
Deterministic Concurrency Control For Private Blockchains
Ziliang Lai (Supervisor: Eric Lo)
The Chinese University of Hong Kong

{zllai,ericlo}@cse.cuhk.edu.hk

1 PROBLEM AND MOTIVATION
Private blockchain has gained popularity in inter-organization busi-
ness processing (e.g., supply chain management [15] and cross-
border payment [9]). It allows mutually untrusted parties to share
data and mutate data in an endorsed manner. A typical private
blockchain is composed of a consensus layer pipelined with an
execution layer, where the organizations agree on the blocks of
transactions using the consensus layer and the transaction blocks
are then passed to each organization’s executor for execution. To
ensure the organizations share an identical view of data, one core
requirement of the executor is determinism, i.e., given the same
transaction blocks and the same initial state, the executors must
produce an identical new state.

While the consensus layer was regarded to be the major bot-
tleneck of the blockchains, the relaxed requirement in the inter-
organization setting (e.g., static membership, stable network con-
nection) enables recent optimizations [3, 10, 23] to achieve aston-
ishingly good performance, which in turn shifts the bottleneck to
the execution layer [1, 20]. However, even the latest research in
private blockchain offers unsatisfactory throughput in the execu-
tion layer due to the requirement of determinism. That’s because
determinism limits the parallelism of execution since parallel execu-
tion often results in non-deterministic execution order. Therefore,
recent works cannot execute transactions with full concurrency
[1, 14, 18–20]. In this paper, we present Harmony, a determinis-
tic concurrency control algorithm that is highly concurrent and
yields 2.0 × to 3.5 × better throughput over the state-of-the-art
competitors. Harmony is built on the shoulder of the latest deter-
ministic databases [7, 8, 12, 21] that optimize concurrency control
while upholding determinism. Based on that, Harmony incorpo-
rates inter-block parallelism and judicious abort which is crucial for
performance in blockchain setting.

2 BACKGROUND AND RELATEDWORK
2.1 Private Blockchains
Besides the work on optimizing the consensus layer [3, 6, 10, 11,
23, 25], the importance of the concurrency control in the execution
layer has also been noticed [1, 14, 18–20]. Table 1 shows a summary
of some representatives.

Serial execution is a straightforward method for ensuring de-
terminism. Given the same transaction block generated from the
consensus layer, the executor in Quorum [2] and Tendermint [4] ex-
ecutes the transactions serially following the order of their transac-
tion IDs (TIDs). Assuming the transactions contain no non-deterministic
operations (e.g., rand() and time()), each executor is guaranteed
to yield the same state. However, this method yields limited through-
put because it fails to utilize the core-parallelism in modern CPUs.

Private Blockchains Execution Layer Problem

Quarum [2]
Tendermint [4] Serial execution No concurrency

Fabric [1]
Fabric++ [20]
Fabric# [18]
RBC [14]

(1) Parallel simulation
(2) Serial validation Limited concurrency

Table 1: The problem of the execution layer in existing pri-
vate blockchains
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Figure 1: The problems of applying the latest deterministic
database to blockchain, and our proposed methods

Some recent private blockchains employ optimistic methods to
enable partial parallelism [1, 14, 18, 20]. Specifically, the transac-
tions are executed in a Simulation phase and a Validation phase.
The Simulation phase is able to execute transactions optimistically
in parallel, while the Validation phase has to validate serializability
(i.e., the concurrent execution is equivalent to a serial execution)
in a serial manner to uphold determinism. Therefore, the degree of
concurrency is limited.

2.2 Deterministic Databases
While private blockchains have started to pursue concurrent trans-
action execution recently, deterministic databases [7, 8, 12, 21] have
already studied deterministic concurrency control for almost a
decade. Astonishingly, the connection between private blockchain
and deterministic database has never been explicit, although the
connection between the former and distributed database has been
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studied elsewhere [17]. Private blockchain and deterministic data-
base actually share a lot in common. First, both of them are dis-
tributed in nature. Second, they both process transactions block-by-
block. Third, both blockchains and deterministic databases require
determinism.

One reason that impedes deterministic databases to be adopted
to private blockchains is the strong assumptions required by the
classic deterministic databases. They assume every transaction’s
read-write sets can be inferred before execution [7, 8, 21], but that
is not generally applicable (e.g., when the transaction contains
branches based on the query results). Nonetheless, the latest deter-
ministic database Aria [12] eliminates this requirement by executing
transactions in a Simulation phase and a Validation phase similar
to the recent private blockchains. However, Aria is more advanced
than private blockchains by offering concurrency in both phases.

