
FIFO Indexes for Decomposable Problems

Cheng Sheng Yufei Tao
CUHK CUHK

Hong Kong Hong Kong
csheng@cse.cuhk.edu.hk taoyf@cse.cuhk.edu.hk

ABSTRACT
This paper studies first-in-first-out (FIFO) indexes, each of
which manages a dataset where objects are deleted in the
same order as their insertions. We give a technique that
converts a static data structure to a FIFO index for all de-
composable problems, provided that the static structure can
be constructed efficiently. We present FIFO access methods
to solve several problems including half-plane search, near-
est neighbor search, and extreme-point search. All of our
structures consume linear space, and have optimal or near-
optimal query cost.

Categories and Subject Descriptors
F2.2 [Analysis of algorithms and problem com-
plexity]: Nonnumerical algorithms and problems; H3.1
[Information storage and retrieval]: Content analysis
and indexing—indexing methods

General Terms
Algorithms, theory

Keywords
Index, half-plane search, nearest neighbor search, extreme-
point search

1. INTRODUCTION
Given a set D of objects, a (searching) problem Π is to

construct a data structure for D so that the result Π(q,D)
of any legal query q can be computed efficiently. If D never
needs to be updated, the structure on D is static. In this
paper, we are interested in that D is dynamically changing
according to some update scheme. For instance, if only new
objects can be added to D while existing ones are never
removed, the structure on D is required to support only
insertions, and is hence insertion only. If both insertions
and deletions are possible, the structure is fully dynamic.
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We consider the online setting, where a query must be
answered (i.e., having its result reported in entirety) before
handling the next operation, no matter whether that opera-
tion is an insertion, a deletion, or a query. We will denote by
N the problem size, and by K the output size, i.e., N = |D|
and K = |Π(q,D)|.

1.1 FIFO update scheme and its applications
We introduce the notion of first-in-first-out (FIFO) index.

As with fully-dynamic indexes, a FIFO structure must han-
dle both insertions and deletions. However, deletions are
restricted — only the oldest object, namely the one inserted
the longest time ago (among the objects still in the index),
can be removed. This scheme is useful in several areas, as
explained below, that have been actively studied in the last
decade.

Spatio-temporal databases. With the proliferation of in-
telligent location-aware devices (e.g., mobile phones, GPS
devices, etc.), it is nowadays feasible to support spatial
queries (such as range searching, nearest neighbor retrieval,
and so on) on a large set of continuously moving objects [25,
31]. A simple, effective, way to keep track of object loca-
tions1 is to have every object report its position periodically
at an appropriate interval [31] (e.g., 1 minute). In other
words, each location stored at the server automatically ex-
pires in a minute, at which time it is replaced by a fresh
update. Therefore, locations expire in the same order that
they are inserted, making FIFO indexes the key to query
processing in these environments.

Sliding windows over data streams. By definition, slid-
ing windows, which have been extensively studied since the
pioneering paper of Babcock et al. [11], are well-known ex-
amples of the FIFO update scheme. There are two common
types of sliding windows. The first one, tuple-based sliding
window, simply covers the N most recently-received records
for a fixed parameter N . The second one, time-based sliding
window, includes all the records that arrived at the system
within t timestamps from now, for a fixed parameter t. The
number of tuples in the window varies, as it depends on the
data’s arrival rate during the past t timestamps.

1We consider objects whose future locations cannot be ac-
curately predicted by simple motion functions, which makes
the update schemes of [3, 26] inapplicable. Examples of such
objects are vehicles in urban areas, pedestrians, etc. See [25]
and the references therein for more discussion.



Evolving databases. Massive transaction records are gen-
erated on a daily basis in various businesses (such as super-
markets, banks, stock exchanges, etc.) to support analytical
report generation and decision making. For these purposes,
user queries are biased towards recent records, such that
data older than a certain past timestamp are no longer inter-
esting and hence, can be discarded from the system. Coining
the concept of evolving databases for such systems, Shivaku-
mar and Garcia-Molina [28] presented a detailed coverage on
the importance of the so-called wave indexes to answering
queries efficiently. Such an index is in fact a FIFO structure
by our definition. It is worth mentioning that an evolving
database is similar to a transaction time database [27] but
with the oldest data gradually purged (in their insertion or-
der).

1.2 Technical motivations
A problem Π under the FIFO scheme can obviously be

settled by a fully dynamic structure for Π. However, since
FIFO is no harder than the fully-dynamic update scheme, we
may be able to find a FIFO structure that is better than the
fully-dynamic state of the art, in terms of the space, query,
and/or update performance. This benefits the applications
mentioned in Section 1.1 because it allows the practitioners
there to improve their implementation without having to
wait for a new fully-dynamic structure to come out.

A prominent example is half-plane search (its formal def-
inition will appear in Section 1.3), whose static version can
be solved with linear space and logarithmic query time [19]
in the RAM model. Dynamization, however, appears to be
rather difficult. The best known result [6] uses O(N1+ε)
space, processes a query in O(logN +K) time, and requires
O(Nε) time for both an insertion and a deletion. We will
show that, under the FIFO scheme, the problem can be
solved with a structure that consumes linear space, answers
a query in O(logN +K) time, and supports an update with
O(log2 N) cost.

At a higher level, a more ambitious goal is to develop a
generic framework of designing FIFO structures. In partic-
ular, assuming that we already know how to solve the static
version of a problem, is it possible to utilize just that solu-
tion for FIFO indexing? Proving a positive answer to this
question, which we manage to do in this work, gives us a
good starting point to approach some FIFO problems, as
will be demonstrated later.

