Random Walks and Evolving Sets: Faster Convergences and Limitations

$Siu On Chan^1$ Tsz Chiu Kwok² Lap Chi Lau²

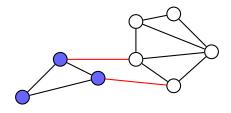
¹The Chinese University of Hong Kong

²University of Waterloo

Jan 18, 2017

Finding small clusters

Given 1-regular graph with edge weights w



(Edge) expansion
$$\phi(S) \triangleq \frac{w(S, V \setminus S)}{|S|}$$

Task: compute $\phi_{\delta}(G) \triangleq \min_{|S| \leq \delta n} \phi(S)$

Algorithm 1: Random walk

For finding small clusters [Spielman-Teng'04, Andersen-Chung-Lang'06, ...]

Theorem ([Kwok-Lau'12])

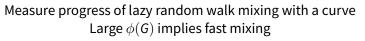
Random walk returns S with

$$\phi(S) = O(\sqrt{\phi(S^*)/\varepsilon})$$
 and $|S| = O(|S^*|^{1+\varepsilon})$

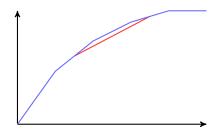
in poly time, when start from nice vertices in S*

$$\begin{aligned} & \text{When } \varepsilon = 1/\log |S^*| \\ \phi(S) = O(\sqrt{\phi(S^*)\log |S^*|}) \quad \text{and} \quad |S| = O(|S^*|) \end{aligned}$$

Analysis: Lovász–Simonovits ['90]



(lazy = self-loop of weight $\ge 1/2$ at every vertex)

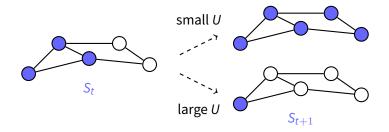


More on this later

Evolving Set Process [Morris'02]

Yields strong bounds on mixing times [Morris-Peres'05]

Evolving Set Process is Markov Chain $\{S_t\}$ on subsets of *V* Given S_t , choose *U* uniformly from [0, 1] $S_{t+1} \triangleq \{v \in V \mid w(S_t, v) \ge U\}$



Algorithm 2: Evolving Set Process

Can find small clusters [Andersen-Peres'09, Oveis Gharan-Trevisan'12]

Theorem ([Oveis Gharan-Trevisan'12, AOPT'16]) Evolving Set Process returns S with $\phi(S) = O(\sqrt{\phi(S^*)/\varepsilon})$ and $|S| = O(|S^*|^{1+\varepsilon})$ in poly time, when start from nice vertices in S^{*}

Algorithm 2: Evolving Set Process

Can find small clusters [Andersen-Peres'09, Oveis Gharan-Trevisan'12]

Theorem ([Oveis Gharan-Trevisan'12, AOPT'16]) Evolving Set Process returns S with $\phi(S) = O(\sqrt{\phi(S^*)/\varepsilon})$ and $|S| = O(|S^*|^{1+\varepsilon})$

in poly time, when start from nice vertices in S*

Conjecture [Oveis Gharan'13, AOPT'16]

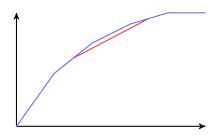
With non-trivial probability, in fact $|S| = O(|S^*|)$

If true, will refute Small-Set-Expansion Hypothesis that $\phi_{\delta}(G)$ is hard to approximate [Raghavendra-Steurer'10] (cousin of Unique-Games Conjecture)

Our results: Generalized Lovász–Simonovits analysis

Also measure random walk mixing with LS curve

- 1. Large combinatorial gap $\varphi(G)$ implies fast mixing
- 2. Large robust vertex expansion $\phi^V(G)$ + laziness imply fast mixing



Our results: Combinatorial gap

Large combinatorial gap $\varphi(G)$ implies fast mixing $\varphi(G) \triangleq \min_{|S|=|T| \leqslant n/2} 1 - \frac{w(S,T)}{|S|}$

- 1. Similar definition as $\phi(G)$ (which only allows T = S)
- 2. $\varphi(G) = \phi(G)$ for lazy graphs
- 3. $\varphi(G)$ small if G has near-bipartite component

Corollary (Expansion of graph powers) $\phi_{\delta/4}(\mathbf{G}^t) = \min\{\Omega(\sqrt{t}\phi_{\delta}(\mathbf{G})), 1/20\}$

without laziness assumption of [Kwok-Lau'14]

Our results: Vertex expansion

Robust vertex expansion ϕ^V defined by [Kannan-Lovász-Montenegro'06]

Theorem

Evolving Set Process returns S with

 $\phi(\mathsf{S}) = \mathsf{O}(\phi(\mathsf{S}^*)/(\varepsilon\phi^{\mathsf{V}}(\mathsf{S}))) \quad \text{and} \quad |\mathsf{S}| = \mathsf{O}(|\mathsf{S}^*|^{1+\varepsilon})$

in poly time, when start from nice vertices in S*

Compare:
$$\phi(S) = O(\sqrt{\phi(S^*)/\varepsilon})$$
 in [APOT'16]

