σh1, σh2, σg} as the fi-
nal answer.

It is easy to see that σv1, σv2 can be obtained using two

column structures at u in O(log nu/f
∆

) = O(log(n/∆)) time,
and σh1, σh2 can be obtained using two row structures at u
in O(log(m/∆)) = O(log log(n/∆) time. Next, we explain
how to compute σg.

Denote by g the search rectangle of the grid query. Sup-
pose that g spans a columns and b rows of Gu. Denote by a′

and b′ the largest powers of 2 at most a and b, respectively.
Let e1, e2, e3, and e4 be the top-left, top-right, bottom-left,
and bottom-right corners of g, respectively. Let r1 be the
dyadic a′ × b′ rectangle of e1, having e1 at its top-left cor-
ner. Similarly, let r2, r3, r4 be the dyadic a′ × b′ rectangles
having e2, e3, e4 at their top-right, bottom-left, and bottom-
right corners, respectively. Note that r1, r2, r3 and r4 may
overlap, as is exemplified in Figure 4 using r1 and r4.

Let i be the lowest integer such that 2i∆ ≥ k. We set
σg1 to the i-th largest weight in the sketch of r1, if the
sketch has size at least i; otherwise, σg1 = −∞. Like-
wise, let σg2, σg3, and σg4 be decided in the same manner
from r2, r3, and r4, respectively. Then, σg is determined as
max{σg1, σg2, σg3, σg4}.

To implement the above algorithm in O(log(n/∆)) time
on an (elementary) pointer machine, the only technicality
worth mentioning is to derive a′ and b′ from a and b, re-
spectively, on an elementary pointer machine. The crucial
observation is that both a and b can distribute only inside
the range [1, n/∆]. Hence, we can index with a binary search
tree all the powers of 2 within that range. Then, a′ (b′) is
simply the predecessor of a (b) in this tree.

Lemma 3. The answer σ thus computed is correct.

Proof. It suffices to show that σg is a correct answer
for the ∆-AWT query with parameters g and k. First, if
σg = −∞, it means that σg1 = σg2 = σg3 = σg4 = −∞.
Thus, g can cover at most 4k points of P , in which case
σg = −∞ is correct.

Consider that σg 6= −∞. Suppose without loss of general-
ity that σg = σg1. By the definition of σg1, at least k points
in P ∩ r1 have weights no less than σg1. Thus, at least k
points in g have weights no less than σg.

Let ci (i = 1, 2, ..., 4) be the number of points in P ∩ ri
having weights at least σgi. We know that ci = O(k). Let
c be the number of points in P ∩ g having weights at least
σg. If a point is not counted by any of c1, ..., c4, it cannot
be counted by c either. Hence, c ≤ ∑4

i=1 ci = O(k).

The above discussion has established:

Lemma 4. There is a pointer machine structure of
O( n

∆
log2 n

∆
/ log log n

∆
) size that answers a 4-sided ∆-AWT

query in O(log(n/∆)) time.

Top-k ORR. We now proceed to discuss top-k ORR
queries. If queries are 2-sided, we can answer them in
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Figure 4: Covering a grid query with dyadic rectan-
gles

O(log n+k) time using a structure of O(n) size. For this pur-
pose, we build a structure T of Theorem 1 with ∆ = log n
on P . Given a top-k ORR query with a 2-sided rectangle q,
we first perform ∆-AWT search on T to obtain a threshold
σ. Then, all the points in P ∩ q with weights at least σ can
be obtained in O(log n +∆ + k) = O(log n + k) time using
a 3D dominance structure [1] which uses O(n) space.

For 4-sided queries, a similar approach gives a struc-
ture of O(n log n/ log log n) space and O(log n + k) query
time. Specifically, we create a structure T of Lemma 4
with ∆ = log n. Note that T consumes O(n log n/ log log n)
space. Given a top-k ORR query with parameters q and k,
we perform ∆-AWT search on T to obtain a threshold σ.
Then, all the points in P ∩ q with weights at least σ can be
obtained in O(log n + k) time using a 3D 5-sided range re-
porting structure [3] which uses O(n log n/ log log n) space.

