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Abstract

Given an integer k, a representative skyline contains the k skyline points that best describe the trade-

offs among different dimensions offered by the full skyline. This paper proposes a distance-based formu-

lation, which aims at minimizing the distance between a non-representative skyline point and its nearest

representative. In 2D space, there is a dynamic-programming algorithm for computing an optimal repre-

sentative skyline, whereas for dimensionality at least 3, we prove that the problem is NP-hard, and give

a 2-approximate polynomial-time solution. The effectiveness and efficiency of our techniques have been

confirmed by extensive experimentation.

∗A short version of this paper has appeared in ICDE’09.



1 Introduction

Given a set D of multidimensional points, the skyline [2] consists of the points that are not dominated by

any other point. Specifically, a point p dominates another p′ if the coordinate of p is smaller than or equal

to that of p′ on all dimensions, and strictly smaller on at least one dimension. Figure 1 shows a classical

example with a set D of 13 points, each capturing two properties of a hotel: its distance to the beach (the

horizontal coordinate), and price (the vertical coordinate). The skyline has 8 points p1, p2, ..., p8.
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Figure 1: A skyline example

Skyline retrieval has received considerable attention from the database community, resulting in a large

number of interesting results as surveyed in Section 6. These research efforts reflect the crucial importance

of skylines in practice. In particular, it is well-known [21] that there exists an inherent connection between

skylines and top-1 queries. Specifically, given a preference function f(p) which calculates a score for each

point p, a top-1 query returns the data point with the lowest score. As long as function f(·) is monotone1,

the top-1 result is definitely in the skyline. Conversely, every skyline point is guaranteed to be the top-1

result for at least one preference function f(·).
The skyline operator is particularly useful in scenarios of multi-criteria optimization where it is difficult,

or even impossible, to formulate a good preference function. For example, consider a tourist that wants to

choose from the hotels in Figure 1 a good one offering a nice tradeoff between price and distance. S/he may

not be sure about the relative weighting of the two dimensions, or in general, whether the quality of a hotel

should be assessed through a linear, quadratic, or other types of preference functions. In this case, it would

be reasonable to return the skyline, so that the tourist can directly compare the tradeoffs offered by different

skyline points. For example, as far as tradeoffs are concerned, the skyline points in Figure 1 can be divided

into three subsets S1, S2, S3:

• S1 = {p1}, which includes a hotel that is very close to the beach, but rather expensive;

• S2 = {p2, p3, p4, p5}, where the hotels are farther away from the beach, but cheaper;

• S3 = {p6, p7, p8}, where the hotels are the cheapest, but far from the beach.

In this paper, we study the problem of computing a representative skyline, which includes a small number

k of skyline points that best describe the possible tradeoffs in the full skyline. For example, given k = 3, our

solution will report p1, p4, and p7, each of which comes from a distinct subset illustrated above, representing

a different tradeoff.

Representative skylines are especially helpful in web-based recommendation systems such as the one

in our previous hotel example. Skyline computation can be a rather costly process, particularly in high

1Namely, f(p) grows as long as the coordinate of p along any dimension increases.
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dimensional spaces. This necessitates a long waiting period before the entire skyline is delivered to the user,

which may potentially incur negative user experience. A better approach is to return a few early skyline

points representing the contour of the final skyline, and then, progressively refine the contour by reporting

more skyline points. In this way, a user can understand the possible tradeoffs s/he may eventually get, well

before the query finishes. Moreover, given such valuable information, the user may also notify the web

server to stop fetching more skyline points offering uninteresting tradeoffs, thus significantly reducing the

processing time.

Furthermore, representative skylines also enable a drill-down manner to explore the full skyline. In

practice, the number of skyline points can be large, and increases rapidly with the dimensionality [4]. In fact,

even a two-dimensional dataset may have a sizable skyline, when the data distribution is “anti-correlated”

[2]. Presenting a user with a large result set elicits confusion and may even complicate the process of

selecting the best object. A representative skyline, on the other hand, gives a user a concise high-level

summary of the entire skyline. The user can then identify a few representatives, and ask the server to

provide the other skyline points that are similar to those representatives.

To the best of our knowledge, so far there is only a single piece of work [18] on representative skylines.

The work of [18], however, adopts a definition of representativeness that sometimes returns skyline points

that are barely representative. For instance, as detailed in the next section, with k = 3 the definition in

[18] advocates a representative set of {p3, p4, p5} in the example of Figure 1. This would be a poor choice

because all the points in the set come from S2, and do not indicate the tradeoffs provided by S1 and S3.

Motivated by this, we propose a new definition of representative skyline. Our definition builds on the

intuition that a good representative skyline should be such that, for every non-representative skyline point,

there is a nearby representative. Therefore, we aim at minimizing the maximum distance between a non-

representative skyline point and its closest representative. We also study algorithms for finding distance-

based representative skylines. In 2D space, there is a dynamic programming algorithm that, given the (full)

skyline, finds an optimal solution to the problem in O(mk) time, where m is the number of points in the

skyline. For dimensionality at least 3, we show that the problem is NP-hard, and give a 2-approximate

polynomial-time algorithm. Utilizing a multidimensional access method, our algorithm can quickly identify

the k representatives without extracting the entire skyline. Furthermore, the algorithm is progressive, and

does not require the user to specify the value of k. Instead, it continuously returns representatives that are

guaranteed to be a 2-approximate solution at any moment, until either manually terminated or eventually

producing the full skyline. We provide both theoretical and empirical evidence that, compared to the defini-

tion in [18], our representative skyline not only better captures the contour of the full skyline, but also can

be computed considerably faster.

A short version of this work has appeared in [28]. The current paper extends that preliminary report

with two new contributions:

• The first one is a new algorithm for finding an optimal solution in 2d space which, as mentioned

earlier, uses O(mk) time (Section 3.3). This is a dramatic improvement over the best algorithm in

[28], which demands O(m2k) time.

• The second new contribution is the establishment of a crucial property (Lemma 4) that proves the

effectiveness of distance-based representative skylines in any fixed-dimensionality d. This property

was proved only in 2d space in [28]; since then, proving the property for d ≥ 3 has been an urgent

open issue because without settling it the effectiveness of our approach has remained unjustified for

those dimensionalities! This work formally closes the issue. As we demonstrate in the proof of

Lemma 4, it turns out that the d ≥ 3 case requires an argument completely different from the one in

[28]. The discovery of that argument also serves as a technical breakthrough since [28].

The rest of the paper is organized as follows. Section 2 clarifies our formulation of representative
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skyline, analyzes its properties, and points out its advantages over [18]. Section 3 presents an algorithm for

finding an optimal representative skyline in 2D space. Section 4 tackles dimensionalities at least 3. Section 5

evaluates the proposed techniques with extensive experiments. Section 6 surveys the previous literature on

skyline. Finally, Section 7 concludes the paper with a summary of our results.

2 Representative skylines and properties

Let D be a set of d-dimensional points. Without loss of generality, we often consider that each coordinate

of every point in D has been normalized into a unit range [0, 1]. Refer to the box [0, 1]d as the data space.

Denote by S the full skyline of D. In the sequel, we first review the only existing definition of represen-

tative skyline proposed in [18], and elaborate its defects. Then, we propose our definition, and explain its

superiority over the proposition in [18]. Finally, we identify the underlying optimization problem.

2.1 Defects of the existing formulation

Given an integer k, Lin et al. [18] define a representative skyline as the set K of k skyline points of D that

maximizes the number of non-skyline points dominated by at least one point in K. We refer to this definition

as max-dominance representative skyline.

For example, consider Figure 1 and k = 3. The max-dominance representative skyline is K =
{p3, p4, p5}. To understand why, first note that every non-skyline point is dominated by at least one point in

K. Furthermore, exclusion of any point from K will leave at least one non-skyline point un-dominated.

Specifically, omitting p3 from K renders p9 un-dominated, and omitting p4 (p5) renders p10 (p11) un-

dominated. As discussed in Section 1, K = {p3, p4, p5} is not sufficiently representative, because all the

points in K are from the same cluster.

To enable a direct comparison with our definition of representative skyline to be explained shortly,

we introduce the concept of representation error of K, denoted as Er(K,S). Intuitively, a representative

skyline K is good if, for every non-representative skyline point p ∈ S − K, there is a representative in

K close to p. Hence, Er(K,S) quantifies the representation quality as the maximum distance between a

non-representative skyline point in S − K and its nearest representative in K, under Euclidean distance, or

formally:

Er(K,S) = max
p∈S−K

{min
p′∈K

‖p, p′‖}. (1)

The above error metric makes more sense than the apparent alternative of taking the sum, instead of max.