1.3 Problems, computation models, and basic
notations

In the sequel, we define several problems to be discussed
in detail. The purposes of studying these problems are two-
fold. First, they will be utilized to demonstrate how to ap-
ply the proposed generic framework to derive FIFO indexes.
Second, all of them are well-known problems in the database
literature. At the end of the subsection, we will clarify the
computation models for our complexity analysis.

• Half-plane search: the dataset D is a set of 2-d points,
a query q is a half-plane, and its result Π(q,D) = q∩D,
i.e., all the points ofD falling in q. This problem is fun-
damental to, for example, non-isothetic range search-
ing [29] and searching with linear constraints [4].

• Nearest neighbor (NN) search: D is again a set of

points in the plane, q is also a point, and Π(q,D) is the
data point p ∈ D minimizing the Euclidean distance
‖q, p‖. This problem has been extensively investigated
on moving objects; see [25] and its bibliography.

• Extreme-point search: D is still a planar point set, q is
a linear function q((x, y)) = ax+by, and Π(q,D) is the
point p ∈ D maximizing q(p). This is equivalent to top-
1 search, which is crucial to multi-criteria optimization
[15, 23].

See Figure 1 for some illustrations.

The above problems share the common property of being
decomposable. Specifically, a problem Π is decomposable if,
for any dataset D and query q, Π(q,D) can be computed
efficiently from Π(q,D1) and Π(q,D2), where D1 and D2

form a partition of D, namely, D1 ∪D2 = D and D1 ∩D2 =
∅. The proposed indexing framework can be applied to all
decomposable problems.

We are interested in both main-memory and I/O-efficient
data structures. For the former, our analysis is under the
standard unit-cost RAM model. For the latter, we adopt the
external memory (EM) model [7], which has been successful
in capturing the characteristics of database algorithms [30].
In this model, a computer has a memory of M words, and a
disk of unbounded size that has been formatted into blocks
of size B. An I/O operation transfers a block of informa-
tion between the memory and the disk. Space complexity
is measured in the number of blocks occupied, while time
complexity is gauged in the number of I/Os performed. We
make the tall cache assumption2 [5, 10] that M ≥ B2. Note
that, a linear complexity should be understood as O(N/B)
in the EM model, instead of O(N) as in RAM. Further-
more, poly-logarithmic should be interpreted as O(logc

B N)
for some constant c in EM, as opposed to O(logc N) in RAM.
All complexities are worst-case unless specifically stated oth-
erwise.

In RAM, we characterize the performance of a static struc-
ture by three functions (assuming that the dataset has size
N):

• S(N) which bounds from above its space consumption;

• Q(N) which bounds from above the time of answering
a query;

• U(N) such that N ·U(N) bounds from above the time
of constructing the structure. In other words, U(N)
can be understood as the amount of preprocessing cost
amortized over each object.

Similarly, in EM, a static structure is also characterized by
S(N), Q(N) and U(N), except that the construction time is
bounded above by (N/B) ·U(N). Note that, strictly speak-
ing, the query cost should include the overhead of outputting
the query result. However, since the output overhead is al-
ways linear (i.e., O(K) and O(K/B) in RAM and EM, re-
spectively) for all the algorithms discussed in this paper, we
omit the term from Q(N).

2A typical value of B in practice is 1024 words, in which
case M ≥ B2 means that the memory should have size at
least 1 mega words. Most computers today (even those in
smart phones) have memory larger than this.
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Figure 1: Illustrations of the problems studied: (a) half-plane search, (b) nearest neighbor search, and (c)
extreme-point search. In each case, the query result includes the black dot(s). For (c), note that the answer
to an extreme-point query with parameters (a, b) is the first data point hit as we move a line with slope −a/b
from infinity gradually towards the dataset.

For example, a binary tree uses O(N) space, solves a
1-d range query in O(logN + K) time, and can be built
in O(N logN) time. We have S(N) = O(N), Q(N) =
O(logN), and U(N) = O(logN). Similarly, regarding the
B-tree and 1-d range searching, S(N) = O(N/B), Q(N) =
O(logB N), and U(N) = O(logB N). In particular, note
that the U(N) indicates that the B-tree can be constructed
in O((N/B) logB N) I/Os.

We need to impose some constraints on S(N), Q(N), and
U(N) for our technique to work:

• All of them should be non-decreasing with N .

• S(N) should grow at least linearly. Following [12],
in RAM this means that S(N)/N is non-decreasing.
Accordingly, in EM, we require that S(N)/(N/B) be
non-decreasing with N .

• U(N) needs to satisfy:

U(O(N)) = O(U(N)) (1)

which is fulfilled by a wide range of U(N), includ-
ing all the standard functions (e.g., constant, poly-
logarithmic, polynomial, etc.).

• Both Q(N) and U(N) need to be Ω(1).

1.4 Previous results
Next, we survey the existing results related to our work.

Our discussion consists of three parts. The first one de-
scribes the known general techniques for designing FIFO
(or insertion-only) structures. The second clarifies the dif-
ferences between FIFO and the semi-online update scheme
of Dobkin and Suri [20]. Finally, the third part reviews the
efficiency of the previous solutions to the problems listed in
Section 1.3.

General techniques. Bentley and Saxe [12] initialized
the research of developing general techniques to dynamize
static structures for decomposable problems. They proposed
several methods to convert static indexes to insertion-only
structures (which can be regarded as special FIFO indexes

where deletions never happen). The basic idea of their meth-
ods is to partition a dataset D into several subsets, each
managed by a dedicated static structure. An insertion is
handled by reorganizing some subsets and reconstructing
their structures respectively. By the definition of decompos-
ability, a query q can be correctly answered by issuing q on
every subset, and then combining all results.

