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—— Abstract

In dynamic distinct counting, we want to maintain a multi-set S of integers under insertions to
answer efficiently the query: how many distinct elements are there in S? In external memory,
the problem admits two standard solutions. The first one maintains S in a hash structure, so
that the distinct count can be incrementally updated after each insertion using O(1) expected
I/Os. A query is answered for free. The second one stores S in a linked list, and thus supports
an insertion in O(1/B) amortized I/Os. A query can be answered in O(% logyr/p &) 1/0s by
sorting, where N = |S|, B is the block size, and M is the memory size.

In this paper, we show that the above two naive solutions are already optimal within a polylog
factor. Specifically, for any Las Vegas structure using N blocks, if its expected amortized

insertion cost is o(—~% ), then it must incur Q(ﬁ) expected I/Os answering a query in the

log B
worst case, under the (realistic) condition that N is a polynomial of B. This means that the
problem is repugnant to update buffering: the query cost jumps from 0 dramatically to almost

linearity as soon as the insertion cost drops slightly below (1).
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1 Introduction

This paper studies the dynamic distinct counting problem defined as follows. Let [2*] represent
the set of integers {0, 1,...,2% — 1}, where w is the number of bits in a machine word. We
want to support two operations on an initially empty multi-set S:

INSERT(e): add an integer e € [2*] to S.

QUERY: report the number of distinct elements in S.!

* Xiaocheng Hu and Yufei Tao were supported in part by Projects GRF 4168/13 and GRF 142072/14
from HKRGC. Yi Yang and Shuigeng Zhou were supported in part by the Research Innovation Program
of Shanghai Municipal Education Commission under grant No. 13ZZ003. Shengyu Zhang was supported
in part by Project GRF 4194/13 from HKRGC.

This problem should not be confused with e-approzimate distinct counting [10], where a query is allowed
to return only an approximate answer.
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On The 1/0 Complexity of Dynamic Distinct Counting

This is a classic problem in computer science. Indeed, distinct queries are useful in such a
large variety of contexts that database systems have made them a first-class citizen with
direct SQL support: select distinct count(...).

We consider the problem in the standard external memory (EM) model of computation
(a.k.a. the /0 model). In this model, a machine has M words of memory, and a disk of an
unbounded size. The disk has been formatted into disjoint blocks of size B words. It holds
that M > 2B, i.e., the memory can accommodate at least two blocks. An I/O either reads
a block from the disk into memory, or conversely writes B words from memory to a disk
block. The cost of an algorithm is measured as the number of I/Os performed. The space of
a structure is measured as the number of blocks occupied. CPU computation is free, but
can take place only on memory data. We use N to denote the problem size (e.g., for the
dynamic distinct counting problem, N equals the number of insertions). A structure is said
to consume polynomial space if its space consumption is bounded by N in the worst case.

Dynamic distinct counting admits two standard solutions:

The first one is to maintain S in a hash structure (e.g., [6]) of linear space O(N/B).
Given an INSERT(e), by probing the bucket of e, one can incrementally maintain the
distinct count in O(1) expected I/Os. A query can be answered by simply returning this
count for free.

The second solution organizes S in a linked list with the last block pinned in memory.
The block is flushed to the disk after it has accumulated Q(B) elements. This achieves
the lowest amortized cost of O(1/B) I/Os per insertion. A query can be answered by
sorting S from scratch using O(% logy/p %) 1/O0s [1].

Rather naive as these solutions may appear, they still represent the best update-query
tradeoffs to this date.

1.1 Our Results

In this paper, we show that both of the aforementioned naive solutions—exactly how a DBMS
supports dynamic distinct counting—are already optimal up to a small factor. Specifically,
no Las Vegas structure of polynomial space can do much better than Q(N/B) in query cost
if it must support fast updates:

» Theorem 1. Let t,, be the expected amortized insertion cost of a polynomial-space Las
Vegas structure for dynamic distinct counting, and t, be its expected query cost, where both
expectations are taken over the random choices made by the structure. In the scenario where
N =B M = B¢ (for any integer constants ¢ > 1 and ¢ > ¢ +1), and 3logN < w =

O(log N), if t, = o(ﬁ), then t, = Q(iBlé\;B).

The theorem holds even for structures that defy the indivisibility assumption®. Further-
more, by fitting in some typical values for N, M, and B, one would quickly realize that N
and M are almost always polynomials of B in practice.

