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Abstract6

In PODS’17, Ketsman and Suciu gave an algorithm in the MPC model for computing the result of7

any natural join where every input relation has two attributes. Achieving an optimal load O(m/p1/ρ)8

— where m is the total size of the input relations, p the number of machines, and ρ the fractional9

edge covering number of the join — their algorithm requires 7 rounds to finish. This paper presents10

a simpler algorithm that ensures the same load with 3 rounds (in fact, the second round incurs only11

a load of O(p2) to transmit certain statistics to assist machine allocation in the last round). Our12

algorithm is made possible by a new theorem that provides fresh insight on the structure of the13

problem, and brings us closer to understanding the intrinsic reason why joins on binary relations14

can be settled with load O(m/p1/ρ).15
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1 Introduction20

Understanding the computational hardness of joins has always been a central topic in21

database theory. Traditionally, research efforts (see [1,4, 8,11,12,14,15] and the references22

therein) have focused on discovering fast algorithms for processing joins in the random23

access machine (RAM) model. Nowadays, massively parallel systems such as Hadoop [6] and24

Spark [2] (https://spark.apache.org) have become the mainstream computing architecture for25

performing analytical tasks on gigantic volumes of data, where direct implementation of RAM26

join algorithms rarely gives satisfactory performance. A main reason behind this phenomenon27

is that, while a RAM algorithm is designed to reduce the CPU time, in systems like Hadoop28

and Spark it is much more important to minimize the amount of communication across29

the participating machines, because the overhead of delivering all the necessary messages30

typically overwhelms the cost of CPU calculation. This has motivated a line of research —31

which also includes this work — that aims to understand the communication complexities of32

join problems.33

1.1 Problem Definition34

In this subsection, we will first give a formal definition of natural join — the type of joins35

studied in this paper — and then elaborate on the computation model assumed.36

Natural Joins. Let att be a countably infinite set where each element is called an attribute.37

Let dom be another countably infinite set. A tuple over a set U ⊆ att is a function38

u : U → dom. Given a subset V of U , define u[V ] as the tuple v over V such that39

v(X) = u(X) for every X ∈ V . We say that u[V ] is the projection of u on V .40

A relation is defined to be a set R of tuples over the same set U of attributes. We say that41
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R is over U , and that the scheme of R is U , represented with the notation scheme(R) = U .42

The arity of R, denoted as arity(R), equals |scheme(R)|. R is unary if arity(R) = 1, and43

binary if arity(R) = 2.44

A join query is defined as a set Q of relations. If we let attset(Q) =
⋃

R∈Q scheme(R),45

the result of the query, denoted as Join(Q), is the following relation over attset(Q)46

{

tuple u over attset(Q)
∣

∣ ∀R ∈ Q, u[scheme(R)] ∈ R
}

.47

If Q has only two relations R and S, we may also use R ⊲⊳ S as an alternative representation48

of Join(Q). The integer m =
∑

R∈Q |R| is the input size of the query. Concentrating on data49

complexity, we will assume that both |Q| and |attset(Q)| are constants.50

A join query Q is51

scheme-clean if no distinct R,S ∈ Q satisfy scheme(R) = scheme(S);52

simple if (i) Q is scheme-clean, and (ii) every R ∈ Q is binary.53

The primary goal of this paper is to design parallel algorithms for processing simple queries54

efficiently.55

Computation Model. We will assume the massively parallel computation (MPC) model56

which has been widely accepted as a reasonable abstraction of the massively parallel systems57

that exist today. In this model, there are p machines such that at the beginning the input58

elements are evenly distributed across these machines. For a join query, this means that each59

machine stores Θ(m/p) tuples from the input relations.60

An algorithm is executed in rounds, each of which has two phases:61

In the first phase, each machine does computation on the data of its local storage.62

In the second phase, the machines communicate by sending messages to each other.63

It is important to note that all the messages sent out in the second phase must have already64

been prepared in the first phase. This prevents a machine from, for example, sending65

information based on what has been received during the second phase. Another round is66

launched only if the problem has not been solved by the current round. In our context,67

solving a join query means that every tuple in the join result has been produced on at least68

one machine.69

The load of a round is defined by the largest number of words that is received by a machine70

in this round, that is, if machine i ∈ [1, p] receives xi words, then the load is maxpi=1 xi. The71

performance of an algorithm is measured by two metrics: (i) the number of rounds, and (ii)72

the load of the algorithm, defined to be the largest load incurred by a round, among all the73

rounds. CPU computation, which takes place in the first phase of each round, is for free.74

The number p of machines is assumed to be significantly less than m, which in this paper75

means p3 ≤ m specifically. All the algorithms to be mentioned, including those reviewed in76

the next subsection and the ones we propose, are randomized. Their loads are all bounded77

in a “high probability manner”. Henceforth, whenever we say that an algorithm has load at78

most L, we mean that its load is bounded by L with probability at least 1 − 1/p2. Finally,79

we consider that every value in dom can be encoded in a single word.80

1.2 Previous Results81

Afrati and Ullman [3] showed that any join query can be solved in a single round with82

load Õ(m/p1/min{k,|Q|}) where k = |attset(Q)|, and the notation Õ hides polylogarithmic83
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factors. Improving upon the earlier work [5], Koutris, Beame, and Suciu [10] presented84

another single-round algorithm that solves a join query with load Õ(m/p1/ψ) where ψ is the85

fractional quasi-packing number of the query. They also proved that Ω(m/p1/ψ) is a lower86

bound on the load of any one-round algorithm, under certain restrictions on the statistics87

that the algorithm knows about the input relations.88

For algorithms that perform more than one, but still O(1), rounds, Ω(m/p1/ρ) has been89

shown [10] to be a lower bound on the load, where ρ is the factional edge covering number90

of the query. The value of ρ never exceeds, but can be strictly smaller than, ψ, which91

implies that multi-round algorithms may achieve significantly lower loads than one-round92

counterparts, thus providing strong motivation for studying the former.93

Though matching the lower bound of Ω(m/p1/ρ) algorithmically still remains open for94

arbitrary join queries, this has been achieved for several special query classes [3, 7, 9, 10].95

In particular, Ketsman and Suciu [9] gave an algorithm, henceforth referred to as “the KS96

algorithm”, that solves a simple query in 7 rounds with load Õ(m/p1/ρ). The class of simple97

queries bears unique significance due to their relevance to subgraph enumeration, which is98

the problem of finding all occurrences of a subgraph G′ = (V ′, E′) in a graph G = (V,E).99

Regarding E as a relation of two attributes, i.e., source vertex and destination vertex, we100

can convert subgraph enumeration to a join query on |E′| copies of the “relation” E, and101

renaming the attributes in each relation to reflect how the vertices of V ′ are connected in G′;102

see [12] for an example where G′ is a clique of 3 vertices.103

1.3 Our Contributions104

Our main result is that any simple join query can be solved in the MPC model with the105

optimal load Õ(m/p1/ρ) using 3 rounds. Our algorithm is in fact similar to a subroutine106

deployed in the KS algorithm, which, however, also demands several other subroutines that107

entail a larger number of rounds, and are proved to be unnecessary by our solution. The108

improvement owes to a new theorem that reveals an intrinsic property of the problem, which109

will be explained shortly with an example. In retrospect, the algorithm of Kestman and110

