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Abstract

We prove that almost surely the first non-empty (k+1)-core to arise during the ran-
dom graph process will have a k-factor or will be k-factor-critical. Thus the threshold
for the appearance of a k-regular subgraph is at most the threshold for the (k+1)-core.
This improves a result of Pralat, Verstraete and Wormald [5] and proves a conjecture
of Bollobas, Kim and Verstraete [3].

1 Introduction

This paper concerns k-regular subgraphs of random graphs. A natural starting point for such
a study is with the k-core; i.e. the unique maximal subgraph with minimum degree at least
k. Pittel, Spencer and Wormald[4] determined the threshold ck = k +

√
k log k + o(

√
k) for

the appearance of a non-empty k-core in Gn,p=c/n, the random graph with n vertices where

each of the
(
n
2

)
possible edges appears independently with probability p. So for c < ck, a.s.

1

Gn,p=c/n has no non-empty k-core and hence a.s. has no k-regular subgraph. In [3], Bollobás,
Kim and Verstraete studied the threshold for the appearance of a 3-regular subgraph, and
determined that it is strictly larger than c3. They also conjectured that the threshold for
a k-regular subgraph is strictly larger than ck for all k ≥ 4. Pretti and Weigt[6] used some
statistical physics techniques to predict the opposite: for every k ≥ 4, the threshold for the
appearance of a k-regular subgraph is ck. In other words, for every c > ck. a.s. the k-core
contains a k-regular subgraph. Those conflicting conjectures remain unresolved.

Bollobás, Kim and Verstraete also conjectured that if c > ck+1 then a.s. the (k+ 1)-core
of Gn,p=c/n has a k-regular subgraph (see Conjecture 1.3 from [3]). We prove that conjecture
here for k sufficiently large. They proved that Gn,p=c/n a.s. contains a k-regular subgraph if
c > ρkn for a specific function ρk = 4k + o(k); note that ρk ≈ 4ck.

∗Dept of Computer Science, University of Toronto, {siuon,molloy}@cs.toronto.edu.
1A property holds almost surely (a.s.) if it holds with probability tending to 1 as limn→∞.
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A k-factor of a graph G is a spanning k-regular subgraph; note that if G has a k-factor,
then k × |V (G)| must be even. G is said to be k-factor-critical if for every v ∈ V (G), G− v
has a k-factor. Suppose ck+2 < c < ck+2 + 10

√
k log k and let C denote the (k + 2)-core

of Gn,p=c/n. Pralat, Verstraete and Wormald[5] proved that if k is sufficiently large then
a.s.: (i) if k × |V (C)| is even then C contains a k-factor; (ii) if k × |V (C)| is odd then C is
k-factor-critical. We extend this result to the (k + 1)-core:

Theorem 1.1 There is an absolute constant k0 such that for all k ≥ k0, and for any ck+1 <
c < ck+1 + 10

√
k log k a.s. the (k + 1)-core, K, of Gn,p=c/n satisfies:

(a) if k × |V (K)| is even then K has a k-factor;

(b) if k × |V (K)| is odd then K is k-factor-critical.

This result is best possible (for large k) in that, as observed in [5], for every c > ck
a.s. the k-core of Gn,p=c/n neither contains a k-factor nor is k-factor-critical, because it a.s.
contains many vertices of degree greater than k whose neighbours all have degree exactly k.

By monotonicity, Theorem 1.1 implies that for any c > ck+1, a.s. the (k + 1)-core of
Gn,p=c/n contains a k-regular subgraph, although for very large c we do not guarantee an
actual k-factor. This proves the aforementioned conjecture from [3]. It also establishes that
the threshold for the appearance of a k-regular subgraph is at most the threshold for the
appearance of a (k + 1)-core. [3] remarked that perhaps a.s. the (k + 1)-core of the random
graph will contain a k-factor (so long as its size times k is even); Theorem 1.1 confirms this
for large k.

Our proof makes use of Tutte’s f -factor Theorem[7] (see also Exercise 3.3.29 of [8]). We
state it here, in terms of k-factors; Tutte’s actual statement applies to more general factors.
For X, Y ⊂ V (G), we use λ(X,Y ) to denote the number of edges with one endpoint in X and
the other in Y . And we use q(X,Y ) to denote the number of components Q of G− (X ∪ Y )
such that k|Q| and λ(Q, Y ) have different parities.

Theorem 1.2 (Tutte[7]) A graph G has a k-factor iff for every pair of disjoint sets R,W ⊂
V (G),

k|R| ≥ q(R,W ) + k|W | − ∑

v∈W
degG−R(v).

