
Towards Optimal Dynamic Indexes for1

Approximate (and Exact) Triangle Counting2

Shangqi Lu3

Chinese University of Hong Kong4

sqlu@cse.cuhk.edu.hk5

Yufei Tao6

Chinese University of Hong Kong7

taoyf@cse.cuhk.edu.hk8

Abstract9

In ICDT’19, Kara, Ngo, Nikolic, Olteanu, and Zhang gave a structure which maintains the number T of triangles10

in an undirected graphG = (V,E) along with the edge insertions/deletions inG. UsingO(m) space (m = |E|),11

their structure supports an update in O(
√
m logm) amortized time which is optimal (up to polylog factors)12

subject to the OMv-conjecture (Henzinger, Krinninger, Nanongkai, and Saranurak, STOC’15). Aiming to13

improve the update efficiency, we study:14

the optimal tradeoff between update time and approximation quality. We require a structure to provide15

the (ε,Γ)-guarantee: when queried, it should return an estimate t of T that has relative error at most ε if16

T ≥ Γ, or an absolute error at most ε · Γ, otherwise. We prove that, under any ε ≤ 0.49 and subject to the17

OMv-conjecture, no structure can guarantee O(m0.5−δ/Γ) expected amortized update time and O(m2/3−δ)18

query time simultaneously for any constant δ > 0; this is true for Γ = mc of any constant c in [0, 1/2). We19

match the lower bound with a structure that ensures Õ((1/ε)3 ·
√
m/Γ) amortized update time with high20

probability, and O(1) query time.21

(for exact counting) how to achieve arboricity-sensitive update time. For any 1 ≤ Γ ≤
√
m, we describe a22

structure of O(min{αm+m logm, (m/Γ)2}) space that maintains T precisely, and supports an update in23

Õ(min{α+ Γ,
√
m}) amortized time, where α is the largest arboricity of G in history (and does not need24

to be known). Our structure reconstructs the aforementioned ICDT’19 result up to polylog factors by setting25

Γ =
√
m, but achieves Õ(m0.5−δ) update time as long as α = O(m0.5−δ).26

2012 ACM Subject Classification Theory of computation→ Database query processing and optimization27

(theory)28

Keywords and phrases Triangle Counting, Data Structures, Lower Bounds, Graph Algorithms29

Digital Object Identifier 10.4230/LIPIcs...30

1 Introduction31

In the dynamic approximate triangle counting (DATC) problem, we want to maintain a data structure32

on an undirected graph G = (V,E) to support33

update(e): either adds a new edge e or removes an existing edge e;34

query: returns an estimate t of the number T of triangles (i.e., 3-cliques) in G. Specifically,35

setting m = |E|, we require that the estimate t should satisfy an (ε,Γ(m))-guarantee:36

|t− T | ≤
{

ε · T if T ≥ Γ(m)
ε · Γ(m) otherwise

(1)37

where ε is a parameter of the structure satisfying 0 < ε ≤ 1, and Γ(m) a non-descending function38

of m satisfying39

© Shangqi Lu and Yufei Tao;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sqlu@cse.cuhk.edu.hk
mailto:taoyf@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

Γ(m) ≥ 140

Γ(c ·m) = O(Γ(m)) for any constant c > 1.41

The query is allowed to fail with probability at most 1/m2.42

Unless there is a need to emphasize on the parameter m, we will write function Γ(m) simply as Γ.43

The (ε,Γ)-guarantee, phrased differently, requires that the estimate t should have a relative error at44

most ε or an absolute error at most ε · Γ.45

The dynamic exact triangle counting (DETC) problem is defined analogously except that the46

value t returned by a query should always be equal to T .47

Notations and math conventions. Throughout the paper, N is the set of integers, [x] denotes the set48

{1, 2, ..., x} for an integer x ≥ 1, Õ(.) suppresses a polylogm factor, {u, v} represents an undirected49

edge between vertices u and v, while a directed edge from u to v is represented as (u, v). An event50

occurs with high probability (w.h.p.) if its probability is at least 1− 1/m2.51

1.1 Motivation52

Triangle counting is equivalent to computing the output size of the conjunctive query53

ans(a, b, c) = R1(a, b), R2(a, c), R3(b, c). (2)54

DETC can be easily reduced to the above query by duplicating E three times. Conversely, query55

(2) can be reduced to DETC as follows. Suppose that relations R1, R2, R3 have schemes {A,B},56

{A,C}, and {B,C}, respectively, where attributes A, B, and C have disjoint domains. Create a graph57

G = (V,E) such that (i) V contains a vertex for every distinct value of A, B, C, and (ii) E has an edge58

{u, v} for every tuple (u, v) of R1, R2, R3. It is easy to verify that each tuple (a, b, c) in the query59

result corresponds to a unique triangle in G, and vice versa. Inserting/deleting a tuple is translated to60

an edge update in G.61

Our initial motivation stemmed from two recent results on DETC. Subject to the OMv conjecture62

(Section 1.2), Henzinger, Krinninger, Nanongkai, and Saranurak showed [20] (long version [21])63

that no structure with O(m0.5−δ) amortized update time can guarantee O(m1−δ) query time, for64

any constant δ > 0. Kara, Ngo, Nikolic, Olteanu, and Zhang [27] matched this lower bound with a65

linear-space structure of O(
√
m logm) amortized update time1 and O(1) query time.66

O(
√
m logm) update time is rather expensive for practical applications. We therefore ask:67

Question 1: How much loss of accuracy is necessary, if we want to (significantly) reduce
the update cost of [27]?
Question 2: If we insist on exact counting, how to derive an update bound using certain
intrinsic parameters of G which can be o(

√
m) for many practical inputs?

68

1.2 Related Work69

Upper Bounds. Kopelowitz et al. [28] studied the following dynamic set intersection size problem.70

Define C as a collection of non-empty sets S1, S2, ..., S` for some ` ≥ 1 (the domain of the elements71

therein is unimportant). Set m =
∑
S∈C |S|. Given distinct i, j ∈ [`], a query reports the number of72

elements in Si ∩ Sj . We want to maintain a structure to support not only queries and also updates73

(element insertions/deletions) in the sets of C. The structure of [28] uses O(m) space, performs an74

1 In [27], the amortized update complexity was stated as O(
√
m), assuming that dictionary search on a set of elements

can be performed in constant time by a structure that can be updated also in constant time. Removing the assumption
with hashing would degrade the update guarantee into an expected bound; doing so with a binary search tree would
introduce a logarithmic factor.

S. Lu and Y. Tao XX:3

update in Õ(
√
m) time, and answers a query in Õ(

√
m) time.2 This structure can be deployed to75

perform DETC with the same guarantees as [27], up to polylog factors.76

Eppstein and Spiro [17] described a DETC structure that supports a query in O(1) time, and an77

update in O(h logm) time, where h is the h-index of G at the time of the update.3 The update cost78

compares favorably with the structure of [27] (Section 1.1) because h is always O(
√
m) but can be79

far less than
√
m. However, the structure of [17] consumes O(mh) space, while that of [27] needs80

only O(m) space.81

The DETC problem — equivalently, conjunctive query (2) — is a special form of the first-order82

queries studied by Berkholz et al. [8]. When applied to DETC, their structure performs an update in83

Õ(1) time and a query in constant time, when the maximum degree d of the vertices is a constant. In84

general, however, the update time of [8] is 2dO(1)
which is much higher than

√
m even for moderate d.85

Note that the objective of [8] is to achieve results of this form over a broad class of queries on sparse86

databases (rather than just DETC).87

In the static scenario where no updates are allowed, the fastest algorithm for exact triangle88

counting is still the classic O(m2ω/(ω+1))-time algorithm of Alon, Yuster, and Zwick [1], where89

ω < 2.373 is the exponent of matrix multiplication. Chiba and Nishizeki [13] described an algorithm90

of time O(αm) where α is the arboricity of G, which is the smallest number of edge-disjoint forests91

that cover all the edges in G; in general, α is between 1 and d
√
me. For approximate counting up to92

relative error ε, Eden, Levi, Ron, and Seshadhri [16] gave an algorithm of Õ((1/ε)2 ·m1.5/T) time.93

This result can be generalized to counting arbitrary subgraphs; see the work of Assadi, Kapralov, and94

Khanna [2] and of Chen and Yi [12].95

There is a line of research on approximate triangle counting with a stream algorithm that makes96

one or constant passes over E (see [3–5, 9, 11, 15, 18, 23–25, 31, 34, 35, 37] and the references therein).97

The main purpose there is to minimize the amount of space used. One-pass algorithms on arbitrarily-98

ordered streams (i.e., edges arriving in any order) can be used to deal with DATC when only insertions99

are present. However, in that scenario, Braverman, Ostrovsky, and Vilenchik [9] showed that Ω(m)100

space is compulsory even to distinguish between T = 0 and T = Ω(|V |). This implies the necessity101

of retaining E entirely in the worst case. Our DATC problem complements [9] by asking: as E must102

be stored anyway, how to organize it properly to permit fast updates?103

There have been works on approximate triangle counting on a dynamic stream (arbitrary edges104

insertions and deletions). Bulteau, Froese, Kutzkov, and Pagh [10] developed a structure of Õ((1/ε)2 ·105 √
m · P2/T) space that has constant query time but Õ((1/ε)2 · P2/T) update time, where P2 is the106

number of 2-paths in G. Another structure due to Manjunath, Mehlhorn, Panagiotou, and Sun [30]107

uses Õ(poly(1/ε) · m3/T 2) space, and achieves constant query time and Õ(poly(1/ε) · m3/T 2)108

update time (see also [26]). These structures are applicable to DATC, but their update time is quite109

large compared to our results (Section 1.3). It should be noted, however, that the focus of [10, 26, 30]110

is to understand when the space can be made o(m), rather than the update-query tradeoff.111

A natural attempt to perform DATC on G = (V,E) is to take a random subset E′ ⊆ E, build an112

exact counting structure to monitor the number T ′ of triangles in G′ = (V,E′), and then scale T ′113

up appropriately to estimate the number of triangles in G. To our knowledge, the most promising114

approach in this direction is the colorful triangle sampling technique by Pagh and Tsourakakis [32],115

originally proposed for parallel computation. In our contexts, the technique is applicable if Γ is116

sufficiently large. This can be best illustrated by fixing ε to a constant; when Γ ≥ c|V | log2 |V | for117

2 Precisely speaking, Kopelowitz et al. [28] considered a different type of queries, which return whether Si ∩ Sj is
empty (as opposed to |Si ∩ Sj |). However, their structure can be easily adapted to achieve the stated guarantees on
the dynamic set intersection size problem.

