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Abstract

In entity matching classification, we are given two sets R and S of objects where whether r and s

form a match is known for each pair (r, s) ∈ R × S. If R and S are subsets of domains D(R) and

D(S) respectively, the goal is to discover a classifier function f : D(R) × D(S) → {0, 1} from a

certain class satisfying the property that, for every (r, s) ∈ R × S, f(r, s) = 1 if and only if r and

s are a match.

Past research is accustomed to running a learning algorithm directly on all the labeled (i.e.,

match or not) pairs in R×S. This, however, suffers from the drawback that even reading through

the input incurs a quadratic cost. We pursue a direction towards removing the quadratic barrier.

Denote by T the set of matching pairs in R × S. We propose to accept R, S, and T as the input,

and aim to solve the problem with cost proportional to |R| + |S| + |T |, thereby achieving a large

performance gain in the (typical) scenario where |T | ≪ |R||S|.
This paper provides evidence on the feasibility of the new direction, by showing how to

accomplish the aforementioned purpose for entity matching with linear classification, where a

classifier is a linear multi-dimensional plane separating the matching and non-matching pairs. We

actually do so in the MPC model, echoing the trend of deploying massively parallel computing

systems for large-scale learning. As a side product, we obtain new MPC algorithms for three

geometric problems: linear programming, batched range counting, and dominance join.
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1 Introduction

Entity matching has garnered considerable attention from the database community (repres-

entative works: [7, 13, 15, 22, 21, 23]). Generally speaking, the objective is to determine

whether two objects o1 and o2 belong to the same entity, e.g., “are the two voice recordings by

the same person?”. For this purpose, we are given training sets R and S such that, each pair

(r, s) ∈ R×S carries a label, indicating whether r matches s. The goal of learning is to produce

a classifier of a certain type that correctly decides the matching results for all (r, s) ∈ R × S.

This classifier will then be applied to new, unknown, object pairs (o1, o2) /∈ R × S.

The literature on entity matching is accustomed to applying a learning algorithm directly

on the labeled R × S. This suffers from the drawback that even reading R × S itself forces a

quadratic cost. This issue has been recognized; for instance, [21] stated that “the resulting

quadratic complexity is inefficient for large datasets even on cloud infrastructures.” In practice,

it is commonly dealt with using the so-called “blocking technique” (e.g., [13, 21, 22, 23]),

which relies on heuristic rules to divide R and S into blocks, such that only objects from

the same block can possibly match each other (e.g., a block includes the male recordings,
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while the female recordings form another block). This technique, however, offers no provable

improvement in theory.

We will pursue a different direction towards removing the quadratic pitfall. The funda-

mental observation is that often times the non-matching pairs in R × S by far out-number

the matching ones. So, why not supply only R, S, and the set T of matching pairs in R × S?

Conceptually, nothing is lost because if (r, s) ∈ R × S does not appear in T , it must be

a non-matching pair. The hope is that we can design algorithms that produce precisely

the same learning result, but with cost proportional to |R| + |S| + |T |, thus harvesting a

significant gain when |T | ≪ |R||S|. Algorithmically, this is essentially asking: is it possible

to carry out the learning without enumerating R × S?

This paper will establish theoretical evidence on the feasibility of this direction. We will

look at a specific form of entity matching—called entity matching with linear classification—

where the classifier is a multi-dimensional plane separating matching and non-matching

pairs. We will achieve the purpose on coarse-grained parallel computing platforms (e.g.,

MapReduce [10] and Spark [29]), responding to the need of deploying such platforms for

large-scale learning. Our algorithmic endeavor will require us to attack several fundamental

geometric problems as well. Next, after introducing the computation model, we will formally

define all the relevant problems, and then present our results.

1.1 The Computation Model

We will work under the massively parallel computation (MPC) model due to its popularity

in the database area [4, 1, 3, 5, 19, 24, 25, 20]. In this model, p machines are interconnected

in a network. An algorithm runs in rounds, each of which has two phases. In the first phase,

every machine carries out computation locally, whereas in the second phase, the machines

exchange information over the network. Specifically, a machine u can send messages to

arbitrary machines in the second phase, as long as u has prepared those messages in the first

phase (of the same round). This means, for example, that u is not allowed to decide what to

send based on what is received in this round.

The performance of an algorithm is measured by (i) the amount of network communication,

and (ii) The number of rounds executed. The first metric, specifically, is measured in load.

Formally, the load of a round equals maxp
i=1 λi where λi is the number of words communicated

(sending and receiving combined) by the i-th machine in this round. The load of the algorithm

equals the maximum load of all the rounds executed. In the early development of the model,

research concentrated on algorithms that perform an exceedingly small number (e.g., 1 or

2) of rounds [2, 3, 25], because old MapReduce implementations suffered from expensive

system-level overhead in executing a round. Such overhead has been considerably reduced in

today’s systems [14, 29], making it feasible for algorithms to perform more (but preferably

O(1)) rounds [4, 1, 19, 28, 24, 20]. This is especially true when additional rounds help to

reduce the load by significant factors.

Several remarks are in order. By default, at the beginning of an MPC algorithm, the

input is distributed on the p machines at the will of an adversary, but in a balanced manner,

i.e., each machine stores O(N/p) elements, where N is the input size. Some of our algorithms

drop the “balanced” requirement, and instead allow an arbitrarily uneven distribution of the

N elements onto the p machines. All the previous work on the MPC model considers the

value of p to be less than the input size N by a polynomial factor. Our analysis will assume

p ≤ N0.9. The constant 0.9 is not mandatory, and can be replaced by any constant less than

1 by adjusting the constants in our analysis accordingly. We assume that every number (from

either the input or intermediate computation) fits in a word. All our algorithms transmit a



Y. Tao 20:3

number always as a whole word, while we allow the transmission of individual bits in proving

lower bounds. Regarding CPU calculation, our algorithms will use only comparisons, +, −,

·, and /. Finally, when we say that a randomized algorithm succeeds “with high probability”

(w.h.p.), we mean that its failure probability is O(1/N2).

1.2 Definition of the Main Problem

We consider entity matching between two sets R, S of objects whose similarity is reflected

by absolute coordinate differences in a multi-dimensional space (the dimensions are the

extracted features based on which learning is performed). Formally, let R and S each be

a set of points in R
d. Denote the coordinate of a point q ∈ R

d on dimension i ∈ [1, d]

as q[i]. Each pair (r, s) ∈ R × S defines a d-dimensional point q(r,s) whose coordinate on

dimension i ∈ [1, d] is q(r,s)[i] = |r[i] − s[i]| that is, q(r,s) captures the similarity of r and s

on the d dimensions. Let QR,S be the (perhaps multi-) set of points thus obtained, namely:

Q(R,S) = {q(r,s) | (r, s) ∈ R × S}. Each q(r,s) ∈ Q(R,S) carries a label of either 1 or 0,

indicating whether r and s are a match. Define:

T(R,S) = {(r, s) ∈ R × S | label of q(r,s) = 1},

that is, T(R,S) contains all and only the matches between R and S. We are now ready

to clarify the input and output of the entity matching with linear classification (EMLC)

problem:

− Input: R, S, and T(R,S).