Theorem 2 indicates that dynamic element counting is “repugnant” to update buffering.
When there is no buffering (e.g., hashing), one can achieve ¢, = O(1) and t; = 0 (free
queries). On the other hand, if ¢,, needs to be improved by just an w(log B) factor, t, surges

2 This assumption says that every data element must be stored as an atom occupying a word. Thus, one
cannot, for example, compress the bits of an element to save space.
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dramatically to almost Q(N/B), that is, any query algorithm must spend nearly the same
cost as reading the entire dataset S.

Technical Overview. We will consider instead the dynamic element distinctness problem,
where we want to support two operations on an initial empty multi-set S:

INSERT(e): add an integer e € [2] to S.

QUERY: report whether all the elements in S are distinct.

A structure solving dynamic distinct counting also solves dynamic element distinctness
with exactly the same space, query, and update cost: first obtain the number = of distinct
elements in S, and declares that all elements in S are distinct if and only if = equals the
number of insertions in history. Therefore, a lower bound on the latter problem also carries
over to the former. Indeed, the main result of this paper is:

» Theorem 2. Let t,, be the expected amortized insertion cost of a polynomial-space Las
Vegas structure for the dynamic element distinctness problem, and t, be its expected query
cost, where both expectations are taken over the random choices made by the structure. In
the scenario where N = B¢, M = B¢ (for any integer constants ¢ > 1 and ¢ > ¢ 4+ 1), and
3logN <w=0(ogN), if t, = 0(@), then ty = Q(ﬁ).

We establish Theorem 2 by working under the cell-probe model. An immediate obstacle
is that, every insertion obviously must probe at least one cell (recall that the cell-probe
model is stateless, i.e., no information is passed between two operations), which is at odds
with our goal of having an o(1) bound on ¢,. A main idea behind our techniques is to prove
a tradeoff between the query cost and the cost of a group of N/B = Q(M) insertions. Then,
by requiring each group to probe o(N/B) cells, we get essentially an o(1) amortized bound
on t,, thus overcoming the obstacle. The tradeoff (between the query and group update
costs) is obtained by a novel reduction from set disjointness.

1.2 Previous Work: Lower Bounds in EM with o(1) Update Cost

In the EM model, an important line of research is to understand the limitation of buffering,
or more specifically: what is the best query time achievable if the amortized update cost
needs to be o(1)? Our work belongs to this category of work. In this subsection, we review
the existing results under the category to the best of our knowledge.

The offline version of the dynamic element distinctness problem, where the goal is to
determine if a static set S has duplicate elements, is known to require at least c% logys/ s %
I/0s, for some constant ¢, in EM under the indivisibility assumption [2, 3]. This implies
the following dynamic lower bound: if ¢, < 55 logy/p &, then t, = Q% logrr/ X). In
turn, this tradeoff implies that no structure (obeying the indivisibility assumption) with o(1)
update cost can answer a query faster than sorting when log,, 5(N/B) = Q(B), that is, N
is exponential in B. In the more realistic settings where N and M are polynomials of B,

however, the tradeoff loses its significance because it requires the impossible that ¢, = o(1/B).

The above discussion also applies to dynamic distinct counting.

There is considerable work [4, 9, 12, 13, 15] in understanding the I/O complexity of
the dynamic membership problem, where the goal is to maintain a set S of elements under
insertions, such that queries of the following form “does element e belong to S?” can be
answered efficiently. The lower bounds by Brodal and Fagerberg [4] and Wei et al. [13] were

proved under the indivisibility assumption, while the others hold without the assumption.

ICDT’15
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More specifically, the techniques of Yi and Zhang [15] are geared to establish a tradeoff of
the following form (abusing notations slightly, let ¢,,,t, be the expected amortized insertion
cost and expected query cost respectively also for dynamic membership): if ¢, <1+ § where
4 is a sufficiently small constant, then t,, = Q(1). Verbin and Zhang [12] showed a different
tradeoff: if ¢, <1 — € where 0 < € < 1 is any constant, then ¢, = Q(logz N). Iacono and
Patrascu [9] presented an alternative tradeoff between t,, and the worst-case query cost t;‘l"‘”""'t:

if £, < 1 —¢, then 17! = Q(%85).