One may wonder what happens to 3-sided top-k ORR.
Interestingly, there is no hope to improve upon the bounds
obtained above for 4-sided queries. In general, for 3-sided
top-k ORR, it is impossible to use o(n log n/ log log n) space
if one wishes for a query time of O(logc n + k) for any
constant c. This can be proved with the following argu-
ment. Consider the so-called Q(3, 1) range reporting prob-
lem as defined in [2]: let P ′ be a set of n points in R

3; we
want to store P ′ in a structure such that, given a rectangle
q = [x1, x2]× [y,∞)× [z,∞), we can report all the points in
P ′ ∩ q efficiently. It is known (from a lower bound in [10])
that every structure with O(logc n+ k′) query time (where
k′ = |P ′ ∩ q|) must use Ω(n log n/ log log n) space. How-
ever, as we show below, any 3-sided top-k ORR structure
with query time O(logc n+ k) can be deployed to answer a
Q(3, 1) query in O(logc n + k′) time. This means that the
3-sided top-k ORR structure must use Ω(n log n/ log log n)
space.

Now we explain a reduction from Q(3, 1) to 3-sided top-
k ORR. Let us regard each point p′ = (x, y, z) in P ′ as a
2D point p = (x, y) with weight w(p) = z. Let P be the
set of 2D points thus obtained. Store P in a 3-sided top-
k ORR structure T . Given a Q(3, 1) query q = [x1, x2] ×
[y,∞) × [z,∞), we answer it with a series of 3-sided top-
k ORR queries on T as follows. The search regions of all
these queries are fixed to [x1, x2]× [y,∞). The i-th (i ≥ 1)
query is issued with k set to 2i−1 logc n. Let Si be the set of
points fetched by this query. Define zi as the (2i−1 logc n)-
th largest weight of the points in Si if |Si| ≥ 2i−1 logc n, or
set zi = −∞ otherwise. Report all the points in Si whose
weights are between [max{z, zi}, zi−1] (let z0 = ∞ for the
boundary case i = 1). The algorithm stops as soon as zi
falls below z.

It is clear that the above algorithm correctly reports all
the points in q ∩P ′. Next, we argue that the query cost is

O(log n + k′) where k′ = |q ∩P ′|. Define ki = 2i−1 logc n
for i ≥ 1, and k0 = 0. Let ρ be the total number of 3-
sided top-k ORR queries issued. For each i ∈ [1, ρ− 1], the
i-th query reports ki − ki−1 ≥ ki/2 points, and incurs cost
O(logc n+ki) which is O(ki) because all of k1, ..., kρ−1 must
be at least logc n. We can therefore amortize the time onto
the ki/2 points reported, so that each point gets charged
only O(1) cost. Regarding the ρ-th query, observe that kρ is
at most 2k′ if ρ ≥ 2 (because kρ−1 is at most k′). If ρ = 1,
then kρ = logc n. In any case, the time of the ρ-th query is
bounded by O(logc n+ kρ) = O(logc n+ k′).

Theorem 2. The following statements are true:

1. There is a pointer machine structure of O(n) size that
answers a 2-sided top-k ORR query in O(log n + k)
time.

2. For any constant c, a pointer machine structure that
answers a 3-sided top-k ORR query in O(logc n + k)
time must use Ω(n log n/ log log n) space.

3. There is a pointer machine structure of
O(n log n/ log log n) size that answers a 4-sided
top-k ORR query in O(log n+ k) time.

4. TOP-K ORR IN EXTERNAL MEMORY
In this section, we adapt the pointer machine results of the

previous section to external memory. Our main technical
novelty can be summarized as:

• Proof of an Ω(logB(n/∆)) lower bound for ∆-AWT
queries. Recall that the query lower bound in The-
orem 1 applies only to pointer machines. However,
an EM structure does not need to be pointer-based;
instead, an algorithm can choose at its free will to
access any block of the structure—a piece of luxury
that a pointer machine structure does not have. This
discrepancy prevents the pointer-machine’s query cost
argument from being applicable in EM.

• Working with ∆-AWT structures that store just as
many words as the ones on pointer machines.

• Obtain a space-economical structure that can answer
a 5-sided range reporting query in 3D space using
O(logB n+ k/B) I/Os.