− Output: A linear plane π such that the label-1 points of Q(R,S) fall on one side of π,

while the label-0 points on the other. If such a separation plane does not exist, the output

is NULL.

1.3 Our Results: The Main and Accompanying Problems

The main result of the paper is:

◮ Theorem 1. Set N = |R| + |S| + |T(R,S)| for the EMLC problem in R
d with d =

O(polylog N). There is a dO(1)-round MPC algorithm that solves the problem w.h.p. with

load dO(d) · N
√

log N/p.

The result is most appealing when the dimensionality d is a fixed constant, in which case

our algorithm performs constant rounds with load O(N
√

log N/p). The theorem confirms the

superiority of accepting R, S, and T(R,S) as the input to EMLC (rather than Q(R,S)) when

|T(R,S)| ≪ |R||S|. Indeed, even just “uploading” the labeled Q(R,S) onto the p machines will

entail a network cost of Ω(|R||S|/p) on at least one machine1. The algorithm in Theorem 1

combines new MPC solutions to several geometric problems, as explained below.

Linear Programming (LP). Define a half-space h in R
d as the set {q ∈ R

d |
∑d

i=1 αi · q[i] ≥ β}, where real numbers α1, α2, ..., αd and β are the coefficients of

h. The input to LP is a set H of N half-spaces. Let I(H) be the intersection of

all the half-spaces in H. The objective is to (i) determine whether I(H) is empty,

and (ii) if not, report a point q ∈ I(H) with the smallest q[1] (i.e., minimize the

coordinate on dimension 1).

1 Remember that Q(R,S) is a set of labeled points; and the labeling depends on the underlying application,
and does not need to follow any geometric patterns. Therefore, Q(R,S) cannot be computed from R
and S.
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We are not aware of existing results in the MPC model, but the problem has been well studied

in PRAM (see [11, 17] for a collection of results). The focus of those algorithms, however,

is to minimize “work”2, rather than communication. In particular, for constant d, when

adapted to finish within constant rounds under MPC, they all have a load of Ω( N/p
polylog N ).

We will prove:

◮ Theorem 2. Suppose that the dimensionality d is O(polylog N). Fix any constants ǫ, δ

satisfying δ > ǫ > 0 and p ≤ N δ−ǫ. There is a dO(1)-round MPC algorithm which solves the

LP problem w.h.p. with load O(N δ/p). Furthermore, this is true even if the half-spaces are

distributed on the p machines arbitrarily at the beginning (i.e., perhaps unevenly).

The theorem may appear a bit unusual such that it is worth offering a guided tour,

assuming d = O(1) for simplicity:

− First, look at the realistic scenario where p = O(polylog N). In this case, the theorem

essentially says that LP can be settled in constant rounds with load O(N δ/p), for

arbitrarily small constant δ > 0 (simply set ǫ = δ/2).

− Consider now the less realistic scenario where p = Θ(N c) for some constant c > 0. The

theorem tells us that the load is O(N c+ǫ/p) = O(N ǫ) for arbitrarily small constant ǫ > 0

(set δ = c + ǫ).

− In all circumstances, Theorem 2 asserts that LP can be settled with a load polynomially

less than N/p. Recall that Ω( N/p
log N ) is a load lower bound for numerous problems under

the MPC model, e.g., sorting [16], set intersection [27], equi-joins [19], etc. It is thus

interesting to see that a problem as sophisticated as LP requires far less communication.

− The theorem does not require a balanced distribution of the input on the p machines.

This is a nice property when the input is produced by a preceding operator (e.g., a join)

which may leave a huge number—in the worst case Ω(N)—of half-spaces on one machine.

Batched Range Counting (BRC). In R
d, define R as a set of axis-parallel

rectangles, and S as a set of points. The objective of BRC is to report, for every

rectangle r ∈ R, the number |r ∩ S| (i.e., how many points of S are covered in r).

Set N = |R| + |S|. For constant d, Hu et al. [19] recently presented a constant-round

algorithm with load O((N/p) logd−1 p). We improve their result to optimality:

◮ Theorem 3. There is an O(d)-round deterministic MPC algorithm that solves the BRC

problem with load dO(d) · N/p. Furthermore, any constant-round deterministic algorithm

must entail a load of Ω(N/p) when d = 2.

Dominance Join (DJ). In R
d, let R and S be two sets of points. The objective of

DJ is to report all pairs (r, s) ∈ R × S such that s dominates r (namely, s[i] ≥ r[i]

for all i ∈ [1, d]). An algorithm is α-out-balanced if each machine produces at most

α · OUT/p result pairs, where OUT is the total number of result pairs.

Let N = |R| + |S|. For constant d, Hu et al. [19] proposed a constant-round algorithm with

load O((N/p) logd−1 p +
√

OUT/p) (there was no discussion on α-out-balance in [19]). We

prove:

2 The work of a PRAM algorithm is the product of (i) the number of steps performed and (ii) the number
of processors deployed.
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◮ Theorem 4. For the DJ problem, there is a dO(d)-out-balanced deterministic MPC algorithm

that performs O(d2) rounds, and incurs load dO(d) · (N + OUT)/p.

For constant d, our algorithm does not always improve the load of [19], but it does

whenever OUT = o(N logd−1 p). This is especially useful when OUT is small and has no

dependence on d, as is indeed what we rely on to prove a “dimensionality-oblivious” load of

O(N
√

log N/p) for EMLC under any constant d (see Theorem 1). Adopting the algorithm

of [19] instead will introduce a multiplicative factor of logO(d) p.

2 Preliminaries

ǫ-Nets and Its Application to LP. We will review some useful results on LP. Let H be

a set of d-dimensional planes. An ǫ-net of H is a subset X ⊆ H with the following property:

any point q ∈ R
d that appears in at least ǫ|H| half-spaces of H, must be in at least one

half-space of X.

◮ Lemma 5 (Theorem 5.7.3 of [26]). Consider an integer r ∈ [4d, N ] and a value ∆ ∈ (0, 1/2]

satisfying r ≤ 1/∆. Let X be a set of O(d · r log(1/∆)) samples from H taken uniformly at

random with replacement. Then, X is a (1/r)-net of H with probability at least 1 − O(∆).

The next corollary follows directly from the above lemma and the definition of ǫ-net (by

considering the complement of each half-space in H and X):

◮ Corollary 6. The following property holds with probability at least 1 − O(∆) on the sample

set X in Lemma 5: any point q ∈ R
d inside I(X) (i.e., the intersection of the half-spaces in

X). can be outside less than N/r half-spaces in H.