3 The h-index is the maximum integer x such that G has x vertices of degree at least x.

XX:4

some constant c, the technique (combined with [27]) gives a structure supporting a query in constant118

time and an update in Õ(
√
m ·max{ |V |

1.5

Γ1.5 ,
1

Γ0.75 }) time w.h.p. This bound will be strictly improved119

by our methods.120

Lower bounds. In the online boolean matrix-vector multiplication (OMv) problem, an algorithm first121

spends poly(n) time preprocessesing an n× n boolean matrixM , and is then required to compute122

Mvi (i ∈ [n]) where each vi is an n× 1 boolean vector.4 Vector vi+1 (i ≥ 1) is revealed only after123

the algorithm has outputMvi. The cost is the total time spent on the n vectors.124

OMv-conjecture [21]: no algorithm can solve the problem with probability at least 2/3
using subcubic cost O(n3−δ) for any constant δ > 0.

125

The conjecture explains in a remarkable manner the computational hardness of a great variety of126

problems [21], and gives rise to the tight (conditional) lower bound on DETC mentioned in Section 1.1127

(see [7] for the conjecture’s implications on conjunctive queries when the update time has to be Õ(1)).128

It has been shown [21] that the OMv conjecture implies another well-known conjecture formulated129

by Patrascu [33] on the multiphase problem (namely, if the former is correct, so is the latter, which130

means that the former is at least as hard to prove as the latter). Patrascu’s conjecture has been utilized131

to establish (conditional) lower bounds on dynamic set intersection emptiness [19, 28, 29], which can132

be converted to lower bounds on DETC, but they are not tight (we will elaborate on this in Section 2).133

Indeed, many of the lower bounds obtained from Patrascu’s conjecture can be strengthened with OMv134

(see [21] for a comprehensive list); the same phenomenon also applies to the DATC lower bound135

(Theorem 1) developed in this paper (more details in Section 2).136

1.3 Our Results137

DATC. Regarding Question 1 (Section 1.1), we first prove a conditional lower bound:138

I Theorem 1. Consider the DATC problem where ε ≤ 0.49 and Γ = mc for an arbitrary constant c139

satisfying 0 ≤ c < 1/2. Subject to the OMv-conjecture, no DATC structure can ensure O(m0.5−δ/Γ)140

amortized update time andO(m 2
3−δ) query time simultaneously, where δ > 0 is an arbitrary constant.141

This is true even if the amortized update time holds only in expectation.142

We are able to match the lower bound with:143

I Theorem 2. There is a DATC structure that ensures Õ((1/ε)3 ·
√
m/Γ) amortized update time144

w.h.p. and O(1) query time. The space of the structure is Õ(m+ (1/ε)2 ·m1.5/Γ).145

For constant ε ≤ 0.49, Theorems 1 and 2 together give the full tradeoff between update time and146

the approximation quality (subject to the OMv-conjecture). As a pleasant implication, for constant ε147

Theorem 2 shows that one can achieve Õ(1) amortized update time and O(1) query time by setting148

Γ =
√
m; in other words, we never have to worry about Γ >

√
m (simply lower such Γ to

√
m). It is149

interesting to note, in retrospect, that the constant c in Theorem 1 does not reach 1/2.150

DETC. We address Question 2 by giving a new structure whose performance depends on the151

arboricity of G (Section 1.2):152

I Theorem 3. For any monotonic function Γ(m) satisfying 1 ≤ Γ(m) ≤
√
m and Γ(c ·m) =153

O(Γ(m)), there is a DETC structure of O(min{αm+m logm, (m
Γ(m))2}) space that supports an154

update in Õ(min{α+ Γ(m),
√
m}) amortized time, and a query in O(1) time, where α is the largest155

arboricity of G in history. This holds even if α is unknown.156

4 Additions and multiplications are as in the boolean semi-ring.

S. Lu and Y. Tao XX:5

By setting Γ =
√
m, we reconstruct the result of [27] up to polylog factors; on the other hand, we157

can do significantly better when α is small, i.e., G is sparse. In particular, when G is a planar graph,158

α = O(1); thus our structure achieves O(m logm) space, Õ(1) amortized update time, and constant159

query time. The arboricity of a graph is always bounded by the h-index, but can be considerably160

lower, e.g., a planar graph can have an h-index of Θ(
√
m); our structure is, therefore, not subsumed161

by [17] (Section 1.2). Similarly, even a planar graph can have a maximum vertex degree of Θ(|V |);162

our result is, therefore, not subsumed by [8] either. Interestingly, if α is known in advance, by setting163

Γ = α, we obtain a structure occupying Õ(min{αm,m2/α2}) = Õ(m4/3) space that supports an164

update in Õ(α) time and ensures constant query time.165

2 Hardness of Dynamic Approximate Triangle Counting166

In this section, we will prove:167

I Lemma 4. Consider the DATC problem with ε = 0.49 and Γ = mc for an arbitrary constant c168

satisfying 0 ≤ c < 1/2. Subject to the OMv-conjecture, no structure can guarantee O(m0.5−δ−c)169

expected amortized update time and O(m1−2c/3−δ) query time, where δ > 0 can be an arbitrarily170

small constant.171

Theorem 1 is a corollary of Lemma 4, noticing that (i) 1 − 2c/3 > 2/3 for c < 1/2, and (ii)172

any solution that works for ε < 0.49 must also work for ε = 0.49. To prove the lemma, we will173

consider the dynamic triangle detection (DTD) problem, where we want to store G in a data structure174

to support:175

update(e): either adds a new edge e or removes an existing edge e;176

query: returns a single bit indicating whether G has any triangles at all. The query is allowed to177

fail with probability at most 1/m2.178

The lemma below was first established in [21]:179

I Lemma 5 ([21]). Subject to the OMv-conjecture, no DTD structure can guarantee O(m0.5−δ)180

amortized update time and O(m1−δ) query time, where δ > 0 can be an arbitrarily small constant.181

This is true even if the amortized update time holds only in expectation.5182

Suppose that algorithmA is able to maintain a DATC structure — on our instance where ε = 0.49183

and Γ = mc — which supports an update in O(m0.5−δ′/Γ) = O(m0.5−δ′−c) expected amortized184

time and a query in O(m1−2c/3−δ′) time for some δ′ > 0. We will deploy A to obtain a DTD185

structure that contradicts Lemma 5.186

Proof of Lemma 4. Henceforth, denote by G the input graph to the DTD problem, and by m the187

number of edges in G. Given an integer parameter x ≥ 1, we define an image graph [15] G′ as188

follows:189

for each vertex u in G, create x image vertices in G′;190

for each edge {u, v} in G, create x2 image edges in G′ by connecting every image vertex of u191

and every image vertex of v.192

The total number of edges in G′ equals m′ = x2m. Observe that if G has T triangles, then the193

number of triangles in G′ is T ′ = x3T .194

5 The statement in [21] (see Corollary 3.4 therein) does not contain the second sentence. Furthermore, the DTD query
in [21] is not allowed to fail. However, it is easy to extend their argument to prove Lemma 5. We provide a complete
proof in Appendix E.

XX:6

We now proceed to explain how to support updates and DTD queries on G. For this purpose, let195

us first assume that M ≤ m ≤ 2M for some integer M ≥ 1. The assumption will be removed with196

global rebuilding, as explained later.197

We choose:198

x = (2M)
c

3−2c . (3)199

with which m′ = x2m = Θ(m
3

3−2c).200

We apply A to build a DATC structure on G′ (with ε = 0.49 and Γ = m′c). Given an update(e)201

on G, we use A to insert/delete all the x2 image edges of e in G′ in expected amortized time202

O(m′0.5−δ
′−c · x2) = O(m

2c
3−2c+ 3

3−2c (1
2−δ

′−c)) = O(m
1
2−

3δ′
3−2c).203

To explain how to answer a DTD query, we will need:204

I Proposition 6. εm′c < x3/2.205

Proof. First note that m′ = x2m ≤ (2M)
2c

3−2c · (2M) = (2M)
3

3−2c . Hence, εm′c is at most206

0.49 · (2M)
3c

3−2c < x3/2. J207

G has a triangle if and only if G′ has at least T ′ ≥ x3 triangles. Given a DTD query on G, we run208

A to detect whether T ′ ≥ x3. For this purpose, it suffices to issue a DATC query on G′. The output t209

of the DATC query is greater than x3/2 if and only if T ′ ≥ x3. This is because210

when T ′ < x3, it must hold that T ′ = 0, in which case t can be at most ε ·Γ(m′) = εm′c < x3/2211

