
An I/O-Efficient Algorithm for Computing Vertex Separators on

Multi-Dimensional Grid Graphs and Its Applications

Junhao Gan Yufei Tao

University of Queensland Chinese University of Hong Kong
Australia Hong Kong

June 8, 2018

Abstract

A vertex separator, in general, refers to a set of vertices whose removal disconnects the original
graph into subgraphs possessing certain nice properties. Such separators have proved useful
for solving a variety of graph problems. The core contribution of the paper is an I/O-efficient
algorithm that finds, on any d-dimensional grid graph, a small vertex separator which mimics the
well-known separator of [Maheshwari and Zeh, SICOMP’08] for planar graphs. We accompany
our algorithm with two applications. First, by integrating our separators with existing algorithms,
we strengthen the current state-of-the-art results of three fundamental problems on 2D grid
graphs: finding connected components, finding single source shortest paths, and breadth-first
search. Second, we show how our separator-algorithm can be deployed to perform density-based
clustering on d-dimensional points I/O-efficiently.

Contact Author:

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
New Territories, Hong Kong
taoyf@cse.cuhk.edu.hk

1

1 Introduction

Given an integer d ≥ 1, a d-dimensional grid graph is an undirected graph G = (V,E) with two
properties:

• Each vertex v ∈ V is a distinct d-dimensional point in Nd, where N represents the set of
integers.

• If E has an edge between v1, v2 ∈ V , the two points v1, v2 must (i) be distinct (i.e., no
self-loops), and (ii) differ by at most 1 in coordinate on every dimension.

See Figure 1 for two illustrative examples. We will limit ourselves to d = O(1), under which a
d-dimensional grid graph is sparse, that is, |E| = O(|V |), because each vertex can have a degree at
most 3d = O(1).

Past research on grid graphs has largely focused on d = 2, mainly motivated by the practical
needs to work with terrains [2, 5, 6], also known as land surfaces [8, 20, 26, 31]. A terrain or land
surface is essentially a function f : R2 → R that maps every point on the earth’s longitude-altitude
plane to an elevation. To represent the function approximately, the plane is discretized into a
grid, such that functional values are stored only at the grid points. Real-world networks (of, e.g.,
roads, rail-ways, rivers, etc.) are represented by “atom” line segments each of which connects two
points v1, v2 in N2 whose coordinates differ by at most 1 on each dimension. The atom segment is
augmented with a weight, equal to the Euclidean distance between the 3D points v′1 and v′2, where
v′1 has the same x- and y-coordinates as v1, and has z-coordinate f(v1) (v′2 is obtained from v2

similarly). The modeling gives a 2D grid graph where an atom segment becomes a weighted edge. A
variety of topics — e.g., flow analysis [5, 6], nearest-neighbor queries [8, 26, 31], and navigation [20]
— have been studied on gigantic networks which may not fit in the main memory of a commodity
machine. Crucial to the solutions in [5, 6, 8, 20, 26, 31] are algorithms settling fundamental problems
(such as finding connected components, finding single-source shortest paths, and breadth-first search,
etc.) on massive 2D grid graphs I/O-efficiently.

On the other hand, d-dimensional grid graphs of d ≥ 3 seem to have attracted less attention,
maybe because few relevant applications have been identified in practice ([25] is the only work
on grid graphs of d ≥ 3 we are aware of, but no concrete applications were described there). We
will fill the void in this paper by elaborating on an inherent connection between such graphs and
density-based clustering.

The main objective of our work is to understand how a grid graph can be I/O-efficiently
decomposed using “vertex separators” that are reminiscent of the well-known vertex separators on
planar graphs [12, 19, 21]. In particular, the separator of Maheshwari and Zeh [21] can be found
I/O-efficiently, and has proved to be extremely useful in solving many problems on planar graphs
with small I/O cost (see, e.g., [4, 15, 21, 32]). This raises the hope that similar separators on grid
graphs would lead to I/O-efficient algorithms on those problems as well (note that grid graphs
are not always planar, even in 2D space). Following [21], we focus on vertex separators defined as
follows:

Definition 1. Let G = (V,E) be a d-dimensional grid graph with d = O(1). Given a positive
integer r ≤ |V |, a set S ⊆ V is an r-separator of G if

1. |S| = O(|V |/r1/d)

2. Removing the vertices in S disconnects G into h = O(|V |/r) subgraphs G1 = (V1, E1), ...,
Gh = (Vh, Eh), such that for each i ∈ [1, h]:

2

(a) A (traditional) 2-dimensional grid graph (b) A 3-dimensional grid graph

Figure 1: Multidimensional grid graphs

(a) |Vi| = O(r);

(b) The vertices of Vi are adjacent to O(r1−1/d) vertices of S.

The subgraphs G1, ..., Gh are said to be induced by S.

Previous work [23, 28] has shown that such vertex separators definitely exist for any r ∈ [1, |V |].
The r-separators of [23, 28] are constructed by repetitively partitioning a d-dimensional grid graph
with “surface cuts”. More specifically, such a cut is performed with a closed d-dimensional surface
(which is a sphere in [23] and an axis-parallel rectangle in [28]). All vertices near the surface are
added to the separator, while the process is carried out recursively inside and outside the surface,
respectively. However, it still remains as a non-trivial open problem how to find the separators of
[23, 28] I/O-efficiently.

For grid graphs of d = 2, the existence of an r-separator is implied by the planar separator of
[21], as shown in [15]. The separator of [21] can be computed I/O-efficiently (and hence, so can an
r-separator of a 2D graph), subject to a constraint on the size of the main memory. We will discuss
the issue further in Section 1.2.

1.1 Computation Model

We will work with the external memory (EM) computation model of [3], which is the de facto model
for studying I/O-efficient algorithms nowadays. In this model, the machine is equipped with M
words of (internal) memory, and a disk that has been formatted into blocks, each of which has B
words. The values of M and B satisfy M ≥ 2B. An I/O either reads a block of data from the disk
into memory, or writes B words of memory into a disk block. The cost of an algorithm is measured
in the number of I/Os performed. Denote by sort(n) = Θ((n/B) logM/B(n/B)) the I/O complexity
of sorting n elements [3].

1.2 Our Results

Let G = (V,E) be a d-dimensional grid graph. As mentioned, the existence of r-separators of G is
already known [21, 23, 28]. Our construction, however, uses ideas different from those of [21, 23, 28].
Interestingly, as a side product, our proof presents a new type of r-separators that can be obtained
by a recursive binary orthogonal partitioning of Nd. To formalize this, we introduce:

Definition 2. Let G = (V,E) be a d-dimensional grid graph. An orthogonal partitioning of G
is a pair (S,G) made by a subset S of V and a set G of subgraphs of G, such that (S,G) satisfies
either of the conditions below:

3

π

π′

(a) (b)

Figure 2: (a) shows a plane π on the grid graph G of Figure 1a; let S be the set of white vertices, and
G1 (resp., G2) the subgraph induced by the black vertices on the left (resp., right) of π. (S, {G1, G2})
forms an orthogonal partitioning of G. (b) shows another plane π′ on G2; let S′ be the set of white
vertices on π′, and G3 (resp., G4) the subgraph induced by the black vertices above (resp., below)
of π′. (S′, {G3, G4}) forms an orthogonal partitioning of G2. Furthermore, (S ∪ S′, {G1, G3, G4}) is
also an orthogonal partitioning of G.

1. (S,G) = (∅, {G}).

2. (S,G) = (S0 ∪ S1 ∪ S2,G1 ∪ G2) where:

(a) S0 is the set of vertices on some plane π satisfying:

• π is perpendicular to one of the d dimensions;

• V has vertices on both sides of π.

(b) (S1,G1) and (S2,G2) are orthogonal partitionings of G1 and G2 respectively, where G1

and G2 are the subgraphs of G induced by the vertices on the two sides of π, respectively.

Note that since, in the second bullet, G1 and G2 have at least one less vertex than G, the
recursive definition is well defined (see Figure 2 for an illustration). It is worth pointing out that,
every vertex of V appears either in S, or exactly one of the subgraphs in G.

Consider any r-separator S of G, and the set G of subgraphs induced by S. We call S an
orthogonal r-separator of G if (S,G) is an orthogonal partitioning. The first main result of the paper
is:

Theorem 1. Let G = (V,E) be a d-dimensional grid graph where d is a fixed constant. G has an
orthogonal r-separator for any integer r ∈ [1, |V |].

The above is not subsumed by the existence results of [21, 23, 28] because the vertex separators
in [21, 23, 28] are not orthogonal. Our proof of the theorem is constructive, and can be implemented
efficiently to obtain our second main result:

Theorem 2. Let G = (V,E) be a d-dimensional grid graph where d is a fixed constant. For any
values of M,B satisfying M ≥ 2B, there is an algorithm that computes in O(sort(|V |)) I/Os an
M -separator S of G, as well as the O(|V |/M) subgraphs induced by S.