Rearranging, we see that the condition of Theorem 1.2 is equivalent to:

∑

v∈W
degG(v) + k|R| ≥ q(R,W ) + k|W |+ λ(R,W ). (1)

To prove Theorem 1.1(a), we will prove that K satisfies a stronger condition. Using ω(H)
to denote the number of components of a subgraph H, we will show that for every pair of
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disjoint sets S, T ⊂ V (K) with S ∪ T 6= ∅,
∑

v∈T
degK(v) + k|S| ≥ ω(K − S ∪ T ) + k|T |+ λ(S, T ). (2)

By Theorem 1.2, with R := S,W := T this will suffice to prove part (a), since ω(K−R∪W ) ≥
q(R,W ).

For part (b), it would suffice to prove that for every pair of disjoint sets S, T ⊂ V (K)
with |S| ≥ 1 and |S ∪ T | ≥ 2, we have:

∑

v∈T
degK(v) + k|S| ≥ ω(K − S ∪ T ) + k|T |+ λ(S, T ) + k. (3)

It is straightforward to show that if S, T satisfy (3) then for any x ∈ S, (2) holds upon
substituting K := K − x, S := S − x (the quick argument appears in the proof of Corollary
2 of [5]). Thus, if (3) were to hold for all S, T with |S| ≥ 1 and |S ∪ T | ≥ 2 then this would
establish part (b). This was indeed the case in [5]. Unfortunately there are some cases in
our setting where (3) does not hold, so we need to instead focus directly on (1).

To see why our setting is a bit more delicate, consider a vertex x whose neighbours all
have degree k+1 in K. In K−x, they all have degree k, and this forces all of their edges into
any k-factor. It is easy to verify that S = {x} and T = N(x) will violate (3); equivalently,
S = ∅ and T = N(x) will violate (2) when K is replaced by K − x. Fortunately R = ∅ and
W = N(x) does not violate (1), with G = K − x.

Our proof follows the same outline as that of [5]. Their proof covered four separate cases
for the sizes of S, T . In Case 1, we require a somewhat different argument for the setting of
this paper. Case 2 is where the main new ideas of this paper are required. Their arguments
for Cases 3 and 4 apply to the setting of this paper, so we didn’t need any new ideas there;
we combine them into our Case 3. The reader who is already familiar with [5] may want to
skip directly to Case 2 (in particular, Case 2b).

We close this introduction by noting that our main theorem extends to Gn,M , a model
that permits a somewhat stronger statement. The random graph process begins with n
vertices and no edges, and then repeatedly adds an edge chosen uniformly at random from
amongst those edges not yet present. Gn,M is the graph obtained after M steps.

Theorem 1.3 There is an absolute constant k0 such that for all k ≥ k0, a.s. K, the first
non-empty (k + 1)-core to arise during the random graph process, satisfies:

(a) if k × |V (K)| is even then K has a k-factor;

(b) if k × |V (K)| is odd then K is k-factor-critical.

3



1.1 Preliminaries

We will make use of the following lemmas from [5] concerning the structure of K. (Actually,
their lemmas were stated a bit differently in that they were in terms of the k-core. But it is
straightforward to adapt their proofs to obtain the statements below.)

Lemma 1.4 (Lemma 2 of [5].) There is a constant γ > 0 (independent of k) such that a.s.
for every set X ⊂ V (K) of at most 1

2
|V (K)| vertices, we have:

λ(X,K −X) ≥ γ(k + 1)|X|.

For the remainder of the paper, we use γ to denote the constant from Lemma 1.4. We
define:

s(n) = log n/(2ec log log n).

A standard first moment argument nearly identical to the proof of Lemma 3 of [5] yields:

Lemma 1.5 For any constant c > 0, a.s. every subset Y of the vertices of Gn,p=c/n with
|Y | ≤ 4s(n) has at most |Y | edges.

Lemma 4 of [5] says:

Lemma 1.6 If k is sufficiently large then: a.s. for every subset Y ⊆ V (K) with |Y | ≤ s(n),
K − Y contains a component with more than |V (K)| − 2s(n) vertices.

Proof: Let X be the union of the vertex sets of some components of K − Y , such that
|X| > s(n). We’ll show that if the a.s. properties from Lemmas 1.4 and 1.5 hold then
|X| > 1

2
|V (K)|; this implies the lemma.

Cosnsider any Z ⊂ X where |Z| = |Y |. Thus |Y ∪ Z| ≤ 2s(n) and so by Lemma
1.5 we can assume λ(Y, Z) ≤ |Y ∪ Z| = 2|Z|. Averaging over all such Z ⊆ X yields
λ(Y,X) ≤ 2|X| < γk|X|, for k sufficiently large (since γ does not depend on k). Since
λ(X,K −X) = λ(Y,X), the a.s. property of Lemma 1.4 implies |X| > 1

2
|V (K)| as required.