We will come back to this issue later.

In the sequel, when the second parameter of function Er(·, ·) is the full skyline S of D, we often

abbreviate Er(K,S) as Er(K). For example, in Figure 1, when K = {p3, p4, p5}, Er(K) = ‖p5, p8‖, i.e.,

p8 is the point that is worst represented by K.

We present a lemma showing that the representation error of max-dominance representative skyline can

be arbitrarily bad.

Lemma 1. For any k, there is a 2D dataset D such that the Er(K) of the max-dominance representative

skyline K is at least
√
2− δ for arbitrarily small δ > 0.

Proof. Given a δ, we will construct such a dataset D with cardinality 2k + 1. First, create a gadget with 2k
points p1, p2, ..., p2k as follows. Take a square with side length δ/

√
2. Along the square’s anti-diagonal,

evenly put down k points p1, p2, ..., pk as shown in Figure 2, making sure that p1 and pk are not at the two

ends of the anti-diagonal. For each pi (1 ≤ i ≤ k), place another point pk+i that is exclusively dominated
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Figure 2: A gadget in the proof of Lemma 1

by pi, as in Figure 2. When this is done, place the gadget into the data space, aligning the upper-left corner

of its square with that of the data space. Finally, put another data point p2k+1 at the lower-right corner of the

data space. Points p1, p2, ..., p2k+1 constitute D.

The max-dominance representative skyline K of D includes {p1, p2, ..., pk}, and the full skyline S of

D is K ∪ {p2k+1}. Hence, Er(K) equals the Euclidean distance between p2k+1 and pk, which is at least√
2 − δ, noticing that the anti-diagonals of the data space and the gadget square have length

√
2 and δ

respectively.

Recall that
√
2 is the maximum possible distance of two data points in 2D space. Hence, Lemma 1

suggests that the representation error Er(K) can arbitrarily approach this worst value, no matter how large

k is. Straightforwardly, a similar result holds in any dimensionality d, replacing
√
2 with

√
d.

Another drawback of max-dominance representative skyline is that it is costly to compute. In 2D space,

even if the skyline S is available, it still takes O(n logm+m2k) time [18] to find an optimal solution, where

n and m are the sizes of D and S , respectively. In other words, the cost is as expensive as scanning D several

times. The overhead is even greater in higher dimensional spaces. First, when the dimensionality is at least

3, the problem is NP-hard so only approximate solutions are possible in practice. The best algorithm in [18]

finds a solution with provably good quality guarantees in O(nm) time. Apparently, this is prohibitive for

large datasets. Acknowledging the vast cost complexity, the authors of [18] also provide another heuristic

algorithm that is faster but may return a solution with poor quality.

For fairness, we should point out that the defects of max-dominance representative skylines are valid

only if the objective is to summarize the spatial distribution of the skyline points (i.e., the possible tradeoffs

along the skyline), which is the focus of this paper as explained in Section 1. In fact, the max-dominance

definition was designed to achieve different purposes, which have been nicely explained in [18].

2.2 Our formulation

We introduce the concept of distance-based representative skyline as follows.

Definition 2. Let D be a multidimensional dataset and S its skyline. Given an integer k, the distance-based

representative skyline of D is a set K of k skyline points in S that minimizes Er(K,S) as calculated by

Equation 1.

In other words, the distance-based representative skyline consists of k skyline points that achieve the

lowest representation error. For example, in Figure 1, with k = 3 the distance-based representative skyline

is K = {p1, p4, p7}, whose Er(K) equals ‖p4, p2‖.

The distance-based representative skyline is essentially an optimal solution of the k-center problem [13]

on the full skyline S . As a result, the distance-based representative skyline shares several properties of

the k-center problem. One, particularly, is that the result is not sensitive to the densities of clusters. This

is very important for capturing the contour of the skyline. Specifically, we do not want to allocate many
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Figure 3: A path in the proof of Lemma 3

representatives to a cluster simply because it has a large density. Instead, we would like to distribute the

representatives evenly along the skyline, regardless of the densities of the underlying clusters. This also

answers the question we posed earlier why the error metric of Equation 1 is better than its sum-counterpart
∑

p∈S−K{minp′∈K ‖p, p′‖}. The latter tends to give more representatives to a dense cluster, because doing

so may reduce the distances of a huge number of points to their nearest representatives, which may outweight

the benefit of trying to reduce such distances of points in a faraway sparse cluster.

representative will go into this cluster to refine its precision. Indeed, the distance-based representative

skyline with k = 4 is K = {p1, p3, p4, p7}.

Our formulation of representative skyline enjoys an attractive theoretical guarantee:

Lemma 3. For any k ≥ 2 and any 2D dataset D with cardinality at least k, the representation error Er(K)
of a distance-based representative skyline K is strictly smaller than 2/k.

Proof. Denote the full skyline of D as S , and the number of points in S as m. Let us sort the points in S in

ascending order of their x-coordinates, and let the sorted order be p1, p2, ..., pm. Use a segment to connect

each pair of consecutive skyline points in the sorted list. This way, we get a path, consisting of m − 1
segments. Define the length of the path as the total length of all those segments. The length of the path is

strictly lower than 2. Figure 3 shows the path formed by the 8 skyline points in the example of Figure 1.

To prove the lemma, we will construct a set K′ of k skyline points such that Er(K′) is already smaller

than 2/k. As the distance-based representative skyline K minimizes the representation error, its Er(K) can

be at most Er(K′), an hence, must be lower than 2/k as well.

Specifically, we create K′ as follows. Initially, K′ contains the first skyline point p1 of the sorted list, i.e.,

the beginning of the path. Then, we walk along the path, and keep a meter measuring the distance traveled.

As long as the meter is smaller than 2/k, we ignore all the skyline points seen on the path. Once the meter

reaches or exceeds 2/k, we will add to K′ the next skyline point encountered, and reset the meter to 0. Next,

the above process is repeated until we have finished the entire path. We call the points already in K′ at this

moment the picked representatives. Since the length of the entire path is less than 2, there are at most k
picked representatives. In case K′ has less than k picked representatives, we arbitrarily include more skyline

points of S into K′ to increase the size of K′ to k.

To prove Er(K′) < 2/k, we show a stronger statement: for every skyline point p ∈ S , there is a picked

representative whose distance to p is smaller than 2/k. This is trivial if p is a picked representative itself.

Otherwise, let p′ be the picked representative right before we came to p in walking along the path. ‖p′, p‖ is

at most the length of the segments on the path from p′ to p, which is smaller than 2/k by the way we decide

picked representatives.
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Comparing Lemmas 1 and 3, it is clear that distance-based representative skyline gives a much stronger

worst-case guarantee on the representation quality. Furthermore, its guarantee meets our intuitive expec-

tation that the representation precision ought to monotonically grow with k. This is a property that max-

dominance representative skyline fails to fulfill, as its representation error can be arbitrarily bad regardless

of how large k is (Lemma 1).

A result analogous to Lemma 3 can also be established in higher dimensionalities, but through a drasti-

cally different approach:

Lemma 4. For any k ≥ 2 and any dataset D (with |D| ≥ k) of a fixed dimensionality d, the representation

error Er(K) of a distance-based representative skyline K is O(( 1k )
1/(d−1)).

Proof. For simplicity, we assume that D is in general position, such that all pairs of points have distinct

distances. This assumption can be easily removed by extending our proof with details obstructing the central

ideas. Further, we consider that S has more than k points; otherwise, the lemma is trivially true. We will

find a set K′ of k skyline points such that Er(K′) = O(( 1k )
1/d). This will establish the lemma because

Er(K′) bounds Er(K) from above.

Given a point p, define its representative distance rep-dist(p,K′) as the distance between p and its closest

representative, or formally:

rep-dist(p,K′) = min
p′∈K′

‖p, p′‖. (2)

We construct K′ by repeating the following k − 1 times, starting from a K′ containing the point with the

smalllest coordinate in S:

add to K′ the point in S − K′ with the largest representative distance, i.e., the point

determining the current Er(K′).

Note that as the content of K′ expands, the representative distance of a point may decrease, because its

nearest representative may change to the one most recently added. Set r = Er(K′). We will show that the

K′ has the desired property that r = O(( 1k )
1/d).