Bentley and Saxe presented three methods achieving var-
ious tradeoffs. Given a static structure with performance
characterized by S(N), Q(N) and U(N), their binary trans-
formation, perhaps better known as the logarithmic method
[10], yields an insertion-only index with O(S(N)) space,
O(Q(N) logN) query cost, and O(U(N) logN) amortized
insertion time. The other two transformations are less in-
teresting for our purposes, as they yield either O(Q(N)Nε)
query time or O(U(N)Nε) update time, where the multi-
plicative term Nε is too expensive when Q(N) and U(N)
are poly-logarithmic.

Arge and Vahrenhold [10] extended the logarithmic
method to the EM model, achieving similar performance
bounds. Specifically, the resulting insertion-only index con-
sumes O(S(N)) space, answers a query in O(Q(N) logB N)
I/Os, and supports an insertion in O(U(N) logB N) amor-
tized cost.

Arasu and Manku [8] described a method we refer to as
the dyadic approach for query processing on sliding windows.
Although not explicitly mentioned in [8], this method can
be modified to convert a static structure to a FIFO index
in internal memory. The rationale is to index the sequence
number of every object in D with a binary tree, and asso-
ciate each node of the tree with a secondary, static, struc-
ture on all the objects in the node’s subtree. Rebuilding
of the secondary structures can be carried out in a manner
that amortizes only a small amount of cost on every update.
In general, the FIFO structure produced by the dyadic ap-
proach occupies O(S(N) logN) space, and supports a query
in O(Q(N) logN) time, and an update in O(U(N) logN)
amortized time. Note that there is an O(logN) blow-up in
the space complexity. It is worth noting that this approach
is not designed for the EM model. Naive adaptation will
lead to the gigantic query cost of O(Q(N) ·B logB N), with



Model Space Query Insertion Deletion
logarithmic method [12] RAM

S(N)
Q(N) logN U(N) logN

no support
external logarithmic method [10] EM Q(N) logB N U(N) logB N

dyadic approach [8] RAM S(N) logN Q(N) logN U(N) logN U(N) logN
external dyadic approach (adapted from [8]) EM S(N) logB N B ·Q(N) logB N U(N) logB N U(N) logB N

ours
RAM

S(N)
Q(N) logN U(N) logN U(N) logN

EM Q(N) logB N U(N) logB N U(N) logB N

Table 1: Comparison of the general techniques for deriving FIFO indexes. All complexities are in big-O. The
update results are amortized while the others are worst case.

Problem Model
Fully-dynamic FIFO (by Theorem 1.1) FIFO (our best)

Space Query Update Ref Space Query Update Space Query Update

half-plane RAM N1+ε logN +K Nε [6] N log2 N +K log2 N N logN + K log2 N

nearest RAM N log2 N log6 N [14] N log2 N log2 N N log2 N logN
neighbor EM ? N/B log3B N log2B N N/B log3

B N log2
B N

extreme- RAM N logN logN [13] N log2 N log2 N N logN logN
point EM ? N/B log2B N log2B N N/B logB N logB N

? = we are not aware of any published result.

Table 2: Comparison of fully-dynamic and FIFO indexes. All complexities are in big-O. The update results
are amortized while the others are worst case.

the space and update complexities being O(S(N) logB N)
and O(U(N) logB N), respectively.

Semi-online. Dobkin and Suri [20] proposed a framework
to convert a static structure to a dynamic one under a semi-
online update scheme. Specifically, in that scheme, at the
moment an object is inserted, we are told when the object
will be deleted in the future. In particular, the future dele-
tion time is given as the number of updates, as opposed
to an absolute timestamp (e.g., by specifying 10, it means
that the object will be deleted after 10 subsequent updates).
This scheme is more general than FIFO in an offline setting,
where all the update and query operations are given in ad-
vance, so that an algorithm can first scan the dataset once
to attach each deletion time to its corresponding insertion.

In the online setting, however, the semi-online scheme
does not subsume FIFO. Recall that, in this setting, every
query must be answered before the algorithm can process
the next operation. In other words, when answering a query
q, the algorithm is not allowed to peek into the updates af-
ter q, and thus in general, cannot determine when an object
o currently in the dataset will be removed – noticing that
there can be an arbitrary number of insertions between q
and the deletion of o. Unfortunately, knowledge of objects’
deletion time is vital to the semi-online technique of [20],
which thus becomes inapplicable. A FIFO algorithm, on
the other hand, must work without knowing when objects
will be deleted.

Concrete problems. For each problem in Section 1.3, we
summarize below the performance of the best known static
and fully-dynamic structures (if they exist, to our knowl-
edge), under the computation model(s) where we will solve
the problem in the FIFO scheme.

• Half-plane search: As mentioned in Section 1.2, in
RAM, Chazelle et al. [19] gave a static solution that
uses linear space and solves a query in O(logN +
K) time. Their structure can be constructed in
O(N logN) time. The dynamic state of the art is due

to Agarwal and Matousek [6], having space, query, and
update cost O(N1+ε), O(logN + K), and amortized
O(Nε), respectively.

• NN search: In RAM, the static version can be settled
in linear space and logarithmic query time, by combin-
ing a Voronoi diagram with a point-location structure.
Its dynamization had been a long-standing open prob-
lem until recently Chan [14] proposed an index that
occupies linear space (combining with ideas due to Af-
shni and Chan [1]), achieves O(log2 N) query cost, and
demands O(log3 N) and O(log6 N) amortized time to
handle an insertion and deletion respectively.

In EM, Goodrich et al. [21] showed that the
Voronoi diagram of N points can be constructed in
O((N/B) logB N) I/Os. Agarwal et al. [2] presented a
point-location structure that requires linear space, an-
swers a query in O(log2B N) I/Os, and can be built in
O((N/B) logB N) I/Os. Combining these results gives
a static index for NN search3.