Suciu [9] can be regarded as using sophisticated graph-theoretic ideas to compensate for not111

knowing that property. It is not surprising that their algorithm can be simplified substantially112

once our understanding on the structure of the problem has been strengthened.113

To gain an overview of our techniques, let us consider the join query Q illustrated by the114

graph in Figure 1a. An edge connecting vertices X and Y represents a relation R{X,Y } with115

scheme(R{X,Y }) = {X,Y }. Q is defined by the set of relations represented by the 18 edges116

in Figure 1a. Notice that attset(Q) = {A, B, ..., L} has a size of 12.117

We adopt an idea that is behind nearly all the join algorithms in the MPC model [7,9,10],118

namely, to divide the join result based on “heavy hitters”. Let λ be an integer parameter119

whose choice will be clarified later. A value x ∈ dom is heavy if an input relation R ∈ Q120

has at least m/λ tuples carrying this value on an attribute X ∈ scheme(R). The number of121

heavy values is O(λ). A value x ∈ dom is light if x appears in at least one relation R ∈ Q122

but is not heavy. A tuple in the join result may take a heavy or light value on each of the123

12 attributes A, ..., K. As there are at most O(λ) choices on each attribute (namely, light124

value or one of the O(λ) heavy values), there are O(λ12) “combinations” of choices from all125

attributes; we will refer to each combination as a configuration. If we manage to design an126

algorithm to find the result tuples under each configuration, executing this algorithm for all127
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Figure 1 Processing a join by constraining heavy values

configurations solves the query.128

Figure 1b illustrates what happens in one of the possible configurations where we constrain129

attributes D, E, F, and K to take heavy values d, e, f, and k respectively, and the other130

attributes to take light values. Accordingly, vertices D, E, F, and K are colored black in the131

figure. This configuration gives rise to a residue query Q′ whose input relations are decided132

as follows:133

For each edge {X,Y } with two white vertices, Q′ has a relation R′
{X,Y } that contains134

only the tuples in R{X,Y } ∈ Q using light values on both X and Y ;135

For each edge {X,Y } with a white vertex X and a black vertex Y , Q′ has a relation136

R′
{X,Y } that contains only the tuples in R{X,Y } ∈ Q each of which uses a light value on137

X and the constrained heavy value on Y ;138

For each edge {X,Y } with two black vertices, Q′ has a relation R′
{X,Y } with only one139

tuple that takes the constrained heavy values on X and Y , respectively.140

For example, in R′
{A,B}, a tuple must use light values on both A and B; in R′

{D,G}, a tuple141

must use value d on D and a light value on G; R′
{D,K} has only a single tuple with value d on142

D and k on K. Finding all result tuples for Q under the designated configuration amounts to143

evaluating the residue query Q′.144

Since the black attributes have had their values fixed in the configuration, they can145

be deleted from the residue query, after which some relations in Q′ become unary or even146

disappear. Relation R′
{A,D} ∈ Q′, for example, is now regarded as a unary relation over {A},147

with the understanding that every tuple is “piggybacked” the value d on D. Let us denote148

this unary relation as R′
{A}|d, which is illustrated in Figure 1c with a dotted edge extending149

from vertex A and carrying the label d. The deletion of D, E, F, and K results in 13 unary150

relations (e.g., two of them are over {A}, namely, R′
{A}|d and R′

{A}|e). Attributes G, H, and L151

now become isolated because they are not connected to any other vertices by solid edges.152

Relations R′
{A,B}, R′

{A,C}, R′
{B,C}, and R′

{I,J} still have arity 2 because their schemes do not153

have black attributes. R′
{D,K}, on the other hand, has disappeared.154

Our algorithm solves the residue query Q′ of Figure 1c in two steps:155

1. Perform a semi-join reduction which involves two substeps:156

For every vertex X in Figure 1c, intersect all the unary relations over {X} — if any —157

into a single list R′′
{X}. For example, the two unary relations R′

{A}|d and R′
{A}|e of A158

are intersected on A to produce R′′
{A}. Note that only the values in R′′

{A} can appear in159

the final join result.160

For every non-isolated attribute X in Figure 1c, use R′′
{X} to shrink each non-unary161

relation R′
{X,Y }, for all relevant Y , to kick out those tuples whose X-values do not162

appear in R′′
{X}. This reduces R′

{X,Y } to a subset R′′
{X,Y }. For example, after the163
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shrinking, every tuple in R′′
{A,B} uses a value in R′′

{A} on attribute A, and a value in164

R′′
{B} on attribute B.165

2. Perform a cartesian product. To see how, first observe that the residue query Q′ can now166

be further simplified into a join query Q′′ which includes:167

The relation R′′
{X} for each isolated attribute X;168

The relation R′′
{X,Y } for each solid edge in Figure 1c.169

Figure 1d gives a neater view of Q′′, from which it is easy to see that Join(Q′′) equals the170

cartesian product of (i) three unary relations R′′
{G}, R′′

{H}, and R′′
{L}, (ii) a binary relation171

R′′
{I,J}, and (iii) the result of the “triangle join” {R′′

{A,B}, R
′′
{A,C}, R′′

{B,C}}. This cartesian172

product can be generated in one round using the hypercube algorithm of [3], leveraging173

the fact that only light values are present in these relations. An optimal load can be174

achieved by setting λ = Θ(p1/(2ρ)).175

The KS algorithm deploys a similar procedure to deal with a primitive type of configura-176

tions (see Lemma 14 of [9]). The main difference, however, is that while the KS algorithm177

resorts to more sophisticated and round-intensive procedures to tackle other configurations178

(e.g., the one in Figure 1b), we proceed in the same manner for all configurations anyway.179

This simplification is the side product of a theorem established in this paper, which shows180

that the cartesian product of all the unary relations R′′
{X} — one for each isolated attribute181

X (in our example, R′′
{G}, R′′

{H}, and R′′
{L}) — is not too large on average, over all the possible182

configurations. This property allows us to duplicate such cartesian products onto a large183

number of machines, which in turn is the key reason why the hypercube algorithm can be184

invoked to finish Step 2 in one round. In fact, handling those unary relations has been the185

main challenge in all the algorithms [7, 9, 10] applying the “decomposition by heavy-hitters”186

idea, because the binary relations obtained from the decomposition are so-called “skew-free”,187

and hence, easy to process. In light of this, our theorem provides deeper insight into the188

reason why simple join queries can be processed with the optimal load.189

It is worth mentioning that while our algorithm performs 3 rounds, the second round,190

which transmits certain statistics to assist machine allocation in the last round, incurs only a191

small load that is a polynomial of p and does not depend on m. In other words, the algorithm192

performs only 2 rounds whose loads are sensitive to m. This brings us very close to finally193

settling the problem with the optimal load using genuinely only 2 rounds, and leaves open194

the question: is the transmission of those statistics absolutely necessary?195

2 Preliminaries196

2.1 Hypergraphs197

We define a hypergraph G as a pair (V, E) where:198

V is a finite set, where each element is called a vertex;199

E is a set of non-empty subsets of V, where each subset is called a hyperedge.200