It is notable that our algorithm in Theorem 2 works for all M,B satisfying M ≥ 2B. When d = 2,
an M -separator can also be computed in O(sort(n)) I/Os using the planar-separator algorithm
of [21]. However, the algorithm of [21] requires the tall-cache assumption of M ≥ B2 (when this

4

assumption is not true, the I/O cost of the algorithm is substantially larger). This difference is what
permits us to strengthen a number of existing results on 2D grid graphs, as will be explained later.
Remember, also, that the algorithm of [21] cannot be applied to grid graphs of d ≥ 3.

Next, we will explain some new results made possible by our new algorithm.

1.2.1 Application 1: New Results on Grid Graphs

Single Source Shortest Path and Breadth First Search on 2D Grid Graphs. As mentioned,
an M -separator of 2D grid graphs can be obtained using the planar-graph algorithm of [21]. This is
a key step behind the state-of-the-art algorithms for solving the single source shortest path (SSSP)
and the breadth first search (BFS) on 2D grid graphs I/O-efficiently. However, since the algorithm
of [21] is efficient only under the tall-cache assumption M ≥ B2, the same assumption is inherited
by the SSSP and BFS algorithms as well. Our Theorem 2 remedies this defect by removing the
tall-cache assumption altogether.

Specifically, for SSSP, we will prove:

Corollary 1. The single source shortest path (SSSP) problem on a 2D grid graph G = (V,E) can
be solved in O(|V |/

√
M + sort(|V |)) I/Os.

Previously, the state of the art was an algorithm in [15] that matches the performance guarantee
of Corollary 1 under the tall cache assumption. For M = o(B2), however, the I/O-complexity of
[15] becomes O((|V |/

√
M) · logM |V |), which we strictly improve. It is worth mentioning that, on

a general undirected graph G = (V,E), the fastest SSSP algorithm [18] in EM to our knowledge

requires O(|V |+ |E|
B log2

|E|
B) I/Os, which is much worse than the bound in Corollary 1.

For BFS, we will prove:

Corollary 2. We can perform breadth first search (BFS) on a 2D grid graph G = (V,E) in
O(|V |/

√
M + sort(|V |)) I/Os.

The corollary nicely bridges the previous state of the art, which runs either the SSSP algorithm
of [15], or the best BFS algorithm [22] for general graphs. When applied to a 2D grid graph
G = (V,E), the algorithm of [22] performs O(|V |/

√
B + sort(|V |)) I/Os. Corollary 2 improves the

winner of those two algorithms when M is between ω(B) and o(B2).

For fairness, it should be pointed out that the work of [21] focused on studying the smallest
memory size needed to achieve O(sort(n)) in computing vertex separators for planar graphs. A
topic, which was not explored in [21] but is relevant to us, is the explicit I/O complexity of the
algorithm in [21] when M is in the range from 2B to B2. It appears that the techniques of [21]
could be adapted to compute an M -separator on 2D grid graphs in O(|V |/

√
M + sort(|V |)) I/Os for

all M ≥ 2B. If so, then Corollaries 1 and 2 can already be achieved with the current state of the art
[15]. We include our own proofs for the two corollaries anyway because (i) the proofs are short, and
make the claims official; (ii) they indicate that, for M = o(B2), the performance bottleneck is not
on computing an M -separator (our algorithm finds an M -separator in O(sort(n)) I/Os); and (iii)
they explain the details unique to our M -separator when it comes to integration with the existing
SSSP/BFS algorithms.

Finding Connected Components on d-Dimensional Grid Graphs. It has been stated [30, 33]
that the connected components (CCs) of a 2D grid graph G = (V,E) can be computed in O(sort(|V |))
I/Os. This is based on the belief that a 2D grid graph has the property of being sparse under
edge contractions. Specifically, an edge contraction removes an edge between vertices v1, v2 from

5

v1

v2 ⇒
v

Figure 3: Contracting the edge between v1, v2 from the graph on the left produces the graph on the
right

G, combines v1, v2 into a single vertex v, replaces every edge adjacent to v1 or v2 with an edge
adjacent to v, and finally removes duplicate edges thus produced (see Figure 3); all these steps
then create a new graph. The aforementioned property says that, if one performs any sequence
of edge contractions to obtain a resulting graph G′ = (V ′, E′), G′ must still be sparse, namely,
|E′| = O(|V ′|). Surprisingly, the belief — perhaps too intuitive — seemed to have been taken for
granted, such that no proof has ever been documented.

We will formally disprove this belief:

Theorem 3. There exists a 2D grid graph that is not sparse under edge contractions.

With the belief invalidated, the best existing deterministic algorithm for computing the CCs of
a 2D grid graph requires an I/O complexity that is the minimum of O(sort(|V |) · log logB) [24] and
O(sort(|V |) · log(|V |/|M |)) [16]. Equipped with Theorem 2, we will improve this result by proving:

Corollary 3. The connected components of a d-dimensional grid graph G = (V,E) where d = O(1)
can be computed in O(sort(|V |)) I/Os for all constant d ≥ 2.

Note that the above corollary applies not only to d = 2, but also to any constant d ≥ 2.

1.2.2 Application 2: Density-Based Clustering

Density-based clustering is an important class of problems in data mining (see textbooks [14, 29]),
where DBSCAN [11] is a well-known representative. The input of the DBSCAN problem consists of:

• A constant integer minPts ≥ 1,

• A real number ε > 0, and

• A set P of n points in Rd, where R denotes the set of real values, and the dimensionality d is
a constant integer at least 2.

Denote by dist(p1, p2) the distance between two points p1 and p2, according to a certain distance
metric. A point p ∈ P is a core point if |{q ∈ P |dist(p, q) ≤ ε}| ≥ minPts ; otherwise, p is a non-core
point. Define a neighbor core graph G as follows: (i) each vertex of G corresponds to a distinct
core point, and (ii) there is an edge between two vertices (a.k.a, core points) p1, p2 if and only if
dist(p1, p2) ≤ ε. Then, the clusters of P are uniquely determined in two steps:

1. Take each connected component of G as a cluster. After this step, each cluster contains only
core points.

2. For each non-core point p ∈ P , consider every core point q satisfying dist(p, q) ≤ ε; assign p
to the (only) cluster that contains q. This may add p to minPts = O(1) clusters.

6

square with side length 2ε

cluster 1

cluster 2

cluster 3noise

Figure 4: The square on the right illustrates the value of ε (all the points in the square are within
L∞ distance ε from the white point) and minPts = 4. All the circle points are core points, while
the two cross points are non-core points. One non-core point is assigned to both Cluster 1 and
Cluster 2, while the other non-core point is classified as noise.

The clusters after Step 2 constitute the final clusters on P . It is possible that some non-core points
are not assigned to any clusters; those points are classified as noise. The goal of the DBSCAN
problem is to compute the DBSCAN clusters on the input set P with respect to the parameters ε
and minPts.

Figure 4 illustrates an example where the distance metric is the L∞ norm. Note that there can
be Ω(n2) edges in G (for simplicity, no edges are given in the example, but the square as shown
should make it easy to imagine which edges are present). Thus, one should not hope to solve the
problem efficiently by materializing all the edges.

We will prove:

Theorem 4. For any fixed-dimensionality d, the DBSCAN problem under the L∞ norm can be
solved in

• O(sort(n)) I/Os for d = 2 and 3;

• O((n/B) logd−2
M/B(n/B)) for any constant d ≥ 4.

Our proof relies on the proposed separator algorithm in Theorem 2, and manifests on the
usefulness of d-dimensional grid graphs in algorithm design.

It is worth mentioning the DBSCAN problem is known to be hard under the L2 norm: it
demands Ω(n4/3) time to solve for d ≥ 3 [13], unless Hopcroft’s problem1 [10] could be solved in
o(n4/3) time, which is commonly believed to be impossible [9, 10]. Consequently, the L2 norm is
unlikely to admit an EM algorithm with near linear I/O complexity (otherwise, one could obtain an
efficient RAM algorithm by setting M and B to constants). Theorem 4, therefore, separates the L∞
norm (and hence, also the L1 norm) from the L2 norm, subject to the above hardness assumption
on Hopcroft’s problem.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 gives a constructive proof to show the existence
of a new class of r-separators. Section 3 describes an algorithm for computing an M -separator in
O(sort(n)) I/Os. Section 4 presents our algorithm for solving the DBSCAN problem under the

1Let Spt be a set of points, and Sline be a set of lines, all in R2. Hopcroft’s problem is to determine whether there
is a point in Spt that lies on some line of Sline .

7

L∞ norm in EM, and as a side product, also an algorithm for finding the CCs of a d-dimensional
grid graph. Section 5 proves the other results on grid graphs mentioned in Section 1.2.1. Finally,
Section 6 concludes the paper with some open questions.