The results in both [9] and [15] were derived from the chronogram technique [7, 11]. The
hard input consists of an insertion sequence followed by a single query. The sequence is then
divided into subsequences, called epochs, whose lengths increase geometrically when they are
ordered reverse chronologically. The crux of a lower-bound argument is to show that when
t,, is small, for every epoch, the query must read at least a block “exclusively belonging to”
that epoch with constant probability. Thus, the expected query cost is at least the number
of epochs. Unfortunately, the chronogram technique does not appear to be the right tool for
dynamic element distinctness. This is because the number of epochs is logarithmic to the
number N of insertions, thus making it difficult to prove a super-logarithmic lower bound
on the query cost. Our goal, as shown in Theorem 2, is to establish an almost linear lower
bound.

Finally, Yi [14] studied dynamic 1d range reporting, where the goal is to maintain a set S
of elements from an ordered domain under insertions so that the following queries can be
answered efficiently: given a range [e1, ea] where eg, ea are elements from the domain, report
S N[e1, e2]. He presented lower bound tradeoffs between the amortized insertion cost and the
query cost of deterministic structures, based on a dynamic version of the indezability model
[8], and thus, still inheriting the indivisibility assumption.

2 An /0 Lower Bound of Dynamic Element Distinctness

2.1 Cell-Probe Model

The core of Theorem 2 is a lower bound in a cell-probe model of computation defined as
follows. The machine is equipped with a CPU and an array of memory cells of size wB bits.
The CPU has a register of an unbounded size. A cell probe either reads or writes a cell. The
cost of an algorithm is measured as the number of cells probed (CPU calculation is free).
The space of a structure is measured as the number of cells occupied.

For a deterministic structure, an operation can be modeled as follows. At the beginning,
the register contains nothing but the operation’s input parameter. At each step, the operation
probes a cell ¢, such that the address of ¢ and whether the probe is a read or a write are
both functions of the register. If the probe is a read, the register is updated as a function of
the register’s current form and the contents of c. If it is a write, then the value written to ¢
is a function of the register, after which the register is updated as a function of its current
form. We model a randomized structure by assuming that it has free access to a random bit
sequence, and that it behaves as a deterministic structure after the sequence has been fixed.

2.2 Hard Input

Set N = B¢ and M = B¢ where ¢ and ¢ can be any integer constants such that ¢’ > 1 and
¢ > 4+ 1. Fix w to be any integer such that 3log N < w = O(log N). We use the term
(N/B)-subset to refer to a set of N/B (distinct) integers from [2%]. We consider a variant of
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the element distinctness problem where a structure maintains an initially empty multi-set S
under two operations:

G-INSERT(G): add an (N/B)-subset G to S.

QUERY: decide whether the elements of S are distinct.

We refer to the above as the element distinctness with group insertions (EDGI) problem.

Our hard input consists of a sequence ¥ of B batches, where each batch has two operations:
a G-INSERT(G) followed by a single QUERY, where G is taken uniformly at random from all

the (A?/w ) possible (N/B)-subsets. At the end of ¥, S has exactly N elements, but they are

not necessarily distinct. We denote by X the set of all possible sequences as generated above.

Note that X follows the uniform distribution over ¥. We say that a structure uses polynomial
space if it occupies at most N9 cells when it processes any ¥ of . Our discussion will
focus only on such structures.

2.3 Set Disjointness

This is a communication complexity problem—denoted as Disj henceforth—defined as follows.

Alice is given a subset X of [2"], and Bob is given a subset Y of [2*]. Their goal is to
determine whether X NY = () by sending each other messages, each being a sequence of
bits, according to a pre-agreed protocol II. For our purpose, it suffices to consider that II
is deterministic defined as follows. The person sending the first message is always fixed
(regardless of X and Y). Then, Alice and Bob take turns to send messages, such that
every message is a function of the previous messages and the sender’s input. We denote
by IT4(X,Y) the bit sequence concatenating chronologically all the messages sent by Alice
on input (X,Y), and by |II4(X,Y)| the number of bits in II4(X,Y). Let IIp(X,Y) and
I (X,Y)| be defined similarly for Bob.

We denote by Z the set of all possible inputs (X,Y") to Disj. Let i be a probability density
function (pdf) over Z, namely, u(X,Y") gives the probability that Alice’s and Bob’s subsets
are X and Y, respectively. Define:

a (M) = Y |Ia(X, V)] u(X,Y)
(X,Y)eT

Bu) = > [Hp(X,Y)]- u(X,Y).
(X,Y)eT

We call o, (IT) the p-average Alice cost of I, and §,,(II) the p-average Bob cost of II.