The next result we review concerns an elegant framework for solving the LP problem. At

the beginning, take an arbitrary subset X0 of H. In general, given a subset Xi of H (for

i ≥ 0), we perform an iteration as follows. First, solve the LP problem on Xi. If I(Xi) is

empty, stop the algorithm and return empty. Otherwise, let φi be the solution point found.

If i = d + 1, return φd+1 (for the original LP problem). If i < d + 1, collect the set Yi of

half-spaces in H that do not contain φi. Launch the next iteration with Xi+1 = Xi ∪ Yi.

The lemma below states an interesting fact:

◮ Lemma 7 ([8]). Regardless of X0, the above algorithm always solves the problem correctly.

The previous two lemmas constitute the core idea behind a number of LP algorithms

(e.g., [8, 6, 17]). The version below is based an original proposition from [8], but includes

optimization from [6]. Simply choose X0 to be a random sample set (with replacement)

of size O(d · √
N log N). Applying Lemma 5 with r = Θ(

√

N/ log N) and ∆ = 1/N3, we

know that X0 has the property stated in Corollary 6 with probability at least 1 − 1/N3.

The fact X0 ⊆ Xi (i ≥ 1) implies that every Xi also has this propertiy w.h.p. Hence,

w.h.p., |Yi| = O(N/r) = O(
√

N log N) holds for every i ∈ [1, d], which in turn tells us that

|Xi| ≤ |X0| + i · N/r = O(d · √
N log N) for all i ∈ [1, d + 1].

The above description essentially reduces an LP problem of size N to d + 1 smaller

problems each with size O(d · √N log N). Standard analysis shows that, when d is a constant,

the running time is O(N) w.h.p. in the RAM model.

Broadcasting in MPC. Suppose that the machines carry ids 1, 2, ..., p. In designing an

algorithm, we often need to send information from one or more machines to several machines

in a continuous id range. The lemma below explains the cost when there is one source

machine:

ICDT 2018
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◮ Lemma 8 ([18]). If a machine needs to broadcast x words to y machines in a continuous

id range, this can be done in constant rounds with load

− O(x) if x ≥ yc for an arbitrarily small constant c > 0;

− O(yc) otherwise, where c > 0 is an arbitrarily small constant.

This implies the next result for the case when there are multiple source machines:

◮ Corollary 9. Suppose that z machines are holding in total x words of messages. In constant

rounds, these x words can be broadcast to y machines in a continuous id range with load

O(x + yc), where c > 0 is an arbitrarily small constant (this holds regardless of the value of

z).

Proof. In one round, instruct all the z machines to send their messages to one machine,

which requires load O(x). Then, the recipient machine broadcasts all the words to the y

machines. The previous lemma indicates that this can be done with constant rounds and

load O(x + yc). ◭

3 Linear Programming in MPC

We will prove Theorem 2 in this section. As before, let H be the input set of N half-spaces

in R
d, and I(H) be their intersection. The goal is to find a point q ∈ I(H) with the smallest

coordinate on dimension 1. We will give a dO(1)-round MPC algorithm with load O(N ǫ)

which is O(N δ/p), for the selection of δ and ǫ as in Theorem 2. Our algorithm for LP can

be thought of as an efficient implementation of the framework described in Section 2. The

main idea is to do away with the default requirement of MPC that, the input should be

distributed onto the machines evenly. Indeed, the requirement does not even allow us to

distribute X1 = X0 ∪ Y0 (as defined in Section 2) for recursion, because this would lead to a

load of Ω(d
√

N log N/p). We circumvent this obstacle by sampling in an “in-place” manner

(keeping the samples on the original machines), and performing the recursion anyway in spite

of an unbalanced input distribution.

3.1 In-Place Sampling

Suppose that there is a set X of elements that are distributed on p machines in an arbitrary

manner (not necessarily balanced). We want to take t samples from X uniformly at random

with replacement. If an element e ∈ X is sampled te times, we indicate the fact by storing

the count te on the machine where e is stored. No elements need to be moved across the

machines.

The above purpose can be fulfilled in O(c) rounds with load O(p1/c), for any constant

c ≥ 1. This holds regardless of |X| and t. We can organize the p machines arbitrarily into a

tree where each internal node, except possibly the root, has Θ(p1/c) child nodes. The height

of the tree is O(c). The level of a node is the number of edges on its path to the root (the

root is at level 0).

Let X(u) be the set of elements stored on node (i.e., a machine) u. In the first step, each

node (i.e., a machine) u obtains the number—denoted as xu—of elements of X that are

stored in the subtree rooted at u. This is trivial if u is a leaf because xu is simply |X(u)|.
Inductively, after a node v at level i ≥ 1 has acquired xv, it sends xv to its parent u (at level

i − 1). Node u then sums up the numbers from its child nodes, together with |Xu|, to obtain

xu. This bottom-up process takes O(c) rounds to finish, and has a load equal to the internal

fanout O(p1/c).
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In the second step, each node u decides the number tu of samples to be taken from Xu.

This can be done in a top-down manner. Suppose, inductively, that a node u at level i ≥ 0

has been informed that yu samples should be from the subtree rooted at u (for the base case

of induction, u is the root, and yu = t). Then, u generates yu independent integers uniformly

at random from [1, xu]. Remember that, from the previous step, u has already obtained xv

for every child v, and that |Xu| +
∑

v xv = xu. Hence, from the yu random integers, u can

generate tu, as well as yv for each child v. This step also has O(c) rounds and load O(p1/c).

Now that every machine u knows tu, it performs the sampling locally at Xu, which

completes the in-place sampling.

3.2 The LP Algorithm

The core of our algorithm can be summarized as:

◮ Lemma 10. Fix a sufficiently large integer N , an integer d = O(polylog N), and a constant

satisfying 0 < ǫ < 1. Consider that we are given an LP problem of size n ∈ [N ǫ, N ].

Available to us is an algorithm A1 that is capable of solving any LP problem of a smaller

size m = O(d
√

n log N) with probability at least 1 − ∆A1 , even if the input is distributed on

the p machines arbitrarily. Suppose that A1 performs ρ(m) rounds, and incurs load λ(m).

Then, for the LP problem on size n, there is an O(d) + (d + 1) · ρ(m)-round algorithm

A2 that, with probability at least 1 − (1/N3 + O(d · ∆A1
)), solves the problem with load

max{O(d + pǫ), λ(m)}, regardless of how the input is distributed on the machines initially.

Before proving the lemma, let us first explain how it leads to Theorem 2. Here, set N to

the input size of the original LP problem, and d to the problem’s dimensionality, and take

the value of ǫ from Theorem 2. Given an LP problem with input size n ≤ N , we do the

following:

− If n ≤ N ǫ/d, simply send all the half-spaces to one machine, and solve the problem there

(with probability 1). Requiring apparently only ρ(n) = 1 round and load λ(n) = O(N ǫ),

this serves as the base algorithm A1 for the recursion Lemma 10 implies.

− Otherwise, apply the algorithm A2 in Lemma 10, which performs ρ(n) = O(d) + (d + 1) ·
ρ(m) rounds, and requires load λ(n) = max{O(d + pǫ), λ(m)}. Effectively, the algorithm

solves d + 1 smaller problems of size at most m.