Our results: Vertex expansion

Robust vertex expansion ϕ^V defined by [Kannan-Lovász-Montenegro'06]

Theorem

Evolving Set Process returns S with

 $\phi(\mathbf{S}) = \mathbf{O}(\phi(\mathbf{S}^*)/(\varepsilon\phi^V(\mathbf{S}))) \quad \text{and} \quad |\mathbf{S}| = \mathbf{O}(|\mathbf{S}^*|^{1+\varepsilon})$

in poly time, when start from nice vertices in S*

Compare:
$$\phi(S) = O(\sqrt{\phi(S^*)/\varepsilon})$$
 in [APOT'16]

Implies constant factor approximation when

$$\phi^V(\mathbf{G}) \triangleq \min_{|\mathbf{S}| \leqslant n/2} \phi^V(\mathbf{S}) \quad \text{is } \Omega(1)$$

Evolving Set Process analog of spectral partitioning result in [Kwok-Lau-Lee'16]

Our results: Hard instances

Theorem

For arbitrarily small δ , some graphs have a hidden small cluster S^{*}

 $\phi(\mathbf{S}^*) \leqslant \varepsilon$ and $|\mathbf{S}^*| = \delta n$

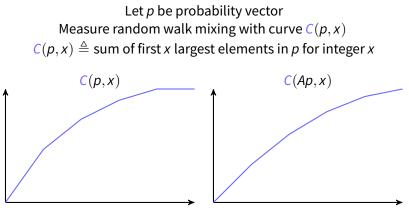
but Evolving Set Process never returns S with

$$\phi(\mathbf{S}) \leqslant 1 - \varepsilon$$
 and $|\mathbf{S}| \leqslant \delta_{\varepsilon} \mathbf{n}$

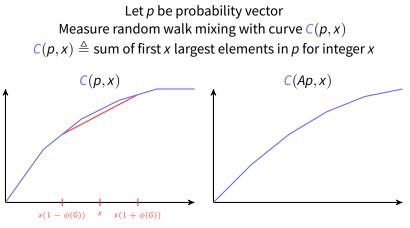
Refute the conjecture in [Oveis Gharan'13, AOPT'16] Also limitation of random walk, PageRank, etc

Details: Generalized Lovász–Simonovits Analysis

Lovász-Simonovits



Lovász-Simonovits



When lazy $C(Ap, x) \leq \frac{1}{2} \left(C(p, x(1 - \phi(G))) + C(p, x(1 + \phi(G))) \right)$

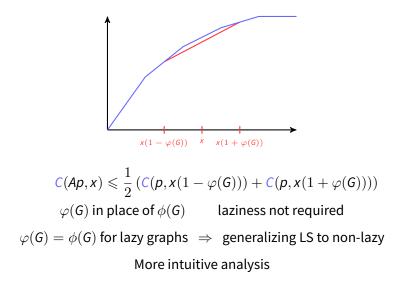
Lovász-Simonovits

Let *p* be probability vector Measure random walk mixing with curve C(p, x) $C(p,x) \triangleq$ sum of first x largest elements in p for integer x C(p,x)C(Ap, x) $x = x(1 + \phi(G))$ $x(1-\phi(G))$

When lazy $C(Ap, x) \leq \frac{1}{2} \left(C(p, x(1 - \phi(G))) + C(p, x(1 + \phi(G))) \right)$

By induction:
$$C(A^{t}p, x) \leq \frac{x}{n} + \sqrt{x} \left(1 - \frac{\phi(G)^{2}}{8}\right)^{t}$$

Generalizing Lovász–Simonovits



(

$$C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right)$$

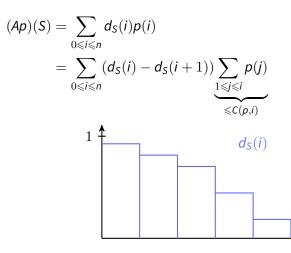
$$\begin{aligned} (Ap)(S) &= \sum_{0 \le i \le n} d_S(i) p(i) \\ &= \sum_{0 \le i \le n} (d_S(i) - d_S(i+1)) \sum_{1 \le j \le i} p(j) \end{aligned}$$

$$C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right)$$

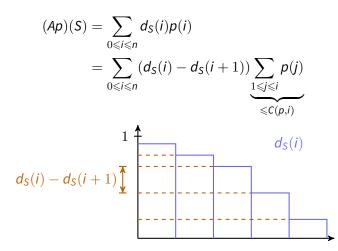
$$(Ap)(S) = \sum_{0 \le i \le n} d_S(i)p(i)$$