(Proposition 6);212

when T ′ ≥ x3, t ≥ (1− ε)T ′ ≥ (1− ε)x3 > x3/2.213

By our assumptions on A, the DATC query runs in time214

O(m′1− 2c
3 −δ

′
) = O(m

3
3−2c (1− 2c

3 −δ
′)) = O(m1− 3δ′

3−2c).215

It remains to remove the assumption M ≤ m ≤ 2M . For this purpose, it suffices to destroy216

and rebuild the DATC structure whenever m reaches M or 2M . The value of M for the new217

structure is set to 2m/3. This makes sure Ω(M) updates on G must have happened before the218

next reconstruction. Standard amortization arguments show that the amortized update time is still219

O(m
1
2−

3δ′
3−2c) in expectation.220

We thus have obtained a DTD structure with expected amortized update time O(m0.5−δ) and221

query time O(m1−δ) with δ = 3δ′
3−2c , contradicting Lemma 5. This completes the proof of Lemma 4.222

Remarks. A weaker lower bound would result from Patrascu’s multiphase conjecture [33]. Consider,223

for simplicity, c = 0 (essentially, exact counting) in which case the strongest lower bound derived224

with that conjecture [28, 29] asserts that no structure can guarantee O(m1/3−δ) update and query225

time simultaneously6. This is also the best we can prove by executing our argument on the multiphase226

conjecture, but is worse than Theorem 1 by a polynomial factor. Finally, it is worth mentioning that227

our argument actually works for any ε < 0.5.228

3 A Structure for Dynamic Approximate Triangle Counting229

This section presents a DATC structure which achieves the performance in Theorem 2.230

6 A DETC structure with O(m1/3−δ) update and query time will lead to ti = O(N1/3−δ) and tq = O(N1/3−δ) in
the context of Theorem 9 of [28], causing a contradiction there.

S. Lu and Y. Tao XX:7

3.1 Overview231

We will start by describing a “folklore” algorithm (see Section 3.6 for a discussion) for approximate232

triangle counting on a static graph G = (V,E). Denote by d(u) the degree of vertex u ∈ V . Define233

an ordering ≺ on V : u ≺ v if d(u) < d(v), breaking ties by id. Orient G by pointing each edge234

{u, v} ∈ E from u to v where u ≺ v. Let E+ be the set of directed edges thus obtained, and define235

G+ = (V,E+) as the resulting directed graph. Denote by d+(u) the out-degree of u ∈ V in G+; it236

must hold that d+(u) = O(
√
m).237

To estimate the number T of triangles, initialize Λ = 0, and repeat the following s = Õ((1/ε)2 ·238

m1.5/T) times:239

1. Take an edge (u, v) ∈ E+ and then an out-neighbor w of u, both uniformly at random (note that240

v may be w). We will refer to (u, v, w) as a random tuple.241

2. Add the contribution of (u, v, w) to Λ, which is d+(u) if (v, w) ∈ E+, or 0 otherwise.242

Finally, return Λ · (m/s) as the estimate, guaranteed to enjoy a relative error at most ε w.h.p.243

Our structure dynamizes the above algorithm, as outlined next.244

Standard ideas. We245

replace T with Γ (Section 1), and246

maintain a set S of s = Õ((1/ε)2 · m1.5/Γ) random tuples, as well as the sum Λ of their247

contributions.248

Inserting/deleting an edge {u, v} may flip the directions of many edges, rendering it expensive249

to keep G+ up-to-date. But the issue can be easily remedied: it suffices to flip an edge only250

after Ω(min{d(u), d(v)}) updates. For this purpose, we introduce a function D such that D(u)251

approximates d(u) up to a small constant factor for every u ∈ V . Accordingly, ≺ is redefined with252

respect to D: u ≺ v if D(u) < D(v), breaking ties by id. We can then afford to materialize G+
253

explicitly by updating it only when D changes.254

D(u) is adjusted when it ceases to approximate d(u). When this happens, some edges of u in255

G+ have their directions flipped, e.g., (u, v) becomes (v, u). A major challenge now enters the256

picture: the altering of d+(v) may affect all the contributions of the random tuples (x, y, z) with257

x = v! Specifically, each (v, y, z) ∈ S may have already registered in Λ a contribution d+(v), which258

therefore must be modified. Unfortunately, we cannot afford to do so for all neighbors v of u.259

New ideas. We overcome the above challenge by introducing another function D+ such that D+(u)260

approximates d+(u) up to some small factor for every u ∈ V . For each random tuple (u, v, w) ∈ S,261

its contribution is either D+(u) — as opposed to d+(u) — or 0. Only when D+(u) ceases to262

approximate d+(u) will we adjust the tuple’s contribution in Λ. This “two-level approximation” (i.e.,263

D and D+) turns out to be the key in our solution to DATC. We will argue that D, D+, S, and Λ can264

be maintained efficiently along with the edge updates.265

3.2 Structure266

Our discussion will assume that the number m of edges in G satisfies M ≤ m ≤ 2M for some267

integer M ≥ 1. The assumption can be removed by reconstructing our structure periodically.268

Main structure. Let D : V → N be a function such that for every u ∈ V :269

D(u)
{

= 2 if d(u) ≤ 1
∈ [1

2d(u), 3
2d(u)] otherwise.

(4)270

As mentioned, for two distinct vertices u, v ∈ V , u ≺ v if D(u) < D(v), breaking ties by id. This271

gives rise to the directed graph G+ = (V,E+) as defined in Section 3.1. Let D+ : V → N be another272

XX:8

function such that for every u ∈ V :273

D+(u) ∈
[
(1− ε/2) · d+(u), (1 + ε/2) · d+(u)

]
. (5)274

During an edge insertion/deletion, function D (or D+, resp.) may temporarily violate (4) (or275

(5), resp.), in which case we say that the function is bad. D (or D+, resp.) is good when no276

violation occurs. At the beginning or right after reconstruction, D+(u) = d+(u) for all u ∈ V ; and277

D(u) = d(u) if d(u) ≥ 2, or 2 otherwise.278

Set s = Õ((1/ε)2 ·M1.5/Γ(M)); note that the function Γ(.) is parameterized for the smallest279

possible m = M . Define S to be a set of s independent random tuples drawn from G+ (Section 3.1).280

Each tuple (x, y, z) ∈ S makes a contribution281

f(x, y, z) =
{

D+(x) if (y, z) ∈ E+

0 otherwise.
(6)282

Set283

Λ =
∑

(x,y,z)∈S

f(x, y, z). (7)284

Given vertices u, v ∈ V , define:285

Ξu,v =
∑

(x,u,v)∈S

D+(x) (8)286

where the summation is over the random tuples (x, y, z) satisfying y = u, z = v. The pair (u, v) is287

active if at least one such random tuple exists.288

Our structure can be summarized as:289

graphs G and G+
290

functions D and D+
291

the set S of random tuples292

the value of Λ, and values of Ξu,v’s for all active (u, v).293

It is worth pointing out that Λ and the Ξu,v’s do not imply the need to maintain the contribution294

function f in (6).295

Filtered subsets of S. We will use “⊥” to denote a wildcard, and define the boolean expression296

“u = ⊥” to be true for any u ∈ V . Given q1, q2, and q3 where each qi (1 ≤ i ≤ 3) is either a vertex or297

a wildcard, we introduce:298

Sq1,q2,q3 = {(x, y, z) ∈ S | x = q1, y = q2, z = q3}299

namely, the subset obtained by filtering S using q1, q2, q3.300

I Lemma 7. All the statements below are true:301

For any u ∈ V , |Su,⊥,⊥| = Õ(d+(u) · s/m) w.h.p.302

For any u, v ∈ V such that (u, v) ∈ E+, |Su,v,⊥| = Õ(s/m) w.h.p.303

For any u, v ∈ V such that (u, v) ∈ E+, |Su,⊥,v| = Õ(s/m) w.h.p.304

Proof. A random tuple (x, y, z) satisfies x = u if and only if (x, y) is an out-edge of u in G+. As305

(x, y) is a random edge in G+, it is an out-edge of u with probability d+(u)/m. Due to independence,306

|Su,⊥,⊥| is Õ(s · d+(u)/m) w.h.p., as stated in the first bullet.307

To prove the 2nd (or 3rd, resp.) bullet, it suffices to show that (x, y, z) belongs to |Su,v,⊥| (or308

|Su,⊥,v|, resp.) with probability 1/m. This is obvious for Su,v,⊥. For (x, y, z) to appear in Su,⊥,v:309

(x, y) must be an out-edge of u, which happens with probability d+(u)/m;310

S. Lu and Y. Tao XX:9

z chooses v, which happens with probability 1/d+(u).311

Therefore, Pr[(x, y, z) ∈ Su,⊥,v] = 1/m. J312

Auxiliary structures. We assume the availability of auxiliary structures for:313

Given any q1, q2 and q3, retrieve the size of Sq1,q2,q3 in Õ(1) time.314

Given any q1, q2, q3 and an integer k between 1 and |Sq1,q2,q3 |, uniformly sample k tuples without315

replacement (WoR) from Sq1,q2,q3 in Õ(k) time. By setting k = |Sq1,q2,q3 |, we can use the316

operation to extract the entire Sq1,q2,q3 .317

Given any u, v ∈ V , in Õ(1) time either retrieve Ξu,v or assert that (u, v) is not active.318

Generate a random tuple from G+ in Õ(1) time.319

All the auxiliary structures can be implemented as simple variants of binary search trees (see Chapter320

14 of [14]).321

Space. The overall space consumption is clearly O(m+ s) = Õ(m+ (1/ε)2 ·m1.5/Γ(m)), using322

the fact that Γ(m) ≤ Γ(2M) = O(Γ(M)).323

Query. We will prove in Appendix B:324

I Lemma 8. With probability at least 1− 1/m3, the value Λ · (M/s) is an estimate satisfying the325