To settle the original LP problem, simply run the above algorithm on H. For performance

analysis, we need to solve the above recurrences in order to obtain ρ(N) and λ(N).

Notice that m = O(d
√

n log N) ≤ n0.51 for N larger than a certain constant, applying

d = O(polylog N) and n ≥ N ǫ. We compute ρ(n) by recursively computing d + 1 copies

of ρ(m) until n ≤ N ǫ/d. The recursion tree triggered by ρ(N) has a depth of O(log(1/ǫ)),

and contains (d + 1)O(log(1/ǫ)) = dO(1) nodes. As a result, ρ(N) = O(d) · dO(1) = dO(1). The

analysis of λ(N) is much simpler: by (i) d = polylog(N), and (ii) λ(n) = O(N ǫ) in the base

case (n ≤ N ǫ), we know that max{O(d + pǫ), λ(m)} is always λ(m). Therefore, we have

λ(N) = O(N ǫ).

Our algorithm fails if, in any application of Lemma 10, A2 fails. The above analysis

indicates that Lemma 10 is applied dO(1) times in total. Hence, we guarantee that the

algorithm fails with probability dO(1) · O(d/N3) = o(1/N2), as desired in Theorem 2.

Proof of Lemma 10. It suffices to combine in-place sampling with the ideas reviewed in

Section 2. No half-spaces of H need to be moved from one machine to another. For each

machine u and any subset X ⊆ H, we denote by X(u) the set of half-spaces in X that are

stored at u.

ICDT 2018
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To solve the given LP problem of size n, first perform in-place sampling to obtain a

sample set X0 of size O(d
√

n log N). It follows from Section 3.1 that the sampling takes

O(1/ǫ) = O(1) rounds and incurs load O(pǫ). Applying Lemma 5 with ∆ = 1/N3 and

r =
√

n/ log(1/∆), we know that X0 has the property in Corollary 6 with probability at

least 1 − 1/N3.

In general, given a subset Xi of H (i ≥ 0) which is not necessarily evenly distributed

on the machines, an iteration invokes algorithm A1 to solve the LP problem on Xi with

probability at least 1 − ∆A1 . If I(Xi) is empty, stop the algorithm and return empty.

Otherwise, let φi be the solution point found. If i = d + 1, return φi. Now consider i < d + 1,

the machine holding φi broadcasts the point to all other machines in constant rounds with

load O(d + pǫ) (Lemma 8). Each machine u identifies the set Yi(u) of half-spaces that are in

H(u) and do not contain φi. This, conceptually, defines Yi =
⋃

u Yi(u) and Xi+1 = Xi ∪ Yi.

The next iteration is then launched with Xi+1.

When X0 has the property in Corollary 6, by the reasoning mentioned in Section 2, we

know that Xi ≤ |X0| + i · n/r = O(d
√

n log N) for all i ∈ [1, d + 1]. Therefore, each iteration

requires O(1) + ρ(m) rounds and incurs load max{O(d + pǫ), λ(m)}. The number of rounds

of all iterations is O(d) + (d + 1) · ρ(m). The algorithm correctly solves the LP problem with

probability at least 1 − (1/N3 + (d + 1)∆A1
). This completes the proof of Lemma 10.

4 Batched Range Counting

This section will be mainly concerned with:

Batched Dominance Counting (BDC). In R
d, let R and S be two sets of points.

The objective is to report, for each point r ∈ R, the number of points s ∈ S such

that r dominates s (namely, r[i] ≥ s[i] for all i ∈ [1, d]).

Set N = |R| + |S|. We will give an MPC algorithm that solves the above problem in O(d)

rounds with load dO(d) · N/p. Our technique is bootstrapping in nature. First, design a

base algorithm that performs constant rounds and has load O(pd + d2 · N/p). This load is

acceptable only when p is small, but otherwise can be rather expensive (e.g., for p = N0.9).

To fix this, we recursively partition the problem, until the number of machines in each

subproblem is small enough to apply the base algorithm with an acceptable load. The details

will be presented in Sections 4.1 and 4.2. Load O(N/p) is asymptotically optimal for constant

d, as shown in Section 4.3 via a reduction from sparse set disjointness. These BDC results

will then imply Theorem 3, as explained in Section 4.4.

4.1 A Base Algorithm with Load O(pd + d2 · N/p)

For each dimension i ∈ [1, d], divide the space R
d into p slabs using p−1 planes perpendicular

to the dimension, such that each slab has Θ(N/p) points of the input R ∪ S. These slabs are

said to be on dimension i. The slab boundaries of all dimensions together define a grid of pd

cells. Count the number of points of S in each cell. We want to give every machine a copy of

all the pd counts (i.e., one per cell). It is fundamental to do so in constant rounds with load

O(pd + dN/p).3 A point s ∈ S dominated by a point r = (r[1], ..., r[d]) ∈ R must appear

3 The slab boundaries on each dimension can be decided by sorting, which takes constant rounds and
load O(N/p) [16]. Carrying this out for all dimensions simultaneously increases the load by a factor of

d, without changing the number of rounds. By Corollary 9, the d · pd boundaries can be broadcast to
all the p′ machines in constant rounds with load O(d · pd). Every machine can now locally calculate the
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− (Cat. 1) Either in a cell completely covered by (−∞, r[1]] × (−∞, r[2]] × ... × (−∞, r[d]];

− (Cat. 2) Or in the same slab as r on at least one dimension.

The number of points in the first category can be calculated from the pd counts already

available on the machine where r is stored. It remains to count the pairs (r, s) in the second

category.

Since a slab has O(N/p) points, we can send all those points to one machine, which then

locally performs the counting of Category 2 for every r ∈ R in the slab. Specifically, for each

i ∈ [1, d], we send the points of each slab on dimension i to a distinct machine, which can be

done in a single round with load O(dN/p) . Doing so for all dimensions simultaneously still

in one round increases the load to O(d2 · N/p). A slight complication is that, if r and s are

in the same slab on more than one dimension, s may be counted multiple times for r. This

can be easily avoided by introducing a consistent de-duplication policy: e.g., count s for r in

a slab on dimension i only if they are not in the same slab on any dimension j < i. We thus

have obtained a constant-round algorithm of load O(pd + d2 · N/p).

4.2 An Algorithm with Load dO(d) · N/p

Next, we describe an alternative algorithm for BDC. More generally, given an arbitrary

f ∈ (0, 1], we discuss how to deploy p′ = pf machines to tackle a BDC problem of input size

N ′ = O(p′ · N/p); this will be referred to as an f -BDC problem. The original BDC problem

corresponds to f = 1. Our algorithm will perform ρ(f) rounds, and incur load λ(f), where

ρ(f) and λ(f) are functions to be resolved in the analysis. Notice that N ′/p′ = O(N/p).