Given a vertex X ∈ V and a hyperedge e ∈ E , we say that X and e are incident to each201

other if X ∈ e. A vertex X ∈ V is dangling if it is not incident on any hyperedge in E . In202

this paper, we consider only hypergraphs where there are no dangling vertices.203

Two distinct vertices X,Y ∈ V are adjacent to each other if there is an e ∈ E containing204

both X and Y . An edge e is unary if |e| = 1, or binary if |e| = 2. A binary hypergraph is205

one that has only binary edges. Given a subset V ′ of V, we define the subgraph induced by206

V ′ as (V ′, E ′) where E ′ = {V ′ ∩ e
∣

∣ e ∈ E ∧ V ′ ∩ e 6= ∅}.207
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2.2 Fractional Edge Coverings and Packings208

Let G = (V, E) be a hypergraph, and W a function mapping E to real values in [0, 1]. We call209

W (e) the weight of the hyperedge e, and
∑

e∈E W (e) the total weight of W . Given a vertex210

X ∈ V , we refer to
∑

e∈E:X∈eW (e), which is the sum of the weights of the edges incident to211

X, as the weight of X.212

W is a fractional edge covering of G if the weight of every vertex X ∈ V is at least 1. The213

fractional edge covering number of G, which is denoted as ρ(G), equals the smallest total214

weight of all the fractional edge coverings. W is a fractional edge packing if the weight of215

every vertex X ∈ V is at most 1. The fractional edge packing number of G, which is denoted216

as τ(G), equals the largest total weight of all the fractional edge packings. A fractional217

edge packing W is tight if it is simultaneously also a fractional edge covering. Likewise, a218

fractional edge covering W is tight if it is simultaneously also a fractional edge packing. Note219

that in both cases it must hold that the weight of every vertex X ∈ V is exactly 1.220

The lemma below lists several useful properties of binary hypergraphs:221

◮ Lemma 1. If G is binary, then:222

ρ(G) + τ(G) = |V| and ρ(G) ≥ τ(G), where the two equalities hold if and only if G admits223

a tight fractional edge packing (or covering).224

G admits a fractional edge packing W of total weight τ(G) such that225

1. The weight of every vertex X ∈ V is either 0 or 1.226

2. If Z is the set of vertices in V with weight 0, then ρ(G) − τ(G) = |Z|.227

Proof. The first bullet is proved in Theorem 2.2.7 of [13]. The fractional edge packing W in228

Theorem 2.1.5 of [13] satisfies Condition 1 of the second bullet. This W also fulfills Condition229

2, as is proved in Lemma 16 of [9]. ◭230

Example. Suppose that G is the binary hypergraph in Figure 1a. It has a fractional edge231

covering number ρ(G) = 6.5, as is achieved by the function W1 that maps {G, F}, {D, K},232

{I, J}, {E, H}, and {E, L} to 1, {A, B}, {A, C}, and {B, C} to 1/2, and the other edges to 0.233

Its fractional edge packing number is τ(G) = 5.5, achieved by the function W2 which is the234

same as W1 except that W2 maps {E, L} to 0. W2 also satisfies both conditions of the second235

bullet (notice that Z = {L}). ◭236

2.3 Hypergraph of a Join Query and the AGM Bound237

Every join query Q defines a hypergraph G = (V, E) where V = attset(Q) and E =238

{scheme(R)
∣

∣ R ∈ Q}. When Q is scheme-clean, for each hyperedge e ∈ E we denote239

by Re the input relation R ∈ Q with e = scheme(R). Note also that G must be binary if Q240

is simple. The following result is known as the AGM bound:241

◮ Lemma 2 ( [4]). Let Q be a scheme-clean join query, and W be a fractional edge covering242

of the hypergraph G = (V, E) defined by Q. Then, |Join(Q)| ≤
∏

e∈E |Re|
W (e).243

2.4 MPC Building Blocks244

Cartesian Products. Suppose that R and S are relations with disjoint schemes. Their245

cartesian product, denoted as R × S, is a relation over scheme(R) ∪ scheme(S) which con-246

sists of all the tuples u over scheme(R) ∪ scheme(S) such that u[scheme(R)] ∈ R and247
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u[scheme(S)] ∈ S. Sometimes, we need to compute the cartesian product of a set of relations248

Q = {R1, R2, ..., Rt} (t ≥ 2) with mutually disjoint schemes. For convenience, define CP(Q)249

as a short form for R1 ×R2 × ...×Rt. Note that CP(Q) can also be regarded as the result250

Join(Q) of the join query Q.251

Two results regarding cartesian products will be useful:252

◮ Lemma 3 ( [3]). Given Q = {R1, R2, ..., Rt}, we can compute CP(Q) in one round with253

load Õ(|CP(Q)|
1
t /p

1
t ) using p machines.254

◮ Lemma 4 ( [9]). Let Q1 and Q2 be two join queries that have input sizes at most m,255

and satisfy the condition that attset(Q1) ∩ attset(Q2) = ∅. Suppose that Join(Q1) can be256

computed in one round with load Õ(m/p
1/t1
1 ) using p1 machines, and similarly, Join(Q1) can257

be computed in one round with load Õ(m/p
1/t2
2 ) using p2 machines. Then Join(Q1)×Join(Q2)258

can be computed in one round with load Õ(m/min{p1/t1 , p1/t2}) using p1p2 machines.259

Skew-Free Queries. Let Q be a join query on binary relations. Regardless of whether Q is260

simple, it can be solved in a single round with a small load if no value appears too often in261

its input relations. Denote by m the input size of Q. Set k = |attset(Q)|, and list out the262

attributes in attset(Q) as X1, ..., Xk. Let pi be a positive integer, i ≤ [1, k], which is referred263

to as the share of Xi. A relation R ∈ Q with scheme {Xi, Xj} is skew-free if every value264

x ∈ dom fulfills both conditions below:265

R has O(m/pi) tuples u with u(Xi) = x;266

R has O(m/pj) tuples u with u(Xj) = x.267

Define share(R) = pi · pj . If every R ∈ Q is skew-free, Q is skew-free, and can be solved with268

the following guarantee:269

◮ Lemma 5 ( [5]). A skew-free query Q can be answered in one round with load270

Õ(m/minR∈Q share(R)) using
∏k
i=1 pi machines.271

One-Attribute Reduction. Let X ∈ att be an attribute. We have a ≥ 1 unary relations272