Given two d-dimensional circles, we say that they are non-eclipsing if neither circle covers the center of

the other. In other words, either the two circles are disjoint, or their intersection does not contain the center

of any circle. Two circles are said to be eclipsing otherwise.

Call the points in K′ representatives, and denote them as c1, ..., ck , in the order they are added to K′.
Focusing on any particular ci (i ≤ k), we say that a point p ∈ S is represented by ci, if ci is the closest to p
among all the points in K′. Associate ci with the circle Ci that centers at ci and has radius r. Below we show

that C1, ..., Ck are mutually non-eclipsing with an inductive argument on k. Let us start with two facts:

F1 Our strategy for generating K′ guarantees that if a point is a representative for k = j, it is also a

representative for k = j+1. In other words, as k increases, K′ only expands; no existing representative

will be left out.

F2 The circles associated with the representatives shrink continuously as k increases, noticing that r =
Er(K′) decreases whenever K′ takes in an extra point.

We are ready to elaborate on our inductive proof. As the basic step, we show that C1 and C2 are non-

eclipsing for k = 2. Suppose for contradiction that they are not, in which case two possibilities could

happen. First, C1 would pass a point p /∈ K′ represented by c1 such that ‖p, c1‖ > ‖c1, c2‖. This cannot

happen due to the choice of c2. Second, C2 would pass a point p /∈ K′ (represented by c2) satisfying

‖p, c2‖ > ‖c1, c2‖. However, the fact that p is represented by c2 indicates that ‖p, c1‖ > ‖p, c2‖ > ‖c1, c2‖,

which, once again, violates how c2 was decided.
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Assuming that C1, ..., Ck are mutually non-eclipsing for k = j, we prove that this is also true for

k = j + 1. Since, by F2, C1, ..., Cj have become smaller (compared to what they were when k = j), our

inductive assumption implies that these j circles must still be mutually non-eclipsing. Hence, it suffices to

show that each of them is also non-eclipsing with Cj+1.

Suppose for contradiction that Ci (for some i ∈ [1, j]) is eclipsing with Cj+1. To explain that this

cannot happen, let p be the point defining r currently, that is, rep-dist(p,K′) = r. Define cα as the nearest

representative for p in K′ \ {cj+1}, namely, the representative that represented p when k = j. Similarly,

denote by cβ the nearest representative for cj+1 in K′ \ {cj+1}. It thus holds that

‖p, cα‖ ≥ r > ‖ci, cj+1‖ ≥ ‖cβ , cj+1‖.

This contradicts the selection of cj+1.

Equipped with the above result, we proceed to prove Lemma 4. We will first illustrate the rationale by

establishing a weaker error bound of O(( 1k )
1/d). Given a circle C , let us define its miniature to be the circle

having the same center as C but a radius half that of C . Observe that if two circles C,C ′ are non-eclipsing,

their miniatures must be disjoint. Each of C1, ..., Ck has radius at most
√
d. Therefore, the miniatures of

C1, ..., Ck are k disjoint circles in a d-dimensional square of side length 1+
√
d. The sqaure has a volume of

(1 +
√
d)d, forcing each of the k miniature circles to have a volume of O(1/k). Therefore, every miniature

has a radius O(( 1k )
1/d), implying the same for each Ci.

To tighten the bound to O(( 1k )
1/(d−1)), let us first point out a geometric fact. Given a d-dimensional

point p, define dom(p) as the region in the d-dimensional universe that is dominated by p. Note that dom(p)
extends beyond the data space. Given the skyline S , consider the union of the dom(p) of all the skyline

points p ∈ S , and denote the union as dom(S). Let B be the boundary of dom(S). Notice that every facet

of B is part of a d− 1 dimensional axis-parallel plane. The geometric fact we need is:

F3 Let p be a point in S . The intersection of B and any solid circle C , which centers at p and has radius

r, has a d − 1 dimensional volume of Ω(rd−1). Note that a solid circle includes all points on the

boundary and in the interior.

To verify this fact, let us focus on the inscribed (d-dimensional) solid square s of C , where “solid” has the

same meaning as in solid circle. Apparently, B has a side length of r/
√
d. We will show that the d − 1

dimensional volumn of s ∩ B is Ω(rd−1), which is sufficient for proving F3 because s ∩ B obviously has

a smaller volume than C ∩ B. As mentioned earlier, every facet of B is axis-parallel. Let us project both s
and B onto the first d − 1 dimensions of the universe. The (d − 1 dimensional) volume of s ∩ B is at least

that of the intersection of the two projections. It is easy to see that the latter intersection has volume at least

( r
2
√
d
)d−1 = Ω(rd−1) (in fact, the volume is the smallest if p is the only point in S), which establishes F3.

Finally, we are ready to prove the error bound O(( 1k )
1/(d−1)). Consider the miniatures of C1, ..., Ck

defined earlier. As explained before, these miniatures are mutually disjoint, and hence, their intersections

with B must also be mutually disjoint. In other words, by F3, the union of all those intersections has

a volume Ω(k(r/2)d−1). On the other hand, that union must be inside a d-dimensional square with side

length 1 +
√
d. In other words, k(r/2)d−1 = O(1), indicating that r = O(( 1k )

1/(d−1)).

The above lemma proves that, in general d-dimensional space, our formulation of representative sky-

lines still enjoys the property that the representation error monotonically diminishes as the space budget k
increases, a property that max-dominance representative skylines do not have (as explained in Section 2.1).

2.3 Problem

From now on, we will use the term representative skyline to refer to any subset K of the full skyline S . If K
has k points, we say that it is size-k. The problem we study in this paper can be defined as:
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Problem 5. Given an integer k, find an optimal size-k representative skyline K that has the smallest repre-

sentation error Er(K,S) given in Equation 1 among all representative skylines of size k.

Sometimes it is computationally intractable to find an optimal solution. In this case, we instead aim at

computing a representative skyline whose representation error is as low as possible.

3 The two-dimensional case

In this section, we discuss how to solve Problem 5 optimally in 2D space. We consider that the skyline S
of dataset D has already been computed using an existing algorithm. Let m be the size of S . Denote the

skyline points in S as p1, p2, ..., pm, sorted in ascending order of their x-coordinates. We adopt the notation

Si to represent {p1, p2, ..., pi} where i ≤ m, with S0 = ∅.

3.1 The first algorithm

Introduce a function opt(i, t) to be an optimal size-t representative skyline of Si, where t ≤ i. Hence, the

goal of Problem 5 is to compute opt(m,k). Let function optEr(i, t) be the representation error of opt(i, t)
with respect to Si, or formally:

optEr(i, t) = Er(opt(i, t),Si)

where Er(·, ·) is given in Equation 1.

For any 1 ≤ i ≤ j ≤ m, we use radius(i, j) to denote the radius of the smallest circle that

• covers points pi, pi+1, ..., pj , and

• centers at one of these j − i+ 1 points.

We refer to the above circle as the (i, j)-covering circle, and denote its center as center(i, j). For example,

for the skyline in Figure 3. Figure 4 shows the (2, 8)- and (6, 8)-covering circles, whose centers are p5 and

p7, respectively.

Lemma 6. For t ≥ 2,

optEr(i, t) =
i

min
j=t

{max{optEr(j − 1, t− 1), radius(j, i)}} (3)

Proof. We will first establish a useful property named continuity of covering:
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Algorithm 2d-opt (S, k)

Input: the skyline S of dataset D and an integer k
Output: the representative skyline of D
1. for each pair of (i, j) such that 1 ≤ i ≤ j ≤ m, derive radius(i, j) and center(i, j).
2. set opt(i, 1) = {center(1, i)} and optEr(i, 1) = radius(1, i)

for each 1 ≤ i ≤ m
3. for t = 2 to k
4. for i = t to m
5. compute optEr(i, t) by Equation 3

6. compute opt(i, t) by Equation 4

7. return opt(k,m)

Figure 5: An optimal algorithm for computing 2D representative skylines

Let x, y be two fixed integers in [1,m] such that x < y. Define u as the smallest integer

in (x, y] such that ‖px, pu‖ > ‖pu, py‖. Then, it holds that (i) ‖px, pv‖ > ‖pv, py‖ for

any v > u, and (ii) ‖px, pw‖ < ‖pw, py‖ for any w < u.

Alternatively, u can be understood as the first point that comes closer to py than to px, as we walk along

S from px to py. We will prove only part (i), because a similar argument works for part (ii). For v < y,

observe that, on each dimension, the coordinate difference between pv and py (respectively, px) is smaller

(larger) than that of pu and py (px). Hence:

‖px, pv‖ > ‖px, pu‖ > ‖pu, py‖ > ‖pv, py‖.