Base Case f ≤ 0.1/d. Simply invoke the base algorithm of Section 4.1. It finishes in

ρ(f) = O(1) rounds, and incurs load λ(f) = O(p′d + d2 · N ′/p′) = O(pdf + d2 · N/p) =

O(p0.1 + d2 · N/p) = O(d2 · N/p), where the last step used p ≤ N0.9.

Inductive Case f > 0.1/d. Along each dimension, divide the space into p0.1/d slabs each

with Θ(N ′/p0.1/d) points of R ∪ S. As in Section 4.1, the slabs of all dimensions together

define a grid, which here has p0.1 cells. Count the number of points of S in each cell, and give

every machine a copy of the p0.1 counts (one count per cell). This can be done in constant

rounds with load O(p0.1 + dN ′/p′) = O(dN/p).

We now proceed in the same way as in the base algorithm except that Category 2 is

now handled by solving (f − 0.1/d)-BDC problems recursively. Focusing on an arbitrary

dimension, let us assign Θ(p′/p0.1/d) machines to each slab on the dimension. Since a slab

has Θ(N ′/p0.1/d) points, counting the number of pairs (r, s) of Category 2 within the slab is

an (f − 0.1/d)-BDC problem. The (f − 0.1/d)-BDC problems of all slabs on the dimension

can be solved in parallel using α(f − 0.1/d) rounds and load λ(f − 0.1/d). Doing so for all

d dimensions together increases the load by a factor of d, without changing the number of

rounds. This indicates the following recurrences:

ρ(f) = O(1) + ρ(f − 0.1/d)

λ(f) = d · λ(f − 0.1/d) + O(d · N/p)

boundary faces of all cells. We then count the number of points of S in each cell using the sum-by-key
algorithm of [19] (for each point in S, its “key” is the id of the cell containing it; this algorithm counts,
for every key k, the number of points having k as the key), using constant rounds with load O(N/p).

Broadcasting the pd counters to all the machines can be done in constant rounds and load O(pd) by
Corollary 9.
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Resolving them gives ρ(1) = O(d), and λ(1) = dO(d) · N/p. We thus have obtained an

O(d)-round BDC algorithm with load dO(d) · N/p.

4.3 Lower Bound

We can prove that any constant-round deterministic BDC algorithm must incur a load of

Ω(N/p) when d = 2. For this purpose, let us revisit the sparse set disjointness problem in

communication complexity. Alice and Bob each take a size-k subset of {1, 2, ..., U}; denote

their subsets as XA and XB, respectively. They want to determine whether XA ∩ XB = ∅
by communicating the least number of bits. It is known that any deterministic algorithm

requires sending Ω(k log(2U/k)) bits between the two parties [27].

Fix U = k2 and set the word length to log2 U bits. Suppose that we are given a constant-

round MPC algorithm A that solves the BDC problem with load o(N/p) (measured in

words). We can use A for sparse set disjointness as follows. Alice constructs a 2D point set

R = {(x, U − x) | x ∈ XA}, and likewise, Bob constructs S = {(x, U − x) | x ∈ XB}. It is

easy to verify that the BDC problem returns a non-zero count for at least one point in R, if

and only if XA ∩ XB 6= ∅. We ask Alice and Bob to simulate A, by asking each of them to

be in charge of p/2 machines. At the beginning, Alice (or Bob) distributes her (or his, resp.)

elements on her (or his, resp.) p/2 “machines” evenly. They then do the communication

as instructed by A. Since each round of A has load o(k/p), every “machine” from Alice

can send o(k/p) words over to Bob, and vice versa. Hence, a round necessitates only o(k)

words—namely o(k log U)—bits of communication. As A finishes in constant rounds, we

have obtained an algorithm solving sparse set disjointness with o(k log U) bits, contradicting

the Ω(k log(2U/k)) = Ω(k log U) lower bound.

4.4 Proving Theorem 3 and Beyond

Batched range counting (BRC) can be reduced to BDC elegantly [12]. For each rectangle

r ∈ R, the number |r ∩ S| can be aggregated from the “dominance counts” of the 2d

corners of r, where the dominance count of a corner q equals how many points in S are

dominated by q. Hence, we can convert BRC into 2d instances of BDC of the same size,

solve all of them simultaneously, and then aggregate the 2d dominance counts for each

r ∈ R. This gives an algorithm that settles the BRC problem in O(d) rounds with load

2d · dO(d) · N/p = dO(d) · N/p. Finally, the lower bound on BDC clearly applies to BRC. This

completes the proof of Theorem 3.

A Semi-Group Remark. Our solution actually settles the more general problem of batched

range sum. Specifically, let R and S be defined as in BRC. However, each point s ∈ S is now

associated with a weight from a semi-group domain. The goal now is to report, for every

r ∈ R, the sum of the weights of all the points in r ∩ S. The proposed algorithm solves this

problem in O(d) rounds with load dO(d) · N/p, which is optimal for constant d.

5 Dominance Join

This section will establish Theorem 4 on the DJ problem. Recall that we have two sets of

points in R
d: R and S. The objective is to find all (r, s) ∈ R × S such that s dominates

r. Set N = |R| + |S|, and denote by OUT the number of pairs in the result. We will solve

the problem with an dO(d)-out-balanced algorithm that runs in O(d2) rounds with load

dO(d) · (N + OUT)/p.
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Our solution benefits from the techniques of Section 4 in two ways. First, it deploys

BDC (batched dominance counting) as an intermediate operation. Second, following the

bootstrapping approach of Section 4, we will first develop a base algorithm for DJ that runs

in constant rounds but with load O(pd + d2 · N/p + d · OUT/p), and then attain the target

performance guarantees with recursion. Attention, however, should be paid to how we avoid

a logO(d) p term in the load. For this purpose, we abandon the range-tree-styled “canonical

decomposition” approach in [19], which is inherently penalized by a multiplicative O(log p)

factor per dimension. Instead, we will show how to use the grid partitioning approach in

Section 4 for reporting, by integrating it with new cell-pairing and machine-assignment ideas.

To facilitate discussion, in the following presentation, we will (conceptually) color the

points of R in red, and those of S in blue.

5.1 A Base Algorithm with Load O(pd + d2 · N/p + d · OUT/p)

Divide the space into p slabs on each dimension, such that each slab has Θ(N/p) points

of R ∪ S. Number these slabs as 1, 2, ..., p in ascending order (call those numbers slab ids).

The slab boundaries of all d dimensions define a grid of pd cells. For each cell in the grid,

count the number of red points and number of blue points. This gives a total of 2pd counts.

Broadcast a copy of all these counts to the p machines. As in Section 4.1, all the above can

be done in constant rounds with load O(pd + dN/p). We say that a cell c1 dominates another

c2 if the slab id of c1 is larger than or equal to that of c2 on every dimension.