4.1 Query Lower Bound on 2-Sided ∆-AWT
The first statement of Theorem 1 implies that any EM

structure solving the 2-sided ∆-AWT problem must occupy
Ω(n/(B∆)) blocks. In this subsection, we prove:

Theorem 3. For any ∆ ∈ [1, n], an external memory
structure of O(n/(B∆)) space must incur Ω(logB(n/∆))
I/Os answering a 2-sided ∆-AWT query in the worst case.

We will give a reduction from the predecessor search prob-
lem to 2-sided ∆-AWT with an interesting use of an upper
bound result of [7] on one-dimensional range reporting.

Let t be the number of bits in a word. We consider that
the input of predecessor search is a set S of n integers in

[0, 2t−1
∆

]; given an integer x ∈ [0, 2t−1
∆

], a query returns the
predecessor of x in S, namely, max{v ∈ S | v ≤ x}. Without
loss of generality, let us assume that 0 always belongs to S,



so that the predecessor of x definitely exists. According to
a result of Patrascu and Thorup [17], when B ≥ t and 2t is
sufficiently large compared to n, any structure using O(n/B)
space must incur Ω(logB n) I/Os answering a predecessor
query in the worst case.

In 1D range reporting, the goal is to preprocess the set
S aforementioned so that, given a range I inside [0, 2t − 1],
a query can report all the elements in S ∩ I efficiently. In
[7], Alstrup et al. described a structure of O(n/B) space that
answers such a query inO(1+k′/B) I/Os, where k′ = |S ∩ I |.

At a high level, our reduction from predecessor search to
2-sided ∆-AWT works as follows. Given a predecessor query
with parameter x, we will somehow perform a ∆-AWT query
to obtain an interval I = [x′, x] with the guarantee that
|S ∩ I | ∈ [1, O(1)]. Then, we can retrieve all the elements of
S ∩ I in O(1) I/Os, after which the predecessor of x can be
obtained from only these elements. Next, we describe the
details.

Let v1, ..., vn be the integers of S in ascending order. De-
fine S′ = {vi∆ | i ∈ [1, n]}. Note that each element of
S′ is in [0, 2t − 1]. Then, we create a set P of n∆ points
from S′. Specifically, for each i ∈ [1, n], add to P the fol-
lowing ∆ points: (vi∆, vi∆ + j) with weight vi∆ + j for
j = 0, ...,∆− 1—we say that these ∆ points form the group
of vi.

We create a 2-sided ∆-AWT structure T of optimal space
on P ; in other words, T occupies O( n∆

∆B
) = O(n/B)

blocks. Given a predecessor query with parameter x on
S, we perform a 2-sided ∆-AWT query with parameters
q = (−∞, x∆] × (−∞,∞) and k = ∆. Suppose that the
∆-AWT query returns a value σ. We set x′ = ⌈σ/∆⌉. We
argue that I = [x′, x] is an interval we are looking for:

Lemma 5. |S ∩ I | has at least 1 and at most O(1) ele-
ments.

Proof. Let vi be the predecessor of x in S. Then, the
points in the group of vi have the ∆ largest weights among
all the points in P ∩ q. Therefore, σ ≤ vi∆ (otherwise, less
than k = ∆ points in P ∩ q have weights at least σ). Hence,
x′ ≤ vi, meaning that S ∩ I has at least one element.

Let j be the largest integer such that vj ≥ x′. We know
that all the (i−j+1)∆ points in the groups of xj , xj+1, ..., xi

fall in P ∩ q and have weights at least σ. By definition of
∆-AWT, at most O(k + ∆) = O(∆) such points can exist.
Hence, i− j + 1 = O(1).

It thus follows from the above definition that T must incur
Ω(logB n) I/Os answering a 2-sided ∆-AWT query. Since T
is created on a set P of size n∆, we thus conclude the proof
of Theorem 3.

4.2 ∆-AWT Structures
This subsection is devoted to I/O-efficient ∆-AWT struc-

tures. First of all, the discussion in Section 2 directly leads
to:

Lemma 6. There is an external memory structure of
O(n/(B∆)) space that answers a 2-sided ∆-AWT query in
O(logB(n/B)) I/Os.