(ε,Γ(m)) guarantee.326

A query can therefore be answered in constant time.327

Remarks. The following subsections will explain how to support insertions. The deletion algorithm328

is similar, with details duly presented in Appendix C.329

Our discussion will ignore the auxiliary structures because they are rudimentary; and their330

maintenance cost can be higher than that of S and {Ξu,v | active (u, v)} by at most a logarithmic331

factor. Furthermore, when a tuple (x, y, z) is inserted/deleted in S, Λ and Ξy,z can be updated332

accordingly in logarithmic time. We will, therefore, not discuss explicitly the modifications to Λ and333

{Ξu,v | active (u, v)} caused by insertions/deletions in S.334

3.3 Insertion: When D Will Still Be Good335

Suppose that we are inserting an edge {u∗, v∗} in G. After the insertion, d(u∗) and d(v∗) both336

increase by 1. In this section, we consider that D is still good for the new d(u∗) and d(v∗). Con-337

sequently, every existing edge in G+ retains its direction. Without loss of generality, assume that338

{u∗, v∗} points from u∗ to v∗ in G+.339

Rationale. How would this affect a random tuple (x, y, z) ∈ S? Recall that (x, y) is supposed to be340

drawn uniformly at random from E+. Now that m has increased by 1, (x, y) should be replaced by341

(u∗, v∗) with probability 1/m (reservoir sampling [38]). If the replacement occurs, (x, y, z) is said to342

be edge-replaced; in this case, we take a (uniformly) random out-neighbor w of u∗, delete (x, y, z)343

from S, and add (u∗, v∗, w).344

For a tuple (x, y, z) that is not edge-replaced, further processing is necessary in two cases:345

Case 1: x = u∗. Since u∗ has got a new out-neighbor v∗, z (which is supposedly a random346

out-neighbor of x) should be replaced by v∗ with probability 1/d+(u∗). If the replacement347

happens, (x, y, z) is said to be outneighbor-replaced; in this case, we delete (x, y, z) from S and348

add (u∗, y, v∗) instead.349

Case 2: y = u∗, z = v∗. The new edge (u∗, v∗) completes the triangle formed by x, u∗, v∗. We350

should therefore increase Λ (see (7)) by f(x, y, z) = D+(x).351

Insertion algorithm. Figure 1 presents the algorithm in pesudocode. To find the edge-replaced352

tuples, we cannot afford to toss a coin for each tuple in S. However, we do not have to; because353

XX:10

algorithm insert (u∗, v∗) /* a new edge (u∗, v∗) has just been added to G+ */
1. generate an integer k1 following the binomial distribution B(|S|, 1/m)
2. S1 ← a size-k1 WoR sample set of S; remove S1 from S

3. generate an integer k2 following the binomial distribution B(|Su∗,⊥,⊥|, 1/d+(u∗))
4. S2 ← a size-k2 WoR sample set of Su∗,⊥,⊥; remove S2 from S

/* the removal of each (x, y, z) ∈ S1 ∪ S2 requires updating Λ and Ξy,z */
5. increase Λ by Ξu∗,v∗
6. repeat k1 times
7. add (u∗, v∗, w) into S where w is a (uniformly) random out-neighbor of u∗

/* requires updating Λ and Ξv∗,w */
8. for each (u∗, y, z) ∈ S2 do
9. add (u∗, y, v∗) to S /* requires updating Λ and Ξy,v∗ */

Figure 1 Pseudocode of the insertion algorithm

the tuples in S are independent, it suffices generate how many — say k1 — edge-replaced tuples354

there should be, and draw a WoR sample set S1 of size k1 from S. Here, k1 follows the binomial355

distribution B(|S|, 1/m), and can be generated in Õ(1) time (see, e.g., [38]). Using the auxiliary356

structures, we can extract S1 and remove the tuples therein from S (Lines 1-2) in Õ(k1) time where357

k1 = Õ(|S|/m) = Õ(s/m) w.h.p. The same idea also applies to outneighbor-replaced tuples in358

Case 1. The number k2 of such tuples follows the binomial distribution B(|Su∗,⊥,⊥|, 1
d+(u∗)); hence,359

k2 = Õ(|Su∗,⊥,⊥|/d+(u∗)) = Õ(s/m) w.h.p. (Lemma 7). From Su∗,⊥,⊥, we extract a WoR sample360

set S2 of size k2 in Õ(k2) = Õ(s/m) time using the auxiliary structures; S2 can be regarded as361

the set of outneighbor-replaced tuples, which are then removed from S in Õ(s/m) time (Line 3-4).362

Increasing the value of Λ due to Case 2 can be accomplished by simply adding Ξu∗,v∗ (defined in363

(8)) to Λ (Line 5). The value of Ξu∗,v∗ can be retrieved in Õ(1) time from the auxiliary structures.364

Lines 6-9 then replenish S for the random tuples in S1 ∪ S2 removed earlier.365

After the insertion, the out-degree d+(u∗) of u∗ increases by 1. If D+(u∗) still satisfies (5),366

the insertion is complete. Otherwise, we call fix-Dplus(u∗) (introduced below) and finish. In367

summary, the insertion runs in Õ(s/m) time, plus the cost of fix-Dplus(u∗).368

Algorithm fix-Dplus(u). This algorithm has the following constraint:369

Invariant: when called, D+(u) violates (5).370

fix-Dplus(u) first makes a copy of the current D+(u) — denote the copy as D+
old — and then371

resets D+(u) to d+(u). Accordingly, for every (x, y, z) ∈ S with x = u, its contribution f(x, y, z)372

may change from D+
old to d+(u). This may affect Λ and every Ξv,w where v and w are out-neighbors373

of u in G+. To remedy all these, we first retrieve Su,⊥,⊥, and then for every (u, y, z) ∈ Su,⊥,⊥:374

if (y, z) ∈ E+, increase Λ by d+(u)−D+
old ;375

increase Ξy,z by d+(u)−D+
old .376

By Lemma 7, Su,⊥,⊥ = Õ(d+(u) · s/m) w.h.p. This implies:377

I Lemma 9. The cost of fix-Dplus(u) is Õ(|D+
old − d+(u)| · s/(εm)) w.h.p.378

Proof. The cost of fix-Dplus(u) is Õ(d+(u) · s/m). Next, we show d+(u) = O(|D+
old −379

d+(u)|/ε). Consider the two possibilities of how D+(u) can violate (5). If D+
old > (1 + ε/2) ·d+(u),380

then d+(u) < (D+
old − d+(u)) · (2/ε). On the other hand, if D+

old < (1 − ε/2) · d+(u), we have381

d+(u) < (d+(u)−D+
old) · (2/ε). J382

S. Lu and Y. Tao XX:11

3.4 Insertion: When D Will Go Bad383

Again, denote by {u∗, v∗} the edge to be inserted. This time, we consider that D will be bad after384

d(u∗) and d(v∗) increase by 1. In other words, D will cease to satisfy (4) with respect to u∗, v∗, or385

both. Our strategy is not to perform the insertion immediately. Instead, we will first modify D to386

make sure that D will still be good after the insertion. Then, the insertion can be processed by the387

algorithm in Section 3.3.388

Next, we will introduce an algorithm named fix-D which takes a vertex u as the parameter, and389

has the following constraint:390

Invariant: when called:
D is good
D(u) < d(u) and d(u) = O(D(u)), and
d(u)−D(u) = Ω(D(u)).

391

At the end of fix-D(u), D(u) = d(u), which ensures that D(u) will still satisfy (4) even after392

d(u) grows by 1. Thus, for the aforementioned insertion, we can simply invoke fix-D(u∗) and/or393

fix-D(v∗), depending on which will cause D to go bad.394

Rationale behind fix-D(u). We increase D(u) to d(u). Recall that, for each neighbor v of u in395

G, the edge {u, v} is given a direction in G+. The increase of D(u) may affect the direction: if the396

direction was (u, v) before, it may now be flipped to (v, u); on the other hand, if the direction was397

(v, u), it remains the same.398

The direction flipping can invalidate S because a tuple in S may stop being a random tuple, or its399

contribution as in (6) may change (which will further affect Λ). To explain, fix a tuple (x, y, z) ∈ S,400

and suppose that an edge (u, v) is to be flipped to (v, u). Next, we enumerate all possible cases where401

modifications are necessary:402

Case 1: x 6= u and x 6= v. (x, y, z) will remain as a random tuple. However, its contribution403

f(x, y, z) is affected in two subcases:404

Case 1.1: y = u and z = v. f(x, y, z) will drop from D+(x) to 0. Accordingly, Λ needs to be405

decreased by D+(x). See Figure 2(a).406

Case 1.2: y = v and z = u. f(x, y, z) will grow from 0 to D+(x). Accordingly, Λ needs to407

be increased by D+(x). See Figure 2(b).408

Case 2: x = u and y = v. (x, y, z) will become invalid due to the disappearance of (x, y). The409

tuple (u, v, z) should be replaced by (v, u, w) where w is a (uniformly) random out-neighbor of410

v. See Figure 2(c).411

Case 3: x = u, y 6= v, and z = v. (x, y, z) will become invalid due to the disappearance of (x, z).412

The tuple (u, y, v) should be replaced by (u, y, w) where w is a (uniformly) random out-neighbor413

of u. See Figure 2(d).414

Case 4: x = v (which implies y 6= u and z 6= u). Since v has gained a new out-neighbor u,415

(x, y, z) may no longer be random. To remedy this, z should be replaced by u with probability416

1/d+(v). If the replacement occurs, the tuple (v, y, z) is said to be outneighbor-replaced. See417

Figure 2(e).418

Algorithm fix-D(u). We start by setting D(u) = d(u), flipping the edges of u in G+ wherever419

needed.420

Given each neighbor v of u in G such that {u, v} was flipped, we421

(for Case 1) retrieve Ξu,v and Ξv,u (from the auxiliary structures), and increase Λ by Ξv,u−Ξu,v .422