2

We often use the following well-known bound which follows easily from Stirling’s Inequal-
ity: (

a

b

)
≤

(
ea

b

)b

.

And finally, recall that [4] established ck = k+
√
k log k+ o(

√
k) and that the hypothesis

of Theorem 1.1 requires c < ck + 10
√
k log k. Thus, for k sufficiently large, we have:

c < 2k.
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2 Proof of Theorem 1.1

We will consider three cases for the sizes of S, T from (2) and (3). Recall that s(n) =
log n/(2ec log log n).

Case 1: |S|+ |T | ≤ s(n).

The proof of this case is similar to that from [5]. Let ω(K− (S ∪T )) = `+1. By Lemma
1.6, a.s. K is such that the sizes of C1, ..., C`, the ` smallest components of K − (S ∪ T ),
must total less than 2s(n). So Lemma 1.5 implies that a.s. the subgraph X induced by
S ∪ T ∪ C1 ∪ ... ∪ C` has no more edges than vertices. Let X ′ be the graph obtained by
contracting each Ci into the single vertex ci. Since Ci has at most one cycle (by Lemma 1.5)
and every vertex of Ci has degree at least k + 1 in X, it follows that deg(ci) ≥ k + 1. Since
each ci is only adjacent to vertices in S∪T we have |E(X ′)| ≥ (k+1)`+λ(S, T ). Since X has
no more edges than vertices and since each Ci is connected, |E(X ′)| ≤ |V (X ′)| = |S|+|T |+`.
Therefore:

|T |+ k|S| ≥ k`+ λ(S, T ) + (k − 1)|S| = ω(K − (S ∪ T )) + λ(S, T ) + (k − 1)(|S|+ `)− 1.

Since every vertex in T has degree at least k + 1, this implies (2) for |S|+ ` ≥ 1 and (3) for
|S|+ ` ≥ 2 (and k ≥ 3).

If |S| = ` = 0 and S ∪ T 6= ∅ then we must have |T | ≥ 1, ω(K − (S ∪ T )) = 1 and
λ(S, T ) = 0, and so (2) holds.

We aren’t required to prove (3) for |S| = 0. So we have only failed to prove (3) for the
case |S| = 1, ` = 0; in fact, (3) does not a.s. hold in this case. Proving (3) is required only
to prove Theorem 1.1(b); i.e. to establish that if k|K| is odd then K − x has a k-factor for
every x ∈ V (K). We will establish that by showing directly that (1) holds for G = K − x.
The fact that (3) holds for K when |S| ≥ 2 or |S| = 1, ` ≥ 1 implies that (1) holds for
G = K − x whenever |R| ≥ 1 and whenever |R| = 0 and (K − x) −W has more than one
component (recall the discussion following the statement of (3)). So we can assume R = ∅
and (K − x)−W has at most one component. Then (1) becomes:

∑

v∈W
degK−x(v) ≥ q(∅,W ) + k|W |.

K has minimum degree at least k + 1 and so K − x has minimum degree at least k. Since
(K − x) − W has at most one component, q(∅,W ) ≤ 1. So (1) holds if there at least one
v ∈ W with degK−x(v) ≥ k+1. Let Q be the only component of K−x−W . If every v ∈ W
has degK−x(v) = k then λ(Q,W ) = k|W | − 2E(W ) which has the same parity as k|Q| since
|Q|+ |W | = |K| − 1 and k|K| is odd (as we are in Theorem 1.1(b)). Thus, q(∅,W ) = 0 and
so (1) holds.

This proves that a.s. for every S, T satisfying Case 1, (6) holds for S, T and (1) holds for
R := S − x,W := T with G := K − x.
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To specify Case 2, we fix an absolute constant ε0, independent of k, chosen so that
ε0 <

γ2

105
(recall γ from Lemma 1.4).

Case 2: s(n) ≤ |S|+ |T | ≤ ε0n

We use the following two technical bounds, which are very much like bounds found in
[5]. We defer the proofs until Section 3.

A.s. for every disjoint pair of sets X,Y with |X| ≥ 1
200

|Y | and |Y | ≤ ε0n we have:

λ(X, Y ) ≤ 1

2
γk|X|. (4)

A.s. for every disjoint pair of sets S, T with s(n) ≤ |S|+ |T | ≤ ε0n we have:

λ(S, T ) <
101

100
|T |+ k

2
|S|. (5)

We use (4) to bound ω(K − S ∪ T ). Let X be the set of vertices in all components of
K − S ∪ T that have size at most 1

2
|V (K)|. By applying Lemma 1.4 to each component of

X, we have λ(X,S ∪ T ) ≥ γ(k + 1)|X|. Therefore, letting Y = S ∪ T and recalling that, in
Case 2, |Y | ≤ ε0n, (4) is violated unless |X| < 1