R1, ..., Ra over {X}, and b ≥ 1 binary relations S1, ..., Sb such that Si (1 ≤ i ≤ b) is a273

relation over {X,Yi} where Yi is an attribute in att different from X. Here, both a and b274

are constants. Our objective is to compute S#
i which includes all tuples u ∈ Si satisfying the275

condition that u(X) ∈
⋂a
j=1 Rj . We will refer to this operation as one-attribute reduction.276

Let n =
∑a
j=1 |Ri| +

∑b
i=1 |Si|. A value x ∈ dom is a heavy-hitter if at least n/p tuples in277

some Si (1 ≤ i ≤ b) use x as their X-values, where p is the number of machines assigned to278

the operation.279

◮ Lemma 6. One-attribute reduction can be performed in one round with load Õ(p+ n/p)280

using p machines, provided that each machine knows all the heavy-hitters.281

Proof. See Appendix A. ◭282

It is worth mentioning that the above lemma is an extension of a result in [10]. The p283

term in the load can actually be eliminated, if the machine knows also additional statistics284

of the heavy-hitters. We do not need to be bothered with such details because the term is285

affordable for our purposes.286
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3 A Taxonomy of the Join Result287

Recall that Section 1 outlined a method to partition the join result based on heavy and light288

values. In this section, we formalize this method and establish some fundamental properties.289

Denote by Q a simple join query, by G = (V, E) the hypergraph defined by Q, by m the290

input size of Q, and by k the number of attributes in attset(Q).291

Heavy and Light Values. Fix an arbitrary integer λ ∈ [1,m]. A value x ∈ dom is292

heavy if there exists a relation R ∈ Q and some attribute X ∈ scheme(R) such that293

|{u ∈ R
∣

∣ u(X) = x}| ≥ m/λ;294

light if x is not heavy, but appears in at least one relation R ∈ Q.295

Since each relation has O(1) attributes, the number of heavy values is O(λ).296

Configurations. Let H be an arbitrary (possibly empty) subset of attset(Q). A configuration297

of H is a tuple η over H such that η(X) is heavy for every X ∈ H. Obviously, each298

H ⊆ attset(Q) has at most O(λ|H|) configurations.299

Residue Relations and Residue Queries. Now, let us fix a configuration η of H, and aim300

to produce all the result tuples u ∈ Join(Q) consistent with the configuration, namely, u301

satisfies302

u(X) = η(X) for every X ∈ H, and303

u(X) is light for every X ∈ attset(Q) \ H.304

We will take a few steps to define what is the residue query under η, which is denoted as Q′
η

,305

whose result is precisely the set of all the qualifying u.306

Let e be a hyperedge in E that is not subsumed by H, i.e., e has at least one attribute307

outside H. This hyperedge is said to be active on η. Define e′ = e \ H, namely, the set of308

attributes in e that are outside H. The relation Re ∈ Q defines a residue relation under η309

which310

is over e′ and311

consists of every tuple v that is the projection of some tuple w ∈ Re “consistent” with η,312

namely: (i) w(X) = η(X) for every X ∈ e ∩ H, (ii) w(Y ) is light for every Y ∈ e′, and313

(iii) v = w[e′].314

The residue relation is denoted as R′
e′|η[e\e′], where η[e \ e′] is the projection of η on e \ e′,315

as was introduced in Section 1.1.316

We can now define the residue query as317

Q′
η

=
{

Re′|η[e\e′]

∣

∣ e ∈ E , e active on η
}

.318

Example. Suppose that Q is the query discussed in Section 1.3 with its hypergraph G given319

in Figure 1a. Consider the configuration η of H = {D, E, F, K} where η[D] = d, η[E] = e,320

η[F] = f, and η[K] = k. If e is the edge {A, D}, then e′ = {A} and η[e \ e′] = η[{D}] = d, such321

that R′
e′|η[e\e′] is the relation R′

{A}|d mentioned in Section 1.3. If e is the edge {A, B}, on the322

other hand, then e′ = {A, B} and η[e \ e′] = ∅, so that R′
e′|η[e\e′] can be written as R′

{A,B}|∅,323

and is the relation R′
{A,B} in Section 1.3. The residue query Q′

η
is precisely the query Q′

324

described in Section 1.3. (to be continued)N325
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Figure 2 Subgraph induced by L

It is rudimentary to verify326

Join(Q) =
⋃

H

(

⋃

config. η of H

Join(Q′
η
) × {η}

)

. (1)327

Denote by mη the input size of Q′
η
. The next proposition says that total input size of all328

the residue queries is not too large:329

◮ Proposition 7. If Q is simple,
∑

config. η of H mη = O(m · λk−2) holds for every H ⊆330

attset(Q).331

Proof. See Appendix B. ◭332

4 A Join Computation Framework333

Given a simple join query Q, we will concentrate on an arbitrary subset H of attset(Q) in334

this section. In Sections 4.1-4.2, we will generalize the strategy illustrated in Section 1.3 into335

a formal framework for producing336

⋃

config. η of H

Join(Q′
η
). (2)337

Section 4.3 will then establish a theorem on this framework, which is the core of the techniques338

proposed in this paper.339

4.1 Removing the Attributes in H340

We will refer to each attribute in H as a heavy attribute. Define L = scheme(Q) \ H, where341

each attribute is called a light attribute. Denote by G = (V, E) the hypergraph defined by Q.342

An edge e ∈ E is (i) a light edge if e contains two light attributes, or (ii) a cross edge if e343

contains a heavy attribute and a light attribute. A light attribute X ∈ L is a border attribute344

if it appears in at least one cross edge e of G; note that this implies e \ H = {X}. Denote by345

G′ = (L, E ′) the subgraph of G induced by L. A vertex X ∈ L is isolated if {X} is the only346

edge in E ′ incident to X. Define I to be the set of isolated vertices in G′.347

Example (cont.). As before, let Q be the join query whose hypergraph G is shown in348

Figure 1a, and set H = {D, E, F, K}. L includes all the white vertices in Figure 1b. {A, B} is a349

light edge, {A, D} is a cross edge, while {D, K} is neither a light edge nor a cross edge. All the350

vertices in L except J are border vertices. Figure 2 shows the subgraph of G induced by L,351

where a unary edge is represented by a box and a binary edge by a segment. Notice that no352

unary edge covers J. Vertices G, H, and L are the only isolated vertices. (to be continued)N353
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4.2 Semi-Join Reduction354

Recall that every configuration η of H gives rise to a residue query Q′
η
. Next, we will355

transform Q′
η

into an alternative join query Q′′
η

which, as shown in the next section, can be356

processed in a single round in the MPC model.357

First of all, observe that the hypergraph defined by Q′
η

is always G′ = (L, E ′), regardless358

of η. Consider a border attribute X ∈ L, and a cross edge e of G = (V, E) incident to359

X. As explained in Section 3, the input relation Re ∈ Q defines a unary residue relation360

R′
e′|η[e\e′] ∈ Q′

η
where e′ = e \ H. Since e′ = {X}, we can as well write the relation as361

R′
{X}|η[e\{X}]. Now that every such relation has the same scheme {X}, we can define:362