2 Orthogonal Separators

This section is devoted to establishing Theorem 1. We will explain our proof in four steps, each of
which is presented in a different subsection.

Let G = (V,E) be a d-dimensional grid graph, and (S,G) be an orthogonal partitioning of G.
Consider any subgraph G′ ∈ G. A vertex v in G′ is a boundary vertex of G′ if v is adjacent in G to
at least one vertex in S. Define the minimum bounding box of G′ — denoted as MBB(G′) — as the
smallest d-dimensional axis-parallel rectangle that contains all the vertices of G′. The fact that G is
a grid graph implies that all boundary vertices of G′ must be on the boundary faces of MBB(G′).

2.1 A Binary Partitioning Lemma

Recall that an r-separator can be multi-way because it may induce any number h = O(|V |/r) of
subgraphs. Let us first set h = 2, and prove the existence of a binary orthogonal separator:

Lemma 1. Let G = (V,E) be a d-dimensional grid graph satisfying

|V | ≥ 2d · (2d+ 1)d+1.

There exists an orthogonal partitioning (S, {G1, G2}) of G such that:

• |S| ≤ (2d+ 1)1/d · |V |1−1/d

• G1 and G2 each have at least |V |/(4d+ 2) vertices.

Proof. Given a point p ∈ Nd, denote by p[i] its coordinate on dimension i ∈ [1, d]. Given a vertex
v ∈ V , an integer x, and a dimension i, we say that v is on the left of x on dimension i if v[i] < x,
and similarly, on the right of x on dimension i if v[i] > x. We define the V -occupancy of x on
dimension i as the number of vertices v ∈ V satisfying v[i] = x.

To prove Lemma 1, our strategy is to identify an integer x and a dimension i such that (i)
the V -occupancy of x on dimension i is at most (2d + 1)1/d · |V |1−1/d, and (ii) there are at least
|V |/(4d+ 2) points on the left and right of x on dimension i, respectively. Choosing (i) S as the set
of vertices v ∈ V with v[i] = x, and (ii) G1 (resp., G2) as the graph induced by the vertices on the
left (resp., right) of x on dimension i will satisfy the lemma — in this case, we say that a split is
performed using a plane perpendicular to dimension i. We will prove that such a pair of x and i
definitely exists.

For each j ∈ [1, d], define yj to be the largest integer y such that V has at most |V |/(2d+ 1)
vertices on the left of y on dimension j, and similarly, zj to be the smallest integer z such that V
has at most |V |/(2d+ 1) vertices on the right of z on dimension j. It must hold that yj ≤ zj .

Consider the axis-parallel box whose projection on dimension j ∈ [1, d] is [yj , zj]. By definition
of yj , zj , the box must contain at least

|V |
(

1− 2d

2d+ 1

)
= |V | · 1

2d+ 1

8

vertices. This implies that the box must contain at least |V |/(2d+ 1) points in Nd, that is:

d∏
j=1

(zj − yj + 1) ≥ |V |
2d+ 1

Therefore, there is at least one j satisfying

zj − yj + 1 ≥
(|V |

2d+ 1

)1/d

.

Set i to this j. Since the box can contain at most |V | vertices, there is one integer x ∈ [yi, zi] such
that the V -occupancy of x on dimension i is at most

|V |
|V |1/d/(2d+ 1)1/d

= (2d+ 1)1/d · |V |1−1/d.

We now argue that there must be at least |V |/(4d+ 2) vertices on the left of x on dimension i.
For this purpose, we distinguish two cases:

• x = yi: By definition of yi and x, the number of vertices on the left of x on dimension i must
be at least

|V |
2d+ 1

− (2d+ 1)1/d · |V |1−1/d

which is at least |V |/(4d+ 2) for |V | ≥ 2d(2d+ 1)d+1.

• x > yi: By definition of yi, there are at least |V |/(2d + 1) vertices whose coordinates on
dimension i are at most yi. All those vertices are on the left of x on dimension i.

A symmetric argument shows that at least |V |/(4d+2) vertices are on the right of x on dimension
i. This finishes the proof of Lemma 1.

2.2 A Multi-Way Partitioning Lemma

In this subsection, we establish a multi-way version of the previous lemma:

Lemma 2. Let G = (V,E) be a d-dimensional grid graph. For any positive integer r satisfying

2d · (2d+ 1)d+1 ≤ r (1)

G has an orthogonal partitioning (S,G) such that |S| = O(|V |/r1/d) and G has O(|V |/r) subgraphs,
each of which has at most r vertices.

Proof. Motivated by [12], we perform the binary split enabled by Lemma 1 recursively until every
subgraph has at most r vertices. This defines an orthogonal partitioning (S,G) as follows. At the
beginning, S = ∅ and G = {G}. Every time Lemma 1 performs a split on a subgraph G′ ∈ G,
it outputs an orthogonal partitioning (S′, {G1, G2}) of G′; we update (S,G) by (i) adding all the
vertices of S′ into S, (ii) deleting G′ from G, and (iii) adding G1, G2 to G.

Focus now on the final (S,G). Each subgraph in G has at least (r + 1)/(4d+ 2) = Ω(r) vertices
because each application of Lemma 1 is on a subgraph of at least r + 1 vertices. It thus follows that
the number of subgraphs in G is O(|V |/r).

9

It remains to show |S| = O(|V |/r1/d). For this purpose, define function f(n) which gives the
maximum possible |S| when the original graph has n = |V | vertices. If r

4d+2 ≤ n ≤ r, f(n) = 0.
Otherwise, Lemma 1 indicates

f(n) ≤ (2d+ 1)1/d · n1−1/d + max
α∈[1

4d+2
, 4d+1
4d+2

]
f(αn) + f((1− α)n).

It is not difficult to verify (by the substitution method [7]) that f(n) = O(n/r1/d) for n > r.

Note that the lemma does not necessarily yield an r-separator because the set S produced may
not satisfy Condition 2(b) in Definition 1.

2.3 Binary Partitioning with Colors

We say that a d-dimensional grid graph G = (V,E) is r-colored if

• |V | ≤ r;

• Every vertex in V is colored either black or white;

• There are at least 8d2 ·r1−1/d black vertices, all of which are on the boundary faces of MBB(G).

Next, we prove a variant of Lemma 1, which concentrates on splitting only the black vertices
evenly (recall that Lemma 1 aims at an asymptotically even split of all the vertices):

Lemma 3. Let G = (V,E) be an r-colored d-dimensional grid graph with b black vertices. There is
an orthogonal partitioning (S, {G1, G2}) of G satisfying:

• |S| ≤ r1−1/d.

• G1 and G2 each have at least b
8d2

black vertices.

Proof. We will adopt the strategy in Section 2.1 but with extra care. Since MBB(G) has 2d faces, one
of them contains at least b/(2d) black vertices. Fix R to be this face, which is a (d− 1)-dimensional
rectangle. Assume, without loss of generality, that R is orthogonal to dimension d.

For each j ∈ [1, d− 1], define yj to be the largest integer y such that R has at most b
2d · 1

2d black
vertices on the left of y on dimension j, and similarly, zj to be the smallest integer z such that R
has at most b

2d · 1
2d black vertices on the right of z on dimension j. It must hold that yj ≤ zj .

Consider the axis-parallel box in R whose projection on dimension j ∈ [1, d− 1] is [yj , zj]. By
definition of yj , zj , the box must contain at least

b

2d

(
1− 2(d− 1)

2d

)
=

b

2d
· 1

d

black vertices. Therefore, there is at least one dimension j ∈ [1, d− 1] on which the projection of
the box covers at least (

b

2d2

)1/(d−1)

coordinates. Set i to this j. Since the box can contain at most |V | ≤ r vertices, there is one integer
x ∈ [yi, zi] such that the V -occupancy of x on dimension i is at most

r

b1/(d−1)
· (2d2)1/(d−1) ≤ r1−1/d ≤ b

8d2
(2)

10

where both inequalities used b ≥ 8d2 · r1−1/d (which is true because G is r-colored).

We perform a split perpendicular to dimension i at x; namely, choose S as the set of vertices
v ∈ V with v[i] = x, and set G1 (resp., G2) to be the subgraph induced by the vertices on the left
(resp., right) of x on dimension i. To show that G1 has at least b

8d2
black vertices, we distinguish

two cases:

• x = yi: By the definitions of yi and x, the number of black vertices on the left of x on
dimension i must be at least

b

4d2
− r

b1/(d−1)
· (2d2)1/(d−1) ≥ b

4d2
− b

8d2
=

b

8d2
(3)

where the first inequality is due to (2).

• x > yi: The definitions of yi and x imply at least b
4d2

black vertices on the left of x on
dimension i.

A symmetric argument shows that G2 must have at least b
8d2

black vertices. This completes the
proof of Lemma 3.