(for Case 2) retrieve Su,v,⊥; and then for each (u, v, z) ∈ Su,v,⊥, delete (u, v, z) from S, pick an423

out-neighbor w of v uniformly at random, and add (v, u, w) to S.424

XX:12

x u (y)

v (z)

to be flipped

x v (y)

u (z)

to be flipped

(a) Case 1.1 (b) Case 1.2

u (x) v (y)

z

to be flipped

w

u (x) y

v (z)

to be flipped

w

v (x) y

z

to be flipped

u

(c) Case 2 (d) Case 3 (e) Case 4

Figure 2 Different cases of fix-D

(for Case 3) retrieve Su,⊥,v; and then for each (u, y, v) ∈ Su,⊥,v with y 6= v, delete (u, y, v)425

from S, pick an out-neighbor w of u uniformly at random, and add (u, y, w) to S.426

By Lemma 7, Su,v,⊥ and Su,⊥,v both have size Õ(s/m) w.h.p. Thus, Cases 1-3 can be handled in427

Õ(d(u) · s/m)) time w.h.p.428

Next, we focus on Case 4. Let v be a neighbor of u with {u, v} flipped. The num-429

ber kv of outneighbor-replaced tuples (x, y, z) with x = v follows the binomial distribution430

B(|Sv,⊥,⊥|, 1/d+(v)). Combining this with (the first bullet of) Lemma 7 shows that kv =431

Õ(d+(v) · sm ·
1

d+(v)) = Õ(s/m) w.h.p. We extract a WoR sample set of size kv from Sv,⊥,⊥
7, which432

takes Õ(kv) = Õ(s/m) time using the auxiliary structures. Every tuple (v, y, z) extracted is then433

modified to (v, y, u) in Õ(1) time. Therefore, the total cost of Case 4 is again Õ(d(u) · s/m) w.h.p.434

Now, let us worry about the function D+. Compared to before fix-D(u) was called, d+(u) may435

have changed abruptly (by as much as d(u) in the worst case). If D+(u) now violates (5), we invoke436

fix-Dplus(u). Finally, for each neighbor v of u in G, d+(v) may have changed by 1, compared to437

before fix-D(u) was called. D+(v) may no longer satisfy (5); if so, call fix-Dplus(v).438

In summary, fix-D(u) runs in Õ(d(u) · s/m) time w.h.p., plus the cost of all the calls to439

fix-Dplus at the end. It is worth pointing out that the invariant of fix-D(u) ensures d(u) =440

O(Dold), where Dold is the value of D(u) at the beginning of fix-D(u).441

3.5 Analysis442

Section 3.3 has shown that an insertion finishes in Õ(s/m) time w.h.p. if no calls to fix-Dplus or443

fix-D are made. It remains to discuss the time spent on fix-Dplus and fix-D.444

Let us start with fix-D. Consider its execution on a node u. Denote by Dold the value of D(u)445

at the beginning of fix-D(u). Recall that fix-D(u) has cost Õ(Dold · s/m) w.h.p., plus the cost446

of some calls to fix-Dplus at the end. We will account for the Õ(Dold · s/m) cost first, and worry447

about fix-Dplus later. The invariant of fix-D (Section 3.4) makes sure that Ω(Dold) edges448

incident on u must have been inserted since the last time fix-D was invoked on u. We can therefore449

charge the Õ(Dold · s/m) cost over those insertions, each of which bears only Õ(s/m).450

Let us now turn attention to fix-Dplus, for which we use a token-based analysis. A token is451

generated in two scenarios:452

7 Precisely speaking, this should be the Sv,⊥,⊥ at the beginning of fix-D(u).

S. Lu and Y. Tao XX:13

Case 1: in Section 3.3, when an edge (u∗, v∗) is added to G+, we give a token to u∗ because its453

out-degree will increase by 1.454

Case 2: during the execution of fix-D(u), when we flip an in/out-edge of u with respect to an455

in/out-neighbor v, we give both u and v a token because their out-degrees will change by 1.456

I Lemma 10. If the total number of edge insertions is nins, the number of tokens generated is457

O(nins).458

Proof. The number of tokens in Case 1 is clearly nins. Next, we focus on Case 2. Let Dold be the459

value of D(u) at the beginning of fix-D(u). Case 2 can generate at most 2d(u) tokens, while 2d(u)460

is O(Dold) due to the invariant of fix-D. As mentioned, Ω(Dold) edges incident on u must have461

been inserted since the last fix-D(u). Thus, after amortization, each of those insertions generates462

O(1) tokens in Case 2. J463

Consider a call to fix-Dplus(u). Let D+
old be the value of D+(u) at the beginning of the call.464

Clearly, u must have received at least |D+
old − d+(u)| tokens since the last fix-Dplus(u). We can465

charge the cost Õ(|D+
old − d+(u)| · s/(εm)) of fix-Dplus(u) over those tokens, each of which is466

amortized only Õ(s/(εm)). Combined with Lemma 10, this means that each insertion is amortized a467

share of Õ(s/(εm)).468

In summary, each insertion runs in Õ(s/(εm)) = Õ((1/ε)3·
√
m/Γ) amortized time w.h.p. This,469

together with the deletion algorithm in Appendix C, establishes Theorem 2.470

3.6 Discussion471

There is a rich literature on approximate triangle counting; for entry points into the literature,472

see [2–5, 9–12, 15, 18, 23–26, 30–32, 34, 35, 37]. The presented data structure reflects our efforts in473

identifying the existing techniques suitable for DACT. Strictly speaking, the “folklore” static-counting474

algorithm in Section 3.1 has not been formally documented; however, its underlying ideas are already475

known. First, orienting the edges in the way described is a standard approach (e.g., [2,4,13,16,22,31]).476

Second, the sampling procedure for acquiring “random tuples” is commonly known as wedge477

sampling, and is an important method behind many algorithms (e.g., [2, 4, 10, 16, 18, 23, 31, 34, 35]).478

Third, the notion of contribution (defined in (6)) is what makes wedge sampling work in our context,479

and was inspired by a subroutine inside an algorithm developed in [16] (see the Heavy subroutine480

therein). Our contributions, on the other hand, are in maintaining the information needed by the static481

algorithm under updates. The two-level approximation idea — manifested by the functions D and482

D+ — is unlikely the only way to make things work, but has helped considerably in making our483

arguments as clean as possible.484

4 A Structure for Dynamic Exact Triangle Counting485

This section presents a DETC structure that achieves the performance in Theorem 3. Our algorithms486

and analysis can be regarded as a fine-grained version of those in [27].487

4.1 Structure488

We assume that the number m of edges in G = (V,E) satisfies M ≤ m ≤ 2M for some integer489

M ≥ 1; the assumption can be removed by standard global rebuilding. As stated in Theorem 3, our490

structure takes a function Γ(.) as a parameter. Set λ = Γ(M) in the following discussion.491

Graph orientation. At any moment, we orient G by giving each edge {u, v} in G a direction. Let492

E+ be the set of directed edges obtained, and denote by G+ = (V,E+) the resulting directed graph.493

Denote by d+(u) the out-degree of u ∈ V . The orientation is done according to:494

XX:14

I Lemma 11 ([6]). By spending O(logm) worst-case time on an (edge) insertion/deletion in G,495

we can maintain G+ such that d+(u) = O(α + logm) for every u ∈ V , where α is the largest496

arboricity of G in history. Furthermore, each insertion/deletion in G flips the directions of O(logm)497

edges in G+. The above statements are true even if α is unknown.498

Since M ≤ m ≤ 2M holds at all times, we must have α = O(
√
M) = O(

√
m). Note that G+

499

can contain cycles (it differs from the G+ in Section 3.2). For each u ∈ V , denote by N+(u) the set500

of out-neighbors of u, and by N−(u) the set of its in-neighbors.501

Light, heavy, and active H-combos. We classify each vertex u ∈ V as light or heavy based on its502

degree d(u) in G according to the rules below:503

if d(u) ≤ λ/2, always light, whereas if d(u) ≥ λ, always heavy;504

when our data structure is just constructed, u is heavy if d(u) ≥ 3λ/4 or light otherwise;505

if u is heavy, it switches to light only when d(u) has dropped to λ/2;506

if u is light, it switches to heavy only when d(u) has increased to λ.507

Given two distinct heavy vertices u, v ∈ V , define:508

I{u,v} = |N−(u) ∩N−(v)|509

namely, the number of their common in-neighbors in G+. {u, v} forms an active H-combo if510

I{u,v} > 0; note that there may not be an edge between u and v in G. Notice that while light/heavy-511

vertices are defined based on G, I{u,v} is defined based on G+. This is a crucial design to attain the512

performance in Theorem 3.513

Structure. We maintain514

G and G+
515

the number T of triangles in G516

the set A of active H-combos, and IA = {I{u,v} | {u, v} ∈ A}.517

We also assume auxiliary structures for:518

given any heavy vertices u, v, finding I{u,v} in Õ(1) time or declaring that {u, v} /∈ A;519

inserting, deleting, or modifying an element in IA using Õ(1) time.520

I Lemma 12. The above structure consumes O(min{αm+m logm, (m/λ)2}) space.521

Proof. The auxiliary structures only need to be binary search trees which consume O(|A|) space. It522

suffices to bound the size of A. Note that the number of heavy vertices is O(m/λ) which immediately523

implies |A| = O((m/λ)2). Next, we will prove that |A| is also bounded by O(αm + m logm).524