• Extreme-point search. In RAM, for static data, an
extreme-point query can be answered in logarithmic
time utilizing a linear-space index. This can be
achieved by first computing the dataset’s convex hull
in O(N logN) time (with, for example, Graham scan
[22]), and then, building a binary tree on the points
of the hull. The dynamic case has been solved by
Brodal and Jacob [13], whose structure achieves lin-
ear space and logarithmic query and amortized update
time. Their data structure is rather complex such that
the authors themselves listed a practical solution with
the same complexity as an open problem.

In EM, replacing the binary tree with a B-tree gives
a static structure that occupies linear space and an-

3Arge et al. [9] gave an alternative linear-size index that
solves a point-location query in O(logB N) I/Os. Unfortu-
nately, their structure is expensive to construct, and thus is
not suitable as the base structure for FIFO conversion.



swers a query in O(logB N) cost. The structure can
be constructed in O((N/B) logB N) I/Os by external-
izing Graham scan [21].

1.5 Our results
Our first main result is a generic framework that converts

a static solution of any decomposable problem Π into an
index for solving the FIFO version of Π:

Theorem 1.1 (The FIFO theorem). Assume that
there is a static structure solving a decomposable problem Π
in RAM that consumes no more than S(N) space, answers
a query within Q(N) time, and can be built within N ·U(N)
time. Then, there is a FIFO index for Π with the following
performance guarantees:

If the dataset currently has N objects, the in-
dex consumes O(S(N)) space, solves a query in
O(Q(N) logN) time, and supports an update in
O(U(N) logN) amortized time.

The same result holds in EM except that (i) the construc-
tion time of the static index should be bounded above by
(N/B) · U(N), and (ii) each logN should be replaced with
logB N .

Our technique extends the logarithmic method of Bentley
and Saxe [12] with a 2-phase-indexing idea. More specifi-
cally, we partition the dataset D into 2 logN subsets with
different sizes, based on objects’ insertion times. Among
these subsets, logN of them contain objects ready for dele-
tion — these objects are in the deletion phase. The rest of
the objects are in the insertion phase. We give algorithms
to merge and split the subsets, so that the amortized cost of
an update can be minimized. The performance bounds are
derived through an analysis that is substantially different
from that of [12].

Table 1 compares the FIFO indexes produced by Theo-
rem 1.1 to those by the existing frameworks. In particular,
regarding the dyadic approach [8], the proposed technique
(i) reduces the space by a logarithmic factor in both RAM
and EM, and (ii) improves the query efficiency by a factor
of O(B) in EM.

Theorem 1.1 immediately gives non-trivial FIFO indexes
for all the problems in Section 1.3, by combining with the
state-of-the-art static structures surveyed in Section 1.4.
Each of those FIFO indexes treats the underlying static
structure as a black box. Our second contribution is to
show that we can sometimes obtain more efficient FIFO
access methods by hacking into those black boxes. More
specifically, in RAM, the objective of hacking is to achieve a
query bound of o(Q(N) logN) and/or an update bound of
o(U(N) logN), thus improving the results in Theorem 1.1.
An analogous objective exists in EM as well.

Table 2 summarizes our results. It also includes the per-
formance of the best corresponding fully-dynamic structure,
to echo the motivation mentioned in Section 1.2 that better
solutions may be derived by leveraging the special proper-
ties of the FIFO scheme. For extreme-point search in RAM,
although having the same performance as that of [13], our
structure is simpler, and amenable to practical implementa-
tion. All logarithmic query cost (with linear output time) in
Table 2 is optimal in the comparison model of computation.

2. MAKING A STATIC STRUCTURE FIFO
Given a static structure for settling a decomposable prob-

lem with performance characterized by S(N), Q(N) and
U(N), we will present a generic framework to obtain a FIFO
index. Section 2.1 describes the framework for the RAM
model, which will be extended to the EM model in Sec-
tion 2.2.

2.1 The RAM model
We say that an object is active if it has been inserted

but not deleted yet. At any moment, we assign a phase to
every object o. Specifically, when o is inserted, it enters the
insertion phase. Sometime later, we will switch o into the
deletion phase, in which the object stays until its deletion.

Denote by D the set of all objects currently active. Set
N = |D|. The objects of D can be naturally ordered by their
insertion timestamps. We say that an object is newer (older)
than another, if the former one has greater (lower) insertion
time. Let D+ (D−) be the subset of D that includes all the
objects in the insertion (deletion) phase. We partition D+

(D−) into subsets with the following properties:

• D+ is divided into D+
0 , D+

1 , ..., D+
h+ , where h+ is an

integer that is O(logN) and varied by our algorithm.
The size of D+

i (0 ≤ i ≤ h+) is either 0 or 2i. Further-
more, for any i < j, each object in D+

i is newer than
all the objects in D+

j .

• D− is divided into D−
h− , ..., D−

1 , D−
0 , where h− =

O(logN) is also varied by our algorithm. The size of
D−

i (0 ≤ i ≤ h−) is either 0 or 2i. For any i < j, each
object in D−

i is older than all objects in D−
j .

• h+ ≤ h−.

See Figure 2 for an illustration. We say that a subset is older
(newer) than another if the objects in the former subset are
older (newer). Each of the h+ + h− + 2 subsets is indexed
with a static structure. Furthermore, for each subset, we
keep a chronological list of its objects.

At the beginning (when D is empty), both h+ and h−

equal 0. Next, we explain how to perform updates efficiently.