Proof. It suffices to point out that there is a 3D dom-
inance structure of O(n/B) space that answers a query in
O(logB n+ k′/B) I/Os, where k′ is the output size [1].

The situation with 3- and 4-sided AWT, on the other
hand, is more interesting. Take 3-sided as an example.
Our pointer machine structure uses O( n

∆
log n

∆
) words. By

the standard wisdom behind the existing I/O-efficient tech-
niques, one would probably expect an EM structure of
O( n

B∆
logB

n
∆
) blocks. However, the existence of such a

structure implies an internal memory structure that uses
only O( n

∆
logB

n
∆
) words! Note that we have the luxury to

increase B arbitrarily such that by using B = (n/∆)c for
any c ∈ (0, 1], we actually get an internal memory struc-
ture of O(n/∆) size for 3-sided ∆-AWT—an ambitious goal
whose achievement still remains elusive to us.

The hidden message behind the above discussion is that
we should instead try to work with an EM structure that
uses as many words as its internal-memory counterpart (e.g.,
for 3-sided, this means an EM structure of O( n

B∆
log n

∆
)

blocks—note that the logarithm has base 2). If one accepts
this as the new goal, then it is not hard to derive:

Lemma 7. There is an external memory structure of
O( n

B∆
log2 n

∆
/ log log n

∆
) space that answers a 4-sided ∆-

AWT query in O(logB(n/∆)) I/Os.

Proof. Trivially applying the pointer machine structures
already meets the space requirement, but the query cost is
O(log(n/∆)). The log base can be increased to B by the
standard technique of grouping nodes of multiple levels of
an f -ary tree into a block when f ≤ B.

The above lemma allows us to obtain optimal top-k ORR
structures in external memory. The key is to set ∆ to
B logB n. Recall that by the reasoning described in Sec-
tion 3, we will eventually rely on a 5-sided range reporting
structure with query cost O(logB n+ k′/B), where k′ is the
number of points returned. Hence, by setting ∆ = B logB n,
a top-k ∆-AWT query returns a threshold σ that will ensure
k′ = O(k+∆) = O(k+B logB n), such that O(logB n+k′/B)
is just O(logB n+ k/B).

Lemma 8. When ∆ = B logB n, the space complexity in
Lemma 7 is O( n

B
logn

log logB n
).

Proof. See the appendix.

To close the deal, we need:

Lemma 9. We can store n 3D points in a structure of

O( n
B

log n·(log logB)2

log logB n
) space such that a 5-sided range report-

ing query can be answered in O(logB n+ k′/B) I/Os, where
k′ is the number of points reported.

Proof. See Section 4.3.

Now we claim:

Theorem 4. The following statements are true in exter-
nal memory:

1. There is a structure of O(n/B) space that answers a
2-sided top-k ORR query in O(logB n+ k/B) I/Os.

2. For any constant c, a structure that answers a 3-sided
top-k ORR query in O(logc

B n + k/B) I/Os must use
Ω( n

B
log n

log logB n
) space.

3. There is a structure of O( n
B

log n
log logB n

) size that answers

a 3-sided top-k ORR query in O(logB n+ k/B) I/Os.



4. There is a structure of O( n
B

logn·(log logB)2

log logB n
) size that

answers a 4-sided top-k ORR query in O(logB n+k/B)
I/Os.

Proof. The proof follows the same argument for Theo-
rem 2 but with a few changes. To prove Statement 1, the
3D dominance structure is the I/O-efficient one proposed in
[1]. In the argument for statement 2, we should set ki to
2i−1B logcB n instead. For Statement 3, we use the Q(3, 1)-
structure of [2] in external memory. For Statement 4, the
5-sided range reporting structure is the one in Lemma 9.

4.3 5-Sided Range Reporting
This subsection proves Lemma 9 by giving such a struc-

ture. Recall that the input is a set P ′ of n points in R
3.

Given a 5-sided rectangle q = [x1, x2]× [y1, y2]× (−∞, z], a
query returns all the points in P ′ ∩ q. In external mem-
ory, the best result we are aware of is a structure of
O( n

B
( logn
log logB n

)2) space and O(logB n+k′/B) query cost due

to Afshani et al. [2] (see [16] for an alternative result when
the points fall on a 3D grid). Note that Lemma 9 strictly
improves this result.