2.4 Existence of Orthogonal Separators (Proof of Theorem 1)

We are now ready to prove Theorem 1. It suffices to do so for r ≥ 2d · (2d + 1)d+1, because an
orthogonal (2d ·(2d+1)d+1)-separator is also a valid orthogonal r-separator for any r < 2d ·(2d+1)d+1

when d = O(1). The following discussion concentrates on r ≥ 2d · (2d+ 1)d+1.

Let G = (V,E) be the input d-dimensional grid graph. First, apply Lemma 2 on G to obtain
an orthogonal partitioning (S,G). The lemma ensures that |S| = O(|V |/r1/d) and that each of the
O(|V |/r) subgraphs in G has at most r vertices. We say that a subgraph in G is bad if it has more
than

8d2 · 3d−1 · r1−1/d

boundary vertices. We refer to each bad subgraph in G at this moment as a raw bad subgraph (the
content of G may change later).

Motivated by [12], we deploy Lemma 3 to get rid of all the bad subgraphs with an elimination
procedure. As long as G still has at least one bad subgraph, the procedure removes an arbitrary bad
subgraph Gbad from G, and executes the following steps on it:

1. Color all the boundary vertices of Gbad black, and the other vertices white. Gbad thus becomes
r-colored (by definition of bad subgraph).

2. Apply Lemma 3 to find an orthogonal partitioning (S′, {G1, G2}) of Gbad.

3. Add all the vertices in S′ to S. Delete Gbad from G, and add G1, G2 to G. Note that (S,G)
still remains as an orthogonal partitioning of G.

When G has no more bad subgraphs, we return the set S of the current (S,G).

Next, we show that the final S obtained is an orthogonal r-separator, namely: (i) |S| =
O(|V |/r1/d), (ii) the final G has O(|V |/r) subgraphs, and (iii) every subgraph in G has O(r1−1/d)
boundary vertices. The elimination procedure already guarantees (iii); the rest of the section will
focus on proving (i) and (ii).

Denote by (Sbefore ,Gbefore) the content of (S,G) before the elimination procedure, while still
using (S,G) to denote the orthogonal partitioning at the end. Gbefore has O(|V |/r) subgraphs. Some

11

of those subgraphs are also in G. Every “new” subgraph in G but not in Gbefore must be created
during the elimination procedure. We can think of the subgraph creation during the elimination
procedure as a forest. Each tree in the forest is rooted at a raw bad subgraph; and every node in
the tree corresponds to a subgraph created in the elimination procedure. Every internal node of a
tree has two child nodes, corresponding to the splitting of a subgraph Gbad into G1, G2 at Step 2.
Each leaf of a tree is a subgraph in G. The next lemma bounds the size of each tree:

Lemma 4. Let Graw be a raw bad subgraph with b boundary vertices. The elimination procedure
generates O(b/r1−1/d) leaf subgraphs in the tree rooted at Graw .

Proof. Let Gbad be a bad subgraph that is split with Lemma 3 in the elimination procedure. Define
f(n) as the maximum number of leaf subgraphs in the subtree rooted at Gbad, when Gbad has n
boundary vertices.

If n ≤ 8d2 · 3d−1 · r1−1/d, f(n) = 1. Now assume n > 8d2 · 3d−1 · r1−1/d. An application of
Lemma 3 on Gbad generates G1 and G2. Let us analyze the number of boundary vertices that G1

can have. Every boundary vertex of G1 may be (i) inherited from Gbad, or (ii) newly created during
the split performed by Lemma 3. The second bullet of Lemma 3 shows that there can be at most
α · n vertices of type (i), for some α ∈ [1

8d2
, 1− 1

8d2
]. As for (ii), note that every vertex of this type

must be adjacent to some vertex of the vertex set in the first bullet of Lemma 3. Since Gbad is
r-colored, the number of vertices of type (ii) must be at most 3d−1 · r1−1/d (the vertex set in the
first bullet of Lemma 3 has size r1−1/d, while each vertex in that set has at most 3d−1 neighbors in
G1). After extending the analysis to G2, we obtain the following recurrence:

f(n) ≤ max
α∈[1

8d2
,1− 1

8d2
]

(
f
(
αn+ 3d−1 · r1−1/d

)
+ f

(
(1− α)n+ 3d−1 · r1−1/d

)
− 1
)
.

It is not difficult to verify (with the substitution method [7]) that f(n) = O(n/r1−1/d). The lemma
then follows by setting n = b.

Suppose that there are h′ raw bad subgraphs. Let bi (1 ≤ i ≤ h′) be the number of boundary
vertices of the i-th raw bad subgraph. From Lemma 2 and by the fact that each vertex in a
d-dimensional grid graph has degree O(1), we know

h′∑
i=1

bi = O(|V |/r1/d).

Combining this with Lemma 4 shows that the elimination procedure introduces at most

O

(|V |
r1/d

· 1

r1−1/d

)
= O(|V |/r)

new subgraphs. Therefore, in total there are h′ +O(|V |/r) = O(|V |/r) subgraphs in G at the end
of the elimination procedure.

The above analysis also indicates that the elimination procedure can apply Lemma 3 no more
than O(|V |/r) times, each of which adds O(r1−1/d) vertices into S. Therefore, the final separator S
has size at most

|Sbefore |+O

(|V |
r
· r1−1/d

)
= O(|V |/r1/d).

This concludes the whole proof of Theorem 1.

12

3 I/O-Efficient Separator Computation

This section will prove Theorem 2 by giving an algorithm to construct an M -separator. Our proof is
essentially an efficient implementation of the strategy explained in Section 2 for finding an orthogonal
M -separator. Recall that the strategy involves two phases: (i) Lemma 2, and (ii) the elimination
procedure in Section 2.4. The second phase, as far as algorithm design is concerned, is trivial. Every
subgraph produced by the first phase has — by definition of M -separator — O(M) edges, which
can therefore be loaded into memory so that the algorithm in Section 2.4 runs with no extra I/Os.
In other words, the second phase can be accomplished in only O(|V |/B) I/Os.

Henceforth, we will focus exclusively on the first phase, assuming

M ≥ 2d · (4d+ 2)2d ·B. (4)

Note that this assumption is made without loss of generality as long as d is a constant. It is folklore
that, in general, any algorithm assuming M ≥ cB for any constant c > 2 can be adapted to work
under M ≥ 2B, with only a constant blowup in the I/O cost.

The construction algorithm of Lemma 2 recursively applies binary splits to the input graph until
all the obtained subgraphs have at most M vertices. This process can be imagined as a split tree,
where G = (V,E) is the parent of G1 = (V1, E1), G2 = (V2, E2) if the splitting of G spawns G1 and
G2. The split is balanced in the sense that both |V1| and |V2| are at least |V |/(4d+ 2). Hence, the
split tree has a height of O(log(|V |/M)).

3.1 One Split

In this subsection, we describe an algorithm that performs a single split on a d-dimensional grid
graph G = (V,E) with |V | > M using sublinear I/Os, assuming certain preprocessing has been
done. This algorithm will play an essential role in our final solution.

Recall that, given a coordinate x on dimension i ∈ [1, d], the V -occupancy of x is the number of
vertices v ∈ V with v[i] = x. We now extend this concept to an interval σ = [x1, x2] on dimension i:
the average V -occupancy of σ equals

|{v ∈ V | v[i] ∈ σ}|
x2 − x1 + 1

.

Preprocessing Assumed. Prior to invoking the algorithm below, each dimension i ∈ [1, d] should
have been partitioned into at most s disjoint intervals — called slabs — where

s = (M/B)1/d. (5)

A slab σ of dimension i is said to cover a vertex v ∈ V if v[i] ∈ σ. A slab σ = [x1, x2] is called a
singleton slab if it contains only a single coordinate, i.e., x1 = x2. We call σ heavy if it covers more
than |V |/(4d+ 2) vertices. Our algorithm demands an important heavy-singleton property:

If a slab σ = [x1, x2] of any dimension is heavy, then σ must be a singleton slab.

All the slabs naturally define a d-dimensional histogram H. Specifically, H is a d-dimensional
grid with at most sd cells, each of which is a d-dimensional rectangle whose projection on dimension
i ∈ [1, d] is a slab on that dimension. For each cell φ of H, the following information should already
be available:

13

• A vertex count, equal to the number of vertices v ∈ V that φ contains (i.e, the point v falls in
φ). Denote by φ(V) the set of these vertices.

• d vertex lists, where the i-th (1 ≤ i ≤ d) one sorts all the vertices of φ(V) by dimension i.
This means that a vertex v ∈ φ(V) is duplicated d times. We store with each copy of v all its
O(1) adjacent edges.

All the vertex counts are kept in memory. The sorted vertex lists in all the cells, on the other hand,
occupy O(sd + |V |/B) = O(|V |/B) blocks on disk.