Insertion. Our insertion algorithm is the same as in the
logarithmic method [12]. Given an object o, we identify
the smallest i ≤ h+ such that D+

i is empty. In case such
an i does not exist (i.e., D+

0 , ..., D+
h+ are all non-empty),

increment h+ by 1 and set i to the new h+. We empty all
of D+

0 , ..., D+
i−1, discard the structures on them, add all

the objects therein together with o to D+
i , and create a new

static index on D+
i . Note that the total number of migrated

objects is

1 +
i−1∑
j=0

|D+
j | = 1 +

i−1∑
j=0

2j = 2i,

which is exactly the desired size of D+
i . The construction

takes O(2i · U(2i)) time. If now h+ has exceeded h−, we
simply rename D+

h+ as D−
h−+1

, after which h− is increased

by 1, and h+ is reset to 0.
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Figure 2: Illustration of 2-phase indexing: Solid triangles represent non-empty structures while dashed
triangles represent empty ones; h+ = 4 and h− = 5.

Deletion. To remove the oldest object o in D, we find
the smallest i ≤ h− such that D−

i is non-empty. Find and
discard o from the chronological list of D−

i in constant time.
The remaining objects of D−

i are then broken into D−
0 , ...,

D−
i−1 in O(|D−

i |) = O(2i) time, observing the time-ordering
and cardinality constraints mentioned earlier. Build a static
structure on each of D−

0 , ..., D−
i−1 in totally

i−1∑
j=0

|D−
j | · U(|D−

j |) =

i−1∑
j=0

2j · U(2j)

= O(2i · U(2i))

time. If i = h−, we decrease h− by 1. It is possible that h−

now drops below h+. In this case, rename D+
h+ as D−

h−+1
,

increase h− by 1, and decrease h+ to the greatest j such
that D+

j is non-empty (if no such j exists, h+ = 0).

Query. We answer a query by simply searching the indexes
of all subsets and combining their results. Correctness is
obvious as the underlying problem is decomposable. The
query time is

h+∑
i=0

Q(2i) +
h−∑
i=0

Q(2i) = O

((
h+ + h−)Q(N)

)

= O

(
Q(N) logN

)
. (2)

Analysis. If no deletion ever happens, our 2-phase frame-
work degenerates into the logarithmic method [12]. Unfor-
tunately, the analysis of [12] cannot be extended to prove
the performance guarantees (in particular, the update time)
of our technique. In fact, in the absence of deletions, the
value of N monotonically increases with time, thus allowing
an insertion to use more time than each of the earlier inser-
tions. This property can be leveraged to simplify the analy-
sis significantly. In the FIFO context, N can vary arbitrarily
with time, which necessitates a more delicate discussion, as
presented below.

The query cost of 2-phase indexing is already given in
Equation 2. Clearly all the h+ + h− +2 structures consume

h+∑
i=0

S
(|D+

i |)+ h−∑
i=0

S
(|D−

i |) = O(S(N))

space, where the equality used the fact that function S(N)
grows at least linearly.

Next, we focus on bounding the update overhead. Ini-
tially, D is empty. Consider a FIFO update sequence SEQ
with n updates, each of which can be an insertion or a dele-
tion. Denote by Ni (i ≤ n) the size of D after the i-th
update. Our objective is to show that the total cost of han-
dling all the updates is bounded by

cost(SEQ) = O

(
n∑

i=0

U(Ni) logNi

)
. (3)

This is what is needed to prove that the i-th update has
amortized cost O(U(Ni) logNi).

Let ndel be the number of deletions in SEQ. It follows
that nins = n − ndel objects are inserted. After processing
the entire SEQ, the oldest ndel objects have been removed
from D. We say that they are short-term objects. The other
nins − ndel objects are long-term.

We define the timestamp of an update in SEQ as its se-
quence number (i.e., the first update is at time 1, the second
at time 2, and so on). If o is a short-term object, denote by
t+(o) and t−(o) the timestamps at which o is inserted and
deleted, respectively. If o is long-term, we still use t+(o) to
represent its insertion time, and assume a virtual deletion of
o at time:

t−(o) = n+ i (4)

where i is such that o is the i-th oldest long-term object
in SEQ. Remember that cost(SEQ), as in Equation 3,
does not include the cost of virtual deletions. Regardless
of whether o is long- or short-term, we define its lifespan as
[t+(o), t−(o)). Note that a lifespan is close on the left and
open on the right.

If o is short-term, let ∆+(o) be the number of insertions
during the lifespan of o, excluding the insertion of o itself.
Similarly, let ∆−(o) be the number of deletions during the
lifespan. If o is long-term, the semantics of ∆+(o) is the
same, while ∆−(o) is defined as:



new

time

old

insertion of o

Figure 3: Illustration of the notations of a long-
term object: each black (white) dot represents an
insertion (deletion) in SEQ. Let o be the object
as shown, which is the 2nd oldest long-term object.
We have: t+(o) = 7, t−(o) = 10 + 2 = 12, s(o) = 5,
∆+(o) = 2, ∆−(o) = 1 + 2 − 1 = 2.

∆−(o) = c+ i− 1 (5)

where c counts the number of deletions in SEQ after the
insertion of o, and i is the same as in Equation 4. Finally,
no matter whether o is short- or long-term, we define its
spread as

s(o) = t−(o)− t+(o).

which is essentially the number of timestamps in the lifespan
of o. By the definitions of ∆+(o) and ∆−(o), it is not hard
to observe:

s(o) = ∆+(o) + ∆−(o) + 1. (6)

Figure 3 illustrates the above notations for a long-term o.

Some useful observations can be made:

• Property 1: Nt+(o) = ∆−(o) + 1. When o is inserted,
D contains only those objects inserted earlier but not
deleted yet. All and only such objects have deletion
timestamps in the lifespan of o, by definition of FIFO
updating.

• Property 2: for a short-term object o, Nt−(o) = ∆+(o).
This is because only the objects (not counting o itself)
inserted during the lifespan of o can still remain in D
right after o is deleted.