For v > y, on each dimension, the coordinate difference between pv and py is always lower than that of pv
and px, indicating immediately ‖px, pv‖ > ‖pv , py‖.

Now let us get back to Equation 3. Suppose that an optimal size-t representative skyline of Si is

{pj1 , pj2 , ..., pjt} with 1 ≤ j1 < j2 < ... < jt ≤ i. Let pj be the first point (in ascending order of x-

coordinates) in Si that has pjt as its nearest representative. By continuity of covering, pjt must be the near-

est representative for all pv satisfying j ≤ v ≤ i, and cannot be the nearest representative for any pw with

w < j. It follows that, {pj1 , ..., pjt−1
} must be an optimal size-(t − 1) representative skyline of Sj−1, and

pjt must be an optimal size-1 representative skyline of {pj , pj+1, ..., pi}, namely, pjt = center(j, i).

Let v be the value of j where Equation 3 reaches its minimum; we have:

opt(i, t) = opt(v − 1, t− 1) ∪ {center(v, i)} (4)

Equations 3 and 4 point to a dynamic programming algorithm 2d-opt in Figure 5 for computing opt(k,m),
i.e., the size-k representative skyline of D.

As explained in the next subsection, Line 1 of 2d-opt can be implemented in O(m2) time. Line 2

obviously requires O(m) time. Lines 3-6 perform k − 1 iterations. Each iteration evaluates Equations 3

and 4 at most m times respectively. Regardless of i and t, every evaluation of Equation 3 can be completed

in O(m) time, and that of Equation 4 in O(k) time. Hence, Lines 3-6 altogether incur O(m2k) cost.

Therefore, the overall complexity of 2d-opt is O(m2k). Note that this is much lower than the complexity

O(n logm+m2k), as mentioned in Section 3, of computing an optimal 2D max-dominance skyline.
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3.2 Covering circle computation

Next, we give an O(m2)-time algorithm to find all the covering circles, i.e., radius(i, j) and center(i, j)
for all 1 ≤ i ≤ j ≤ m. First, it is easy to see that

radius(i, j) =
j

min
u=i

{max{‖pi, pu‖, ‖pu, pj‖}}. (5)

Given i, j, u satisfying i ≤ u ≤ j, we define

radiusu(i, j) = max{‖pi, pu‖, ‖pu, pj‖}.

Equation 5 can be re-written as:

radius(i, j) =
j

min
u=i

radiusu(i, j), (6)

Thus, if v is the value of u at which the above equation is minimized, center(i, j) equals pv.

Our earlier proof for the continuity of covering (see Lemma 6) indicates that, as u moves from i to j, the

value of ‖pi, pu‖ continuously increases while that of ‖pu, pj‖ continuously decreases. As a result, the value

of radiusu(i, j) initially decreases and then increases, exhibiting a V-shape. For the example of Figure 4,

we plot radiusu(2, 8) as u grows from 2 to 8 in Figure 6. Since radiusu(2, 8) is the lowest at u = 5, the

(2, 8)-covering circle centers at p5, as shown in Figure 4.

The V-shape property offers an easy way, called simple scan, of finding radius(i, j) and center(i, j) as

follows. We only need to inspect pi, pi+1, ..., pj in this order, and stop once radiusu(i, j) starts to increase,

where u is the point being inspected. At this moment, we have just passed the minimum of Equation 6.

Hence, we know center(i, j) = pu−1 and radius(i, j) = radiusu−1(i, j). A simple scan needs O(j − i)
time to decide a radius(i, j). This, however, results in totally O(m3) time in determining all the covering

circles, which makes the time complexity of our algorithm 2d-opt O(m3) as well.

We bring the time down to O(m2) with a method called collective pass, which obtains the (i, i)-, (i, i+
1)-, ..., (i,m)-covering circles collectively in one scan from pi to pm in O(m − i) time. Since a collective

pass is needed for every 1 ≤ i ≤ m, overall we spend O(m2) time. The collective pass is based on a crucial

observation in the following lemma.

Lemma 7. For any i ≤ j1 < j2, it holds that center(i, j1) ≤ center(i, j2).

Proof. Let u = center(i, j1). We aim at showing that, for any v ∈ [i, u), radiusu(i, j2) < radiusv(i, j2).
Hence, the center of the (i, j2)-covering circle cannot be pv; thus, the lemma is correct. Figure 7 illustrates

the relative positions of pi, pv, pu, pj1 and pj2 .

10
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We distinguish two cases. First, if ‖pu, pi‖ ≤ ‖pu, pj2‖, then

radiusu(i, j2) = max{‖pu, pi‖, ‖pu, pj2‖}
= ‖pu, pj2‖ < ‖pv , pj2‖
≤ max{‖pv , pi‖, ‖pv , pj2‖}
= radiusv(v, j2).

Next, we focus on the case where ‖pu, pi‖ > ‖pu, pj2‖. Hence, radiusu(i, j2) = ‖pu, pi‖. Since u is the

center of the (i, j1)-covering circle, we know

radiusu(i, j1) ≤ radiusv(i, j1)

meaning that

max{‖pi, pu‖, ‖pu, pj1‖} ≤ max{‖pi, pv‖, ‖pv , pj1‖}.

As ‖pu, pi‖ > ‖pu, pj2‖ which in turn is larger than ‖pu, pj1‖, the above inequality becomes:

‖pi, pu‖ ≤ max{‖pi, pv‖, ‖pv , pj1‖}.

Observe that ‖pi, pu‖ > ‖pi, pv‖. Hence the above implies ‖pi, pu‖ ≤ ‖pv, pj1‖. Therefore:

radiusu(i, j2) = ‖pu, pi‖ ≤ |pv, pj1‖ < ‖pv, pj2‖
≤ max{‖pv , pi‖, ‖pv , pj2‖}
= radiusv(v, j2).

Thus we complete the proof.

Suppose that we have performed a simple scan to obtain the (i, j1)-covering circle, and find that it

centers at pu for some u ∈ [i, j1], i.e., center(i, j1) = pu. The result of Lemma 7 implies that we do not

need to look back at the points already scanned to locate the center of the (i, j1 + 1)-covering circle. In

other words, center(i, j1 + 1) must be either pu or some point that we have not passed yet. Hence, we can

pretend that we have been doing a simple scan in search of center(i, j1 + 1) so far, and continue the scan

from pu. Following this idea, a collective pass starts by running a simple scan for the (i, i)-covering circle,

later switches to the (i, i + 1)-covering circle, and so on, until eventually the (i,m)-covering circle. The

time is O(m− i), same as a simple scan from pi to pm.

11



3.3 An improved algorithm

In this subsection, we will reduce the time complexity of our algorithm dramatically to O(mk), i.e., improv-

ing 2d-opt in Figure 5 by a factor of m. The performance bottleneck of 2d-opt is that each iteration needs to

evaluate Equation 3 too many – specifically O(m) – times. Each evaluation incurs O(m) cost, thus forcing

an iteration to spend O(m2) time overall. Next, we show that it is possible to perform all the evaluations in

an iteration collectively (in a way similar to a collective pass for covering circle computation) such that an

iteration takes merely O(m) time!

Given everything explained so far (particularly, the continuity of covering in the proof of Lemma 6),

we can interpret the problem of finding an optimal representative skyline K in a slightly different manner.

Let p1, ..., pm be the points in the full skyline S , sorted in ascending order of their x-coordinates. The

goal is to partition the list into k disjoint sublists, each containing consecutive points in S , such that all the

points of a sublist are represented by a common representative, which belongs to the sublist as well. These

representatives constitute K. We will refer to each of those sublists as a cluster. Obviously, there is a total

order among the clusters, and among the points in each cluster. As a quick example, the K of k = 3 for

Figure 1 has three clusters: {p1}, {p2, ..., p5}, and {p6, ..., p8}.

We need some extra notations. For any j ≤ i, define

optErj(i, t) = max{optEr(j − 1, t− 1), radius(j, i)} (7)

with which Equation 3 can be simplified to:

optEr(i, t) =
i

min
j=t

optErj(i, t). (8)

Define optPos(i, t) as the value of j that minimizes the above equation. This value has an intuitive meaning:

it tells us where is the best position to start the last cluster, in an optimal size-t representative skyline of

Si = {p1, ..., pi}. Sometimes, there may be multiple j that can minimize optEr(i, t), in which case we

define optPos(i, t) to be the largest of them:

optPos(i, t) = max{j | optErj(i, t) = optEr(i, t)}. (9)

The above formulation essentially instructs us to look at the size-t representative skyline whose last cluster

has the smallest cardinality. Now we give a crucial lemma:

Lemma 8. For any i ≥ t, optPos(i+ 1, t) ≥ optPos(i, t).