Remember that each active H-combo {u, v} must have a common in-neighbor. Conversely, each525

vertex w ∈ V can generate O(|N+(w)|2) active H-combos. By Lemma 11, |N+(w)| = O(α +526

logm). Therefore, |A| = O(
∑
w∈V |N+(w)|2) = O(

∑
w∈V |N+(w)| · (α+ logm)) = O(m(α+527

logm)). J528

Each (DETC) query obviously can be answered in constant time.529

Remarks. For each edge update in G, Lemma 11 flips O(logm) edges in G+. We implement the530

flipping of an edge (u, v) by first deleting (u, v) from G+ and then adding (v, u) back. In this way,531

the number of edge updates on G+ can be higher than that on G by at most a logarithmic factor. Thus,532

it suffices to discuss how to add/remove a (directed) edge in G+.533

Next, we will explain how to support insertions. The deletion algorithm is similar and thus534

moved to Appendix D. Our discussion will ignore the auxiliary structures. Furthermore, whenever an535

H-combo {u, v} is inserted/deleted in A, I{u,v} can be inserted/deleted accordingly in logarithmic536

time. We will therefore not elaborate on the modifications to IA caused by insertions/deletions in A.537

S. Lu and Y. Tao XX:15

u

v

w

(a)

u

v

w

(b)

u

v

w

(c)

u

v

w

(d)

Figure 3 Four different triangles to be counted

4.2 Insertion538

Update T . Given a new edge (u, v) in G+, Figure 3 shows the possible cases for a triangle involving539

u and v, in terms of the edge directions. The types in Figures 3(a), 3(b), and 3(c) have an out-edge of540

u, v, or both, and hence, can be enumerated directly by scanning through the out-neighbors of u and541

v. The time required is Õ(d+(u) + d+(v)) = Õ(α) by Lemma 11.542

Regarding Figure 3(d), we distinguish two cases:543

Case 1: u or v is a light vertex. If u (or v, resp.) is a light vertex, go through its O(λ) in-edges to544

enumerate triangles of Figure 3(d) in Õ(λ) time.545

Case 2: u and v are both heavy vertices. The number of such triangles is I{u,v}, and can be546

retrieved from the auxiliary structures in Õ(1) time.547

Therefore, T can be updated in Õ(α+ λ) time.548

Update IA and A. If v is heavy, every heavy out-neighbor w of u (other than v) forms an active549

H-combo with v. If {v, w} is already in A, increase I{v,w} by 1; otherwise, add {v, w} to A. This550

requires Õ(d+(u)) = Õ(α) time in total.551

Now, u and/or v may have just turned from light to heavy. It suffices to concentrate on u due to552

symmetry. We examine every in-neighbor x of u in G. For each heavy out-neighbor y of x (y 6= u),553

either add {u, y} to A or increase I{u,y} by 1. The total time is Õ(αλ) because u has at most λ554

in-neighbors, each having an out-degree Õ(α). We charge the time on the Ω(λ) edges of u that have555

been added since u turned light last time; the insertion of each of those edges bears only Õ(α) time.556

Combining the above with the deletion algorithm in Appendix D establishes Theorem 3.557

5 Conclusions558

Triangle counting is an important problem with numerous applications in database systems. Recent559

research on this topic has looked at how to maintain the number of triangles as edges are inserted and560

deleted in the underlying graph. Unfortunately, the exact triangle count is expensive to maintain in561

the worst case because it requires Ω(
√
m) time per update where m is the number of edges (subject562

to a widely accepted conjecture). In this paper, we seek to reduce the update overhead with two563

orthogonal approaches. The first one introduces imprecision in counting and aims to strike an optimal564

tradeoff between the update cost and the permissible error. The second approach still does exact565

counting, but aims to bound the update time using arboricity, which is an intrinsic parameter of the566

input graph for characterizing its sparsity. Our contributions include data structures and algorithms567

with non-trivial performance bounds in each of the two directions, and a matching (conditional) lower568

bound in the first direction.569

XX:16

Appendix570

A Chernoff Bounds571

Let X1, ...,Xn be independent random variables between 0 and 1. If X =
∑n
i=1 Xi and µ = E[X],572

then for any 0 ≤ γ ≤ 1:573

Pr
[
|X− µ| ≥ γ · µ

]
≤ 2 exp

(
−γ

2µ

3

)
(9)574

and for any γ ≥ 1:575

Pr[X ≥ (1 + γ) · µ] ≤ exp
(
− (1 + γ)µ

6

)
. (10)576

These bounds can be found in [36].577

B Proof of Lemma 8578

We will use N+(u) to represent the set of out-neighbors of u in G+.579

I Lemma 13. For every vertex u ∈ V , d+(u) ≤ max{4,
√

6m}.580

Proof. We consider only d(u) > 4 because otherwise the claim obviously holds. For each out-581

neighbor v of u in G+, its degree d(v) in G must be at least 2. To see this, suppose on the contrary582

d(v) ≤ 1, which implies D(v) = 2 < d(u)
2 ≤ D(u) (the last ≤ is due to (4)). This means that the583

edge {u, v} should point from v to u, giving a contradiction.584

By (4), the fact d(v) ≥ 2 indicates D(v) ≤ 3
2d(v). We now have d(u)

2 ≤ D(u) ≤ D(v) ≤ 3d(v)
2 ,585

namely, d(u) ≤ 3d(v). It follows that586

d+(u)2 ≤ d+(u) · d(u) =
∑

v∈N+(u)

d(u) ≤
∑

v∈N+(u)

3d(v) ≤ 6m587

thus completing the proof. J588

Let us introduce589

D+
max = (1 + ε/2) ·max{4,

√
6m} (11)590

For each random tuple (x, y, z) ∈ S, define:591

X(x,y,z) = f(x, y, z)
D+
max

. (12)592

Note that X(x,y,z) is a random variable between 0 and 1 because f(x, y, z) ≤ D+(x), while D+(x)593

is at most (1 + ε/2) · d+(x) (see (5)), which in turn is at most D+
max by Lemma 13. Set594

X =
∑

(x,y,z)∈S

X(x,y,z) = Λ
D+
max

(13)595

where the last equality used (7).596

I Lemma 14.
(
1− ε

2
)

s·T
m·D+

max
≤ E[X] ≤

(
1 + ε

2
)

s·T
m·D+

max
.597

S. Lu and Y. Tao XX:17

Proof. On condition that (x, y) equals edge (u, v) in G+, the random variable f(x, y, z) takes value598

D+(u) if (v, z) ∈ E+ or 0 otherwise. (v, z) ∈ E+ if and only if z is a common out-neighbor of u599

and v. Hence:600

E[f(x, y, z)] = 1
m

∑
(u,v)∈E+

|N+(u) ∩N+(v)|
d+(u) ·D+(u)601

(by (5)) ≤ 1
m

∑
(u,v)∈E+

|N+(u) ∩N+(v)| · (1 + ε/2) = (1 + ε/2) · T
m
.602

It thus follows from (12) and (13) that E[X] ≤ (1 + ε/2) s·T
m·D+

max
.603

Analogously, applying the fact that D+(u)/d+(u) ≥ 1 − ε/2 for all u ∈ V leads to E[X] ≥604

(1− ε/2) s·T
m·D+

max
. J605

We will proceed differently from here, depending on the comparison between T and Γ(m).606

B.1 When T ≥ Γ(m)607

We will prove that s = Õ((1/ε)2 ·M1.5/Γ(M)) ensures:608

Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ε · T] ≤ 1
m3 (14)609

I Lemma 15. We can choose an s = Õ((1/ε)2 ·M1.5/Γ(M)) to guarantee610

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · T

m ·D+
max

]
≤ 1

m3 .611

Proof.

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · T

m ·D+
max

]
612

(by Lemma 14) ≤ Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
E[X]

1 + ε/2

]
≤ Pr

[∣∣X−E[X]
∣∣ ≥ ε

3 ·E[X]
]

613

(by (9)) ≤ 2 exp
(
−
(ε

3

)2 E[X]
3

)
614

(by Lemma 14) ≤ 2 exp
(
−
(ε

3

)2 s · T
3m ·D+

max
· (1− ε/2)

)
615

≤ 2 exp
(
−
(ε

3

)2 s · T
6m ·D+

max

)
616

which is at most 1/m3 for s = O(mD
+
max

ε2·T logm). The claim follows from D+
max = O(

√
m) (see617

(11)), T ≥ Γ(m) ≥ Γ(M), and m ≤ 2M . J618

The lemma implies (14) because619

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · T

m ·D+
max

]
620

= Pr
[
X ≥ E[X] + ε

2 ·
s · T

m ·D+
max

or X ≤ E[X]− ε

2 ·
s · T

m ·D+
max

]
621

(by Lemma 14) ≥ Pr
[
X ≥ (1 + ε) s · T

m ·D+
max

or X ≤ (1− ε) s · T
m ·D+

max

]
622

(by (13)) = Pr
[
Λ · m

s
≥ (1 + ε)T or Λ · m

s
≤ (1− ε)T

]
623

= Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ε · T] .624

XX:18

B.2 When 0 < T < Γ(m)625

We will prove that s = Õ((1/ε)2 ·M1.5/Γ(M)) ensures:626

Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ε · Γ(m)
]
≤ 1

m3 (15)627

Since there is at least one triangle, Xx,y,z (see (12)) has expectation strictly greater than 0. By628

(13), this means E[X] > 0.629

I Lemma 16. We can choose an s = Õ((1/ε)2 ·M1.5/Γ(M)) to guarantee630

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · Γ(m)
m ·D+

max

]
≤ 1

m3 .631

Proof.