We will be particularly interested in the scenario where X and Y have specific sizes n
and m, respectively, where n and m are integers in [1,2"]. Let Z™™ represent the set of all
possible inputs (X,Y") to Disj such that |X| = n and |Y| = m. When the input to Disj is
drawn only from Z™™ we will refer to Disj as (n, m)-Disj.

We use unif™™ to denote the uniform distribution g over Z™™, namely, u(X,Y) =
1/|Zm™ if (X,Y) € ™™, while u(X,Y) = 0 for any (X,Y) € T —ZI™™. The appendix
contains a proof for the following tradeoff between aypien.m (II) and Bypin.m (I11):

» Theorem 3. When 3 - max{logn,logm} < w = o(min{n,m}), for any deterministic
protocol 11 solving (n, m)-Disj, it must hold that either cypign.m (II) = Q(n) or By (II) =

ICDT’15
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2.4 Cell-Probe Lower Bound for EDGI

Let us fix a deterministic polynomial-space cell-probe structure T on the EDGI problem.
For each sequence ¥ € X, denote by T'(X) the cost of T (in the number of cells probed) in
processing ¥. Note that T'(X) is a random variable because ¥ is uniformly distributed in X.
Next, we analyze the expectation of T'(X).

Recall that 3 consists of B batches, each of which has a G-INSERT operation followed by
a query. Let G; (1 <i < B) be the (N/B)-subset added to § by the G-INSERT operation in
the i-th batch of ¥. We say that X is i-distinct if G; NG = 0 for each pair of j, j* satisfying
1 < j <4’ <i. Denote by T;(X) the number of cells probed by T in handling the i-th batch.
Thus, T'(X) = >, T;(X). By the linearity of expectation, we know: E[T(X)] = >, E[T;(X)].

We prove in Section 3 the following relationship between set disjointness and EDGI:

» Lemma 4. For each i € [1,B — 1], there exists a deterministic protocol I solving the
(N/B,iN/B)-Disj problem with o, n/5,in/5 (1) < X-O(log N) and B, pev/5.in/8(I1) < A-wB,
where A = E[T;11(X) | ¥ is i-distinct].

Combining Lemma 4 and Theorem 3, we have the following when w > 3log N:

s . N iN
E[T;+1(X) | ¥ is i-distinct] = Q (mln {BlogN’ W}) . (1)

» Observation 5. When w > 3log N, it must hold that Pr[¥ is B-distinct] > 1/2.
Proof.

Pr[¥ is B-distinct] > 1-— Z Z Priz € G; N z €G]

1<i<j<B zc[2v]

2
(@) ()
2 2w
1 5 0 N?
1—§B -2 B2 92w

1/2. (by w > 3log N)

Y

Y

When 3log N < w = O(log N), we have from the above:

B
BT = Y EmE)
i71+B/2
> Z E[T;11(X) | X is i-distinct] - Pr[X is i-distinct)
i=B/2
B—1
> (1/2) > E[Ti11() | £ is i-distinct]
i=B/2
(as Pr[X is i-distinct] > Pr[¥ is B-distinct])
B 1
> 1) Y (BlogN) (by (1)
i=B/2

=9 <1o]gVN> @)
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where the last inequality used the fact that % = O(:1%;) for i € [B/2,B] and w =

O(log N). Now it is easy to obtain the following lower bound:

» Lemma 6. Given N = B¢ for some integer constant ¢ > 2, and w such that 3log N <
w = O(log N), for any Las Vegas polynomial-space structure, there is at least a sequence
Yo € X such that the structure requires Q(N/log B) expected cost processing ¥g.

Proof. We have proved that when ¥ is uniformly distributed in ¥, every deterministic
structure must incur Q(N/log N) = Q(N/log B) expected cost in processing ¥ (applying (2)
and log N = ©(log B)). The lemma then follows from Yao’s minimax principle. <

2.5 From Cell-Probe to EM

Still set N = B¢ and M = B¢ (for integer constants ¢’ > 1 and ¢ > ¢/ + 1), and 3log N <
w = O(log N). In this scenario, next we show that if an EM structure Y’ solves the dynamic
element distinctness problem with expected amortized insertion cost t,, and expected query
cost ¢4, then there is a cell-probe structure Y for the EDGI problem, such that for every
sequence X € ¥, T processes X in t, /N + t,B + 4M expected cost.