200
|S ∪ T |. Since ω(K − S ∪ T ) ≤ |X| + 1,

this implies that a.s. K is such that for every S, T in Case 2 we have:

ω(K − S ∪ T ) <
1

200
(|S|+ |T |) + 1 <

1

100
(|S|+ |T |). (6)

Case 2a: |T | ≤ 20k|S|.
(5) and (6) imply that a.s. every pair S, T with s(n) ≤ |S|+ |T | ≤ ε0n and |T | ≤ 20k|S|

satisfies:

ω(K−S∪T )+λ(S, T ) <
1

100
(|T |+|S|)+101

100
|T |+k

2
|S| = 102

100
|T |+(

k

2
+

1

100
)|S| < |T |+k|S|−k,

where the last inequality uses |T | ≤ 20k|S|.
This implies that a.s. (2) and (3) hold for every S, T satisfying Case 2a.

Case 2b: |T | > 20k|S|.
Note that, since |S|+ |T | ≤ ε0n, we have |S| ≤ ε0

20k
n.

This case contains most of the new ideas for this paper. To prove (2) and (3), it would
suffice to show ω(K − S ∪ T ) + λ(S, T ) ≤ |T | + k|S| − k. Above, we saw that (5) and (6)
yield ω(K − S ∪ T ) + λ(S, T ) ≤ 102

100
|T | + (k

2
+ 1

100
)|S|, which is less than |T | + k|S| − k if

T is a lot smaller than S, eg. in Case 2a. Throughout Case 2, that bound clearly yields
ω(K − S ∪ T ) + λ(S, T ) ≤ 2|T |+ k|S| − k, which would suffice for (2) and (3) if K were the
(k + 2)-core. So the analysis above sufficed to cover all of Case 2 in [5].

6



It is natural to try and tighten the proof of (5) to obtain: λ(S, T ) < |T | + k
2
|S|. Un-

fortunately, this approach fails - the proof of (5) uses a first moment calculation, and the(
n
|T |

)
term in that calculation is far too big. But instead of bounding λ(S, T ), we can bound

λ(S,N(S)). The advantage of replacing T by N(S) is that the choice of the vertices in S

determines N(S) and so the
(

n
|T |

)
term is replaced by 1. We will obtain:

A.s. for every set S ⊂ V (K) with |S| ≤ ε0
20k

n we have:

λ(S,N(S)) ≤ |N(S)|+ k

4
|S|. (7)

This yields that a.s. for every disjoint pair of sets S, T as in Case 2b, we have:

λ(S, T ) ≤ λ(S,N(S))− |N(S)\T | ≤ |N(S) ∩ T |+ k

4
|S|. (8)

We will also show a bound similar to (4):

A.s. for every pair of disjoint sets S,X ⊂ V (K) with |S| ≤ ε0
20k

n and |X| ≥ |S| we have:

λ(X, (S ∪N(S))\X) ≤ 1

2
γk|X|. (9)

The proofs of (7) and (9) appear in Section 3.

Next, we will bound ω(K − S ∪ T ). Consider any pair of sets S, T with sizes as in Case
2b. First, we note that if S = ∅ then |T | ≥ s(n) and (6) implies that:

ω(K−S∪T )+k|T |+λ(S, T ) ≤ 1

100
(|S|+ |T |)+kT+λ(S, T ) =

1

100
|T |+k|T | < ∑

v∈T
degK(v),

and so (2) holds. (We can also show that (3) holds, but it is not required to hold when
S = ∅.) Thus, we will assume |S| ≥ 1.

Recall that we defined X to be the set of vertices in all components of K − S ∪ T of
size at most 1

2
|V (K)| and so |X| ≥ ω(K − S ∪ T )− 1. Recall also that in Case 2b we have

|S| ≤ ε0
20k

n. If |X| ≥ max( 1
200

|T\N(S)|, |S|) then (4) with Y = T\N(S) and (9) imply:

λ(X,S∪T ) = λ(X,T\N(S))+λ(X,S∪(T∩N(S))) ≤ λ(X,T\N(S))+λ(X, (S∪N(S))\X) ≤ γk|X|,

which contradicts Lemma 1.4 unless X = 0, since λ(X,K − X) = λ(X,S ∪ T ). Since we
can assume |S| ≥ 1, this implies |X| < max( 1

200
|T\N(S)|, |S|), which again since |S| ≥ 1,

implies |X| ≤ |S|+ 1
200

|T\N(S)| − 1. Therefore

ω(K − S ∪ T ) ≤ |X|+ 1 ≤ |S|+ 1

200
|T\N(S)|.
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This, along with (8) implies

ω(K − S ∪ T ) + λ(S, T ) ≤ |S|+ 1

200
|T\N(S)|+ |T ∩N(S)|+ k

4
|S|

= k|S|+ |T | − 199

200
|T\N(S)| −

(
3k

4
− 1

)
|S|.