• Property 3: for a short-term object o, s(o) = Nt+(o) +
Nt−(o), which immediately follows the previous two
properties and Equation 6.

• Property 4: Ni ≤ s(o) for all i satisfying t+(o) <
i < t−(o). The reason is that, if another object o′ co-
exists with o in D at any moment, their lifespans must
intersect. Hence, either t+(o′) or t−(o′) falls within the
lifespan of o, making ∆+(o) + ∆−(o) an upper bound
of the size of D − {o} for all D containing o.

Lemma 2.1.

cost(SEQ) =

nins∑
i=1

O

(
U
(
s(oi)

)
log s(oi)

)

where oi is the i-th oldest object ever inserted.

Proof. Every time a static structure in the insertion
(deletion) phase is constructed (destroyed), the cost of pro-
cessing SEQ increases by at most x · U(x), where x is the

number of objects in the structure. We charge O(U(x)) on
every object o in the structure. By Property 4, x ≤ s(o);
hence, O(U(x)) is bounded above by O(U(s(o))). Every
time o is charged, it migrates to an older subset. Since o
cannot appear in a D with more than s(o) objects (other-
wise, N would be greater than s(o)), it can only be charged
O(log s(o)) times. Therefore, the total cost of processing
the whole SEQ that is amortized over o is bounded by
O
(
U
(
s(o)

)
log s(o)

)
.

We are finally ready to establish Equation 3.

Lemma 2.2.
nins∑
i=1

U
(
s(oi)

)
log s(oi) = O

(
n∑

i=0

U(Ni) logNi

)
(7)

Proof. Introduce f(x) = U(x) log x. From Equation 1,
we have f(O(x)) = O(f(x)). Therefore, it holds that:

f(x+ y) = Θ(f(x) + f(y)) (8)

To prove this, assume, without loss of generality, x ≤ y.
Hence, f(x+y) = f(O(y)) = O(f(y)) = O(f(x)+f(y)). On
the other hand, since function f is non-decreasing, f(x) +
f(y) ≤ 2f(x+ y) = O(f(x+ y)).

Let S (L) be the set of short- (long-) term objects. Each
object o ever inserted by SEQ contributes a term f(s(o)) in
the left hand side (LHS) of Equation 7. On the other hand,
every object in S and L contributes two and one term in the
right hand side (RHS), respectively.

For each object o ∈ S, we have

f(s(o)) = O

(
f
(
Nt+(o)

)
+ f

(
Nt−(o)

))
(9)

To see this, notice that Property 3 implies that either Nt+(o)

or Nt−(o) is Ω(s(o)). Without loss of generality, suppose
that Nt+(o) ≤ Nt−(o). Then, f(s(o)) = f(O(Nt−(o))) =
O(f(Nt−(o))), validating Equation 9.

There are nins − ndel long-term objects, among which let
oi be the i-th oldest. In the sequel, we will show

nins−ndel∑
i=1

f
(
s(oi)

)
=

nins−ndel∑
i=1

O

(
f
(
Nt+(oi)

))
(10)

Let δi be the number of short-term objects deleted after the
insertion of oi. We observe:

Nt+(oi)
= i+ δi

which is because, right after oi is inserted, D consists of
exactly i long-term objects and δi short-term objects. We
also observe:

s(oi) = nins − ndel + δi

due to the fact that the lifespan of oi covers (i) either the
insertion or deletion time of every long-term object, and (ii)
the deletion timestamps of δi short-term objects.



Therefore:

LHS of (10) =

nins−ndel∑
i=1

f
(
nins − ndel + δi

)

=

nins−ndel∑
i=1

O

(
f
(
nins − ndel − i

)
+ f(i) + f(δi)

)

=

nins−ndel∑
i=1

O

(
2f(i) + f(δi)

)

=

nins−ndel∑
i=1

O

(
f(i+ δi)

)
= RHS of (10)

where the 2nd and 4th equalities used Equation 8.

From Inequalities 9 and 10, we know that

LHS of (7) =
∑
o∈S

f(s(o)) +
∑
o∈L

f(s(o))

=
∑
o∈S

O

(
f
(
Nt+(o)

)
+ f
(
Nt−(o)

))
+

∑
o∈L

O

(
f
(
Nt+(o)

))
= RHS of (7)

thus completing the proof.

This proves the part of Theorem 1.1 in the RAM model.

2.2 The EM model
In external memory, our 2-phase indexing divides D into

D+
0 , ..., D+

h+ , D−
h− , ..., D−

0 in the same manner as in the
RAM model, except for two differences:

• Both h+ and h− are O(logB N).

• For each i ≤ h+ or h−, |D+
i | or |D−

i | should
– be either 0 or

– fall in the range [Bi/2, Bi+1].

Insertion of an object o is similar to that in the external
logarithmic method [10]. We first find the smallest i such
that the union of all D+

j (0 ≤ j ≤ i) has less than Bi+1

objects. Then, empty D+
0 , ..., D+

i , collect all their objects
together with o into D+

i , and construct a static index on
D+

i . In case the requirement h+ ≤ h− is violated, carry out
renaming and adjust h− and h+ as in the RAM model.

To delete an object o, we identify the lowest i such
that D−

i is non-empty, and discard o from D−
i . The re-

maining objects of D−
i are then divided into D−

0 , D−
1 , ...,

D−
i (obeying the time-ordering constraint) such that D−

j

(0 ≤ j ≤ i − 1) gets exactly Bj+1/2 objects. If there are
not enough objects to achieve the purpose, we allow D−

i−1

to include less than Bi/2 objects; otherwise, the outstand-
ing objects are put back in D−

i . In any case, let k ≤ i be
the maximum integer such that that D−

k is non-empty (k

must be either i − 1 or i). In case |D−
k | ≤ Bk/2, empty

D−
k and move all its objects to D−

k−1, whose size is now

Bk/2 + |D−
k | ≤ Bk. Construct a static index on D−

0 , ...,

D−
k−1 respectively, and also on D−

k if it is non-empty. If h+

now exceeds h−, fix it in the same way as in the RAM model

The query algorithm is identical to the RAM counterpart.