Proof. Assume for contradiction that optPos(i + 1, t) < optPos(i, t) for some i and t. Let Ki+1 be the

optimal representative skyline of Si+1 that optPos(i+ 1, t) corresponds to.

It is easy to see that optEr(i, t) is a non-descending function of i for any fixed t, and radius(j, i) is

non-ascending in j for any fixed i. From optEr(i+ 1, t) ≥ optEr(i, t) we have:

optEr(i+ 1, t)

≥ max{optEr(i, t), radius(optPos(i + 1, t), i + 1)} (10)

= max
{

max
{

optEr(optPos(i, t)− 1, t− 1), radius(optPos(i, t), i)
}

,

radius(optPos(i+ 1, t), i + 1)
}

(11)

where the last equality used Equation 3. Now, dropping the term radius(optPos(i, t), i) from the above

and applying our assumption optPos(i+ 1, t) < optPos(i, t), we have

(11) ≥ max
{

optEr(optPos(i, t)− 1, t− 1), radius(optPos(i, t), i + 1)
}

(12)
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Algorithm fast-2d-opt (S, k)

Input: the skyline S of dataset D and an integer k
Output: the representative skyline of D
1. compute radius(1, i) and center(1, i) for all i ∈ [1,m]
2. set optEr(i, 1) = radius(1, i) for each 1 ≤ i ≤ m
3. for t = 2 to k
4. j = t
5. for i = t to m
6. while j < m and optErj(i, t) ≥ optErj+1(i, t)
7. j = j + 1
8. optEr(i, t) = optErj(i, t)
9. opt(i, t) = opt(j − 1, t− 1) ∪ center(j, t)
10. return opt(k,m)

Figure 8: A faster 2D optimal algorithm

The right hand side of the above inequality is, by definition, the error of a representative skyline, say K′
i+1,

of Si+1, where the last cluster starts with optPos(i, t). Clearly, K′
i+1 cannot have an error lower than

optEr(i + 1, t). Hence, (12) ≥ optEr(i + 1, t), implying that all the ‘≥’ in Inequalities 10-12 should be

replaced by ‘=’!

Now we see that K′
i+1 turns out to be an optimal representative skyline of Si+1. Therefore, our assump-

tion that optPos(i+ 1, t) < optPos(i, t) violates the maximality in the definition of optPos(i+ 1, t).

The above lemma can be employed to accelerate 2d-opt in a way similar to Lemma 7. Recall that each

iteration of the algorithm needs to calculate optEr(t, t), optEr(t + 1, t), ..., optEr(m, t) for some t ≤ k.

Before, the calculation of each of these terms requires evaluating Equation 3 afresh, but now, Lemma 8

enables us to take the same never-look-back approach as in a collective pass (Section 3.2). Specifically,

assume that we have found a j = optPos(i, t) that minimizes Equation 3 for optEr(i, t). To find the best j
for optEr(i + 1, t), it suffices to search forward, i.e., considering only those j ≥ optPos(i, t). The effect

is that, during all the evaluations of Equation 3 in an iteration, each value of j is examined at most once, as

opposed to O(m) times in 2d-opt.

An issue remains before we can elaborate the details of a new algorithm – how do we know whether

j = optPos(i, t)? In the context of Section 3.1, we settled a similar issue by resorting to a V-shape property

(see Figure 6). Interestingly, a similar property also exists here:

Lemma 9. For any fixed i, t, optErj(i, t) is:

• a non-ascending function of j when j ≤ optPos(i, t),

• a non-descending function of j when j ≥ optPos(i, t).

Proof. Obvious from Equation 7 because, as j grows, optEr(j − 1, t − 1) is non-descending whereas

radius(j, i) is non-ascending.

Equipped with this lemma, we can now evaluate Equation 8 (or equivalently, Equation 3) easily by

comparing optErj(i, t) with optErj+1(i, t) while increasing j, and catch the best j = optPos(i, t) as

soon as we see optErj(i, t) < optErj+1(i, t). Putting all the pieces together, we obtain a new algorithm

fast-2d-opt in Figure 8 for solving Problem 5 optimally in 2D space.

A final remark concerns the computation of covering circles. Let us focus on their radii, radius(i, j),
because their centers can be obtained just as side-products. In Section 3.1, we dealt with this by simply pro-

ducing radius(i, j) for all possible i, j. Since that alone already takes O(m2) time – beating our objective
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O(mk) – we thus aim at computing only the necessary radii. All the radius(1, i) required by Lines 1 and

2 of Figure 8 can be prepared by a single collective pass in O(m) time. It remains to discuss those radii

implicitly demanded by Line 6, recalling that optErj(i, t) is defined as in Equation 7.

Let us call Lines 4-9 of fast-2d-opt an iteration. The crucial observation is that, in each iteration, the

values of i and j are both monotonically increasing, which dictates that center(i, j) must be monotonically

increasing as well! This puts us in a situation analogous to what we encountered in Section 3.2, allowing us

to deploy similar ideas to produce all the radius(i, j) needed (by Line 6) in an iteration using only O(m)
time. Specifically, imagine that we have obtained radius(i, j) and pu = center(i, j) (where i ≤ u ≤ j)

through a simple scan (a procedure explained in Section 3.2). Let radius(i′, j′) be the next radius required

by the current iteration (i′ ≥ i and j′ ≥ j). We pretend that the simple scan for computing that radius has

come to pmax{u,i′}, and continue the scan from there.

It is thus clear that all the covering circles needed by the k iterations of Figure 8 can be computed in

O(mk) time. The rest of the cost of the algorithm is easy to analyze, and is clearly bounded above by

O(mk).

4 The higher-dimensional case

We proceed to study Problem 5 in dimensionality d ≥ 3. Section 4.1 shows that no polynomial-time algo-

rithm exists for finding an optimal solution, and presents a method for obtaining a 2-approximate solution.

Sections 4.2 and 4.3 discuss how to improve the efficiency of the method by using a multidimensional access

method.

4.1 NP-hardness and 2-approximation

Lemma 10. For any dimensionality d ≥ 3, Problem 5 is NP-hard.

Proof. We first establish the NP-hardness at d = 3, before extending the result to any higher d. We reduce

the 2D k-center problem, which is NP-hard [13], to Problem 5. Specifically, given a set S of 2D points p1,

p2, ..., pn, the k-center problem aims at finding a subset Sk of S with k points that minimizes

max
p∈S

{min
p′∈Sk

‖p, p′‖}. (13)

We convert S to a 3D dataset D as follows. Given a point pi ∈ S (1 ≤ i ≤ n) with coordinates

pi[x] and pi[y], we create a point p′i in D whose coordinates p′i[x], p
′
i[y] and p′i[z] are: p′i[x] =

√
2pi[x],

p′i[y] =
√
2pi[y]− pi[x], and p′i[z] = −

√
2pi[y]− pi[x].

The resulting D has two properties. First, it preserves the mutual distances in S, namely, for any 1 ≤
i ≤ j ≤ n, ‖pi, pj‖ = ‖p′i, p′j‖/2. Second, no two points p′i and p′j can dominate each other, namely, if

p′i[x] ≤ p′j[x] and p′i[y] ≤ p′j[y], then it must hold that p′i[z] ≥ p′j [z]. Hence, if we could find the size-

k representative skyline K of D in polynomial time, the points in S corresponding to those in K would

constitute an optimal solution Sk to the k-center problem.

Based on the 3D result, it is easy to show that Problem 5 is also NP-hard for any d > 3. Specifically,

given any 3D dataset D, we convert it to a d-dimensional dataset D′ by assigning (d− 3) 0’s as the missing

coordinates to each point in D. The size-k representative skyline of D′ is also the size-k representative

skyline of D. Thus, we have found a polynomial time reduction from the 3D problem to the d-dimensional

problem.