This yields (2). It also implies (3) if |S| ≥ 2 and so
(
3k
4
− 1

)
|S| > k. When |S| = 1, we

can trivially strengthen (8) to λ(S, T ) = |N(S) ∩ T |. That improves the above bound to

ω(K − S ∪ T ) + λ(S, T ) ≤ k|S|+ |T | − 199

200
|T\N(S)| − k + 1,

which implies (3) if at least one v ∈ T has degK(v) ≥ k + 2 or if |T\N(S)| ≥ 1.

So the only remaining case is where |S| = 1, T ⊆ N(S) and every vertex in T has degree
k + 1. Above, we proved that |X| < max( 1

200
|T\N(S)|, |S|) and so, in this case, |X| = 0.

We work directly with (1), proving that it holds for R := ∅,W := T,G = K − x with the
same argument that was used in Case 1.

This proves that a.s., for every S, T satisfying Case 2b, (2) holds for S, T and (1) holds
for R := S − x,W := T with G = K − x.

Case 3: |S|+ |T | ≥ ε0n

This is covered by Cases 3 and 4 from [5]. The proofs from that paper also apply to the
setting of this paper (after a straightforward adjustment of some of the constants).

In particular, if |T | < 1
10
ε0n then |S| > 9

10
ε0n. The same analysis as in Case 3 of [5]

shows that a.s. every such S, T satisfies λ(S, T ) ≤ 3
4
k|S|. Indeed, they use a straightforward

bound on the tail of the degree sequence to show that a.s. Gn,p=c/n is such that
∑

deg(v)
over all v ∈ T with deg(v) > 3

2
c must be less than ε0n, and trivially,

∑
deg(v) over all v ∈ T

with deg(v) ≤ 3
2
c is at most 3

2
c|T | < 3

20
cε0n. So, using c < 2k and |S| > 9

10
ε0n, we obtain:

λ(S, T ) ≤ ∑

v∈T
deg(v) < ε0n+

3

20
cε0n <

1

5
cε0n <

3

4
k|S|.

Since
∑

v∈T d(v) ≥ (k + 1)|T | and ω(G − (S ∪ T )) < n < 1
4
k|S| − 1 for k > 8

ε0
, (2) and

(3) both hold.

If |T | ≥ 1
10
ε0n then the same argument that yielded (18) from [5] (the only difference is

a trivial reworking of a few constants) yields that there exists ε > 0 such that a.s. λ(S, T ) ≤
k|S| + (1 − ε)

√
k log k|T | for every such S, T . The degree sequence analysis preceding (18)

in [5] (after replacing ε by ε
2
) yields that for k sufficiently large, we a.s. have

∑
v∈T d(v) >

(k+ (1− ε
2

√
k log k))|T | for every such T . Since ω(G− (S ∪ T )) + 1 < n < ε

2

√
k log k|T | − k

for k > 4/(εε0)
2, this yields (2) and (3).
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Remark: It is in this final step that we require c ≤ ck+1 + 10
√
k log k < k + 12

√
k log k.

Replacing 10 by any other constant would suffice.

Therefore, a.s. (2) and (3) hold for every S, T in Case 3.

Proof of Theorem 1.1 We have proved that (2) holds for every S, T , which implies
that (1) holds for every R,W when G := K. This establishes Theorem 1.1(a). We have
proved that (2) holds for all but a few cases of S, T ; as described in the introduction, this
implies that (1) holds when R := S − x,W := T and G := K − x. For those few remaining
cases, we showed directly that (1) holds. Thus (1) holds for all R,W when G := K − x; this
establishes Theorem 1.1(b).

2

We close this section by presenting the adaptation of our arguments to the Gn,M model.

Proof of Theorem 1.3 It suffices to prove that all of the a.s. statements from our
proof also hold when K is the first non-empty (k+1)-core to arise during the random graph
process. Specifically, these statements are: Lemmas 1.4, 1.5, 1.6, (4), (5), (7) and (9) and
the bound on λ(S, T ) corresponding to (18) from [5], as well as the degree sequence analysis
from Case 3. All but Lemma 1.4 were proven to hold for the entire graph Gn,p=c/n when
c < 2k, rather than just for the k-core. Each of these properties are monotone (Lemma
1.5 is preserved under the addition of edges, the others are preserved under the deletion of
edges), and so Theorem 2.2 of [2] implies that they all hold a.s. for Gn,M= 1

2
cn for any c < 2k.