Analysis. We discuss only the update complexity as the
space and query cost can be derived easily. All the notations
in the analysis of the RAM model can be re-used here. The
following is the EM version of Lemma 2.1.

Lemma 2.3.

cost(SEQ) =

nins∑
i=1

O

(
U
(
s(oi)

)
logB s(oi)

)

where oi is the i-th oldest object ever inserted.

Proof. In the insertion (deletion) algorithm, every time
the static structure on a D+

i (D−
i ) is constructed (de-

stroyed), the cost of processing SEQ grows by at most
(x/B) · U(x) I/Os, where x is the number of objects in the
structure. Note that (x/B) · U(x) = O(Bi · U(x)). Next,
we will show that Ω(Bi) objects will migrate to an older
subset. This allows us to charge O(U(x)) I/Os over each of
those objects, which will complete the proof as an object o
can be charged O(logB s(o)) times.

For the insertion case, all the objects in D+
0 , ..., D+

i−1 will

migrate to D+
i . The selection of i ensures that there are at

least Bi such objects. For the deletion case, consider the sit-
uation after the deletion has finished. If D−

i becomes empty,
all the |D−

i | ≥ Bi/2 objects in D−
i have migrated to older

subsets. Otherwise, at least Bi/2 objects have migrated to
D−

i−1.

Changing each log to logB, Lemma 2.2 still holds (in fact,
the proof directly applies after the changes). This indicates
that the i-th update is handled with O(U(Ni) logB Ni) I/Os
amortized. We thus conclude the proof of Theorem 1.1.

3. SOLVING CONCRETE PROBLEMS
In this section, we present FIFO indexes for the problems

defined in Section 1.3. Integration of Theorem 1.1 and the
static solutions reviewed in Section 1.4 immediately gives
the results in the fourth column of Table 2. The subse-
quent discussion will show how to obtain the results in the
last column of that table. Towards this, We will first give
two general techniques for improving the FIFO structures
yielded by Theorem 1.1, and then, apply them to solve each
individual problem.

FIFO fractional cascading. Recall that our 2-phase in-
dexing framework divides the set D of N active objects into
h++h−+2 subsets D+

0 , ..., D+
h+ , D

−
h− , ..., D−

0 . Each subset
is managed by a static structure. Next, we consider the fol-
lowing problem. Let G+

i (0 ≤ i ≤ h+) be a set of O(|D+
i |)

real values. G+
i has the property that it can be retrieved

from D+
i into the sorted order using linear time. Define G−

i

(0 ≤ i ≤ h−) similarly on D−
i . Given a real value q, a

combined predecessor query returns, from each possible G+
i

(G−
i ), the predecessor of q, namely, the greatest value in G+

i

(G−
i ) not exceeding q.

Lemma 3.1. In RAM, a FIFO index can be augmented
such that a combined predecessor query can be answered



in O(logN) time. The augmentation does not alter the
space, query, and update complexities of the original index.
The same result holds in EM by replacing O(logN) with
O(logB N).

Proof. We achieve this with a manipulation of fractional
cascading (FC) [18]. In RAM, we build two FC structures
F+ and F−, where the former indexes G+

0 , ..., G+
h+ , and

the latter indexes G−
0 , ..., G

−
h− . Specifically, F+ has h+ + 1

sorted lists H+
0 , ..., H+

h+ where

• H+
h+ includes a value out of every 4 consecutive values

in G+
h+ ;

• for each i = h+ − 1, ..., 0, H+
i includes a value out of

every 4 consecutive values in the sorted list of G+
i ∪

H+
i+1.

Note that an H+
i can be non-empty even if G+

i is empty, as
H+

i may contain values from G+
j with j > i. We refer to the

constant 4 as the sample interval. An analogous definition
applies to F−. By standard techniques [18], F+ and F−

can be deployed to answer a combined predecessor query in
O(logN + h+ + h−) = O(logN) time.

The two FC structures occupy linear space. In fact, re-
garding F+, the following holds for any i satisfying 0 ≤ i ≤
h+ − 1:

|H+
i | ≤ (|H+

i+1|+ |G+
i |
)
/4 ≤ |H+

i+1|/4 + c2i−2 (11)

for some constant c. Obviously, |H+
h+ | ≤ c2h

+−2. In general,

given H+
i+1 < c2i, Equation 11 shows:

|H+
i | < c2i/4 + c2i−2 < c2i−1.

Hence, we can create H+
i from G+

i and H+
i+1 in O(|G+

i | +
|H+

i+1|) = O(2i) time. Similar arguments apply to F− as
well.

To maintain the FC structures, we extend our insertion
algorithm in Section 2.1 as follows. Consider the moment
when the index on D+

i has been rebuilt (for some legal
i), namely, D+

0 , ..., D+
i−1 have been emptied. We derive

the new G+
i in O(|D+

i |) time, compute H+
i in O(2i) time,

and then create the new H+
i−1, ..., H

+
0 (in this order) using∑i−1

j=0 O(2j) = O(2i) time. Hence, the total insertion cost

is the same as before if the requirement h+ ≤ h− is not
violated. In case h+ exceeds h−, denote by x the number
of objects currently in D+

h+ . We perform renaming and ad-

just h+, h− as in the original algorithm. This is followed
by rebuilding both F+ and F− from scratch. As all G+

i

and G−
i are sorted, F+ and F− can be constructed in O(N)

time. We amortize the cost over the x objects that just mi-
grated from the insertion phase to the deletion phase. As
x = Ω(N), each object bears only constant time. Since ev-
ery object is charged at most once this way, the amortized
update cost is unaffected. The deletion algorithm in Sec-
tion 2.1 can be modified based on analogous ideas without
any extra overhead asymptotically.