Given a slab σ on any dimension, we denote by σ(V) the set of vertices covered by σ. The
vertex counts in H allow us to obtain |σ(V)| precisely, and hence, the average V -occupancy of σ
precisely, without any I/Os. Define

K = max
non-singleton σ

|σ(V)| (6)

Note that the maximum ranges over all non-singleton slabs of all dimensions.

As in Section 2.1, our aim is to find a dimension i and a coordinate x such that (i) the V -
occupancy of x is at most (2d+ 1)1/d|V |1−1/d, and (ii) at least |V |/(4d+ 2) vertices are on the left
and right of x on dimension i, respectively. Our algorithm will perform O((M/B)1−1/d + K/B)
I/Os.

Algorithm. Suppose that the slabs on dimension i are numbered from left to right, i.e., the leftmost
one is numbered 1, the next 2, and so on. For dimension j ∈ [1, d], let yj be the largest integer y
such that at most |V |/(2d+ 1) points are covered by the slabs on this dimension whose numbers are
less than y, and similarly, let zj be the smallest integer z such that at most |V |/(2d+ 1) points are
covered by the slabs on this dimension whose numbers are greater than z. It must hold that yj ≤ zj .

Let R be the d-dimensional rectangle whose projection on dimension each j ∈ [1, d] is the
union of the slabs numbered yj , yj + 1, ..., zj . As R contains at least |V |/(2d + 1) vertices, its
projection on at least one dimension covers at least (|V |/(2d+ 1))1/d coordinates. Fix i to be this
dimension. Note that the projection of R on dimension i (i.e., an interval on the dimension) has an
average V -occupancy of at most (2d+ 1)1/d|V |1−1/d. Therefore, at least one of the slabs numbered
yi, yi + 1, ..., zi on dimension i has an average V -occupancy at most (2d+ 1)1/d|V |1−1/d. Let σ be
this slab.

It thus follows that at least one coordinate x within σ has V -occupancy of at most (2d +
1)1/d|V |1−1/d. If σ is a singleton slab, then x is the (only) coordinate contained in σ. Otherwise, to
find such an x, we scan the vertices of σ(V) in ascending order of their coordinates on dimension i.
This can be achieved by merging the vertex lists of all the at most sd−1 cells in σ — more specifically,
the lists sorted by dimension i. The merge takes

O(sd−1 + |σ(V)|/B) = O((M/B)1−1/d +K/B)

I/Os, by keeping a memory block as the reading buffer for each cell in σ.

To prove the algorithm’s correctness, we first argue that at least |V |/(4d+ 2) vertices are on the
left of x on dimension i. Because of |V | > M and (4), it holds that

(2d+ 1)1/d|V |1−1/d ≤ |V |
4d+ 2

.

This implies that σ — the slab which x comes from — cannot be heavy. In other words, σ contains
no more than |V |

4d+2 vertices. Therefore, by definition of yi, there must be at least

|V |
2d+ 1

− |V |
4d+ 2

=
|V |

4d+ 2

14

vertices in the slabs of dimension i whose numbers are less than yi. All those vertices are on the left
of x on dimension i. A symmetric argument shows that at least |V |/(4d+ 2) vertices are on the
right of x on dimension i.

3.2 2Ω(log(M/B)) Splits

Let G = (V,E) be a d-dimensional grid graph with |V | > M that is stored as follows. First, V is
duplicated in d lists, where the i-th one sorts all the vertices v ∈ V by dimension i. Second, each
copy of v stores all the O(1) edges adjacent to v.

In this section, we present an algorithm that achieves the following purpose in O(|V |/B) I/Os:
recursively split G using the one-split algorithm of Section 3.1 such that, in each resulting subgraph,
the number of vertices is at most

max

{
M,O

(|V |
2Ω(log(M/B))

)}
but at least M/(4d+ 2).

Our algorithm is inspired by an algorithm of Agarwal et al. [1] for bulkloading the kd-tree
I/O-efficiently (but the two algorithms differ considerably in details). Recall that our one-split
algorithm has sub-linear cost as long as the histogram is available. The histogram, on the other
hand, requires linear cost to prepare, because of which we cannot afford to compute from scratch
the histogram for the next split. A crucial observation is that we do not need to do so from scratch.
This is because a split only affects a small part of the histogram, such that the histograms for the
next two splits can be generated from the old histogram incrementally with sub-linear cost.

Constructing the Initial Histogram. Define

t =
1

2
· (M/B)1/d.

Partition each dimension i ∈ [1, d] into disjoint intervals (a.k.a., slabs) σ = [x1, x2] satisfying two
conditions:

• σ covers no more than |V |/t vertices, unless σ is singleton (i.e., x1 = x2).

• The right endpoint x2 of σ cannot be increased any further without violating the above
condition, unless σ is the rightmost slab on this dimension. Equivalently, this means that,
if σ is not the rightmost slab, there must be more than |V |/t vertices v ∈ V satisfying
v[i] ∈ [x1, x2 + 1].

These conditions can be understood intuitively as follows. To create a slab of dimension i starting
at coordinate x1, one should set its right endpoint x2 (≥ x1) as large as possible, provided that
the slab still covers at most |V |/t points. But such an x2 does not exist if x1 itself already has a
V -occupation of more than |V |/t; in this case, create a singleton slab containing only x1. It is easy
to obtain these slabs in O(|V |/B) I/Os from the vertex list of V sorted by dimension i.

Proposition 1. Each dimension has less than 2t slabs.

Proof. The union of any two consecutive slabs must cover more than |V |/t vertices. Consider the
following pairs of consecutive slabs: (1st, 2nd), (3rd, 4th), ..., leaving out possibly the rightmost
slab. A vertex is covered by the union of at most one such pair. Therefore, there can be at most⌊ |V |

b|V |/tc+ 1

⌋
≤ t− 1

15

pairs, making the number of slabs at most 2(t− 1) + 1 = 2t− 1.

Construct the histogram H on G as defined in Section 3.1. This can be accomplished in O(|V |/B)
I/Os. To understand this, observe that, by Proposition 1, the total number of cells in the histogram
is at most (2t)d ≤M/B, which allows us to allocate one memory block to each cell. Using these
blocks as writing buffers, we can create all the cells’ vertex lists on a dimension by scanning V only
once.

Recursive One-Splits. We invoke the one-split algorithm on G (notice that all its preprocessing
requirements have been fulfilled), which returns a coordinate x and dimension i. The I/O cost is
O((M/B)1−1/d+ |V |/(tB)) I/Os, because the value of K in (6) is at most |V |/t (every non-singleton
slab covers at most |V |/t vertices).

The pair x and i defines a separator S, which consists of all the vertices v ∈ V with v[i] = x.
Removing S splits G into G1 = (V1, E1) and G2 = (V2, E2). Let σ be the slab on dimension i
containing x. Extracting S from σ requires O(1 + |S|/B + |σ(V)|/B) = O(|S|/B + |V |/(tB)) I/Os.

We will then recursively apply the one-split algorithm on G1 and G2, respectively, before that,
however, we need to prepare their histograms H1, H2. If σ is singleton, H1 and H2 can be obtained
trivially with no I/Os: H1 (or H2, resp.) includes all the cells of H on the left (or right, resp.) of x
on dimension i.

If σ is non-singleton, each cell φ in σ needs to be split (at x on dimension i) into φ1, φ2, whose
information is not readily available yet. We can produce the information of all such φ1, φ2 by
inspecting each φ as follows:

1. Assign the vertices in φ — if not in S — to φ1 or φ2.

2. Prepare the d sorted lists of φ1 and φ2 by splitting the corresponding lists of φ.

As there are O((M/B)1−1/d) cells in σ, the above steps finish in O((M/B)1−1/d + |V |/(tB)) I/Os.

If |V1| > M (or |V2| > M), we now apply the one-split algorithm on G1 (or G2, resp.) —
descending one level from G in the split tree — which is recursively processed in the same manner.
The recursion ends after we have moved

` =
⌊
(log4d+2 t)− 1

⌋
(7)

levels down in the split tree from G. It can be verified that ` ≥ 1 (applying (4)) and 2` = O(t).

Correctness. Recall that the one-split algorithm requires the heavy-singleton property to hold.
We now prove that this property is always satisfied during the recursion. Let G′ = (V ′, E′) be a
graph processed by the one-split algorithm. Since G′ is at most ` levels down in the split tree from
G, we know (by the fact that each split is balanced) that

|V ′| ≥ |V |
(4d+ 2)`

which together with (7) shows

|V ′|
4d+ 2

≥ |V |
t
.

Therefore, a heavy slab σ′ of any dimension for G′ must contain more than |V |/t vertices. On the
other hand, σ′ must be within a slab σ defined for G, which thus also needs to cover more than
|V |/t vertices. By our construction, σ must be singleton, and therefore, so must σ′.