Run the algorithm of Section 4.1 to obtain the value of OUT, which requires constant

rounds and load O(pd + dN/p). Recall from Section 4.1 that the set of result pairs (r, s) can

be classified into two categories. We slightly rephrase the description of those categories

below:

− (Cat. 1) The cell containing r dominates the cell containing s;

− (Cat. 2) r and s are in the same slab on at least one dimension.

Next, we will explain how to produce the result pairs of each category, in such a way that

O(d · OUT/p) pairs are produced on each machine.

Reporting Category 1. Let k = O(p2d) be the number of dominance cell pairs (c, c′)

satisfying (i) c 6= c′, and (ii) c dominates c′. Let us order all such pairs lexicographically:

(c1, c′
1), (c2, c′

2), ..., (ck, c′
k). For each i ∈ [1, k], denote by F (i) the set of red points in ci, and

by G(i) the set of blue points in c′
i. We say that (ci, c′

i) is heavy if |F (i)| · |G(i)| ≥ OUT/p,

or light if 0 < |F (i)| · |G(i)| < OUT/p. Note that, importantly, a light pair must produce

at least one result pair. Next, we will report (r, s) contributed by heavy and light pairs

separately.

Dealing with Heavy Pairs. There are at most p heavy dominance cell pairs; denote

them as: (ci1
, c′

i1
), (ci2

, c′
i2

), ..., (cik1
, c′

ik1
) where k1 ≤ p. For each j ∈ [1, k1], assign

pj = Θ(
|F (ij)||G(ij)|

OUT p) machines with continuous ids, making sure
∑

j pj = p. Ask these

pj machines to collect (from other machines) the points of F (ij) and G(ij) evenly, so that

each machines gets O(1 +
|F (ij)|+|G(ij)|

pj
) points. Doing so for all j ∈ [1, k1] in parallel takes

constant rounds and entails load

O

(

dN/p + d · k1
max
j=1

|F (ij)| + |G(ij)|
pj

)

= O

(

dN/p + d · k1
max
j=1

|F (ij)| + |G(ij)|
|F (ij)||G(ij)|

OUT

p

)

= O(d(N + OUT)/p)

where the first term O(dN/p) is because every machine may send out all of the O(dN/p)

points in its local storage. Then, for each j ∈ [1, k1], compute F (ij)×G(ij) (i.e., the cartesian
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product) on the pj machines assigned. The algorithm of [3] can do this in constant rounds

with load O(d
|F (ij)|+|G(ij)|

pj
+ d

√

|F (ij)||G(ij)|
pj

) = O(d(N + OUT)/p). Their algorithm is

O(1)-out-balanced, with each machine producing O(
|F (ij)||G(ij)|

pj
) = O(OUT/p) result pairs.

Dealing with Light Pairs. Let us redefine (ci1
, c′

i1
), (ci2

, c′
i2

), ..., (cik2
, c′

ik2
) as the light

pairs in lexicographic order where k2 = O(p2d) is the number of such pairs. Partition the

range [1, k2] into p intervals I1, I2, ..., Ip such that O(OUT/p) result pairs are produced from

every Ii, namely: for any j ∈ [1, p], it holds that
∑

x∈Ij
|F (ix)||G(ix)| = O(OUT/p). Such a

partitioning definitely exists because, by definition of light pair, |F (ix)||G(ix)| < OUT/p for

all x ∈ [1, k2]. Assign one machine to every Ij (j ∈ [1, p]). This machine collects the F (ix)

and G(ix) for all x ∈ Ij , and then locally produces all the results pairs from them. This

requires constant rounds and load

O
(

dN/p + d · p
max
j=1

∑

x∈Ij

|F (ix)| + |G(ix)|
)

= O
(

dN/p + d · p
max
j=1

∑

x∈Ij

|F (ix)||G(ix)|
)

= O(d(N + OUT)/p).

Reporting Category 2. Let σ1, σ2, ..., σp be the slabs of a certain dimension. The objective

of processing this dimension is to report all result pairs (r, s) such that r and s are both

in an identical slab. We achieve the purpose with constant rounds and O(dN/p) load as

follows. For i ∈ [1, p], let Ri and Si be the set of red and blue points in σi, respectively. To

each σi, use a machine to obtain (in parallel) locally the number OUTi of result pairs that

are produced by Ri and Si. Then, re-assign pi = Θ(⌈ OUTi

OUT p⌉) machines to σi, making sure
∑

i pi = p. For every σi, we carry out the following steps in parallel. First, broadcast Ri and

Si to all the pi assigned machines, which by Corollary 9 can be done in constant rounds with

load O(d(|Ri|+ |Si|)+pi) = O(dN/p+p). Each of the pi machines then produces O(OUT/p)

distinct result pairs from Ri and Si. This distinctness requirement can be fulfilled by, e.g.,

resorting to the lexicographic order of the result pairs.

We process all the dimensions simultaneously using the above strategy. The number

of rounds remains unchanged, but the load is increased d times to O(dp + d2 · N/p) =

O(pd + d2 · N/p). Each machine now reports at most O(d · OUT/p) result pairs. The

algorithm is therefore O(d)-out-balanced. Duplicate reporting can be avoided by the same

approach described in Section 4.1. Note that this approach can only decrease the number of

result pairs reported on a machine, and therefore, will not affect the O(d)-out-balance.

Thus, we have obtained a constant-round O(d)-out-balanced algorithm that solves the

DJ problem with a load bounded by O(pd + d2 · N/p + d · OUT/p).

5.2 An Algorithm with Load dO(d) · (N + OUT)/p

Next, we present an algorithm for the DJ problem that will establish Theorem 4. More

generally, given an arbitrary f ∈ (0, 1], we discuss how to deploy p′ = pf machines to tackle

a DJ problem of input size N ′ = O(p′ · N/p) and output size OUT′ = O(p′ · OUT
p ); this

will be referred to as an f-DJ problem. The original DJ problem corresponds to f = 1.

Our algorithm will be α(f)-out-balanced, perform ρ(f) rounds, and incur load λ(f), where

α(f), ρ(f), and λ(f) are functions that are the target of analysis. Note that N ′/p′ = O(N/p)

and OUT′/p′ = O(OUT/p). We will enforce the invariant that the value of OUT′ is already

known (at f = 1, this can be ensured by running the BDC algorithm of Section 4).

Base Case f ≤ 0.1/d. Simply invoke the base algorithm. From the previous subsection,

we know that the algorithm finishes in ρ(f) = O(1) rounds, and incurs load λ(f) =
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O(d2 · N/p + d · OUT/p). The algorithm is O(d)-out-balanced, i.e., α(f) = O(d).

Inductive Case f > 0.1/d. Impose a grid by dividing R
d along each dimension into p0.1/d

slabs. For each cell, count the number of red points and number of blue points therein. Send

a copy of these counts to all machines. All these can be accomplished in constant rounds

with load O(dN/p).

The result pairs can be divided into Categories 1 and 2 as explained in Section 5.1. We

will report the two categories separately.