R′′
{X}|η =

⋂

cross edge e containing X

R′
{X}|η[e\{X}]. (3)363

Example (cont.). Let H and η be the same as in the earlier description of this example.364

Set X to the border attribute A. If e is the cross edge {A, D}, the example in Section 3 has365

shown that R′
e′|η[e\e′] is the relation R′

{A}|d obtained in Section 1.3. Similarly, if e is the cross366

edge {A, E}, R′
e′|η[e\e′] is the relation R′

{A}|e obtained in Section 1.3. As A is contained only367

in these two cross edges, R′′
{A}|η is the intersection of R′

{A}|d and R′
{A}|e, and corresponds to368

the relation R′′
{A} given in Section 1.3. (to be continued)N369

Consider a light edge e = {X,Y } in G. Recall that Re defines a residue relation370

R′
e′|η[e\e′] ∈ Q′

η
, which can be written as R′

e|∅ because e′ = e \ H = e. We define R′′
e|η as a371

relation over e which consists of every tuple u ∈ R′
e|∅ satisfying both conditions below:372

(applicable only if X is a border attribute) u(X) ∈ R′′
X|η;373

(applicable only if Y is a border attribute) u(Y ) ∈ R′′
Y |η.374

Note that if neither X nor Y is a border attribute, then R′′
e|η = R′

e|∅.375

Example (cont.). Let us concentrate the light edge e = {A, B}. The example in Section 3376

has explained that R′
e′|η[e\e′] = R′

{A,B}|∅ is the relation R′
{A,B} obtained in Section 1.3. As A377

and B are both border attributes, R′′
{A,B}|η includes all the tuples in R′

{A,B} that take a value378

in R′′
{A}|η on attribute A and a value in R′′

{B}|η on attribute B. Note that R′′
{A,B}|η corresponds379

to the relation R′′
{A,B} given in Section 1.3. (to be continued)N380

Every vertex X ∈ I must be a border attribute, and thus must have R′′
X|η defined.381

Therefore, we can legally define:382

Q′′
light|η = {R′′

e|η

∣

∣ light edge e ∈ E}383

Q′′
I|η = {R′′

{X}|η

∣

∣ X ∈ I}384

Q′′
η

= Q′′
light|η ∪ Q′′

I|η.385

Notice that the join queries Q′′
I|η, Q′′

light|η, and Q′′
η

are all scheme-clean.386

Example (cont.). Q′′
light|η consists of R′′

{A,B}, R′′
{A,C}, R{B,C}, and R{I,J}, and Q′′

I|η consists387

of R′′
{G}, R′′

{H}, and R′′
{L}, where all the relation names follow those given in Section 1.3. ◭388

◮ Proposition 8. Join(Q′
η
) = Join(Q′′

η
) = CP(Q′′

I|η) × Join(Q′′
light|η).389

Proof. See Appendix C. ◭390
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We will refer to the above process of converting Q′
η

to Q′′
η

as semi-join reduction, and391

call Q′′
η

the reduced query of η.392

4.3 The Isolated Cartesian Product Theorem393

We are ready to present the first main result of this paper:394

◮ Theorem 9 (The Isolated Cartesian Product Theorem).

∑

config. η of H

∣

∣

∣
CP(Q′′

I|η)
∣

∣

∣
= O

(

λ2(ρ−|I|)−|L\I| ·m|I|
)

(4)

where ρ is the fractional edge covering number of Q.

395

The rest of the section serves as a proof of the above theorem. To start with, define F to396

be the set of attributes in H that are adjacent to at least one isolated vertex in G. The left397

hand side of (4) can be bounded by looking at only the configurations of F :398

◮ Lemma 10.
∑

config. η of H

∣

∣

∣CP(Q′′
I|η)

∣

∣

∣ = O
(

λ|H|−|F|
)

·
∑

config. η
′ of F

∣

∣

∣CP(Q′′
I|η′)

∣

∣

∣.399

Proof. See Appendix D. ◭400

Now, let us take a fractional edge packing W of the hypergraph G = (V, E) that obeys401

the second bullet of Lemma 1. Denote by τ the total weight of W which, by definition of W ,402

is the fractional edge packing number of G. Define:403

Z =
{

X ∈ V
∣

∣

∑

e∈E:X∈e

W (e) = 0
}

404

that is, Z is the set of vertices with weight 0 under W . Set I0 = I ∩ Z and I1 = I \ I0.405

Since W satisfies Condition 1 of the second bullet in Lemma 1, we know that every vertex in406

I1 has weight 1, while every vertex in I0 has weight 0.407

Example. Let G be the hypergraph in Figure 1a. As explained by the example in Section 2.2,408

the fractional edge packing number τ of G is achieved by the function W that maps {G,409

F}, {D, K}, {I, J}, and {E, H} to 1, {A, B}, {A, C}, and {B, C} to 1/2, and the other edges410

to 0; Z contains a single vertex L. Setting H = {D, E, F, K} yields I = {G, H, L}, I0 = {L},411

and I1 = {G, H}. F = {D, E, F}, noticing that K is not adjacent to any isolated vertex.412

(to be continued)N413

We now present a crucial lemma which is in fact a stronger version of Theorem 9:414

◮ Lemma 11.
∑

config. η
′ of F

∣

∣

∣CP(Q′′
I|η′)

∣

∣

∣ = O
(

λ|F|−|I1| ·m|I|
)

.415

Before proving the above lemma, let us first see how it can be used to complete the proof416

of Theorem 9. By combining Lemmas 10 and 11, we know that the left hand side of (4) is417

O(λ|H|−|I1| ·m|I|). Hence, it suffices to prove418

|H| − |I1| ≤ 2(ρ− |I|) − |L \ I| ⇔419

|H| + |L \ I| + |I| + |I| − |I1| ≤ 2ρ ⇔420

|V| − ρ+ |I0| ≤ ρ (note: |V| = |H| + |L \ I| + |I|) ⇔421

τ + |I0| ≤ ρ (note: ρ+ τ = |V| by Lemma 1)422

which is true because ρ − τ = |Z| by Condition 2 of the second bullet in Lemma 1, and423

I0 ⊆ Z.424
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Figure 3 Illustration of Q
∗

Proof of Lemma 11. Our idea is to construct a set Q∗ of relations such that Join(Q∗) has425

a result size at least the left hand side of the inequality in Lemma 11. Then, we will prove426

that the hypergraph of Q∗ has a certain fractional edge covering which, together with the427

AGM bound, yields an upper bound on |Join(Q∗)| which happens to be the right hand side428

of the inequality.429

We construct Q∗ as follows. Initially, set Q∗ to ∅. For every cross edge e ∈ E incident to430

an isolated vertex, add to Q∗ a relation R∗
e = Re. For every X ∈ F , add a unary relation431