16

Finally, it is worth pointing out that each split will generate O((M/B)1−1/d) cells, and hence,
demands the storage of this many extra vertex counts in memory. This is fine because the total
number of vertex counts after 2` = O(t) splits is O((M/B)1−1/d · t) = O(M/B).

Bounding the Total Cost. The one-split algorithm is invoked at most 2` times in total. By the
above analysis, the overall I/O cost is

O

(
|S|
B

+

((
M

B

)1−1/d

+
|V |
tB

)
· 2`
)

= O

(
|S|
B

+

((
M

B

)1−1/d

+
|V |
tB

)
· t
)

= O

(|S|
B

+
M

B
+
|V |
B

)
= O

(|V |
B

)
utilizing two facts: (i) every vertex v contributes to the |S|/B term at most once — once included
in a separator, v is removed from further consideration in the rest of the recursion, and (ii) a
non-singleton slab of any histogram throughout the recursion is within a non-singleton slab of H
(the histogram of G), and hence, covers no more than |V |/t vertices.

3.3 The Overall Algorithm

We are ready to describe how to compute an M -separator on a d-dimensional grid graph G = (V,E)
in O(sort(|V |)) I/Os which, according to the discussion at the beginning of Section 3, will complete
the proof of Theorem 2.

First, sort the vertices of V d times, each by a different dimension, thus generating d sorted
lists of V . We store with each copy of v all its O(1) edges. The production of these lists takes
O(sort(|V |)) I/Os.

We now invoke the algorithm of Section 3.2 on G. For each subgraph G′ = (V ′, E′) thus obtained,
we materialize it into d sorted lists, where the i-th one sorts V ′ by dimension i, ensuring that each
copy of a vertex is stored along with its O(1) edges. This can be done in O(|V ′|/B) I/Os as follows.
Recall that the algorithm maintains a histogram of at most M/B cells. By allocating a memory
block as the writing buffer for each cell, we can generate the sorted list of V ′ on a dimension by one
synchronous scan of the corresponding vertex lists of all cells for the same dimension. The cost is
O(M/B + |V ′|/B) = O(|V ′|/B) because |V ′| ≥M/(4d+ 2).

Finally, if |V ′| > M , we recursively apply the algorithm of Section 3.2 on G′, noticing that the
preprocessing requirements of the algorithm have been fulfilled on G′.

Now we prove that the total cost of the whole algorithm is O(sort(|V |)). One application of the
algorithm of Section 3.2 on a graph G′ = (V ′, E′) costs O(|V ′|/B) I/Os, or equivalently, charging
O(1/B) I/Os on each vertex of V ′. A vertex can be charged O(logM/B(|V |/M)) times, adding up
to O(sort(|V |)) I/Os overall for all vertices.

4 Density-Based Clustering

In Section 4.1, we will describe an algorithm to solve the DBSCAN problem under the L∞ norm
with the I/O complexities stated in Theorem 4. Our algorithm demonstrates an elegant application
of d-dimensional grid graphs. The application requires Corollary 3, which we prove in Section 4.2.

17

4.1 Proof of Theorem 4

Recall that the input to the DBSCAN problem involves a constant integer minPts ≥ 1, a real
number ε > 0, and a set P of n points in Rd. Also recall that a point p ∈ P is a core point if P has
at least minPts points within distance ε from p (counting p itself). Our DBSCAN algorithm under
the L∞ norm includes three main steps: (i) core point identification, (ii) core point clustering, and
(iii) non-core point assignment. Our discussion will focus on the case where B > minPts (recall
that minPts = O(1)).

Core Point Identification. We impose an arbitrary grid G on Rd, where each cell is an axis-
parallel d-dimensional square with side length ε. Assign each point p ∈ P to the cell of G which
covers p. If p happens to lie on the boundaries of multiple cells, assign p to an arbitrary one of
them. For each cell φ of G, denote by φ(P) the set of points assigned to φ. If φ(P) is not empty, φ
is a non-empty cell. Obviously, there can be at most n non-empty cells; we can find all of them in
O(sort(n)) I/Os.

We say that a non-empty cell φ is sparse if |φ(P)| ≤ B; otherwise, φ is dense. Also, another cell
φ′ is a neighbor of φ if the minimum L∞ distance between the boundaries of the two cells is at most
ε. Note that a cell has less than 3d = O(1) neighbors.

The non-empty neighbors of all non-empty cells can be produced in O(sort(n)) I/Os as follows.
For each non-empty cell φ, generate 3d−1 pairs (φ, φ′), one for each of all its neighbors φ′, regardless
of whether φ′ is empty. Put all such pairs together, and join them with the list of non-empty cells
to eliminate all such pairs (φ, φ′) where φ′ is empty. The non-empty neighbors of each non-empty
cell can then be easily derived from the remaining pairs.

Define the neighbor point set of a non-empty cell φ — denoted as Nφ — to be the set that
unions the point sets φ′(P) of all non-empty neighbors φ′ of φ. Since we already have the non-empty
neighbors of all non-empty cells, it is easy to create the Nφ of all φ in O(sort(n)) I/Os. While
doing so, we also ensure that the points of Nφ are sorted by which φ′(P) they come from. Note
that as each point can belong to O(1) neighbor point sets, all the neighbor point sets can be stored
in O(n/B) blocks in total.

Observe that the points in dense cells must be core points. For each sparse cell φ, we load φ(P)
in memory and scan through Nφ to decide the label (i.e., core or non-core) for each point in φ.
Clearly, after arranging φ(P) (resp., Nφ) of all the sparse cells φ to be stored together in O(sort(n))
I/Os, this can be done in O(n/B) I/Os. Therefore, the total I/O cost for core point identification is
bounded by O(sort(n)).

Core Point Clustering. Let us first mention a relevant result on the maxima/minima problem.
Let P be a set of n distinct points in Rd. A point p1 ∈ P dominates another p2 ∈ P if p1[i] ≥ p2[i] for
all dimensions i ∈ [1, d] — recall that p[i] denotes the coordinate of p on dimension i. The maxima
set of P is the set of points p ∈ P such that p is not dominated by any point in P . Conversely,
the minima set of P is the set of points p ∈ P such that p does not dominate any point in P . A
point in the maxima or minima set is called a maximal or minimal point of P , respectively. In
EM, both the maxima and minima sets of P can be found in O(sort(n)) I/Os for d = 2, 3, and
O((n/B) logd−2

M/B(n/B)) I/Os for d ≥ 4 [27].

Next, we show how to compute the clusters on the core points I/O efficiently. Denote by Pcore
the set of core points of P and by φ(Pcore) the set of core points assigned to cell φ of G. A cell φ
is called a core cell if φ(Pcore) is non-empty. Let Nφ(Pcore) be the set of core points in Nφ. The
φ(Pcore) and Nφ(Pcore) of all the core cells φ can be extracted from the results of the previous step
in O(sort(n)) I/Os. Meanwhile, we also ensure that the points of Nφ(Pcore) are sorted by which cell

18

they come from.

It is also clear that two core points assigned to the same cell φ must belong to the same cluster.
As a result, it allows us to “sparsify” Pcore by computing the primitive clusters at the cell level. For
this purpose, we define a graph G = (V,E) as follows:

• Each vertex V corresponds to a distinct core cell of G.

• Two different vertices (a.k.a. core cells) φ1, φ2 ∈ V are connected by an edge if and only if
there exists a point p1 ∈ φ1(Pcore) and a point p2 ∈ φ2(Pcore) such that dist(p1, p2) ≤ ε.

We will explain later how to generate G efficiently, but a crucial observation at the moment is
that G is a d-dimensional grid graph. To see this, embed the grid G naturally in a space Nd with
one-one mapping between the cells of G and the points of Nd. It is easy to verify that there can
be an edge between two core cells φ1 and φ2 only if their coordinates differ by at most 1 on every
dimension.

Thus, we can compute the clusters on core points by computing the CCs (connected components)
of G. Corollary 3, which will be proved in Section 4.2, permits us to achieve the purpose in
O(sort(n)) I/Os. For each CC, collect the union of φ(Pcore) for each vertex (i.e., core cell) φ therein.
The union corresponds to a cluster on the core points.

We now discuss the generation of G. Given a core cell φ, we elaborate on how to obtain its
edges in G. This is easy if φ is sparse, in which case we can achieve the purpose by simply loading
the entire φ(Pcore) in memory and scanning through Nφ(Pcore). The I/O cost of doing so for all the
sparse cells is therefore O(n/B).

Consider instead φ to be a dense cell. A core cell φ′ that is a neighbor of φ is called a core
neighbor of φ. We examine every core neighbor φ′ of φ, in ascending order of the appearance of
φ′(Pcore) in Nφ(Pcore). Let us assume — without loss of generality due to symmetry — that the
coordinate of φ is at most that of φ′ on every dimension of Nd. We determine whether there is an
edge in G between φ and φ′ by solving three d-dimensional maxima/minima problems, each on no
more than |φ(Pcore)|+ |φ′(Pcore)| points:

1. Find the maxima set Σ1 of φ(Pcore), and the minima set Σ2 of φ′(Pcore).

2. Construct a set Π of points as follows: (i) add all points of Σ1 to Π, and (ii) for each point
p ∈ Σ2, decrease its coordinate by ε on every dimension, and add the resulting point to Π.