This implies that they will a.s. hold for the first (k+ 1)-core to arise. Lemma 1.4 is Lemma
2 from [5] which, in turn, follows from Lemma 5.3 of [1]. That last lemma was proven for
random graphs on a fixed degree sequence, whose degrees all lie between 3 and n0.02. It is
well known that the first (k + 1)-core to arise is uniformly random on its degree sequence
(see eg. [4]), and those degrees lie between k + 1 > 3 and the maximum degree of Gn,M

which is a.s. less than log n << n0.02. It follows that Lemma 1.4 also holds when K is the
first non-empty (k+1)-core to arise during the random graph process. The remainder of the
proof is identical to that of Theorem 1.1. 2

3 The remaining details

Here we provide the proofs of some of the technical statements from Case 2. Rather than
working with the (k + 1)-core K directly, we will actually prove that the statements hold
over the entire graph Gn,p=c/n.

We begin with equations (4) and (5) from Case 2a.

A.s. for every disjoint pair of sets X,Y with |X| ≥ 1
200

|Y | and |Y | ≤ ε0n we have:
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λ(X, Y ) ≤ 1

2
γk|X|. (4)

Proof of (4): Clearly (4) holds for X = ∅, so we can assume |X| ≥ 1.

Let xn = |X|, and yn = |Y |. For any fixed x, y, the expected number of sets X, Y in
Gn,p=c/n that violate (4) is at most:

(
n

yn

)(
n

xn

)(
(yn)(xn)
1
2
γkxn

)(
c

n

) 1
2
γkxn

<

(
e

y

)yn (
e

x

)xn
(
exyn2c
1
2
γkxn2

) 1
2
γkxn

<

(
e

y/200

)201xn (
4ey

γ

) 1
2
γkxn

since x >
y

200
,

e

y/200
> 1 and c < 2k

<

(
3200e3y

γ2

) 1
4
γkxn

if k is large enough that 201 <
1

4
γk

<
(
1

2

)xn

since y ≤ ε0 <
1

2
(

γ2

3200e3
) and

1

4
γk > 1.

For each fixed x, there are at most 200xn choices for y, since s(n) < |Y | ≤ 200|X|. Therefore,
summing over all x, y we find that the expected number of pairs X, Y violating (4) with
|X| ≥ log n is less than:

∑

|X|≥logn

200|X|
(
1

2

)|X|
= o(1).

For |X| < log n we have |Y | < 200 log n; i.e. y < 200 logn
n

. Thus
(
3200e2y

γ2

) 1
4
γkxn

< 1
n3 (since we

can assume xn = |X| ≥ 1 and we can choose k such that 1
4
γk ≥ 4). There are fewer than n2

choices for x, y and so the expected number of pairs X,Y with |X| < log n that violate (6)
is o(1). 2

A.s. for every disjoint pair of sets S, T with s(n) ≤ |S|+ |T | ≤ ε0n we have:

λ(S, T ) <
101

100
|T |+ k

2
|S|. (5)

Proof of (5): Let σn = |S| and τn = |T |. For any choice of σ, τ , the expected number
of such sets S, T in Gn,p=c/n violating (5) is at most:

(
n

σn

)(
n

τn

)(
(σn)(τn)

101
100

τn+ k
2
σn

)(
c

n

) 101
100

τn+ k
2
σn

<
(
e

σ

)σn (
e

τ

)τn
(

eστn2c

(101
100

τn+ k
2
σn)n

) 101
100

τn+ k
2
σn

10



=
(
e

σ

)σn (
e

τ

)τn
(

eστc
101
100

τ + k
2
σ

) 101
100

τn+ k
2
σn

.

Since c < 2k and τ < ε0 < (16e3)−100, we have:

eστc
101
100

τ + k
2
σ
<

eστc
k
2
σ

< 4eτ <
(
τ

2e

) 100
101

.

Furthermore, if σ > e−k/3 then for k sufficiently large we have:

eστc
101
100

τ + k
2
σ
<

(
τ

2e

) 100
101

< e−1 <
(
σ

2e

) 2
k

,

while if σ ≤ e−k/3 then for k sufficiently large we have:

eστc
101
100

τ + k
2
σ
<

eστc
101
100

τ
< ecσ1/2σ1/2 < e(2k)e−k/6σ1/2 < σ1/2 <

(
σ

2e

) 2
k

.

This implies that the expected number of pairs S, T with |S| = σn, |T | = τn is at most

(
e

σ

)σn (
e

τ

)τn (
τ

2e

) 100
101

101
100

τn (
σ

2e

) 2
k

k
2
σn

=
(
1

2

)(σ+τ)n

.

For each choice of y = |S|+ |T |, there are y choices for |S|, |T |. So the expected number of
sets S, T violating (5) is at most:

n∑

y=s(n)

y(
1

2
)y = o(1).