The next lemma is easy:

Lemma 10. For any parameter λ ∈ [B, |P ′|], there is

an external memory structure of O( |P
′|

B
log2(|P ′|/λ)) space

that answers a 5-sided range reporting query in O(λ/B +
logB |P ′| + k′/B) I/Os, where k′ is the number of points
reported.

Proof. Applying range-tree ideas to the 3D dominance

structure of [1] yields a structure of O( |P
′|

B
log |P ′|) space

that supports 4-sided range reporting (i.e., the query region
has the form (−∞, x] × [y1, y2] × (−∞, z]) in O(logB |P ′|)
I/Os plus the minimum output cost. Note that the query
cost has base B instead of base 2. The space can be brought

down to O( |P
′|

B
log(|P ′|/λ)) by using fat leaves of size λ

in the base tree. The query cost has an additive term of
O(λ/B) because we may need to scan the points in a leaf.
Applying the same idea again on this structure gives the
lemma.

Our structure of Lemma 9 leverages the above fact to
bootstrap an adapted version of a pointer machine struc-
ture of [3]. Define F(1)(n) =

√
nB log n, and F(i+1)(n) =

F(1)(F(i)(n)) for i ≥ 1. Let F∗(n) be the smallest integer

i such that F(i)(n) ≤ B log0.99 n · (logB + 3 log log n)2. We
have:

Lemma 11. F∗(n) = log log n
log logB n

+O(1).

Proof. Note that F(i)(n) ≤ B log2 n·n1/2i . Hence, when

i = ⌈log logn
log logB n

⌉, F(i)(n) < B log3 n. One can then verify

that F(2)(B log3 n) ≤ B log0.99 n · (logB + 3 log log n)2 (see
the appendix for details).

Structure. Set θ =
√

n/(B log2 n). We impose an orthog-
onal grid G in the xy-plane with θ rows and θ columns, such
that each row (column) covers the xy-projections of no more

than
√
nB log n points in P ′. For each row (column) of G,

we build a structure of [1] to answer 3D dominance queries
on the points of P ′ whose xy-projections fall in that row
(column).

(a) Original query (b) Row queries

(c) Grid query (d) Vertical query

Figure 5: Answering a 4-sided query

Given two points in R
3, (same as in Section 2) we say that

the former is lower if it has a smaller z-coordinate. Let e
be a cell in G, and P ′(e) be the set of points in P ′ whose
xy-projections fall in e. We store the points of P ′(e) in a
linked list sorted by z-coordinate. The B-th lowest point in
P ′(e) is called the sentinel of e; note that if |P ′(e)| < B, no
sentinel is defined for e. Let the pilot set of e be the lowest
B points in P ′(e). Let Π be the union of the pilot sets of
all the cells e in G. We create a structure of Lemma 10 on
Π with λ = B, and refer to it as a pilot structure. Since

|Π| ≤ Bθ2 = O(B n/B

log2 n
) = O(n/ log2 n), the pilot structure

uses O(n/B) space.

We then recursively apply the above construction on the
subproblem defined by each row and column, respectively
(namely, on the set of points of P ′ whose xy-projections fall
in that row or column). Note that, on each sub-problem, θ
should be calculated by setting n to the size of that subprob-
lem (i.e., θ decreases with the subproblem’s size). Recur-
sion completes when a sub-problem has at most B log0.99 n ·
(logB + 3 log log n)2 points, on which we build a structure
of Lemma 10 with λ = B logB n. If we amortize the space
of this structure onto those B log0.99 n · (logB+3 log log n)2

points, the amount of space that each point accounts for is

O

(

1

B
log2

B log0.99 n · (logB + 3 log log n)2

B logB n

)

= O((log logB)2/B).

Let h be the number of levels in the recursion. Stan-
dard analysis shows that the overall space consumption

is O(2h |P ′|
B

(log logB)2), which is O( n
B

logn·(log logB)2

log logB n
) by

Lemma 11.