3. If Π contains two points with the same coordinates, declare yes (i.e., there is an edge between
φ and φ′), and finish. This implies the existence of p1 ∈ Σ1 and p2 ∈ Σ2 with p1[i] + ε = p2[i]
for all i ∈ [1, d].

4. Find the minima set Σ3 of Π.

5. If any point of Σ1 is absent from Σ3, declare yes; otherwise, declare no.

To see the correctness, suppose first that there should be an edge. Then, there must be a
maximal point p1 of φ(Pcore) and a minimal point p2 of φ′(Pcore) that have L∞ distance at most ε.
Let p′2 be the point shifted from p2 after decreasing its coordinate by ε on all dimensions; p′2 either
is dominated by p1 or coincides with p1. It follows that p1 will not appear in Σ3 if the execution
comes to Step 5, prompting the algorithm to output yes. Similarly, one can show that if there
should not be an edge, the algorithm definitely reports no.

19

For d = 2, 3, running the above algorithm for all dense cells φ and their core neighbors φ′ entails
I/O cost (applying the aforementioned result of [27] on the minima/maxima problem)∑

dense φ, core neighbor φ′

O(sort(|φ(Pcore)|+ |φ′(Pcore)|)) = O(sort(n))

using the fact that each cell φ is a neighbor of less than 3d = O(1) dense cells. In the same fashion
using the d ≥ 4 result of [27], we can bound the I/O cost by O((n/B) logd−2

M/B(n/B)).

Non-Core Point Assignment. For each non-core point p ∈ P , we first find all the core points
q such that dist(p, q) ≤ ε; for each q, assign p to the cluster that contains q. If a non-core point
is assigned to no clusters, it is classified as noise. The assignment process can be implemented by
loading φ(P) in memory and scanning through Nφ for each non-empty sparse cell φ. The I/O cost
is bounded by O(sort(n)).

The total cost of our algorithm is therefore O(sort(n)), subject to Corollary 3. The next
subsection will prove the correctness of this corollary, which will complete the whole proof of
Theorem 4.

4.2 Proof of Corollary 3

Given a d-dimensional grid graph G = (V,E), apply Theorem 2 to compute an M -separator S,
as well as its induced subgraphs G1 = (V1, E1), ..., Gh = (Vh, Eh) where h = O(|V |/M). For each
i ∈ [1, h], define G+

i as an extended subgraph whose

• Vertices include (i) those in Vi and (ii) the separator vertices (i.e., vertices in S) that are
adjacent to any boundary vertices of Gi. There are O(M1−1/d) such separator vertices, i.e.,
the same order as the number of boundary vertices.

• Edges include (i) those in Ei, and (ii) the edges between the boundary vertices of Gi and
separator vertices. G+

i has O(M) edges in total.

All these graphs can be generated in O(sort(|V |)) I/Os.

Construct a graph G′ = (V ′, E′) with V ′ = S as follows. First, E′ includes all the edges in E
among the separator vertices of S. O(|S|) = O(|V |/M1/d) edges are added this way. Second, we add
to E′ additional edges that reflect the connectivity of the separator vertices within each extended
subgraph. Specifically, for each i ∈ [1, h], load into memory G+

i and compute its CCs. If a CC
contains x ≥ 2 separator vertices, add to E′ x− 1 edges that form a tree connecting those vertices.
The total number of edges inserted to E′ in the second step is O((|V |/M) ·M1−1/d) = O(|V |/M1/d).
Both steps can be done in O(|V |/B) I/Os.

We apply the algorithm2 of [24] to find the CCs of G′ in

O

(|E′|
B

logM/B

|E′|
B
· log logB

)
= O

(|V |
BM1/d

logM/B

|V |
B
· log logB

)
= O(sort(|V |))

I/Os because M1/d ≥ B1/d = ω(log logB). Label the vertices of V ′ (i.e., S) so that vertices in a
CC receive the same unique label.

Finally, for i ∈ [1, h], load G+
i into memory again. For each non-separator vertex vi, give it the

same label as any separator vertex that vi can reach in G+
i . If no such separator vertex exists, vi is

in a CC that does not involve any separator vertex; all the vertices in the CC are thus given a new
label. Doing so for all i entails O(|V |/B) extra I/Os. This establishes Corollary 3.

2In general, given an undirected graph G = (V,E), the algorithm of [24] finds the CCs in O(sort(|V |) +
sort(|E|) log log(|V |B/|E|)) I/Os.

20

5 Results on 2D Grid Graphs

This section will concentrate on d = 2. Section 5.1 will demonstrate additional applications of
Theorem 2 by revisiting the SSSP (single source shortest path) and BFS (breadth first search)
problems and proving Corollaries 1 and 2. Section 5.2 will disprove the “sparsity under edge
contraction” belief by establishing Theorem 3.

5.1 SSSP and BFS

Consider a grid graph G = (V,E) where each edge in E is associated with a non-negative weight.
Given two vertices v1, v2, a path from v1 to v2 is a sequence of edges in E that allows us to walk
from v1 to v2 without leaving the graph. The length of a path is the sum of the weights of all its
edges. The shortest path from v1 to v2 is a path from v1 to v2 with the smallest length; the length
of the path is the shortest distance from v1 to v2.

In the SSSP problem, besides G, we are also given a source vertex vsrc , and need to output the
shortest paths and distances from vsrc to all the other vertices in V . In particular, all the shortest
paths must be reported space-economically in a shortest path tree where (i) each node corresponds
to a distinct vertex in V , (ii) vsrc is the root, and (iii) the shortest path from vsrc to any other
vertex v in G goes through the same sequence of vertices as in the path from vsrc to v in the tree3.
The tree should be stored in the disk using the child adjacency format where each node is associated
with a list of its children.

Consider an M -separator S of G and its h = O(|V |/M) subgraphs G1, ..., Gh. Given a separator
vertex v ∈ S, its adjacent set is the set of all Gi (i ∈ [1, h]) such that E has an edge between
v and at least one vertex in Gi. Arge et al. [4] proved that the SSSP problem can be solved in
O(|V |/

√
M + sort(|V |)) I/Os, as long as S fulfills the following separator-decomposition requirement:

S has been divided into g = O(|V |/M) disjoint subsets S1, ..., Sg such that the vertices in
each Si (1 ≤ i ≤ g) have the same adjacent set.

Our objective is to strengthen the M -separator S in Theorem 2 to satisfy the above requirement in
O(sort(|V |)) I/Os.

Let S and G1, ..., Gh be the separator and subgraphs that Theorem 2 returns for G. Recall
that our algorithm of Theorem 2 recursively performs binary splits using vertical/horizontal line
segments in N2. If we remove these segments, the remaining portion of the data space consists of
disjoint axis-parallel rectangles, which we call residue rectangles. It must hold that (i) separator
vertices can lie only on these line segments, and (ii) each Gi (i ≤ [1, h]) is induced by the vertices in
a distinct residue rectangle. This property motivates a simple algorithm for dividing S to satisfy
the separator-decomposition requirement. First, label the subgraphs arbitrarily from 1 to h. For
each vertex v ∈ S, generate a label list that sorts in ascending order the labels of the subgraphs in
the adjacent set of v. The list has length O(1). We now partition S into disjoint subsets, where the
vertices in each subset have the same label list. The aforementioned property implies that there are
only O(|V |/M) subsets. The partitioning can be easily done by sorting in O(sort(|V |)) I/Os, thus
establishing Corollary 1.

The BFS problem is, essentially, an instance of SSSP on a grid graph where all edges have
the same weight. In particular, the shortest path tree corresponds to the BFS tree. Corollary 1
immediately implies Corollary 2. It is worth mentioning that, in O(sort(|V |)) I/Os, one can compute
from the BFS tree an alternative encoding where every node in the tree keeps a pointer referencing

3Equivalently, the parent of each node v is the predecessor of v on the shortest path from vsrc to v.

21

xx− 1 x + 1

y − 1

y

y + 1

xx− 1 x + 1

y − 1

y

y + 1

(a) Before (b) After

Figure 5: Contortion within a square

i = 0 1 2 3
j = 0
1
2

Figure 6: The designed grid graph for m = 4 (the black points are the cornerstones; the other
vertices are dotted along the curves, but are omitted for clarity)

its parent in the tree. In fact, within the same I/O cost, one can even compute a “blocked version”
of this encoding such that, for any node v, the path from v to the root vsrc of the BFS tree (i.e., the
reverse of the shortest path from vsrc to v) is stored in O(1 + `/B) blocks, where ` is the number of
edges of the path (see Theorem 1 of [17]).