Fortunately, it is not hard to find a 2-approximate solution K. Namely, if K∗ is an optimal representative

skyline, the representation error of K is at most twice as large as that of K∗, i.e., Er(K,S) ≤ 2 ·Er(K∗,S),
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where Er(·, ·) is given in Equation 1. Such a K can be found by a greedy algorithm similar to a procedure

described in the proof of Lemma 4. Specifically, first we retrieve the skyline S of D using any existing

skyline algorithm, and initiate a K containing an arbitrary point in S . Then, we add to K the point in S −K
with the largest representative distance (Equation 2), and repeat this until |K| = k. We refer to this solution

as naive-greedy. It guarantees a 2-approximate solution as can be established directly by the analysis of

[11].

Naive-greedy has several drawbacks. First, it incurs large I/O overhead because it requires retrieving

the entire skyline S . Since we aim at returning only k ≪ |S| points, ideally we should be able to do so

by accessing only a fraction of S , thus saving considerable cost. Second, it lacks progressiveness, because

no result can be output until the full skyline has been computed. In the next section, we will present an

alternative algorithm called I-greedy which overcomes both drawbacks of naive-greedy.

4.2 I-greedy

I-greedy assumes a multidimensional index on the dataset D. Although it can be integrated with many access

methods such as quad-trees, k-d trees, etc., next we use the R-tree [1] as an example due to its popularity

and availability in practical DBMS.

I-greedy can be regarded as an efficient implementation of the naive-greedy algorithm explained in the

previous subsection. Specifically, it returns the same set K of representatives as naive-greedy. Therefore,

I-greedy also has the same approximation ratio as naive-greedy.

Recall that, after the first representative, naive-greedy repetitively adds to K the point in S −K with the

maximum representative distance given by Equation 2. Finding this point is analogous to farthest neighbor

search, using Equation 2 as the distance function. However, remember that not every point in dataset D
can be considered as a candidate result. Instead, we consider only S − K, i.e., the set of skyline points still

outside K.

The best-first algorithm [14] is a well-known efficient algorithm for farthest neighbor search2. To apply

best-first, we must define the notion of max-rep-dist. Specifically, given an MBR R in the R-tree, its max-

rep-dist, max-rep-dist(R,K), is a value which upper bounds the representative distance rep-dist(p,K) of

any potential skyline point p in the subtree of R. We will discuss the computation of max-rep-dist(R,K) in

Section 4.3. Let us refer to both max-rep-dist(R,K) and rep-dist(p,K) as the key of R and p, respectively.

Best-first visits the intermediate and leaf entries of the whole R-tree in descending order of their keys. Hence,

the first leaf entry visited is guaranteed to be the point in D with the largest representative distance.

Let p be the first data point returned by best-first. We cannot report p as a representative, unless we

are sure that it is a skyline point. Whether p is a skyline point can be resolved using an empty test. Such

a test checks if there is any data point inside the anti-dominant region of p, which is the rectangle having

p and the origin of the data space as two opposite corners. If the test returns “empty”, p is a skyline point;

otherwise, it is not. In any case, we continue the execution of best-first to retrieve the point with the next

largest max-rep-dist, and repeat the above process, until enough representatives have been reported.

Best-first may still entail expensive I/O cost, as it performs numerous empty tests, each of which may

need to visit many nodes whose MBRs intersect the anti-dominant region of a point. A better algorithm

should therefore avoid empty tests as much as possible. I-greedy achieves this goal with two main ideas.

First, it maintains a conservative skyline based on the intermediate and leaf entries already encountered.

Second, it adopts an access order different from best-first, which totally eliminates empty tests.

Conservative skyline. Let S be a mixed set of α points and β rectangles. The conservative skyline of S
is the skyline of a set S′ with α + β · d points, where d is the dimensionality of the data space. The set

2Precisely speaking, best-first is originally designed for nearest neighbor search [14]. However, its adaptation to farthest neigh-

bor search is trivial.
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S′ is generated as follows. First, it includes all the α points of S. Second, for every rectangle R ∈ S,

S′ contains the d side-max corners of R. Specifically, note that R has 2d boundaries, each of which is a

(d − 1)-dimensional rectangle. Among them, only d boundaries contain the min-corner of R, which is the

corner of R closest to the origin. On each of those d boundaries, the corner opposite to the min-corner is

a side-max corner. Figure 9 shows a 3D MBR whose min-corner is A. A is in 3 boundaries of R, i.e.,

rectangles ADHE, ABCD, ABFE. The side-max corners are H , C , and F , which are opposite to A in

ADHE, ABCD, ABFE respectively.

To illustrate conservative skyline, let S be the set of points p1, p2, p3 and rectangles R1, R2 in Figure 10.

The corresponding S′ has 7 points p1, p2, p3, c1, c2, c3, c4, noticing that c1, c2 are the side-max corners of

R1, and c3, c4 are the side-max corners of R2. Hence, the skyline of S′ is {p1, c1, c2, p2, c4}, which is thus

the conservative skyline of S.

To understand the usefulness of the conservative skyline, imagine R1 and R2 in Figure 10 as two MBRs

in the R-tree. Clearly, the real skyline of p1, p2, p3 and any points within R1 and R2 must be below the

conservative skyline. Hence, if a point p is dominated by any point in the conservative skyline, p cannot

appear in the real skyline. In that case, we do not need to issue an empty test for p.

Access order. Let L be the set of intermediate and leaf entries that have been encountered and are waiting

to be processed. We call L the access list. L is stored in memory. Recall that best-first chooses to process

the entry in L with the largest max-rep-dist. As explained earlier, this choice results in empty tests.

I-greedy adopts a different strategy. Let E be the entry in L with the largest max-rep-dist. I-greedy

checks whether there is any other intermediate or leaf entry in L whose min-corner dominates the min-

corner of E (as a special case, the min-corner of a point is just itself). If yes, among those entries I-greedy

processes the one E′ whose min-corner has the smallest L1 distance to the origin. If no, I-greedy processes

E.

For example, assume that E is the shaded rectangle in Figure 11, and E1 and E2 are the only two entries

in L whose min-corners dominate the min-corner of E. As the min-corner of E1 has a shorter L1 distance

to the origin, it is the entry to be processed by I-greedy.

To see why the access order makes sense, observe that it provides little gain in visiting E first in Fig-

ure 11. This is because even if we find any data point p in E, we must access E1 or E2 anyway to decide

whether p is in the skyline. Hence, a better option is to open E1 or E2 first, which may allow us to obtain

a tighter conservative skyline to prune E. Between E1 and E2, E1 is preferred, because it is more likely to

include points or MBRs closer to the origin, which may result in a tighter conservative skyline.

Algorithm. We are ready to explain the details of I-greedy. It takes as an input an initial set K containing

an arbitrary skyline point p1st. This point will be used as the first representative. For example, p1st can

be the point in D with the smallest x-coordinate, which can be found efficiently in O(logB n) I/Os where

B is the page size and n the cardinality of D. I-greedy does not require a user to specify the number k
of representatives to be returned. Instead, it continuously outputs representatives ensuring that, if so far it
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has produced t representatives, then they definitely make a 2-approximate solution, i.e., their representation

error at most twice larger than that of an optimal size-t representative skyline.

At any moment, I-greedy maintains three structures in memory:

• the set K of representatives found so far.

• an access list L that contains all the intermediate and leaf entries that have been encountered but not

processed or pruned yet.

• a conservative skyline Scon of the set L ∪ K.

Figure 12 presents the pseudocode of I-greedy. At the beginning, L contains only the root entries of

the R-tree. Next, I-greedy executes in iterations. In each iteration, it first identifies the entry E of L with

the largest max-rep-dist. Then, it checks whether (the min-corner of) E is dominated by any point in the

conservative skyline Scon. If yes, E is pruned, and the current iteration finishes.

Consider that E is not pruned, so the iteration continues. Following our earlier discussion on access

order, I-greedy looks for the entry E′ with the smallest L1 distance to the origin among all entries in L
whose min-corners dominate E. If E′ exists, it must be an intermediate entry; otherwise, E′ would be in

the conservative skyline Scon, and would have pruned E already. In this case, we visit the child node of E′,
and insert its entries into L that are not dominated by any point in the conservative skyline Scon.

If E′ does not exist, I-greedy processes E. If E is a point, it is inserted to K and output as the next

representative skyline point. Otherwise (E is an intermediate entry), we access its child node, and insert its

entries in L, if they are not dominated by any point in Scon.

Recall that the naive-greedy algorithm in Section 4.1 first extracts the entire skyline S . Given an R-tree,

the best way to do so is to apply the I/O optimal algorithm BBS [21]. Next, we show that I-greedy requires at

most the same I/O overhead as BBS. In other words, I-greedy never entails higher I/O cost than naive-greedy.