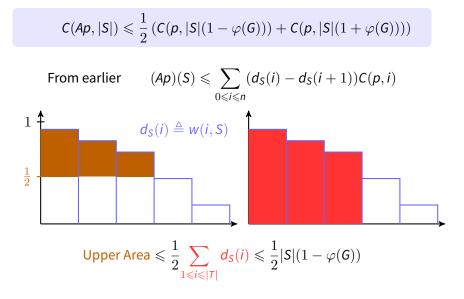
=
$$\sum_{0 \le i \le n} (d_S(i) - d_S(i+1)) \underbrace{\sum_{1 \le j \le i} p(j)}_{\le C(p,i)}$$

$$C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right)$$



$$C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right)$$





Details: Hard instances for Evolving Set Process

Hard instances: Noisy hypercube

Noisy *k*-ary hypercube $(k = 1/\delta)$

- ▶ *k^d* vertices, each represented by a string of length *d* over [*k*]
- Transition probability from x to y:

When
$$x = x_1 x_2 \dots x_d$$
, $y_i = \begin{cases} x_i & \text{prob } \varepsilon \\ \text{uniformly from } [k] & \text{prob } 1 - \varepsilon \end{cases}$

Coordinate cut
$$S = \{x \mid x_1 = 0\}$$
 satisfies
 $\phi(S) \leq \varepsilon$ and $|S| = \delta n$

Why local algorithms fail

Lets start from $\textbf{S}_0 = \{ \vec{0} \}$

Evolving Set Process treats all vertices with the same Hamming weight equally

The process only explores sets *S_t* that are symmetric under coordinate permutations (in fact, Hamming balls)

Small Hamming balls on noisy *k*-ary hypercube are expanding [Chan-Mossel-Neeman'14]

Hamming balls B expand

$$B = \{x \in [k]^d \mid |x| \leq r\}$$
$$\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]}$$

Hamming balls B expand

$$B = \{x \in [k]^d \mid |x| \leq r\}$$
$$\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]}$$

$$\Pr_{x}[x \in B] = \mathbb{E}_{x}[\mathbb{1}_{x_{1}\neq0} + \dots + \mathbb{1}_{x_{d}\neq0} \leqslant r]$$

$$\approx \Pr[g \leqslant r'] \quad \text{Gaussian } g$$

$$\Pr_{x \sim y}[x, y \in B] = \mathbb{E}_{x, y} \left[\sum_{1 \leqslant i \leqslant d} \mathbb{1}_{x_{i}\neq0} \leqslant r \text{ and } \sum_{1 \leqslant i \leqslant d} \mathbb{1}_{y_{i}\neq0} \leqslant r \right]$$

$$\approx \Pr[g \leqslant r' \text{ and } h \leqslant r'] \quad \text{Gaussians } g, h$$

Hamming balls B expand

$$B = \{x \in [k]^d \mid |x| \leq r\}$$

$$\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_{x}[x \in B]} \approx \frac{\Pr_{g,h}[g, h \leq r']}{\Pr_{g}[g \leq r']}$$

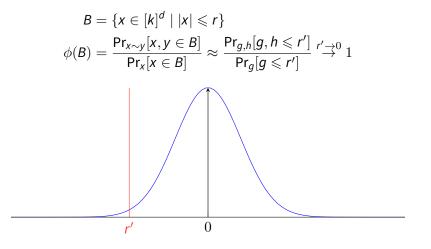
$$\Pr_{x}[x \in B] = \mathbb{E}_{x}[\mathbb{1}_{x_{1} \neq 0} + \dots + \mathbb{1}_{x_{d} \neq 0} \leq r]$$

$$\approx \Pr[g \leq r'] \quad \text{Gaussian } g$$

$$\Pr_{x \sim y}[x, y \in B] = \mathbb{E}_{x, y}\left[\sum_{1 \leq i \leq d} \mathbb{1}_{x_{i} \neq 0} \leq r \text{ and } \sum_{1 \leq i \leq d} \mathbb{1}_{y_{i} \neq 0} \leq r\right]$$

$$\approx \Pr[g \leq r' \text{ and } h \leq r'] \quad \text{Gaussians } g, h$$

Expansion in Gaussian space



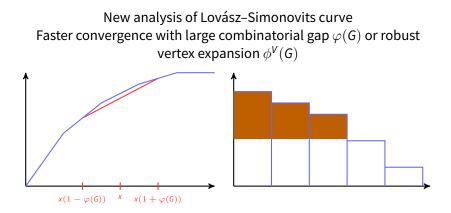
Symmetry

Obstacles to all local clustering algorithms Evolving Set Process, random walk, PageRank, etc All fall for the symmetry

Folded noisy hypercubes are hard instances for SDP Folding necessary to rule out sparse cuts in those instances In our situation, we cannot fold

Our instances are easy for Lasserre/sum-of-squares

Summary



Limitations of all local clustering algorithms: Coordinate cuts vs Hamming balls under symmetry

Open problems

$\Omega(\sqrt{\phi(\mathsf{S}^*)\log|\mathsf{S}^*|}) \text{ lower bound for Evolving Set Process and} random walk?}$

Thank you