Given a block of transactions, Aria generates deterministic read-
write sets of the transactions in the Simulation phase. Taking the
read-write sets as input, its Validation phase validates serializ-
ability by examine dangerous dependency patterns and commits
transactions deterministically in parallel. Concretely, in the Simula-
tion phase, Aria executes the transactions against a block snapshot,
which is the state after processing the previous block. In this phase,
no modification is applied, and each partition only buffers its write-
set in its private workspace. With the same block snapshot and
the same transaction blocks, executors in Aria generates identical
read-write sets. In the Validation phase, the dependencies among
transactions can be identified. For example, if two transactions 𝑇1
and 𝑇2 have overlapping write-sets, there is a write(w)-write(w)-
dependency among then. Aria deterministically abort some trans-
actions to uphold serializability by examine the dangerous depen-
dency patterns. For example, the ww-dependency is one of the dan-
gerous dependency patterns in Aria. On seeing 𝑇1 ww-depending
on𝑇2, Aria aborts the one with the larger TID (i.e.,𝑇2). By validating
based on the deterministic read-write sets and the TIDs, a determin-
istic set of the transactions is aborted in this phase. Moreover, since
the transactions that passes the validation have non-overlapping
write-sets, they can apply their updates in parallel without breaking
determinism.

However, even the latest deterministic database is not a per-
fect fit for private blockchain because of the difference in design
choices. Specifically, Aria is designed for main-memory databases,
while private blockchains are commonly disk oriented. That’s be-
cause disk-based storage is more cost effective and upgrading to
main-memory design does not payoff since the consensus layer
in the pipeline cannot saturate the in-memory executor. Specifi-
cally, directly porting Aria’s deterministic concurrency control to
disk oriented private blockchains causes two major problems as
summarized in Figure 1.

• Spurious Aborts. Aborting a transaction on seeing a ww-
dependency is overly conservative because two transac-
tions 𝑇1 and 𝑇2 that update the same item 𝑥 can still form
a serializable schedule. While spurious aborts are accept-
able in Aria because retrying an aborted transaction in
main-memory databases is cheap – which is not the case in
private blockchains because retrying a transaction means
going through consensus and disk I/Os again.

T1 T2
rw

xrw

(a) A match with only
two transactions

T1 T4 T3
rw rw rw

rw

x...

(b) A match with at least three
transactions

Figure 2: Examples of backward dangerous structure

• Stragglers.Aria has strict barriers between blocks, i.e., only
after block 𝑖 has finished execution, block (𝑖 + 1) can start,
which causes the straggler problem. Due to disk stalls, the
variance of the transaction runtime in private blockchains is
higher than main-memory databases, and thus the straggler
problem is exaggerated.

3 UNIQUENESS AND APPROACH
3.1 Fusing Deterministic Database With Private

Blokchain
Insight. Given the close connections, private blockchains can
actually absorb many techniques from deterministic databases. In
particular, the advanced deterministic concurrency control can be
adopted to improve the concurrency in private blockchains.
Approach. We port the deterministic concurrency control algo-
rithm in Aria to BCR [14], a private blockchain that builts on top of
PostgreSQL [13], which allows blockchains to support full-fledged
SQL functionalities like a relational database. To mitigate Aria’s
downsides when applied to blockchain (i.e., spurious aborts and
straggles) we propose a new deterministic concurrency control
Harmony, which incorporates blockchain-specific optimizations
(see below).

3.2 Judicious Validation
Insight. The idea of dangerous dependency pattern enables trans-
actions to validate independently in parallel because they only
examine dependencies that is “local” to themselves. However, a
pattern based on a single dependency (e.g., ww-dependency in
Aria) could cause many spurious aborts. Harmony design a new
dangerous patterns based on a pair “local” dependencies, such that
fewer transactions match the pattern and abort, while the level of
concurrency is almost unaffected.
Approach. Harmony abort a transaction if it matches a backward
dangerous structure. Specifically, 𝑇𝑗 is aborted if there exists 𝑇𝑖

𝑟𝑤←−−
𝑇𝑗

𝑟𝑤←−− 𝑇𝑘 , 𝑖 < 𝑗 and 𝑖 ≤ 𝑘 , where we use
𝑟𝑤←−− to represent read(r)-

write(w)-dependencies.
Figure 2 shows two examples thatmatch the backward dangerous

structure. Notice that a backward dangerous structure can be as
small as having two transactions only since we allow 𝑖 = 𝑘 (Figure
2a). A dangerous structure can also involve an arbitrary number of
transactions (e.g., Figure 2b, where 𝑇1

𝑟𝑤←−− 𝑇3
𝑟𝑤←−− 𝑇4). Overall, by

eliminating all backward dangerous structures, Harmony eliminates
cycles in the rw-dependency graph. Nonetheless, all the cycles in
the compelte dependency graph must be eliminated to achieve
serializability. Harmony offloads the ww-dependencies to update
reordering such that the whole dependency graph is acyclic.
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T1 2 (TID + 1)