Lemma 11. When allowed to run continuously, I-greedy retrieves the whole skyline S with the optimal I/O

cost, i.e., same as BBS.

Proof. It is obvious that I-greedy eventually computes the whole skyline, because it only prunes nodes

whose min-corners are dominated by a point in the conservative skyline Scon, and hence, cannot contain

skyline points. Next, we will prove its I/O optimality.

As shown in [21], any R-tree-based skyline algorithm must access all nodes (whose min-corners are) not

dominated by any skyline point. Assume that I-greedy is not I/O optimal, and accesses a node N dominated

by a skyline point p. This access must happen at either Line 7 or 15 in Figure 12. In either case, when N is

accessed, p or one of its ancestors must be in L. Otherwise, p already appears in the representative set K,

and hence, would have pruned N .

17



Algorithm I-greedy (K)

Input: a set K with an arbitrary skyline point p1st
Output: until stopped, continuously produce representatives

1. initiate L to contain the root entries of the R-tree

2. while L is not empty

3. E = the entry in L with the largest max-rep-dist

4. if E is not dominated by any point in Scon

5. E′ = the entry with the minimum L1 distance to the origin among all entries in L whose min-

corners dominate the min-corner of E
6. if (E′ exists) /* E′ must be an intermediate entry */

7. access the child node N of E′

8. for each entry Ec in N
9. if (Ec 6= p1st) and (Ec is not dominated by any point in Scon)
10. insert Ec in L
11. else /* E′ does not exist */

12. if E is a point p
13. add p to K and output p
14. else

15. access the child node N of E
16. for each entry Ec in N
17. if (Ec 6= p1st) and (Ec is not dominated by any point in Scon)
18. insert Ec in L

Figure 12: The I-greedy algorithm

As the min-corner of any ancestor of p dominates N , we can eliminate the possibility that N is visited

at Line 15, because for this to happen E′ at Line 5 must not exist, i.e., the min-corner of no entry in L can

dominate N . On the other hand, if N is visited at Line 7, N must have the lowest L1 distance to the origin,

among all entries in L whose min-corners dominate the E at Line 2. This is impossible because (i) any E
dominated by the min-corner of N is also dominated by p or the min-corner of any of its ancestors, and (ii)

p or any of its ancestors has a smaller L1 distance to the origin than N .

4.3 Computing the maximum representative distance

This section will settle the only issue about I-greedy that has been left open. Namely, given the set K of

representatives already found, and an MBR R, we want to compute its max-rep-dist(R,K), which must be

at least the largest representative distance rep-dist(p,K) of any point p in R.

To gain some insight about the smallest possible max-rep-dist(R,K), let us consider a simple example

where K has only two points p1 and p2, as shown in Figure 13. The figure also illustrates the perpendicular

bisector l of the segment connecting p1 and p2. For points p (i) above l, rep-dist(p,K) equals ‖p, p1‖, (ii)

below l, rep-dist(p,K) = ‖p, p2‖, and (iii) on l, rep-dist(p,K) = ‖p, p1‖ = ‖p, p2‖. It is easy to see that, for

points p in R, rep-dist(p,K) is maximized when p is at the intersection q1 or q2 between l and the edges of

R. In Figure 13, as rep-dist(q1,K) < rep-dist(q2,K), we know that max-rep-dist(R,K) = rep-dist(q2,K).
The implication of the above analysis is that, in order to derive the lowest max-rep-dist(R,K), we need

to resort to the Voronoi diagram [9] of the points in K. The Voronoi diagram consists of a set of |K| polyg-

onal cells, one for each point p ∈ K, including all locations in the data space that has p as the closest

representative. Unfortunately, Voronoi diagrams in dimensionality at least 3 are costly to compute. Further-

more, even if such a diagram was available, we still need to examine the intersection between perpendicular

hyper-planes with the boundaries of R, which is challenging even in 3D space [9].

We circumvent the obstacle by finding a value for max-rep-dist(R,K) that is low, although may not be
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Figure 13: Finding the lowest value of max-rep-dist(R,K)

the lowest. Specifically, we set

max-rep-dist(R,K) = min
p∈K

{maxdist(p,R)}. (14)

where maxdist(p,R) is the maximum distance between a point p and a rectangle R. The next lemma shows

that the equation gives a correct value of max-rep-dist(R,K).

Lemma 12. The max-rep-dist(R,K) from Equation 14 is at least as large as the rep-dist(p,K) of any point

p in R.

Proof. Given any representative p′ ∈ K, it always holds that ‖p′, p‖ ≤ maxdist(p′, R). So

minp′∈K ‖p′, p‖ ≤ minp′∈Kmaxdist(p′, R). The left side of the inequality is exactly rep-dist(p,K).

5 Experiments

This section has two objectives. First, we will demonstrate that our distance-based representative skyline

outperforms the previous method of max-dominance skyline [18] (reviewed in Section 2) in two crucial

aspects: our representative skyline (i) better captures the contour of the full skyline, and (ii) is much cheaper

to compute. This will establish distance-based representative skyline as an effective and practical skyline

summary. Second, we will compare the efficiency of the proposed algorithms, and identify their strengths

and shortcomings.

Data. Our experimentation is mainly based on a synthetic dataset Island and a real dataset NBA. Island is

two-dimensional, and contains 63383 points whose distribution is shown in Figure 14a. These points form

a number of clusters along the anti-diagonal of the data space, which simulates a common paradox where

optimizing one dimension compromises the other. Island has 467 skyline points, as illustrated in Figure 14b.

NBA is a real dataset which is downloadable at www.databasebasketball.com, and frequently adopted in

the skyline literature [22, 23, 29]. It includes 17265 five-dimensional points, each recording the performance

of a player on five attributes: the number of points scored, rebounds, assists, steals, and blocks, all of which

are averaged over the total number of minutes played from 1950 to 1994. The skyline of NBA has 494

points.

Besides the above datasets, we also created anti-correlated datasets with various cardinalities and di-

mensionalities to test the algorithms’ scalability. The anti-correlated distribution has become a benchmark

in the skyline research [2, 21, 27], and is very suitable for scalability test because it has a fairly sizable

skyline. Our generation of this distribution follows exactly the description in the seminal work of [2].

Representation quality. The first set of experiments utilizes dataset Island to assess how well a represen-

tative skyline reflects the contour of the full skyline. We examine three methods: 2d-opt, I-greedy, and
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Figure 14: Visualization of the Island dataset

(a) k = 4 (b) k = 6 (c) k = 8 (d) k = 10

Optimal distance-based representative skyline

(e) k = 4 (f) k = 6 (g) k = 8 (h) k = 10

Optimal max-dominance representative skyline proposed in [18]

(i) k = 4 (j) k = 6 (k) k = 8 (l) k = 10

The output of I-greedy

Figure 15: Representative skylines
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Figure 16: Representation error comparison

2d-max-dom. Specifically, 2d-opt is the algorithm in Figure 5 that finds an optimal distance-based repre-

sentative skyline. I-greedy is our 2-approximate algorithm in Section 4.2. 2d-max-dom is the algorithm in

[18] that computes an optimal max-dominance representative skyline. It is worth noting that fast-2d-opt in

Figure 8 returns exactly the same result as 2d-opt, whereas our other approximate algorithms naive-greedy

and best-first in Sections 4.1 and 4.2 respectively have the same output as I-greedy.

As shown in Figure 14b, the skyline of Island can be divided into 4 areas A, B, C , and D. A good

representative skyline should have representatives from every area, to provide the user with an adequate

overview of the entire skyline. Figures 15a-15d illustrate optimal distance-based representative skylines with

size k = 4, 6, 8, and 10 respectively returned by algorithm 2d-opt. Clearly, in all cases, the representative

skyline nicely indicates the shape of the full skyline. In particular, the representative skyline always includes

a point in each of the four areas. Furthermore, the precision of representation improves as k increases.

Figures 15e-15h present the max-dominance representative skylines found by 2d-max-dom. Unfortu-

nately, the representative skyline never involves any point from areas A and C . To understand this, notice

that as shown in Figure 14, both areas B and D have a very dense cluster. Therefore, from the perspective

of max-dominance representative skyline, it is beneficial to put more representatives in these areas, since

they are able to dominate more non-skyline points. Even at k = 10, the representative skyline still hardly

provides a good summary of the entire skyline. Returning it to a user would creat the misconception that no

tradeoffs would be possible in areas A and C .