A similar approach also works in EM, using a sample inter-
val of 2B. Adapting the above analysis in a straightforward

manner, we can show that the resulting FC structures oc-
cupy linear space, answer a combined predecessor query in
O(logB N) I/Os, and their maintenance demands no extra
cost on top of the original update overhead.

Linear reorganization. Let S be a set of active objects.
Consider a chronological partition S1, S2 of S, namely, (i)
S1, S2 form a partition of S, and (ii) every object in S1 is
older than all objects in S2. We say that the underlying
static structure is linearly reorganizable if it satisfies both
conditions below:

• given a structure on S, we can create the structures on
S1 and S2 respectively in total time linear to |S|.

• given the structures on S1 and S2 respectively, we can
create the structure on S in time linear to |S|.

Lemma 3.2. If the underlying static structure is lin-
early reorganizable, the update cost of 2-phase indexing is
O(logN) and O(logB N) amortized in RAM and EM, re-
spectively.

Proof. We prove the lemma only in RAM because the
discussion extends to external memory easily. The key
is to accelerate each insertion and deletion by a factor of
O(U(N)), compared to the algorithms in Section 2.1.

Recall that insertion requires constructing the index of a
D+

i on the union of D+
j for all 0 ≤ j ≤ i − 1. This can be

done inO(2i) time (as opposed toO(2i·U(2i)) in Section 2.1)
as follows. First, build an index T from the structures on
D+

0 and D+
1 . Then, incrementally, create a new T from the

previous T and the structure on D+
j , for j = 2, ..., i − 1.

The final T is the index on D+
i . By the definition of linear

reorganizable, this process takes

i−1∑
j=1

O(2j + 2j−1) = O(2i)

time. A similar, but reverse, approach works for deletion to
achieve the claimed efficiency.

Applications. The above techniques serve different pur-
poses. Specifically, FIFO fractional cascading may be lever-
aged for reducing the query overhead, whereas linear reorga-
nization for lowering the update cost. They are independent
in the sense that sometimes they can be applied together to
enhance query and update efficiency simultaneously. Next,
we demonstrate this by improving the FIFO indexes directly
obtained from Theorem 1.1.

• Half-plane search: In RAM, Chazelle et al. [19] showed
that a half-plane query can be reduced to finding the
predecessor of a value (computed based on the original
query) in a set G of real numbers, such that |G| is no
greater than the cardinality of the dataset. Once the
predecessor is found, all the result objects can be re-
ported in O(K) time. G can be extracted into a sorted
order in linear time after constructing the (static) in-
dex of [19]. In 2-phase indexing, query processing
boils down finding the predecessors of a query value,
in h+ +h− +2 sets of real values respectively, i.e., one
for each of D+

0 , ..., D+
h+ , D

−
h− , ..., D−

0 . By Lemma 3.1,
the query cost is O(logN +K).



• NN search: In RAM, the static version of the problem
can be settled by constructing a point-location struc-
ture on the Voronoi diagram (VD) of the dataset. One
such structure is due to Kirkpatrick [24]. Given a VD,
his structure can be built in linear time. In the FIFO
context, let S be a set of points, and S1, S2 a chrono-
logical partition of it. Using the techniques of Chazelle
[16] and Chazelle et al. [17], we can (i) create the VDs
of S1 and S2 respectively from that of S in O(|S|) ex-
pected time, and (ii) create the VD of S from those of
S1 and S2 also in O(|S|) time. Therefore, the static
NN structure is linearly reorganizable. By Lemma 3.2,
the update cost can be lowered to O(logN) amortized.

• Extreme-point search: In RAM, the static structure is
merely a binary tree indexing the points on the convex
hull of the dataset, sorted in clockwise order. A query
can be reduced to predecessor search on the tree. To
make the structure linearly reorganizable, we keep a
separate x-list that sorts all data points by their x-
coordinates. By feeding the x-list to Graham scan,
we can compute the convex hull in time linear to the
dataset size. Now, consider a set S of points, and a
chronological partition S1, S2. To obtain the structure
of S1 (the case of S2 is similar) from S, we scan the
x-list of S once to generate the x-list of S1 in O(|S|)
time, after which the structure on S1 can be built in
O(|S1|) time. Conversely, to create the structure of
S from those of S1, S2, we obtain the x-list of S by
merging those of S1 and S2 in O(|S|) time, after which
the index on S is constructed with linear cost.

Given the FIFO index from Theorem 1.1, extreme-
point search is performed by first retrieving the pre-
decessors of a query value in h+ + h− + 2 sets of
numbers, and then returning the best one among the
O(logN) objects corresponding to those predecessors.
By Lemma 3.1, this can be done in O(logN) time over-
all. Finally, Lemma 3.2 allows us to improve the up-
date time to O(logN) amortized. A similar approach
works in the EM model to achieve logarithmic query
and amortized update cost.

4. CONCLUSIONS
We have presented a general framework of designing FIFO

data structures for decomposable problems, provided that
an index solving the static version of the underlying prob-
lem is available. Furthermore, as long as the static index
can be efficiently constructed, the resulting FIFO structure
is simple enough for practical use. We have utilized our
framework to develop FIFO indexing solutions with non-
trivial performance guarantees to half-plane search, nearest
neighbor search, and extreme-point search (all in 2-d space).
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