R∗
{X} to Q∗ which consists of all the heavy values on attribute X. Note that R∗

{X} has O(λ)432

tuples. Finally, for every Y ∈ I0, add a unary relation R∗
{Y } to Q∗ which contains all the433

heavy and light values on attribute Y .434

Define G∗ = (V∗, E∗) as the hypergraph defined by Q∗. Note that V∗ = I ∪ F , while E∗
435

consists of all the cross edges in G, |F| unary edges {X} for every X ∈ F , and |I0| unary436

edges {Y } for every Y ∈ I0.437

Example (cont.). Figure 3 shows the hypergraph of the Q∗ constructed, where as before a438

box and a segment represent a unary and a binary edge, respectively. (to be continued)N439

◮ Lemma 12.
∑

config. η
′ of F

∣

∣

∣CP(Q′′
I|η′)

∣

∣

∣ ≤ |Join(Q∗)|.440

Proof. See Appendix E. ◭441

◮ Lemma 13. G∗ admits a tight fractional edge covering W∗ satisfying
∑

X∈F W
∗({X}) =442

|F| − |I1|.443

Proof. Recall that our proof of Theorem 9 began with a fractional edge packing W of G.444

We construct a desired function W ∗ from W as follows. First, for every cross edge e ∈ E , set445

W ∗(e) = W (e). Observe that every edge in E incident to Y ∈ I must be a cross edge. Hence,446

∑

binary e∈E∗:Y ∈eW
∗(e) is precisely the weight of Y under W . By definition of W , we thus447

have ensured
∑

binary e∈E∗:Y ∈eW
∗(e) = 1 for each Y ∈ I1, and

∑

binary e∈E∗:Y ∈eW
∗(e) = 0448

for each Y ∈ I0. As a second step, we set W ∗({Y }) = 1 for each Y ∈ I0 so that the edges in449

E∗ containing Y have a total weight of 1.450

It remains to make sure that each attribute X ∈ F has a weight 1 under W ∗. Since W is451

a fractional edge packing of G, it must hold that
∑

binary e∈E∗:X∈eW (e) ≤ 1. This permits452

us to assign the following weight to the unary edge {X}:453

W ∗({X}) = 1 −
∑

binary e∈E∗:X∈e

W (e).454
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This finishes the design of W ∗ which is now a tight fractional edge covering of G∗. Clearly:455

∑

X∈F

W ∗({X}) = |F| −
∑

X∈F

∑

binary e∈E∗:X∈e

W (e). (5)456

Every binary edge e ∈ E∗ contains a vertex in F and a vertex in I. Therefore:457

∑

X∈F

∑

binary e∈E∗:X∈e

W (e) =
∑

Y ∈I

∑

binary e∈E∗:Y ∈e

W (e) = |I1|.458

Putting together the above equation with (5) completes the proof. ◭459

Example (cont.). For the G∗ in Figure 3, a fractional edge covering in Lemma 13 is given460

by the function W ∗ that maps {G, F}, {E, H}, {D}, and {L} to 1, and the other edges to 0.461

Note that
∑

X∈F W
∗({X}) = W ∗({D}) = 1, same as |F| − |I1| = 3 − 2 = 1. ◭462

The AGM bound in Lemma 2 tells us that463

Join(Q∗) ≤
∏

e∈E∗

|R∗
e |
W∗(e) =

(

∏

X∈F

|R∗
{X}|W

∗({X})
)(

∏

Y ∈I

∏

e∈E∗:Y ∈e

|R∗
e |
W∗(e)

)

464

=
(

∏

X∈F

(O(λ))W
∗({X})

)(

∏

Y ∈I

∏

e∈E∗:Y ∈e

mW∗(e)
)

465

(by Lemma 13) = O(λ|F|−|I1|) ·m|I|
466

which completes the proof of Lemma 11.467

5 A 5-Round MPC Algorithm468

We now proceed to implement the strategy discussed in the previous section under the MPC469

model. Our objective in this section is to explain how the isolated cartesian product theorem470

can be utilized to answer a simple join query Q with the optimal load O(m/p1/ρ) in a rather471

straightforward manner. Hence, we intentionally leave out the optimization tricks to reduce472

the number of rounds, but even so, our algorithm finishes in only 5 rounds. Those tricks are473

the topic of the next section.474

A statistical record is defined as a tuple (R,X, x, cnt), where R is a relation in Q, X475

an attribute in scheme(R), x a value in dom, and cnt the number of tuples u ∈ R with476

u(X) = x. Specially, (R, ∅,nil, cnt) is also regarded as a statistical record where cnt gives477

the number of tuples in R that use only light values. A histogram is defined as the set of478

statistical records for all possible R, X, and x satisfying (i) cnt = Ω(m/p1/ρ), or (ii) X = ∅479

(and, hence x = nil); note that there are only O(p1/ρ) such records. We assume that every480

machine has a local copy of the histogram. It is worth mentioning that all existing join481

algorithms [5,9], which strive to finish in a specifically small — rather than just asymptotically482

constant — number of rounds, demand that each machine should be preloaded with pO(1)
483

statistical records.484

Henceforth, the value of λ will be fixed to Θ(p1/(2ρ)). We focus on explaining how to485

compute (2) for an arbitrary subset H of attset(Q). Set k = |attset(Q)|. As attset(Q) has486

2k = O(1) subsets, processing all of them in parallel increases the load only by a constant487

factor, and definitely discovers the entire Join(Q), as is guaranteed by (1). Our algorithm488

produces (2) in three steps:489

1. Generate the input relations of the residue query Q′
η

of every configuration η of H.490

2. Generate the input relations of the reduced query Q′′
η

of every η.491
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3. Evaluate Q′′
η

for every η.492

The number of configurations of H is O(λ|H|) = O(λk) = O(pk/(2ρ)), which is O(p) because493

ρ ≥ k/2 by the first bullet of Lemma 1. Next, we elaborate on the details of each step.494

Step 1. Proposition 7 tells us that the input relations of all the residue queries have495

O(m · λk−2) tuples in total. We allocate p′
η

= ⌈p · mη

Θ(m·λk−2)
⌉ machines to store the relations496

of Q′
η

, so that each machine assigned to Q′
η

keeps on average O(mη/p
′
η

) = O(m · λk−2/p) =497

O(m/p1/ρ) tuples, where the last equality used ρ ≥ k/2. Since each machine i ∈ [1, p] can498

use the histogram to calculate mη precisely for each η, it can compute locally the id range of499

the mη machines responsible for Q′
η
. If a tuple u in the local storage of machine i belongs500

to Q′
η
, the machine sends u to a random machine within that id range. Standard analysis501

shows that each of the mη machines receives roughly the same number of tuples, such that502

this step can be done in a single round with load Õ(m/p1/ρ).503

Step 2. Now that all the input relations of each Q′
η

have been stored on p′
η

machines, the504

semi-join reduction that converts Q′
η

to Q′′
η

becomes a standard process [9] that can be505

accomplished in 2 rounds with load Õ(mη/p
′
η
) = Õ(m/p1/ρ).506

Step 3. This step starts by letting each machine know about the value of |CP(Q′′
I|η)| for507

every η. For this purpose, each machine can broadcast to all machines how many tuples it508

has in R′′
{X}|η for every X ∈ I and every η. Since there are O(p) different η, at most O(p)509

numbers are broadcast by each machine, such that the load of this round is O(p2). With all510

these numbers, each machine can figure out independently the values of all |CP(Q′′
I|η)|. We511

will call this round the statistical round henceforth.512

We allocate513

p′′
η

=

⌈

p ·
|CP(Q′′

I|η)|

Θ(λ2(ρ−|I|)−|L\I| ·m|I|)