Query. We will first explain how to perform range reporting
using 4-sided rectangles of the form q = [−∞, x]× [y1, y2]×
(−∞, z]. If q falls completely within a row of G, we recur-
sively answer the query on the subproblem defined by that
row. At the end of recursion, we are looking at no more than
B log0.99 n · (logB + 3 log log n)2 points; by Lemma 10, we
answer the query in O(λ/B + 1 + logB logB n) = O(logB n)
I/Os plus the minimum output cost.

Now consider that q intersects at least two rows of G. The
query can be partitioned into (i) two row queries, each being
a 3D dominance query whose search region falls in a row
on the xy-plane (see Figure 5a), (ii) a grid-query, a 4-sided
query whose search region is aligned on the grid in the xy-



plane (Figure 5b), and (iii) a vertical query, another 4-sided
query whose search region falls in a column of G on the xy-
plane (Figure 5c). We answer the row queries directly using
the 3D dominance structures of the corresponding rows, and
send the vertical query to the subproblem defined by that
column. Next, we explain how to answer the grid query.

Let g be the (3D) search region of the grid query. We first
search the pilot structure to report all the points stored there
that fall in g. Furthermore, for each cell e whose sentinel
has been reported, we jump to the linked list of P ′(e), and
report the non-pilot points in P ′(e)∩ g in ascending order
of z-coordinate.

If we denote Q(m) as the query cost (only the output
independent part) on a problem of size m. Then, it follows
from the above discussion that Q(m) = O(logB n) if m ≤
B log0.99 n · (logB + 3 log log n)2; otherwise:

Q(m) = Q(F(1)(m)) +O(logB m)

Setting i = F∗(m), we have:

Q(m) = O(logB n) +

i
∑

j=1

O(logB(F(j)(m)))

= O(logB n) +
i

∑

j=1

O
(

logB(B log2 m ·m1/2j )
)

= O(logB n) +
i

∑

j=1

O

(

1 + logB logm+
1

2j
logB m

)

= O(logB n) + F∗(m) ·O(1 + logB logm)

where the second equality used the fact that F(j)(m) ≤
B log2 m ·m1/2j . Therefore:

Q(n) = O(logB n) +F∗(n) ·O(logB log n)

= O(logB n) +O(log log n) ·O(logB log n)

= O(logB n).

Following the discussion of [3], a 5-sided query can be
reduced to four 4-sided queries (which are can be processed
as above) and a grid query whose search region is aligned on
the grid G in the xy-plane. The grid query can be answered
in O(logB n) I/Os plus the linear output cost in the same
way as we answered a query of Figure 5c. This completes
the proof of Lemma 9.

4.4 Orthogonal Range Max
When k is fixed to 1, we can remove the (log logB)2 factor

in Statement 4 of Theorem 4. Furthermore, the structure
can be made much simpler by utilizing the linear size struc-
ture of [20] for 3-sided range max—even without resorting
to ∆-AWT.

Theorem 5. There is a structure of O( n
B

log n
log logB n

) space

that answers an orthogonal range max query in O(logB n)
I/Os.

Proof. Let P be the input set of points in R
2. Build

a B-tree T on their x-coordinates with internal fanout f =
logB n. Let u be an internal node. Naturally, u corresponds
to a vertical slab in R

2, which is divided into f smaller slabs
by its children. Let Pu be the points of P in the slab of u, and
let nu = |Pu|. Create a structure on the points of Pu in each

child slab to answer 3-sided orthogonal range max queries in
O(logB n) I/Os. Impose an f × nu

m
grid Gu with m = log3 n

in the same way as explained in Section 3. For each dyadic
rectangle, store the maximum weight of the points of Pu

in the rectangle. As there are f nu

m
log f · log n ≤ nu dyadic

rectangles, doing so requires O(nu/B) space. Finally, within
each row of Gu, build the orthogonal range max structure
of [5] (see Table 1) on the points of Pu in that row.

The overall space is O( n
B

log n
log logB n

). The query algorithm

proceeds in essentially the same manner as described in Sec-
tion 3. It is easy to see that the query cost is O(logB n)
(notice that within each row, the structure of [5] requires
only O((logB log n)2) = O(logB n) I/Os).