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · Γ(m)
m ·D+

max

]
= Pr

[∣∣X−E[X]
∣∣ ≥ ε

2 ·
s · Γ(m)

m ·D+
max ·E[X]

·E[X]
]

(16)632

Setting γ = ε·s·Γ(m)
2m·D+

max·E[X] , we distinguish two cases.633

Case 1: γ ≤ 1. By (9), we have634

(16) ≤ 2 exp
(
−γ2 · E[X]

3

)
= 2 exp

(
−
(
ε · s · Γ(m)
2m ·D+

max

)2
· 1

3 E[X]

)
635

(by Lemma 14) ≤ 2 exp
(
−
(
ε · s · Γ(m)
2m ·D+

max

)2
· 1

3(1 + ε/2) s·T
m·D+

max

)
636

≤ 2 exp
(
− ε2s · (Γ(m))2

18m · T ·D+
max

)
637

(by Γ(m) > T) ≤ 2 exp
(
− ε2s · Γ(m)

18m ·D+
max

)
638

which is at most 1/m3 for s = O(mD
+
max·logm
ε2Γ(m)). The claim follows from D+

max = O(
√
m),639

Γ(m) ≥ Γ(M), and m ≤ 2M .640

Case 2: γ > 1. Since X ≥ 0, we have641

(16) = Pr
[
X−E[X] ≥ γ ·E[X]

]
642

(by (10)) ≤ exp
(
−1 + γ

6 E[X]
)
≤ exp

(
−γ6 E[X]

)
643

644

≤ exp
(
− ε · s · Γ(m)

12m ·D+
max ·E[X]

·E[X]
)

= exp
(
− ε · s · Γ(m)

12m ·D+
max

)
645

which is at most 1/m3 for s = O(mD
+
max·logm
ε·Γ(m)). The claim follows from D+

max = O(
√
m),646

Γ(m) ≥ Γ(M), and m ≤ 2M . J647

S. Lu and Y. Tao XX:19

The lemma implies (15) because648

Pr
[∣∣X−E[X]

∣∣ ≥ ε

2 ·
s · Γ(m)
m ·D+

max

]
649

= Pr
[
X ≥ E[X] + ε

2 ·
s · Γ(m)
m ·D+

max
or X ≤ E[X]− ε

2 ·
s · Γ(m)
m ·D+

max

]
650

(by Lemma 14) ≥ Pr
[
X ≥

(
1 + ε

2

) s · T
mD+

max
+ εs · Γ(m)

2mD+
max

or651

X ≤
(

1− ε

2

) s · T
mD+

max
− εs · Γ(m)

2mD+
max

]
652

(by T < Γ(m)) ≥ Pr
[
X ≥ s · T

m ·D+
max

+ εs · Γ(m)
m ·D+

max
or X ≤ s · T

m ·D+
max
− εs · Γ(m)
m ·D+

max

]
653

(by (13)) = Pr
[
Λ · m

s
≥ T + ε · Γ(m) or Λ · m

s
≤ T − ε · Γ(m)

]
654

= Pr
[∣∣∣Λ · m

s
− T

∣∣∣ ≥ ε · Γ(m)
]
.655

B.3 When T = 0656

In this case, every random tuple must have contribution 0 (see (6)). Thus, Λ must be 0, and hence, so657

is our estimate.658

C Deletion Algorithm of the DATC Structure659

C.1 Deletion: When D Will Still Be Good660

Suppose that we are deleting an edge {u∗, v∗} in G. This section discusses the scenario where D661

is still good after d(u∗) and d(v∗) decrease by 1. Assume, without loss of generality, that {u∗, v∗}662

points from u∗ to v∗ in G+.663

Every (x, y, z) ∈ S with x = u∗ and y = v∗ should be replaced with a new random tuple. For this664

purpose, we remove the entire S(u∗,v∗,⊥) from S, regenerate the same the same number of random665

tuples, and add them to S. By Lemma 7, this can be done in Õ(s/m) time w.h.p.666

Now consider a tuple (x, y, z) ∈ S with x 6= u∗ or y 6= v∗. After the deletion, (x, y) remains as667

a uniformly random edge in from E+. Nevertheless, we still need to make sure that z is a random668

out-neighbor of x, and that Λ is correct:669

Case 1: x = u∗ and z = v∗. We remove (x, y, z) from S, select an out-neighbor w of u∗670

uniformly at random, and add (u∗, y, w) to S.671

Case 2: y = u∗ and z = v∗. As the deleted edge (u∗, v∗) breaks the triangle formed by x, u∗,672

and v∗, Λ should be decreased by D+(x).673

Regarding implementation, all the tuples of Case 1 can be found in Õ(|S(u∗,⊥,v∗))| time, which674

is Õ(s/m) w.h.p. by Lemma 7; this is also the time spent on Case 1 in total. For Case 2, the overall675

amount of reduction on Λ (summing up over all tuples of Case 2) is simply Ξu∗,v∗ , which can be676

retrieved in Õ(1) time; and then Λ can be adjusted in constant time.677

Finally, if D+(u∗) no longer satisfies (5), we simply call fix-Dplus(u∗) (Section 3.3).678

In summary, the deletion runs in Õ(s/m) time w.h.p, plus the cost of at most one call to679

fix-Dplus.680

XX:20

C.2 Deletion: When D Will Go Bad681

We now consider the scenario where D violates (4) after {u∗, v∗} is deleted. Similar to Section 3.4,682

we reduce the case to Section C.1 by first modifying D such that it will still be good after the deletion.683

Due to symmetry, it suffices to discuss only the situation where D(u∗) needs to be fixed.684

The fix is performed by fix-D-del(u), which has the constraint:685

Invariant: when called:
D is good
d(u) < D(u) and
D(u)− d(u) = Ω(D(u)).

686

At the end of fix-D-del(u), D(u) = d(u). It is rudimentary to verify that D will still be good687

after d(u) drops by 1.688

Rationale behind fix-D-del(u). We decrease D(u) to d(u), which may affect the direction of689

an edge in G+ incident on u: if the direction was (v, u) before, it may now be flipped to (u, v).690

Fix a tuple (x, y, z) ∈ S. Consider an arbitrary edge (v, u) that has been flipped to (u, v). The691

next discussion clarifies all the cases that require modifications:692

Case 1: x 6= v and x 6= u. (x, y, z) still remains as a random tuple, but its contribution may693

change:694

Case 1.1: y = u and z = v. f(x, y, z) will grow from 0 to D+(x). Accordingly, Λ needs to695

be increased by D+(x).696

Case 1.2: y = v and z = u. f(x, y, z) will drop from D+(x) to 0. Accordingly, Λ needs to be697

decreased by D+(x).698

Case 2: x = v and y = u. The tuple (v, u, z) should be replaced by (u, v, w) where w is a699

(uniformly) random out-neighbor of u.700

Case 3: x = v, y 6= u, and z = u. The tuple (v, y, u) should be replaced by (v, y, w) where w is701

a (uniformly) random out-neighbor of v.702

Case 4: x = u (which implies y 6= v and z 6= v). z should be replaced by v with probability703

1/d+(u). If the replacement occurs, the tuple (u, y, z) is said to be outneighbor-replaced.704

Note the similarity to the cases in Section 3.4.705

Algorithm fix-D-del(u). Set D(u) = d(u) and flip the edges of u in G+ wherever needed.706

Given each neighbor v of u such that {u, v} was flipped, we707

(for Case 1) retrieve Ξu,v and Ξv,u (from the auxiliary structures), and increase Λ by Ξu,v −Ξv,u.708

(for Case 2) retrieve Sv,u,⊥; and then for each (v, u, z) ∈ Sv,u,⊥, delete (v, u, z) from S, pick an709

out-neighbor w of u uniformly at random, and add (u, v, w) to S.710

(for Case 3) retrieve Sv,⊥,u; and then for each (v, y, u) ∈ Sv,⊥,u with y 6= u, delete (v, y, u)711

from S, pick an out-neighbor w of v uniformly at random, and add (v, y, w) to S.712

Case 1 obviously takes Õ(d(u) · s/m)) time w.h.p. By Lemma 7, Cases 2 and 3 can also be handled713

in the same cost.714

Next, we attend to Case 4. Consider any neighbor v of u with {u, v} flipped. The num-715

ber ku of outneighbor-replaced tuples (x, y, z) with x = u follows the binomial distribution716

B(|Su,⊥,⊥|, 1/d+(u)). This, together with Lemma 7, shows that ku = Õ(d+(u) · sm ·
1

d+(u)) =717

Õ(s/m) w.h.p. We draw a WoR sample set of size ku from |Su,⊥,⊥| in Õ(ku) = Õ(s/m) time. Every718

tuple (u, y, z) drawn is modified to (u, y, v) in Õ(1) time. The total cost of Case 4 is Õ(d(u) · s/m)719

w.h.p.720

Finally, if D+ is bad, we remedy it in the same way as in Section 3.4.721

In summary, fix-D-del(u) runs in Õ(d(u) · s/m) time w.h.p., plus the cost of all the calls to722

fix-Dplus at the end. The invariant ensures that d(u) < Dold where Dold is the value of D(u) at723

the beginning of fix-D-del(u).724

S. Lu and Y. Tao XX:21

C.3 Analysis725

The analysis is a straightforward adaptation of the argument in Section 3.5. It suffices to point out726

some key changes:727

The invariant of fix-D-del makes sure that Ω(Dold) edges incident on u have been removed728

since the last call to fix-D-del(u), where Dold is the value of D(u) at the beginning of729

fix-D-del(u).730

When an edge (u∗, v∗) is deleted from G, we give u∗ a token.731

During the execution of fix-D-del(u), when we flip an in/out-edge of u with respect an its732

in/out-neighbor v, we give a token to both u and v.733

Lemma 10 should be replaced with: if the total number of edge insertions/deletions is nupd , the734

number of tokens generated is O(nupd).735

D Deletion Algorithm of the DETC Structure736

Update T . Suppose that we are deleting (u, v) from G+. The possible cases for a triangle involving737

u and v are the same as in Figure 3. The number of such triangles can be found in the same manner738

as in the insertion algorithm using Õ(α+ λ) time. After that, T is updated in constant time.739