The main idea is to simulate Y’ in the cell-probe model by setting aside M /B fixed cells
to preserve the memory of YT/ across two operations—refer to those cells as the state cells. In
addition, at any moment, every disk block occupied by Y’ corresponds to a unique cell with
the same contents. At the beginning, T (in the cell-probe model) and Y’ (in the EM model)
are empty, and so are the state cells. T behaves according to how Y’ works. Consider, in
general, the processing of the i-th (1 < i < B) batch (G-INSERT(G), QUERY) of 3. T first
reads the M/ B state cells so that the (cell-probe) CPU register contains all the information
in the memory of Y’ (in EM). Then, we invoke the insertion algorithm of Y’ to insert the
N/B elements of G to Y’ (the ordering does not matter). In this process, (i) whenever Y’
reads (writes) a block, T reads (writes) the block’s corresponding cell; (ii) whenever Y’
performs CPU computation, T performs the same computation in the register. After Y’ has
finished inserting the elements of G, T writes the memory of Y’ to the state cells with cost
M/B. At this point, T has completed the operation G-INSERT(G). In the same manner, T
handles a QUERY by first reading the state cells, simulating Y’, and then writing the state
cells. By definitions of t,, and t4, Y’ performs at most ¢, N + t,B expected I/Os in doing N
insertions and B queries. Hence, T probes at most t,N + ¢,B 4+ 4M cells in expectation,
noticing that 4M /B probes are needed for reading and writing the state cells in each batch
of 3.

We thus know from Lemma 6 that ¢, N + t,B + 4M = Q(N/log B), which gives ¢, +
4Z +4/B =Q(1/log B) as N > MB. Thus, if t,, = o(1/log B), then t, must be (57 7),
as claimed in Theorem 2.

Remark. Echoing the high level description in Section 1.1, it is worth mentioning that
Lemma 6 implies an update-query tradeoff for EDGI. Let 7, be the expected amortized
G-INSERT cost of an EDGI structure, and 7, be its expected query cost. If the structure
uses polynomial space, the lemma shows that 7,B + 7,8 = Q(N/log B).

3 Reduction from Set Disjointness to EDGI

In this section, which serves as a proof of Lemma 4, let us set n = N/B and m = iN/B.
As before, denote by T the (deterministic) EDGI structure in the context of the lemma.
Consider the S after having processed the first ¢ batches of ¥. Note that S is a set (as

ICDT’15



On The 1/0 Complexity of Dynamic Distinct Counting

opposed to a multi-set) because ¥ is i-distinct. Let G be the (N/B)-subset to be inserted in
the (i +1)-th batch. Clearly, SNG = 0 if and only if the query of the (i + 1)-th batch returns
“distinct”. Based on this observation, next we design a protocol for the (N/B,iN/B)-Disj
problem that works by asking Alice and Bob to simulate the execution of Y.

Let us first introduce some notions useful in the subsequent discussion. Let Gy, ..., G;
be (N/B)-subsets of [2*] that are mutually disjoint. These i subsets make an i-distinct
sequence G = (G1,Gy,...,G;). In general, given G, we define S(G) = Ui_,G;. Let G be
the set of all different i-distinct sequences. Define g = |G|, which equals %
Conditioned on the fact that 3 is i-distinct, every i-distinct sequence has 1/g probability
of being the sequence of (IN/B)-subsets that are added to S by the first ¢ batches of X.
Furthermore, since Y is deterministic, every G defines an instance of T—denoted as T(G)—
which is exactly the cell contents after T has processed i batches: (G-INSERT(G), QUERY),

.., (G-INSERT(G;), QUERY).

Fix a G and therefore Y(G). Given an (N/B)-subset X, let C(Y(G), X) be the cost of
processing batch (G-INSERT(X ), QUERY) on Y(G). Define:

c@G) = (Qi)zoor(g),X). 3)
n X

In other words, C(G) is the average C(Y(G), X) over all the possible X.

Now, fix Y as an (¢N/B)-subset of [2*]. Consider the set Z(Y") of i-distinct sequences G
such that S(G) =Y, that is, each G € Z(Y') is a possible way to break Y into a sequence of
(N/B)-subsets. Let z = mingcz(y) C(G). Define G(Y') to be the G € Z(Y) with the smallest
C(9); if multiple i-distinct sequences G of Z(Y") satisfy C(G) = z, define G(Y") to be the first
one among them in lexicographical order. Note that G(Y') is indeed a function of Y by the
determinism of Y.