2

Now we turn to the results required for Case 2b. We begin with a technical lemma. Note
that in Case 2b, we have |S|+ 20k|S| ≤ |S|+ |T | ≤ ε0n and so |S| < ε0

20k
n.

Lemma 3.1 A.s. every set S in Gn,p=c/n of size at most ε0
20k

n satisfies:

(a)
(
25|S∪N(S)|

γn

) 1
2
γk

n2

|S|2 < 1
2e2

.

(b)
(
25|N(S)|

n

)k/4
n
|S| <

1
2e
.

Proof Note that if (a) holds then 25|S∪N(S)|
γn

< 1 and so

(
25|N(S)|

n

)k/4
n

|S| <
(
25|S ∪N(S)|

γn

)k/4
n

|S| <
(
25|S ∪N(S)|

γn

) 1
2
γk

n2

|S|2
|S|
n

<
1

2e2
× ε0
20k

<
1

2e
;

11



i.e. (a) implies (b). So we will prove (a).

Let S∗ be the |S| vertices of largest degree in Gn,p and let D be the sum of their degrees.
Clearly |N(S)| ≤ D. For i ≥ 0, the expected number of vertices of degree i in Gn,p=c/n

is
(
ci

i!
e−c + o(1)

)
n. Standard methods (eg Lemma 3.10 of [2]) show that this number is

concentrated enough that: A.s. for all i such that ci

i!
n ≥ √

n we have (a) at most ci

i!
n vertices

have degree i and (b) at most
∑

j≥i
cj

j!
n vertices have degree at least i. Also, it is well-known

that the maximum degree in Gn,p=c/n is a.s. less than log n (see eg. Exercise 3.5 of [2]). We
will assume that these almost sure properties hold, and show that for every choice of |S|,
the bound in (a) holds. This establishes our lemma.

Case 1: |S| ≤ n2/3. Since the maximum degree is less than log n, we have D ≤ |S| log n
and so (

25|S ∪N(S)|
γn

) 1
2
γk

n2

|S|2 ≤
(
25|S|(log n+ 1)

γn

) 1
2
γk

n2

|S|2 .

That product clearly increases with |S| and so is at most:

(
25n2/3(log n+ 1)

γn

) 1
2
γk

n2

(n2/3)2
= o(1).

For the next two cases, we define I to be the largest integer such that cI

I!
n ≥ |S|, and

i∗ ≥ I to be the largest integer for which ci
∗

i∗!n ≥ √
n. It is easily verified that

∑
i>i∗

ci

i!
n <

2 ci
∗+1

(i∗+1)!
n < 2

√
n, and so fewer than 2

√
n vertices have degree greater than i∗. Since those

vertices all have degree at most log n, we have:

D <
i∗∑

i=I

i
ci

i!
n+ 2

√
n log n.

Case 2: |S| > n2/3 and I ≥ 4c. Since I ≥ 4c, it is easily verified that cI

I!
n +

∑
i≥I i

ci

i!
n <

2I cI

I!
n. Also, cI

I!
n ≥ |S| > n2/3 > 2

√
n log n. So our bound on D above, and the fact that we

can take c > 2, yields |S| +D < 2I cI

I!
n + 2

√
n log n < 3I cI

I!
n < 3I2 cI+1

(I+1)!
n < 3I2|S|. In the

next line, we will use the fact, from the previous sentence, that |S ∪N(S)| ≤ |S| +D is at

most 3I cI

I!
n and at most 3I2|S|:

(
25|S ∪N(S)|

γn

) 1
2
γk

n2

|S|2 <

(
25× 3I2

γ

)2

25× 3I cI

I!

γ




1
2
γk−2

.

This product is easily seen to decrease as I ≥ 4c increases, and so it is at most

(
25× 48c2

γ

)2

25× 12c c4c

(4c)!

γ




1
2
γk−2

<
1

2e2
,

12



for k (and hence c) sufficiently large.

Case 3: I < 4c. D/|S| is monotone decreasing as |S| increases, since increasing |S| adds
to S∗ vertices of degree at most that of all those already in S∗. Therefore, |S ∪N(S)|/|S| is
at most the value (|S| +D)/|S| at I = 4c and |S| = cI

I!
n. Applying the analysis from Case

2, at that value of |S| we have |S|+D ≤ 3I cI

I!
n = 3I|S| = 12c|S|. Therefore, using the facts

that c < 2k and |S| < ε0
20k

n < ε0
10c

n < γ
25×24c

n we have:

(
25|S ∪N(S)|

γn

) 1
2
γk

n2

|S|2 <

(
25× 12c

γ

)2 (
25× 12c|S|

γn

) 1
2
γk−2

<

(
25× 24k

γ

)2 (
1

2

) 1
2
γk−2

<
1

2e2
,

for k sufficiently large. 2

Next we prove our bound on λ(X, (S ∪N(S))\X):

A.s. for every pair of disjoint sets S,X ⊂ V (K) with |S| ≤ ε0
20k

n and |X| ≥ |S| we have:

λ(X, (S ∪N(S))\X) ≤ 1

2
γk|X|. (9)

Proof of (9): We show that there are a.s. no such sets violating (9) in Gn,p=c/n. We

fix |S| = σn ≤ ε0
20k

n, |X| = xn ≥ σn and we let ρ be the solution to
(
25ρ
γ

) 1
2
γk

1
σ2 = 1

2e2
. By

Lemma 3.1(a), a.s. K is such that for every choice of S we have |S ∪N(S)| ≤ ρn.