Category 1. This category can be produced in the same way as described in the base

algorithm (replacing N, p, and OUT with N ′, p′, and OUT′ respectively), which performs

constant rounds and requires load O(d(N + OUT)/p).

Category 2. The procedure for this category also follows the framework illustrated in the

base algorithm. Consider the processing of a dimension with slabs σ1, σ2, ..., σp0.1/d (recall

that the objective is to find result pairs (r, s) such that r and s are both in some slab). For

each i ∈ [1, p0.1/d], let Ri and Si be the set of red and blue points in σi, respectively.

To compute the number OUTi of result pairs produced by Ri and Si, we apply the

BDC algorithm of Section 4, by assigning Θ(p′/p0.1/d) machines to σi. Run an instance

of algorithm in parallel for each slab. All instances finish in O(d) rounds, and incur load

dO(d) · N ′/p0.1/d

p′/p0.1/d = dO(d) · N/p.

For each i, we will compute the result pairs from Ri and Pi with

pi = Θ

(

p′

p0.1/d
+

OUTi

OUT′ · p′

)

machines, making sure that
∑

i pi = p′. For this purpose, distribute Ri and Pi onto the pi

machines evenly. Doing so for all i simultaneously takes constant rounds and incurs load

O

(

dN ′

p′
+

p0.1/d

max
i=1

d · (|Ri| + |Pi|)
pi

)

= O

(

dN ′

p′
+

dN ′/p0.1/d

p′/p0.1/d

)

= O(dN/p).

Now, producing the result pairs from Ri and Pi becomes an (f − 0.1/d)-DJ problem. Solving

it recursively in parallel for all i. This requires ρ(f − 0.1/d) rounds with load λ(f − 0.1/d).

Each of the pi machines produces at most α(f − 0.1/d) · OUTi/pi = α(f − 0.1/d) · O(OUT/p)

result pairs.

We carry out the above processing on all the dimensions simultaneously. This does not

affect the number of rounds, but increases the load by d times. Each machine now produces

at most d · α(f − 0.1/d) · O(OUT/p) result pairs.

Summarizing the discussion on Categories 1 and 2 gives the following recurrences:

α(f) = d · α(f − 0.1/d)

ρ(f) = O(d) + ρ(f − 0.1/d)

λ(f) = d · λ(f − 0.1/d) + dO(d) · N/p + O(d · OUT/p).

To analyze the performance of our algorithm on the initial DJ problem, we need to solve

the above recurrences to obtain ρ(1), λ(1), and α(1). It is straightforward to verify that

α(f) = dO(d) and ρ(1) = O(d2). To compute λ(f), recursively break it into d copies of

λ(f − 0.1/d) until f ≤ 0.1/d. The recursion tree triggered by λ(1) has a depth O(d) with

dO(d) nodes in total. Each leaf contributes O(d2 · N/p + d · OUT/p) to λ(f), while each

internal node contributes dO(d)N/p + O(d · OUT/p). Hence:

λ(1) = dO(d)
(

dO(d) · N/p + d · OUT/p
)

= dO(d) · (N + OUT)/p.

This establishes the claim in Theorem 4.
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6 Entity Matching with Linear Classification

We are now ready to solve EMLC. Recall that the input includes two sets R, S of points

in R
d, and the set T(R,S) of matching pairs in R × S. Every pair (r, s) ∈ T(R,S) defines a

point q(R,S) ∈ Q(R,S) with label 1, whereas every (r, s) ∈ R × S \ T(R,S) defines a point

q(R,S) ∈ Q(R,S) with label 0. We want to find a plane π that separates the 1-label points

from the 0-label points in Q(R,S), or assert that such a plane does not exist.

Section 6.1 will explain the core of our technique: a reduction from EMLC to linear

programming and dominance join. We will first present the reduction without having any

computation models in mind. Then, Section 6.2 will give a fast implementation in MPC to

establish Theorem 1.

6.1 Reduction to LP and DJ

A plane π can be described as {q ∈ R
d | ∑d

i=1 αi · q[i] = β} where αi (i ∈ [1, d]) and β

are the coefficients. It defines two half-spaces: π+ : {q ∈ R
d | ∑d

i=1 αi · q[i] ≥ β}, and

π− : {q ∈ R
d | ∑d

i=1 αi · q[i] < β}. If a separation plane π exists, then π+ contains all and

only either the label-1 points, or the label-0 points. Due to symmetry, it suffices to discuss

the former situation.

The space R
d where the points of Q(R,S) distribute is the primal space. We instead

look at the corresponding LP problem in the dual (d + 1)-dimensional space that consists

of all the possible (α1, α2, ..., αd, β). Every point q ∈ Q(R,S) defines a half-space hq =

{(α1, α2, ..., αd, β) ∈ R
d+1 | ∑d

i=1 αi · q[i] ∨ β} where the operator ∨ is ≥ if q has label 1, or

< otherwise. This spawns a set H of |R||S| half-spaces. The LP problem on H returns a

solution point if and only if π exists for the original EMLC problem. To avoid the quadratic

pitfall, however, we cannot afford to materialize H, which precludes directly invoking an LP

algorithm on H. Next, we show that materialization is unnecessary.

Set n = |R| + |S|; it must hold that |H| ≤ n2. Take a random sample set Σ (with

replacement) of H with size |Σ| = Θ(d · n
√

log n). By Lemma 5, Σ is a (1/r)-net of H

with probability 1 − 1/n2 where r = Θ(n
√

log n). Then, we carry out the LP algorithmic

framework in Section 2, by setting X0 = Σ. By reviewing the framework, one can see that it

suffices to implement two key steps:

− (LP Step) In the i-th (i ≥ 0) iteration, solve the LP problem on Xi.

− (DJ Step) If a solution point φi is found in the LP step, find the set Yi of half-spaces in

H that do not contain φi.

Note that Xi, Yi, and φi are as defined in Section 2. The details of each step are clarified

below (after which it will become clear why the second step is named as such).

The LP Step. The analysis in Section 2 tells us that |Xi| = O(|R||S|/r) = O(n2/r) =

O(n
√

log n) when Σ is a (1/r)-net. This means that w.h.p. we are able to afford to materialize

Xi and apply an LP algorithm on it.

The DJ Step. Divide Yi into:

− Y 1: the set of half-spaces hq ∈ Yi that are defined by a point q ∈ Q(R,S) with label 1;

− Y 0: the set of half-spaces hq ∈ Yi that are defined by a point q ∈ Q(R,S) with label 0.

As all the matching pairs have been given in T(R,S), we can easily produce Y 1 by scanning

T(R,S) once: for each (r, s) ∈ T(R,S), include hq(r,s)
into Y 1 if it does not contain φi.
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The computation of Y 0 is less trivial. Let us write out the coordinates of φi as

(α∗
1, α∗

2, ..., α∗
d, β∗). The next lemma gives a crucial observation:

◮ Lemma 11. Define Z(φi) as the set of all (r, s) ∈ R × S satisfying

d
∑

i=1

α∗
i · |r[i] − s[i]| ≥ β∗. (1)

Then, Y 0 = Z(φi) \ T(R,S).