We are now ready to describe a protocol for (n,m)-Disj. Let X and Y be the inputs of
Alice and Bob, respectively. Bob first identifies G(Y') and builds a structure T = Y(G(Y))
locally with no communication. Then, Alice simulates what the cell-probe CPU does to
perform a batch (G-INSERT(X ), QUERY) on Y. Specifically, she maintains locally a set R
of cells to simulate the CPU register. R is initially empty. Whenever G-INSERT(X) writes
a cell ¢, she does not communicate any bit, but simply adds ¢ to R, i.e., R remembers
the address and contents of ¢. Whenever G-INSERT(X) reads a cell ¢, Alice first checks
whether ¢ € R. If so, she takes the contents of ¢ directly from R. Otherwise, she requests
¢ from Bob by sending O(log V) bits to address c—note that O(log N) suffices because T
uses polynomial space—and then, Bob sends back the contents of ¢ in wB bits. Without
clearing R, Alice proceeds to simulate QUERY in the same manner. At the end, if QUERY
reports “disjoint”, Alice notifies Bob in one bit that X NY = (J; otherwise, her notification
bit indicates X NY # (.

We argue that the protocol, denoted as II, has low aypien.m (II) and Bynien.m (IT). Note that
the protocol executes in rounds, in each of which Alice and Bob communicate O(log N) and

wB bits, respectively. Let r(X,Y) be the number of rounds in the protocol on input (X,Y).

Define 7 = W > xy r(X,Y), namely, 7 is the average number of rounds over all the

inputs to (n,;n)—ﬁisj. Hence, aypienm (IT) < 7 - O(log N) and Bypigm (1) < 7 - wB.
Since our protocol ensures r(X,Y) < C(T(G(Y)), X), the following relationship becomes
obvious:

1
< TyEy & CreeX) @
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Next, we complete the proof of Lemma 4 by showing that the right hand side of (4) is at
most E[T;,1(X) | X is i-distinct] through the following derivation:

IN

I SCTENX) < o RS F amie)x)
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Appendix: Proof of Theorem 3

Set W = 2. Recall that the set disjointness problem Disj was defined by having (X,Y)
drawn from the domain of [W]. We will from now on denote the problem as Disjy;,, namely,
by indicating the domain size explicitly. Also, it will be convenient to regard an input (X,Y)
to Disjy, as a pair of W-dimensional vectors & = (zq, 21, ..., 2w—1) and y = (Yo, Y1, -, Yyw—1)
such that for each ¢ € [W]:

z; =11if i € X, or = 0 otherwise;
y; =1if i € Y, or = 0 otherwise.

We will use |z| to denote the number of 1’s in z (similarly, |y|).

We will build our proof on a result of [5] of Dasgupta, Kumar, and Sivakumar. They
considered Disjy, under a distribution of (z,y) parameterized by real values p,q € [0,1]—
denoted as rand};?—where, independently for each i € [W]: (i) x; equals 1 with probability
p, and (ii) independently, y; = 1 with probability g. They proved®:

» Lemma 7 ([5]). For any deterministic protocol II solving Disjy,, it holds that either
O‘randa’,q (H) = Q(pW) or Brand";‘}q (H) = Q(qW)

Theorem 3, on the other hand, is concerned with distribution unify/™, that is, the uniform
distribution over the set of all inputs (z,y) € {0,1}" x {0,1}W satisfying |z| = n and
ly| = m. We will defer the proof of the next lemma till later:

» Lemma 8. Suppose that max{n,m} < VW /2, and that we are given a deterministic
protocol 11 for (n,m)-Disjy,. Then, for any n’ € [n/2,n] and m’ € [m/2,m], there is a
deterministic protocol II""™ for (n',m’)-Disjy, /o such that
O‘unifa;/;’ (Imm < 3. ity (1), and ﬁ“"”ﬁv/)gﬂ (I < 3. ﬁuni%m (1I1).
Now, given a deterministic protocol II solving (n,m)-Disjy,, we design a protocol II" for
Disjyy /5. Given an input (z',y’) to Disjyy/o, II' works as follows:

If |2'| ¢ [n/2,n], Alice sends  to Bob, who then sends back the result with one more bit.
Conversely, if |y'| ¢ [m/2, m], Bob sends y to Alice, who then sends back the result.

In all other cases, Alice and Bob send n’ = |z’| and m' = |y’|, respectively, after which
they run the protocol IT"™" of Lemma 8 that is obtained from II for (n/, m’)-Disjyy 5.