Finally, Figures 15i-15l depict the distance-based representative skylines produced by I-greedy. It is

easy to see that although these representative skylines are different from those by 2d-opt, they also capture

the contour of the full skyline. In fact, starting from k = 6, the representative skylines by I-greedy and

2d-opt already look very similar.

Figure 16a shows the ratio between the representation error of I-greedy and that of 2d-opt in the ex-

periments of Figure 15, together with the ratio of 2d-max-dom also with respect to 2d-opt. Recall that the

representation error is given by Equation 1. As expected, the ratio of I-greedy never exceeds 2 because

I-greedy is guaranteed to yield a 2-approximate solution. The ratio of 2d-max-dom, however, is unbounded

and escalates quickly with k.

The next experiment inspects the representation error on dataset NBA. We again examine I-greedy but

discard 2d-opt and 2d-max-dom because they are restricted to dimensionality 2. Instead, we compare I-

greedy against max-dom-approx, which is an algorithm in [18] that returns a max-dominance skyline with

theoretical guarantees in any dimensionality. Figure 16b plots the ratio between the error of max-dom-

approx and I-greedy as k varies from 4 to 12. It is clear that the relative accuracy of I-greedy continuously

increases as more representatives are returned.

Efficiency. We now proceed to study the running time of representative skyline algorithms: 2d-opt, fast-

2d-opt, naive-greedy, best-first, I-greedy, 2d-max-dom, and max-dom-approx. Recall that, as mentioned in
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Figure 17: Running time vs. k

Section 4.2, best-first extends the traditional best-first algorithm for farthest nearest neighbor search with

empty tests. Furthermore, algorithms 2d-opt, fast-2d-opt, and 2d-max-dom are applicable to 2D datasets

only. We index each dataset using an R-tree with 4k page size, and deploy the tree to run the above algo-

rithms. All the following experiments are performed on a machine with an Intel dual-core 1GHz CPU.

Figure 17a illustrates the execution time of alternative algorithms on dataset Island as a function of k.

Note that 2d-max-dom takes nearly 5 minutes. It is almost 50 times slower than 2d-opt, and over 300 times

slower than fast-2d-opt, naive-greedy, best-first, and I-greedy. This indicates that distance-based represen-

tative skyline is indeed much cheaper to compute than the max-dominance version. Among the proposed

algorithms, 2d-opt is most costly due to its vast time complexity. Its performance is significantly improved

by fast-2d-opt, confirming the analysis in Section 3.3. The other algorithms provide only approximate so-

lutions. As expected, the running time of naive-greedy is not affected by k, because it is dominated by the

cost of retrieving the full skyline (just as with fast-2d-opt). The overhead of both best-first and I-greedy

grows with k. While the performance of best- first deteriorates rapidly, I-greedy remains the most efficient

algorithm in all cases.

Figure 17b presents the results of the same experiment on dataset NBA. Note that we leave out the

2D algorithms 2d-opt and fast-2d-opt, and replace 2d-max-dom with max-dom-approx. Again, it incurs

considerably larger cost to calculate max-dominance representative skylines than distance-based ones. The

behavior of naive-greedy, best-first, and I-greedy is identical to Figure 17a, except that best-first becomes

slower than naive-greedy after k = 6.

To further analyze fast-2d-opt, naive-greedy, best-first, and I-greedy, in Table 1a, we provide their de-

tailed I/O and CPU time in the experiments of Figure 17a. Table 1b gives the same information with respect

to Figure 17b, but excluding the inapplicable fast-2d-opt. In each cell of the tables, the value outside the

bracket is the I/O cost in number of page accesses, and the value inside is the CPU time in seconds. Observe

that I-greedy requires the fewest I/Os, but as a tradeoff, consumes higher CPU time. This is expected because

while the access order of I-greedy reduces I/Os, enforcing it demands additional computation. Naive-greedy

and fast-2d-opt are exactly the opposite by entailing the most I/Os and the least CPU power. Best-first

appears to be a compromise for the 2D dataset Island. For the 5D NBA, however, best-first is worse than

I-greedy in both I/O and CPU starting from k = 8.

The following experiment investigates the scalability of fast-2d-opt, naive-greedy, best-first, and I-

greedy with respect to the dataset cardinality. For this purpose, we fix k to 10. Using 2D anti-correlated
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k 4 6 8 10

fast-2d-opt 54 (.06) 54 (.07) 54 (.07) 54 (.08)

naive-greedy 54 (.09) 54 (.09) 54 (.09) 54 (.09)

best-first 24 (.06) 33 (.09) 42 (.13) 50 (.15)

I-greedy 10 (.18) 12 (.23) 14 (.26) 17 (.33)

(a) Island

k 4 6 8 10 12

naive-greedy 156 156 156 156 156

(.13) (.13) (.14) (.15) (.18)

best-first 21 86 94 104 113

(.16) (.83) (1.1) (1.1) (1.1)

I-greedy 12 70 72 73 74

(.16) (.72) (.84) (.84) (.85)

(b) NBA

Table 1: Breakdowns of running time. Format: I/O (CPU)
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Figure 18: Scalability comparison (anti-correlated)

datasets, Figure 18a plots the overall execution time of the four algorithms as the cardinality grows from

200k to 1 million. At these cardinalities, the skyline has 339, 385, 379, 390, and 376 points, respectively.

The performance of all three algorithms exhibits no significant changes. This is consistent with the finding

of [21] that the cardinality of an anti-correlated dataset does not have heavy influence on the cost of skyline

retrieval.

Next, we fix the cardinality to 1 million. Figure 18b compares naive-greedy, best-first, and I-greedy on

anti-correlated datasets of dimensionalities 2 to 4. The corresponding skyline size equals 376, 2719, and

30663 respectively. All algorithms entail higher overhead because skyline search is in general more difficult

in higher dimensionality. Note that at dimensionalities 3 and 4, naive-greedy is by far the worst method,

because it must spend gigantic cost in fetching the entire skyline. Best-first and I-greedy avoid such cost by

obtaining the representatives directly without extracting the full skyline.

6 Related work

The first work on skylines in the database area is due to Borzsonyi et al. [2]. Since then, many algorithms

have been developed for computing skylines efficiently, for example, Bitmap [27], NN [17], BBS [21],

SFS [7], LESS [12], Lattice [20], rand [26], etc. These algorithms focus on the original data space, while

considerable efforts have also been made to retrieve skylines in subspaces, such as subsky [29], skycube

[23], and so on. Besides traditional centralized DBMS, skyline search has also been studied in distributed
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systems [8, 30], streams [25], p2p networks [31], partially-ordered domains [3], etc.

The concept of skyline has numerous useful variations. One example is the representative skyline studied

in this paper, and this notion is originally introduced in [18]. Other examples include k-dominant skyline [4],

spatial skyline [24], probabilistic skyline [22], reverse skyline [10, 19], privacy skyline [6], approximately

dominating representatives [16], retrieving the points with the highest subspace skyline frequencies [5], and

so on.

The best-first algorithm mentioned in Section 4.2 is proposed by Hjaltason and Samet [14] for solving

nearest/farthest neighbor search. It is I/O optimal in the sense that, given the same R-tree, no other algorithm

is able to answer the same query by accessing fewer nodes.

The k-center problem, which underlines the proposed distance-based representative skyline, is a clas-

sical problem that can be defined on any distance metric. Without knowing the metric, it is NP-hard to

find a solution with approximation ratio 2 − ε for any positive ε [15]. The greedy algorithm described in

Section 4.1 provides a 2-approximate solution for any distance metric satisfying the triangle inequality [11].

7 Conclusions

The skyline of a dataset may have a large number of points. Returning all of them may make it difficult

for a user to understand the possible tradeoffs offered by the skyline. A better approach is to present only a

few representative points that reflect the contour of the entire skyline, so that the user may request only the

skyline points in a specific part of the contour that looks interesting.

The only existing formulation of representative skyline [18] sometimes cannot capture the skyline con-

tour accurately. Motivated by this, we propose the distance-based representative skyline, and prove that it

has much better worst-case guarantees in representation quality than the definition of [18]. We also develop

several algorithms for computing distance-based representative skylines. In 2D space, our technique finds an

optimal solution in time linear to both the number of points in the full skyline and the output size. In higher

dimensional spaces where computing an optimal solution is NP-hard, our technique returns a 2-approximate

solution efficiently. Our extensive experimentation shows that distance-based representative skylines not

only better capture the contour of the full skyline, but also can be computed in a fraction of the time required

by the previous approach in [18].
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