Proof. Consider an arbitrary non-matching pair (r, s) ∈ R × S \ T(R,S). Since q(r,s) has label

0, hq(r,s)
= {(α1, α2, ..., αd, β) ∈ R

d+1 | ∑d
i=1 αi · q(r,s)[i] < β}. By definition of q(r,s), (1)

can be written as
∑d

i=1 α∗
i · q(r,s)[i] ≥ β∗, which indicates that hq(r,s)

does not contain φi.

Therefore, (r, s) satisfies (1) if and only if q(r,s) ∈ Y 0. The correctness of the lemma then

follows. ◭

Motivated by the above, we turn our attention to computing Z(φi), after which Y 0 can

then be obtained with a set difference with T(R,S). It turns out that, as elaborated below,

this can be achieved by solving 2d instances of DJ, each of which is between two sets of

(d + 1)-dimensional points with sizes |R| and |S|, respectively.

Fix an arbitrary point r ∈ R. To compute T(R,S), we want to find all s ∈ S satisfying (1).

There are 2d different ways to remove the absolute signs in (1) because, on each dimension

i ∈ [1, d], we should independently distinguish r[i] ≥ s[i] and r[i] < s[i]. Due to symmetry, it

suffices to consider

r[i] ≥ s[i] for all i ∈ [1, d] (2)

in which case (1) can be written as:

d
∑

i=1

α∗
i · r[i] ≥ β∗ +

d
∑

i=1

α∗
i · s[i]. (3)

Motivated by this, we construct two sets R′, S′ of (d + 1)-dimensional points:

R′ =

{(

r[1], r[2], ..., r[d],

d
∑

i=1

α∗
i · r[i]

)∣

∣

∣

∣

∣

r ∈ R

}

S′ =

{(

s[1], s[2], ..., s[d], β∗ +

d
∑

i=1

α∗
i · s[i]

)
∣

∣

∣

∣

∣

s ∈ S

}

The DJ between the two sets returns all (r′, s′) ∈ R′ × S′ such that r′ dominates s′.

Every (r′, s′) corresponds to a unique pair (r, s) ∈ R × S satisfying (2) and (3), and vice

versa. Performing all the 2d DJs will produce the desired Z(φi). It is possible that a pair

(r, s) ∈ R × S is reported multiple, but apparently at most 2d times.

A final remark concerns the size of Z(φi). When Σ (i.e., the sample set on H) is a

(1/r)-net (recall that r = Θ(n
√

log n), we know from Section 2 that |Yi| = O(d · n
√

log n).

As Y 0 ⊆ Yi, Lemma 11 implies that w.h.p. Z(φi) has size at most O(d · n
√

log n) + |T(R,S)|.

6.2 Proof of Theorem 1

To implement the reduction of Section 6.1, we first need to obtain the sample set Σ. This

is equivalent to sampling t = O(d · n
√

log n) pairs from R × S with replacement. For this

ICDT 2018
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purpose, we will take a size-t sample set Σ1 of R, a size-t sample set Σ2 of S, randomly

permute both, and then produce Σ by paring the i-th element (after permutation) of Σ1

with that of Σ2.

To execute the strategy, first apply the in-place sampling algorithm of Section 3 to obtain

Σ1 and Σ2, respectively. The fact p ≤ n0.9 assures that w.h.p. every machine produces

O(t/p) samples from Σ1 and Σ2. To see why, notice that a machine holds O(n/p) points of

R ∪ S initially, and hence, produces Θ(n
p

t
n ) = Θ(t/p) samples in expectation. By Chernoff,

it produces O(t/p) samples with probability at least 1 − e−Θ(t/p) = 1 − e−Ω(n0.1), which is

1 − o(1/(p · n2)). Applying the union bound on p machines gives the desired high probability

result. Randomly permuting Σ1 (similarly for Σ2) can be done by first associating each

sample with an independent random integer in some domain [1, U ], and then, sorting all the

samples by their random integers. The sorted list is a random permutation of Σ1, as long

as no two samples’ random integers collide, which can be ensured with probability at least

1 − 1/n2 as long as U is chosen to be nc for a sufficiently large constant c. Finally, pairing up

Σ1 and Σ2 can also be achieved with sorting. Therefore, w.h.p. the above algorithm returns

Σ in constant rounds with load O(d · t/p).

Implementing the rest of the reduction is a simple matter. Carry out the LP step

with Theorem 2, which has dO(1) rounds and requires load o(|Xi|/p) = o(n
√

log n/p) w.h.p.

Regarding the DJ step, recall that we need to produce Y 1 and Y 0. The former can be obtained

in constant rounds with load O(d · (N + |T(R,S)|)/p) by broadcasting φi to all machines, and

then, redistributing Y 1 evenly. To obtain Y 0, we first prepare the 2d instances of DJ locally on

the p machines. These instances can then be solved in parallel with Theorem 4 in O(d2) rounds

and load dO(d) · (n + OUT)/p where OUT = |Z(φi)|, which is O(d · n
√

log n) + |T(R,S)| w.h.p.

Since the algorithm of Theorem 4 is dO(d)-out-balanced, each machine holds dO(d) · |Z(φi)|/p

elements of Z(φi). This allows the set difference Z(φi) \ T(R,S) to be implemented again by

sorting in constant rounds and load dO(d) · |Z(φi)|/p + O(d · |T(R,S)|/p). Putting everything

together, we have obtained an algorithm solving the EMLC problem w.h.p. using dO(1)

rounds and load dO(d) · (n
√

log n + |T(R,S)|)/p.

It is worth mentioning that the algorithm of Theorem 3, although not explicitly invoked

above, is required in the DJ algorithm of Theorem 4.

7 Conclusions

This paper pursues a new direction to perform entity matching classification with a cost

that is sub-quadratic to the number of objects involved in the training. The novelty lies in

receiving only the matching pairs, as opposed to the traditional approach of accepting all of the

matching and non-matching pairs. We have demonstrated the first success of the direction, by

proving its feasibility for entity matching with linear classification (EMLC) on the massively

parallel computation (MPC) model. Specifically, for small d (our results are most appealing

for constant d, and could also be interesting for d = O(log log N/ log log log N)), we have

designed an MPC algorithm that performs EMLC in a small number of rounds, with a load

that is (almost) as low as the communication cost of uploading the input to a parallel system.

In doing so, we have also obtained new MPC results on several geometric problems: linear

programming, batched range counting, and dominance join.

The limitations of the new direction are still yet to be understood when the classifier

functions are more sophisticated. On the positive side, we want to develop algorithms with

similar performance guarantees for various forms of classifiers (e.g., decision trees and support

vector machines), perhaps leveraging recent advances on sparse matrices such as [9]. On the
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negative side, it is an intriguing question to ask when the direction actually does not work,

namely, when it is essentially the best approach to work directly with a labeled cartesian

product.
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