⌉

(6)514

machines to computing Q′′
η

. Theorem 9 guarantees that the total number of machines needed515

by all the configurations is at most p. We complete the algorithm with the lemma below:516

◮ Lemma 14. Q′′
η

can be answered in one round with load O(m/p1/ρ) using p′′
η

machines.517

Proof. Join(Q′′
η

) is the cartesian product of CP(Q′′
I|η) and Join(Q′′

light|η), as shown Propo-518

sition 8. By Lemma 3, if we deploy p′′
η
/λL\I machines to compute CP(Q′′

I|η) in one round,519

the load is520

Õ







CP(Q′′
I|η)1/|I|

(

p′′
η

λL\I

)1/|I|






= Õ

(

m · λ
2(ρ−|I|)

|I|

p1/|I|

)

= Õ

(

m · p
2(ρ−|I|)

2ρ|I|

p1/|I|

)

= Õ

(

m

p1/ρ

)

.521

Regarding Q′′
light|η, first verify that attset(Q′′

light|η) = L\I. Recall that the input relations522

of Q′′
light|η contain only light values. Hence, this join query is skew-free if we assign a share523

of λ to each attribute in L \ I. By Lemma 5, we can solve it in one round with load524

Õ(m/λ2) = Õ(m/p1/ρ) using λL\I machines.525

Lemma 4 now tells us that Join(Q′′
η

) can be computed in one round with load Õ(m/p1/ρ)526

using (p′′
η
/λL\I) · λL\I = p′′

η
machines. ◭527
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6 A 3-Round MPC Algorithm528

Next, we will improve the algorithm in Section 5 by reducing the number of rounds to 3.529

6.1 A New Approach to Handle Light Relations530

Let G = (V, E) be the hypergraph defined by the simple join query Q given. Fix an arbitrary531

subset H of attset(Q). Recall that, for every light edge e ∈ E , our 5-round algorithm532

needed to generate R′′
e|η for every configuration η of H. Next, we will describe an alternative533

approach to perform the join without explicitly computing R′′
e|η, which is crucial for obtaining534

a 3-round algorithm (to be presented in the next subsection).535

Fix a configuration η of H. Consider a light edge e of G, and an attribute X ∈ e. Define536

R#X
e|η as follows:537

if X is not a border attribute, R#X
e|η = R′

e|∅;538

otherwise, R#X
e|η is a relation over e that consists of every tuple u ∈ R′

e|∅ satisfying539

u(X) ∈ R′′
X|η.540

◮ Proposition 15. R′′
e|η = R#X

e|η ⊲⊳ R#Y
e|η .541

Proof. See Appendix F. ◭542

Example. Returning to the query Q in Figure 1a, consider again H = {D, E, F, K}, and the543

configuration η of H with η(D) = d, η(E) = e, η(F) = f, and η(K) = k. We will illustrate the544

above definitions by showing how to avoid explicitly computing R′′
{A,B}|η and R′′

{I,J}|η (namely,545

R′′
{A,B} and R′′

{I,J} in the description of Section 1.1). We will generate R#A

{A,B}|η, R#B

{A,B}|η,546

R#I

{I,J}|η, and R#J

{I,J}|η such that R′′
{A,B}|η = R#A

{A,B}|η ⊲⊳ R#B

{A,B}|η and R′′
{I,J}|η = R#I

{I,J}|η ⊲⊳547

R#J

{I,J}|η.548

Among the four relations to compute, R#J

{I,J}|η is the simplest because J is not a border549

attribute; hence, R#J

{I,J}|η equals R′
{I,J}|∅ (i.e., R′

{I,J} in Section 1.1). Regarding the other550

three relations, we will elaborate only on the generation of R#A

{A,B} because the same ideas551

apply to R#B

{A,B} and R#I

{I,J}.552

Under η, there are two unary residue relations defined over {A}, namely, R′
{A}|d and553

R′
{A}|e. The intersection of those two relations yields the unary relation R′′

{A}|η (i.e., R′′
{A}554

in Section 1.1). Then, R#A

{A,B} consists of every tuple u in the residue relation R′
{A,B}|∅ (i.e.,555

R′
{A,B} in Section 1.1) whose u(A) appears in R′′

{A}|η. ◭556

Define:557

Q#
light|η = {R#X

e|η

∣

∣ every light edge e ∈ E , every attribute X ∈ e}558

Q#
η

= Q#
light|η ∪ Q′′

I|η.559

Proposition 15 immediately implies Join(Q′′
η
) = Join(Q#

η
) = CP(Q′′

I|η) × Join(Q#
light|η).560
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6.2 The Algorithm561

We are now ready to clarify how to solve Q in 3 rounds, concentrating on a specific subset H562

of attset(Q) (set k = |attset(Q)|):563

Round 1: Generate the input relations of Q#
η

for every configuration η of H.564

Round 2: Same as the statistical round in Section 5.565

Round 3: Evaluate Q#
η

for every η.566

It remains to elaborate on the details of Round 1 and 3.567

Round 1. Allocate p′
η

= ⌈p · mη

Θ(m·λk−2)
⌉ machines to computing the relations of Q#

η
. Let568

us focus on a specific configuration η. To generate the relations in Q#
light|η, we carry out569

one-attribute reduction (see Section 2.4) for every border attribute X ∈ L. Specifically, this570

operation is performed on571

the unary relations R′
{X}|η[e\{X}] for all cross edges e of G incident to X, and572

the binary relations R′
e|∅ for all light edges e of G incident to X.573

It generates the R#X
e|η for every light edge e incident to X. Note that a value x ∈ dom is574

a heavy-hitter for this operation only if x appears in some input relation of Q mη/p
′
η

=575

Ω(m·λk−2

p ) = Ω(m/p1/ρ) times. Therefore, every machine can independently figure out576

the heavy-hitters from its histogram, and send each tuple in its local storage directly to577

the corresponding machines where the tuple is needed to perform one-attribute reductions.578

By Lemma 6, all the one-attribute reductions entail an overall load of Õ(p + mη/p
′
η
) =579

Õ(p+m/p1/ρ).580

The relations in Q′′
I|η can be easily produced by set intersection. Specifically, for every581

isolated attribute X ∈ I, we obtain R′′
{X}|η as the intersection of all the unary relations582