3 By combining Lemmas 5-8 of [5] with parameters # =0, a = p and § = q.
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Next we argue that II is efficient under the distribution rand{'j{,q/2 with
p=(3n/4)/(W/2), and q= (3m/4)/(W/2).

Define out to be the event where either |2’| ¢ [n/2,n] or |y'| ¢ [m/2,m] holds. Clearly:
Crand?y, (I') < Prlout](O(1) + W/2) + Pr[-out](2log W + o),

where

o = Z (Pr[|a:'| =n',ly'| =m’ | —out] g (™ )) < 3+ oy (II).  (by Lemma 8)
n/E[%,n],

mr'e[%,m,]

By Chernoff’s bounds, Pr[out] < e=2(") which, together with w = o(n), gives Prout|]W/2 =
o(n). Therefore:

Qrand?P? (HI) = O(n) +2 10g w +3- O‘unif:L’m (H) = O(TL) +3- aunifg’m’ (H)

w/2

Similar analysis shows that

ﬁrandp"q (H/) = O(m) + 36unifcv’m (H>

w/2

<2

On the other hand, Lemma 7 states that either Crand?y?, (Ir) =
6rand€";}2 (II') = Q(¢W/2) = Q(m). Therefore, either oy (II)
Q(m), as claimed.

(pW/2) = Q(n) or
(TL) or 6unif@m (H) =

Il
2

Proof of Lemma 8

It suffices to consider that IT never incurs more than W bits of communication. Let us define
T to be the set consisting of all triplets (S,U, V) satisfying both conditions below:

S, U, and V are pairwise disjoint subsets of [W];
S| =W/2, U =n—n/;and |[V|=m —m'.

Given a triplet (S,U, V), we design a protocol II°VV for Disjy /o as follows. Upon an input
(x',y") € {0,1}W/2 x {0,1}"/2, 15UV runs II on (z,y) where

x is the W-dimensional vector such that

the projection of £ onto the subspace defined by S gives z’;
xz;=1forallieU;z;, =0forallie [W]—-S-U.

y is defined in the same way after replacing ' with ¢, and U with V.

I°YV is correct on all (z,y').

It is easy to verify that
For each b € {0,1} and any z € {0,1}" define z° = {i € [W] | z; = b}, namely, the set
of dimensions on which z takes the value b. Now, we induce from unifjy™ a distribution v on

T, by using the following 5-step process to generate a triplet (S, U, V):

1. Pick (z,y) according to unifi;/", subject to the constraint that |z' Ny'| < min{n’,m'}.
2. Pick uniformly at random U C 2! Ny® with |[U| = n — n’ (this is always possible because
lzt Ny’ =n — |zt Nyl >n—n').
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3. Pick uniformly at random V C 2% Ny! with |[V|=m —m'.

4. Pick uniformly at random S’ C £°Ny° with |S’| = W/2—|U| —|V/| (this is always possible
because [z'Ny°| =W — |z Uyl| > W — (n +m) > W/2).

5. Finally, let S =[W]—-U —V — 5’ (note that |S| is always W/2).

Denote by & the probability that an input (z,y) drawn from unifj;" satisfies [z' Ny*| >
min{n’,m’}. Applying the fact n’ > n/2, we know

prliet gt > )< () (0 Y () < () (M) < v,

and similarly Pr[jz' Ny'| > m'] < (4/vVW)™/2. Therefore,
§ < Pr[lz' ny'| > n/] + Prljz' ny'| > m/] = o(1/W).
Observe that

O‘unifa}m (H) = E(m,y)eunifa}m HHA(xvy)H
(1-9)- E(S,U,V)(—VE(

\Y)

n’,m’ [|HiUV(w/7y/) |]

.'1:’,y’)<—unh“/v/2

(1-96)-Esuv)er [aunifn/,mf (HSUV)} :

w/2

Turning this around gives

Qynif™ (H)
E(s.0v)er [aunif;;}gf <HSUV>} < T = (o) - g (I0).

By Markov’s inequality, if we draw (S,U, V) from v, o s/ (IT9YV) < 2.5(1 4 0(1)) -
w2
ez (II) < Boygignm (IT) holds with probability at least probability 1 —1/2.5 = 0.6.
Similarly, with probability at least 0.6 we have 8. ms (II9VV) < B/J’unif@m (II). Therefore,
w/2

both are true simultaneously with a positive probability, thus completing the proof.
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