Update IA andA. If v is heavy, for every heavy out-neighbor w 6= v of u, we decrease I{v,w} by 1.740

If I{v,w} = 0, {v, w} is removed from A. The time is Õ(d+(u)) = Õ(α).741

Vertex u (the case of v is similar) may have just turned from heavy to light. We examine every742

in-neighbor x of u in G. For each heavy out-neighbor y of x, remove {u, y} from A. This takes743

Õ(αλ) time in total. We charge the time on the Ω(λ) edges of u that have been removed since u744

turned heavy last time. After amortization, the deletion of each of those edges bears only Õ(α) time.745

We conclude that the deletion time is Õ(α+ λ) amortized.746

E Proof of Lemma 5747

In [21], Henzinger, Krinninger, Nanongkai, and Saranurak defined the online vector-matrix-vector748

multiplication problem, which they abbreviated as the OuMv problem. An algorithm is allowed to749

pre-process an n× n matrixM in poly(n) time. Then, given n pairs of vectors (ui,vi) where ui is750

a 1× n vector and vi is an n× 1 vector, the algorithm is required to compute uiMvi. Only after751

uiMvi has been output will (ui+1,vi+1) be given (for i ∈ [n − 1]). Every element in M , and752

in each ui and vi is either 0 or 1; and addition and multiplication are performed as OR and AND,753

respectively. The cost of an algorithm is the total time spent on the n pairs of vectors. The following754

was proved in [21]:755

I Lemma 17 ([21]). Subject to the OMv-conjecture, no algorithm can solve the OuMv problem756

with probability at least 2/3 in O(n3−δ) time for any constant δ > 0.757

We will prove Lemma 5 by reducing the OuMv problem to DTS. Suppose that an algorithm A is758

able to maintain a DTD structure capable of performing an update in O(m0.5−δ′) expected amortized759

time and a query in O(m1−δ′) time, for some δ′ > 0. We will leverage A to obtain an algorithm that760

contradicts Lemma 17.761

It suffices to consider that M has at least n 1’s. Otherwise, uMv can be easily calculated in762

O(n) time for any 1× n vector u and n× 1 vector v. In this case, the OuMv problem can be settled763

in O(n2) time.764

In the preprocessing stage (of OuMv), we create a graph G as follows:765

XX:22

G has a vertex corresponding to each row inM , and a vertex corresponding to each column in766

M . In addition, there is an extra vertex denoted as ψ. The total number of vertices in 2n+ 1.767

For each cell M [i, j] = 1 (i, j ∈ [n]), G has an edge connecting the vertex of row i with the768

vertex of column j. The number m of edges satisfies n ≤ m = O(n2).769

We construct a DTD structure on G using A. The time required is obviously poly(n).770

We process an incoming vector pair (u,v) of the OuMV problem as follows:771

1. For each i ∈ [n] such that u[i] = 1, add an edge between ψ and the vertex corresponding to row772

i. For each j ∈ [n] such that v[j] = 1, add an edge between ψ and the vertex corresponding to773

column j.774

2. Issue a DTD query to detect whether G has a triangle.775

3. Remove all the edges added in Step 1.776

It was proved in [21] (Lemma 3.3 therein) that uMv = 1 if and only if the query in Step 2 reports777

“yes”.778

The number m of edges satisfies n ≤ m = O(n2) at all times. The 3 steps require at most779

2n update operations and 1 query on the DTD structure, which (by our assumption on A) finish in780

O(n ·m0.5−δ′ +m1−δ′) = O(n2−2δ′) expected time.781

After processing n vector pairs, with probability at least 1− n
m2 ≥ 1− n

n2 = 1− 1/n, all the n782

DTD queries issued are correct. We thus have obtained an algorithm solving the OuMv-problem with783

probability at least 1− 1/n in O(n3−2δ′) expected time. By Markov’s inequality, with probability784

at least 3/4, the actual running time is at most 4 time higher. Therefore, our algorithm solves the785

OuMv-problem in O(n3−2δ′) time with probability at least 1− (1/n+ 1/4) which is greater than786

2/3 for n > 12. This contradicts Lemma 17.787

References788

1 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica,789

17(3):209–223, 1997.790

2 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for counting791

arbitrary subgraphs via edge sampling. In Innovations in Theoretical Computer Science (ITCS), pages792

6:1–6:20, 2019.793

3 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application794

to counting triangles in graphs. In Proceedings of the Annual ACM-SIAM Symposium on Discrete795

Algorithms (SODA), pages 623–632, 2002.796

4 Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles and other797

substructures in graph streams. In Proceedings of Symposium on Theoretical Aspects of Computer Science798

(STACS), pages 11:1–11:14, 2017.799

5 Suman K. Bera and C. Seshadhri. How the degeneracy helps for triangle counting in graph streams. In800

Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 457–467, 2020.801

6 Edvin Berglin and Gerth Stølting Brodal. A simple greedy algorithm for dynamic graph orientation.802

Algorithmica, 82(2):245–259, 2020.803

7 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries under804

updates. In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 303–318,805

2017.806

8 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD queries under updates807

on bounded degree databases. ACM Transactions on Database Systems (TODS), 43(2):7:1–7:32, 2018.808

9 Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in the streaming809

model? In Proceedings of International Colloquium on Automata, Languages and Programming (ICALP),810

pages 244–254, 2013.811

10 Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle counting in dynamic812

graph streams. Algorithmica, 76(1):259–278, 2016.813

S. Lu and Y. Tao XX:23

11 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian814

Sohler. Counting triangles in data streams. In Proceedings of ACM Symposium on Principles of Database815

Systems (PODS), pages 253–262, 2006.816

12 Yu Chen and Ke Yi. Random sampling and size estimation over cyclic joins. In Proceedings of817

International Conference on Database Theory (ICDT), pages 7:1–7:18, 2020.818

13 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal of Computing,819

14(1):210–223, 1985.820

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,821

Second Edition. The MIT Press, 2001.822

15 Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph streams (corrected).823

Theoretical Computer Science, 683:22–30, 2017.824

16 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles in sublinear time.825

SIAM Journal on Computing, 46(5):1603–1646, 2017.826

17 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic subgraph827

statistics. J. Graph Algorithms Appl., 16(2):543–567, 2012.828

18 David García-Soriano and Konstantin Kutzkov. Triangle counting in streamed graphs via small vertex829

covers. In SIAM International Conference on Data Mining (SDM), pages 352–360, 2014.830

19 Isaac Goldstein, Moshe Lewenstein, and Ely Porat. On the hardness of set disjointness and set intersection831

with bounded universe. In International Symposium on Algorithms and Computation (ISAAC), pages832

7:1–7:22, 2019.833

20 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying834

and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture.835

In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 21–30, 2015.836

21 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying837

and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture.838

CoRR, abs/1511.06773, 2015.839

22 Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. I/O-Efficient Algorithms on Triangle Listing and840

Counting. ACM Transactions on Database Systems (TODS), 39(4):27:1–27:30, 2014.841

23 Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle counting842

using the birthday paradox. In Proceedings of ACM Knowledge Discovery and Data Mining (SIGKDD),843

pages 589–597, 2013.844

24 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in graphs. In845

Computing and Combinatorics, pages 710–716, 2005.846

25 John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Proceedings of the847

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1778–1797, 2017.848

26 Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs in849

data streams. In Proceedings of International Colloquium on Automata, Languages and Programming850

(ICALP), pages 598–609, 2012.851

27 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting triangles under852

updates in worst-case optimal time. In Proceedings of International Conference on Database Theory853

(ICDT), pages 4:1–4:18, 2019.854

28 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic set intersection.855

CoRR, abs/1407.6755, 2014.856

29 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In857

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1272–1287,858

2016.859

30 Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate counting860

of cycles in streams. In Proceedings of European Symposium on Algorithms (ESA), 2011.861

31 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting triangles in data862

streams. In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 401–411,863

2016.864

XX:24

32 Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a mapreduce implementa-865

tion. Information Processing Letters (IPL), 112(7):277–281, 2012.866

33 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of ACM867

Symposium on Theory of Computing (STOC), pages 603–610, 2010.868

34 A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and sampling triangles869

from a graph stream. Proceedings of the VLDB Endowment (PVLDB), 6(14):1870–1881, 2013.870

35 C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Wedge sampling for computing clustering coefficients and871

triangle counts on large graphs. Statistical Analysis and Data Mining, 7(4):294–307, 2014.872

36 Cheng Sheng, Yufei Tao, and Jianzhong Li. Exact and approximate algorithms for the most connected873

vertex problem. ACM Transactions on Database Systems (TODS), 37(2):12:1–12:39, 2012.874

37 Charalampos E. Tsourakakis, Mihail N. Kolountzakis, and Gary L. Miller. Triangle sparsifiers. J. Graph875

Algorithms Appl., 15(6):703–726, 2011.876

38 Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.877

	Introduction
	Motivation
	Related Work
	Our Results

	Hardness of Dynamic Approximate Triangle Counting
	A Structure for Dynamic Approximate Triangle Counting
	Overview
	Structure
	Insertion: When D Will Still Be Good
	Insertion: When D Will Go Bad
	Analysis
	Discussion

	A Structure for Dynamic Exact Triangle Counting
	Structure
	Insertion

	Conclusions
	Chernoff Bounds
	Proof of Lemma 8
	When T (m)
	When 0 < T < (m)
	When T = 0

	Deletion Algorithm of the DATC Structure
	Deletion: When D Will Still Be Good
	Deletion: When D Will Go Bad
	Analysis

	Deletion Algorithm of the DETC Structure
	Proof of Lemma 5