R′
{X}|η[e\{X}], where e ranges over all cross edges of G incident to X. This can be done by583

standard hashing in one round with load Õ(mη/p
′
η
) = Õ(m/p1/ρ).584

Round 3. Allocating p′′
η
, as is given in (6), machines to each configuration η of H, we585

compute Q#
η

in exactly the same way Lemma 14 computes Q′′
η
. In fact, the statement of586

Lemma 14, as well as the proof, holds verbatim by replacing every Q′′
η

with Q#
η

and every587

Q′′
light|η with Q#

light|η.588

We thus have obtained a 3-round algorithm for answering a simple join query with load589

Õ(p2 + m/p1/ρ) which is Õ(m/p1/ρ) under our assumption m ≥ p3. This establishes the590

second main result of this paper:591

◮ Theorem 16. Given a simple join query with input size m and a fractional edge

covering number ρ, we can answer it in the MPC model using p machines in three rounds

with load O(m/p1/ρ), assuming that m ≥ p3, and that each machine has been preloaded

with a histogram as is prescribed in Section 5.

592

It is worth mentioning that Round 2 of our algorithm (i.e., the statistical round) has a593

load of O(p2) such that only the first and third rounds of the algorithm entail a load sensitive594

to m.595
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A Proof of Lemma 6634

For each i ∈ [1, b], divide Si into (i) S1
i , which includes the tuples of u ∈ Si where u(X) is a635

heavy-hitter, and (ii) S2
i = Si \ S1

i . Accordingly, divide S#
i into (i) S#1

i , which includes the636

tuples of u ∈ S#
i where u(X) is a heavy-hitter, and (ii) S#2

i = S#
i \ S#1

i . We will compute637

S#1
i and S#2

i , separately.638

The computation of S#1
1 , ..., S#1

b is trivial. Since there are at most p heavy-hitters, each639

machine storing a heavy-hitter x in some Rj (j ∈ [1, a]) simply broadcasts the pair (x, j)640

to all machines. This takes one round with load O(p). A machine holding a tuple u with641

u(X) = x in some Si (i ∈ [1, a]) adds u to S#1
i only if it has received (x, j) for all j ∈ [1, a].642
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S#2
1 , ..., S#2

b , on the other hand, can be produced using Lemma 5. Assign a share of p to X643

and a share of 1 to every other attribute. By definition, the join query {R1, ..., Ra, S
2
1 , ..., S

2
b }644

is skew-free, and therefore, can be solved in round round with load Õ(n/p). For each i ∈ [1, b],645

S#2
i can then be easily obtained from the result of this query.646

B Proof of Proposition 7647

Let us first introduce a definition. Suppose that S is a subset of H. We say that a configuration648

ηH of H extends a configuration ηS of S if ηS = ηH[S]. O(λ|H|−|S|) configurations ηH of H649

can extend ηS , because every attribute in H \ S has O(λ) heavy values.650

Returning to the proof of the proposition, Let η be an arbitrary configuration of H, and651

e ∈ E an arbitrary hyperedge that is active on η. Define H′ = e ∩ H and e′ = e \ H. A652

tuple u ∈ Re belongs to Re|η[e\e′] only if η extends the configuration u[H′] of H′. There653

are O(λ|H|−|H′|) such η. As |E| = O(1), u can contribute O(1) to the term mη for at most654

O(λ|H|−|H′|) different η.655

It remains to prove that |H| − |H′| ≤ k − 2. Observe that |H| − |H′| is the number of656

attributes in H that do not belong to e. This number is at most k − 2 because e has two657

attributes.658

C Proof of Proposition 8659

The second equality follows directly from the fact that the scheme of each relation in Q′′
I|η660

is disjoint with the scheme of any other relation in Q′′
η
. Next we focus on proving the first661

equality.662

We first show Join(Q′
η
) ⊆ Join(Q′′

η
). Consider an arbitrary tuple u ∈ Join(Q′

η
). For663

any attribute X ∈ L and any cross edge e of G containing X, since u(X) ∈ R{X}|η[e\{X}],664

it must hold that u(X) ∈ R′′
{X}|η. For any light edge e = {X,Y } ∈ E , since u[e] ∈ R′

e|∅, it665

must hold that u[e] ∈ R′′
e|η. It thus follows that u ∈ Join(Q′′

η
).666

Next, we show Join(Q′′
η
) ⊆ Join(Q′

η
). Consider an arbitrary tuple u ∈ Join(Q′′

η
). For667

any attribute X ∈ L, since u(X) ∈ R′′
{X}|η, it must hold that u(X) ∈ R{X}|η[e\{X}] for any668

cross edge e of G containing X. For any light edge e = {X,Y } ∈ E , since u[e] ∈ R′′
e|η, it669

must hold that u[e] ∈ R′
e|∅. It thus follows that u ∈ Join(Q′

η
).670

D Proof of Lemma 10671

Consider any R′′
{X}|η ∈ Q′′

I|η. Observe that the content of R′′
{X}|η does not depend on η(Y )672

for any Y ∈ H \ F . In other words, if we set η
′ = η[F ], then R′′

{X}|η is precisely the same673

as R′′
{X}|η′ . Notice that η

′ is a configuration of F that is extended by η (see the proof674

of Proposition 7 for the definition of extension). The lemma follows from the fact that a675

configuration η
′ of F can be extended by O(λ|H|−|F|) configurations η of H.676
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E Proof of Lemma 12677

We will prove678

⋃

config. η
′ of F

CP(Q′′
I|η′) × {η

′} ⊆ Join(Q∗). (7)679

from which the lemma follows.680

Take a tuple u from the left hand side of (7), and set η
′ = u[F ]. Based on the definition681

of Q′′
I|η′ , it is easy to verify that u[e] ∈ Re for every cross edge e ∈ E , and hence, u[e] ∈ R∗

e .682

Furthermore, u(X) ∈ R∗
{X} for every X ∈ F because u(X) = η

′(X) is a heavy value. Finally,683

obviously u(Y ) ∈ R∗
{Y } for every Y ∈ I0. All these facts together ensure that u ∈ Join(Q∗).684

F Proof of Proposition 15685

Consider first the case where X and Y are both border attributes. We have686

R′′
e|η = R′′

X|η ⊲⊳ R
′
e|∅ ⊲⊳ R

′′
Y |η687

= (R′′
X|η ⊲⊳ R

′
e|∅) ⊲⊳ (R′

e|∅ ⊲⊳ R
′′
Y |η)688

= R#X
e|η ⊲⊳ R#Y

e|η .689

If X is a border attribute but Y is not, then:690

R′′
e|η = R′′

X|η ⊲⊳ R
′
e|∅691

= (R′′
X|η ⊲⊳ R

′
e|∅) ⊲⊳ R′

e|∅692

= R#X
e|η ⊲⊳ R#Y

e|η .693

If neither X nor Y is a border attribute, the proposition is trivial.694