We will bound the expected number of pairs S,X with |S ∪ N(S)| ≤ ρn and λ(X, (S ∪
N(S))\X) > 1

2
γk|X|. We first choose S,X, then expose N(S). We assume that |S∪N(S)| ≤

ρn and bound the probability, under that assumption, that λ(X, (S ∪N(S))\X) > 1
2
γk|X|.

This yields a bound of at most:

(
n

σn

)(
n

xn

)(
(ρn)(xn)
1
2
γkxn

)(
c

n

) 1
2
γkxn

<
(
e

σ

)σn (
e

x

)xn
(
ecρ
1
2
γk

) 1
2
γkxn

<
(
e

σ

)2xn
(
25ρ

γ

) 1
2
γkxn

since σ ≤ x and c < 2k

=
(
1

2

)xn

since

(
25ρ

γ

) 1
2
γk

=
σ2

2e2
.

The sum of
(
1
2

)xn
over all i = |X|, j = |S| with |X| ≥ max(|S|,√log n) is at most

∑

i≥
√

logn

∑

j≤i

(
1

2

)i

=
∑

i≥
√

logn

i
(
1

2

)i

= o(1).
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Therefore, a.s. there are no sets S,X violating (9) with |X| ≥ √
log n and with |S∪N(S)| ≤

ρn. By Lemma 3.1(a), this implies that a.s. there are no S,X violating (9) with |X| ≥√
log n.

For the case where |S| ≤ |X| < √
log n, let H be the subgraph induced by X,S and the

endpoints in S ∪ N(S) of more than 1
2
γk|X| edges from X. It is straightforward to show

that H has more edges than vertices: Indeed, if ` is the number of vertices of H in N(S),
then |E(H)| > `+ 1

2
γk|X| ≥ `+ 2|X| and |V (H)| = `+ |S|+ |X| ≤ `+ 2|X|. But H has at

most |S|+ |X|+ 1
2
γk|X| = O(

√
log n) vertices. So by Lemma 1.5, a.s. no such H exists. 2

Our final bound is that a.s. for every set S ⊂ V (K) with |S| ≤ ε0
20k

n we have:

λ(S,N(S)) ≤ |N(S)|+ k

4
|S|. (7)

Proof2 of (7): Again, we prove that (7) a.s. holds for every such S in Gn,p=c/n. Consider
any set S of σn vertices. Let ν be the solution to (25ν)k/4/σ = 1

2e
. By Lemma 3.1(b), a.s.

|N(S)| ≤ νn.

We expose the edges from S to N(S) as follows: First, for every v /∈ S, we test the
presence of an edge from v to each of the vertices in S, one-at-a-time, and stop testing as
soon as we discover the first edge. This determines the vertices of N(S). Next, for each
u ∈ N(S), we test the presence of an edge from u to each vertex in S for which the test
was not carried out during the first step. The total number of edge-tests carried out in the
second step is less than |S| × |N(S)|. Note that S violates (7) iff more than k

4
|S| edges are

exposed during the second step. So the expected number of sets S of size σn that violate
(7) and for which |N(S)| ≤ νn is at most:

(
n

σn

)
×

(
σn× νn

k
4
σn

)(
c

n

) k
4
σn

<
(
e

σ

)σn
(
ecσνn2

k
4
σn2

) k
4
σn

<
(
e

σ

)σn

(25ν)
k
4
σn since c < 2k

=
(
1

2

)σn

.

The sum of
(
1
2

)|S|
over all |S| ≥ log n is o(1). For the case where |S| < log n, we use the

well known fact that a.s. the maximum degree in Gn,p=c/n is less than log n (see eg. Exercise

2We are grateful to an anonymous referee for suggesting this approach, which is simpler and more elegant
than our original proof.
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3.5 in [2]). Thus, replacing νn above by |S| log n we obtain a smaller bound of

(
en

|S|

)|S| (
25|S| log n

n

) k
4
|S|

<
1

n2
.

Multiplying this by the log n choices for |S| < log n yields that the expected number of
violating sets is o(1), thus establishing that a.s. (7) holds for all such S. 2
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