5.2 Disproving Edge-Contraction Sparsity

This subsection serves as a proof of Theorem 3. Recall that a graph G = (V,E) is sparse if
|E| ≤ c|V |, for some constant c > 0. Given any integer m ≥ 2, we will design a grid graph that can
be edge-contracted into a clique of m vertices. The clique is not sparse when m > 2c+ 1. Thus,
regardless of the choice of c, there is always a grid graph that is not sparse under edge contraction.

Before proceeding, let us point out a basic geometric fact that will be useful in our design. Let
p1 = (x1, y1) and p2 = (x2, y2) be two distinct points in R2 such that x1, y1, x2, y2 are all even
integers. Let `1 be the line with slope 1 passing p1, and `2 be the line with slope −1 passing p2.
Then, the intersection of `1 and `2 must be a point whose coordinates on both dimensions are
integers.

Given integers i, j satisfying i ∈ [0,m−1] and j ∈ [0,m−2], let F (i, j) be the point (1000m·i, 100j)
in R2. Call these m(m− 1) points cornerstones.

For each pair (i, j) with i ∈ [0,m− 1], j ∈ [0,m− 2] and i ≤ j — there are m(m− 1)/2 such
pairs — define a wedge path between cornerstones F (i, j) and F (j+ 1, i) as follows. Shoot a ray with
slope 1 emanating upward from F (i, j), and a ray with slope −1 emanating upward from F (j + 1, i).
Let p be the intersection of the two rays; p must have integer coordinates. The wedge path consists
of two segments: the first one connects F (i, j) and p, while the second connects p and F (j + 1, i).

The above definition yields m(m− 1)/2 wedge paths. Two such paths may intersect each other;
and the intersection point has integer coordinates — a property that is not desired. Next, we will

22

contort some paths a little to ensure the following property: any two resulting paths are either
disjoint or intersect only at a point with fractional coordinates on both dimensions.

Let Pintr be the set of intersection points among the wedge paths. For each point p = (x, y) in
Pintr , place a square [x− 1, x+ 1]× [y − 1, y + 1] centered at p. The constants 1000 and 100 in the
definition of F (i, j) ensure that: (i) the squares are disjoint from each other, and (ii) all of them are
above the line y = 100(m− 2), i.e., higher than all cornerstones.

Focus now on one such square, as shown in Figure 5a, where the two lines illustrate the
intersecting wedge paths. We contort one of the two paths as shown in Figure 5b, so that the two
paths now intersect at the point (x− 1/2, y − 1/2). Apply the same contortion in all squares.

For each i ∈ [0,m − 1], we add a vertical path from cornerstone F (i, 0) through F (i,m − 2).
These m paths and the m(m − 1)/2 wedge paths (possibly contorted) give rise to the edges in
our grid graph G — notice that every path uses only segments each connecting two points whose
coordinates are integers differing by at most 1 on each dimension. To complete the graph with
vertices, we simply place a vertex at every point p of R2 such that (i) p has integer coordinates on
both dimensions, and (ii) p is on one of those m+m(m− 1)/2 paths. See Figure 6 for such the
final G with m = 4.

It remains to explain how to perform edge contractions to convert G into a clique of m vertices.
First, contract every vertical path into a “super vertex”. Between each pair of super vertices,
there remains a sequence of edges corresponding to one unique wedge path. The m(m− 1)/2 edge
sequences do not share any vertices except, of course, the super vertices. Contracting each wedge
path down to the last edge gives the promised clique.

6 Conclusions

This paper has proved that any d-dimensional grid graph G = (V,E) admits a vertex separator that
(i) resembles the well-known multi-way vertex separator of a planar graph, and (ii) can be obtained
solely by dividing the space recursively with perpendicular planes, and collecting the vertices on
those planes. Furthermore, we have shown that such separators can be computed in O(sort(|V |))
I/Os, even if the memory can accommodate only two blocks.

A major application of the above findings is that they lead to an algorithm that performs
DBSCAN clustering in d-dimensional space with near-linear I/Os, when the distance metric is the
L∞ norm. Our techniques also lead to improved results on three fundamental problems: CC, SSSP,
and BFS. Specifically, the CC problem has been settled in O(sort(|V |)) I/Os for any d-dimensional
grid graph G = (V,E). Our improvement on SSSP and BFS, however, is less significant, and
concerns only small values of M .

We close the paper with some open questions. First, is it possible utilize our separator-
computation algorithm to improve the I/O complexity of the DFS algorithm in [16]? Second, does
BFS on a 2D grid graph require Ω(|V |/

√
M) I/Os in the worst case, thus making the result of

Corollary 2 optimal? Finally, the practicality of our algorithms also deserves further investigation.
We expect that these algorithms, as presented, are useful only when the dimensionality is a small
constant. Since in this paper we focused on proving theoretical bounds, we have not discussed
any heuristics that may reduce the running cost on “real-world data”. The development of such
heuristics is a meaningful topic for follow-up engineering research.

23

References

[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk loading
and dynamization. In Proceedings of International Colloquium on Automata, Languages and
Programming (ICALP), pages 115–127, 2001.

[2] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to
terrain analysis. 7(1):11, 2010.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM (CACM), 31(9):1116–1127, 1988.

[4] L. Arge, G. S. Brodal, and L. Toma. On external-memory mst, SSSP and multi-way planar
graph separation. J. Algorithms, 53(2):186–206, 2004.

[5] L. Arge, J. S. Chase, P. N. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wickremesinghe.
Efficient flow computation on massive grid terrain datasets. GeoInformatica, 7(4):283–313,
2003.

[6] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-based terrains.
ACM Journal of Experimental Algorithmics, 6:1, 2001.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second
Edition. The MIT Press, 2001.

[8] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution surface distance
model for k -nn query processing. The VLDB Journal, 17(5):1101–1119, 2008.

[9] J. Erickson. On the relative complexities of some geometric problems. In Proceedings of the
Canadian Conference on Computational Geometry (CCCG), pages 85–90, 1995.

[10] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete & Computational Geometry,
16(4):389–418, 1996.

[11] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of ACM Knowledge Discovery and Data
Mining (SIGKDD), pages 226–231, 1996.

[12] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal of Computing, 16(6):1004–1022, 1987.

[13] J. Gan and Y. Tao. On the hardness and approximation of euclidean DBSCAN. ACM
Transactions on Database Systems (TODS), 42(3):14:1–14:45, 2017.

[14] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2012.

[15] H. J. Haverkort and L. Toma. I/O-efficient algorithms on near-planar graphs. J. Graph
Algorithms Appl., 15(4):503–532, 2011.

[16] J. Her and R. S. Ramakrishna. An external-memory depth-first search algorithm for general
grid graphs. Theoretical Computer Science, 374(1-3):170–180, 2007.

24

[17] D. A. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for shortest
path queries. Discrete Applied Mathematics, 126(1):55–82, 2003.

[18] V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving graph
problems in external memory. In Symposium on Parallel and Distributed Processing, pages
196–176, 1996.

[19] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. on Applied
Math., 36:177–189, 1979.

[20] L. Liu and R. C. Wong. Finding shortest path on land surface. In Proceedings of ACM
Management of Data (SIGMOD), pages 433–444, 2011.

[21] A. Maheshwari and N. Zeh. I/O-efficient planar separators. SIAM Journal of Computing,
38(3):767–801, 2008.

[22] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In
Proceedings of European Symposium on Algorithms (ESA), pages 723–735, 2002.

[23] G. L. Miller, S. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In
Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
538–547, 1991.

[24] K. Munagala and A. G. Ranade. I/O-complexity of graph algorithms. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 687–694, 1999.

[25] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph searching.
Algorithmica, 16(2):181–214, 1996.

[26] C. Shahabi, L. A. Tang, and S. Xing. Indexing land surface for efficient knn query. PVLDB,
1(1):1020–1031, 2008.

[27] C. Sheng and Y. Tao. Finding skylines in external memory. In Proceedings of ACM Symposium
on Principles of Database Systems (PODS), pages 107–116, 2011.

[28] W. D. Smith and N. C. Wormald. Geometric separator theorems & applications. In Proceedings
of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 232–243,
1998.

[29] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson, 2006.

[30] L. Toma and N. Zeh. I/O-efficient algorithms for sparse graphs. In Algorithms for Memory
Hierarchies, Advanced Lectures, pages 85–109, 2002.

[31] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors on land surface.
Proceedings of the VLDB Endowment (PVLDB), 2(1):1114–1125, 2009.

[32] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of ACM Knowledge
Discovery and Data Mining (SIGKDD), pages 71–80, 2002.

[33] N. Zeh. I/O-efficient graph algorithms. Technical report, Dalhousie University, 2002.

25