It is worth mentioning that the simplicity of our structure
does not carry over to the pointer machine model, where it
remains unknown whether there is an O(n)-size structure
that can answer a 3-sided query in O(log n) time. In other
words, we still need to go through ∆-AWT to obtain the
claimed orthogonal range max structure in Table 1.

5. LINEAR SPACE TOP-K ORR
In this section, we give a top-k ORR structure in external

memory that uses O(n/B) space, and answers a query in

O(
√

n/B + k/B) I/Os. This tradeoff can be proven to be
optimal among the class of so-called “non-replicate” struc-
tures as will be discussed later.

Lemma 12. We can store n 3D points in a structure of
O(n/B) space such that a 5-sided range reporting query can

be answered in in O(
√

n/B + k′/B) I/Os, where k′ is the
number of points reported.

Proof. This can be achieved by combining ideas of the
kd-tree and the priority search tree. Build a kd-tree on
the projections of the points of P onto the xy-plane. The
tree has O(n/B) leaves, each containing between B/2 and
B points. In each node u, we store B pilot points, which
are the B points with the highest z-coordinates that are not
pilot points in any proper ancestor of u. Clearly, the space
occupied is O(n/B) blocks. Recall that each node u can be
thought of as being associated with a 2D minimum bounding
rectangle (MBR) of all the points in its subtree.

Consider a query with search region q′ = [x1, x2] ×
[y1, y2]× [z,∞). Let q be the xy-projection of q′. We search
the kd-tree with q in the standard way to obtain a canonical
set S of O(

√

n/B) nodes whose MBRs together cover q. At
each node which is an ancestor of at least one node in S, we
scan all its pilot points to report those lying in q′. Let v be
a child of a canonical node in S. Report the pilot points of v
whose z-coordinates are at least z. If all the pilot points of v
are reported, we recursively repeat this procedure at the two
children of v. Standard analysis shows that the algorithm
performs O(

√

n/B + k′/B) I/Os.

Theorem 6. There is a structure of O(n/B) space that

answers a 4-sided top-k ORR query in O(
√

n/B + k/B)
I/Os.

Proof. We only need a ∆-AWT structure of Lemma 7
with ∆ =

√

n/B, and a 5-sided reporting structure of
Lemma 12.

Remark on Non-Replication. Let P be the input set of n 2D
points to the traditional orthogonal range reporting prob-
lem. Suppose that a query is required to report the ids of



the points in the result. This means that a structure must
also store point ids. A structure is said to be non-replicate
[12, 22] if the id of each point is stored only once. In general,
each point in P is associated an information field of L words,
such that a query is required to report the information fields
of all the result points. A structure is non-replicate [22] if
it uses at most O(n/B) + nL/B blocks (which implies that
the information field of each point can be stored only once).

Our structure of Theorem 6 is a non-replicate one—in the
structure of Lemma 12, we associate each node u in the kd-
tree with 1 + xL/B blocks storing the information fields of
the x ∈ [1, B] pilot points of u. The space cost of the top-k
ORR structure becomes O(n/B)+nL/B, whereas its query

cost is O(
√

n/B+ kL/B). This is optimal following a lower
bound of [22] and our reduction from (traditional) ORR to
top-k ORR in Section 3.
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APPENDIX

Proof of Lemma 8

When ∆ = B logB n, we have

n

B∆

log2 n
∆

log log n
∆

≤ n

B2 logB n
· log2 n

log log n

=
n logB · log n
B2 log log n

≤ n

B

log n

B0.99 log log n

= O

(

n

B

log n

log logB n

)

.

Additional Details in the Proof of Lemma 11

Here are the details of showing F(2)(B log3 n) ≤ B log0.99 n ·
(logB + 3 log log n)2. By definition:

F(1)(B log3 n) =

√

B log3 nB · log(B log3 n)

= B log1.5 n · (logB + 3 log log n).

Hence,

F(2)(B log3 n)

= F(1)(B log1.5 n · (logB + 3 log log n))

=
√

B log1.5 n · (logB + 3 log log n) ·B
log(B log1.5 n · (logB + 3 log log n))

= B log0.75 n · (logB + 3 log log n)0.5

(logB + 1.5 log log n+ log(logB + 3 log log n))

< B log0.75 n · (logB + 3 log log n)1.6.