T2 3 (TID + 1)
T3 4 (TID + 1)

T4 1 (min (1,3) )

Figure 3: An example of update reordering

(a) w/o update coalescence:

Index lookup Lock page add(x, 10) Unlock

Index lookup Lock page mul(x, 3) Unlock

Index lookup Lock page mul(add(x, 10), 3) Unlock

T1:

T2:

(b) w/ update coalescence:

T1 or T2:

Figure 4: Physical plans of the update commands with and
without coalescence

3.3 Update Reordering
Insight. Given an acyclic rw-dependency graph, reordering the
ww-dependencies based on the topological order of the rw-dependency
graph allows the complete dependency graph to be acyclic. As the
example shown in Figure 1, by reordering the ww-dependencies
following the direction of the rw-dependencies, the backward edges
are eliminated and thus cycles are avoided in the dependency graph.
Approach. Although useful, the topological sort is expensive
and hard to parallelize. We exploit the property of the acyclic rw-
dependency graph (i.e., all backward dangerous structures are re-
moved) to convert the topological sort into quick-sorts.

Figure 3 shows an example graph without backward dangerous
structures. A topological sort on it results in [𝑇4,𝑇1,𝑇2,𝑇3]. Har-
mony computes a min_out for each transaction 𝑇 representing
the minimum TID in 𝑇 ’s outgoing edges. Suppose only 𝑇2 and 𝑇4
update 𝑥 , Harmony only needs to quick-sort the min_outs of 𝑇2
and 𝑇4 without traversing the whole graph like topological sort.
Nonetheless, the resulting order (i.e., [𝑇4,𝑇2]) is consistent with
the topological ordering. Besides, if 𝑇1, 𝑇2 and 𝑇3 update 𝑦, the two
updater lists (i.e., [𝑇2,𝑇4] on 𝑥 and [𝑇1,𝑇2,𝑇3] on 𝑦) can be sorted
in parallel.

3.4 Update Coalescence
Insight. The physical plans of the update operations on the same
record largely overlap and they can actually be merged into one
operation. Figure 4 shows an example, where the physical plans of
two updates on 𝑥 actually share the same index lockup and locking
operations.
Approach. As shown in Figure 4, Harmony merges the overlapped
parts of the physical plans on updating the same record, while the
order of updates posed by the update reordering is respected. The
coalesced update operation only needs to be performed by one of
the transactions (i.e., 𝑇1 or 𝑇2), and the other transaction can skip
and perform other updates in parallel.

T1 T2
intra-rw inter-rw T3

block i block (i+1)

Figure 5: An example that may cause non-determinism if
without the Enhanced Validation Rule

3.5 Inter-block Parallelism
Insight. The reason behind the straggler problem is the barrier
between blocks. As shown in Figure 1, Harmony breaks the block
barrier and allows adjacent blocks to run concurrently, which can
improve the resource utilization.
Approach. Inter-block parallelism may induce inter-block depen-
dencies, and the the judicious validation has to be enhanced to
handle them. Moreover, inter-block dependencies may cause non-
determinism due to network asynchrony. For example, Figure 5
shows a backward dangerous structure across blocks. The executor
in the organization O1 who sees the whole backward dangerous
structure would abort 𝑇2. However, if block (𝑖 + 1) is delayed due
to network asynchrony in organization O2, its executor would
commit𝑇2 because when examining the backward dangerous struc-

tures, the executor of O2 only sees 𝑇1
𝑖𝑛𝑡𝑟𝑎−𝑟𝑤←−−−−−−−− 𝑇2. This causes

inconsistency between 𝑂1 and 𝑂2. Harmony breaks the backward
dangerous structure across blocks by always aborting the transac-
tions in the later blocks (i.e., 𝑇3 in the example). This ensures all
the executors abort the same transaction regardless of the network
delay.

4 RESULTS AND CONTRIBUTIONS
4.1 Performance Comparisons
We perform experiments on machines with 2.1GHz Intel Xeon E5-
2620v4 with 64GB DRAM and 800GB SSD, running 64-bit CentOS
7.6 with Linux Kernel 3.10.0 and GCC 4.8.5. Nodes are connected
using 1Gbps Ethernet. Harmony is compared with state-of-the-art
blockchains: Fabric [1], FastFabric [18], and RBC [14]. Besides, to
demonstrate the effectiveness of our blockchain-specific optimiza-
tions, we also compared with AriaBC, i.e., the blockchain that we
built by directly porting the deterministic concurrency control in
Aria to RBC [14]. There are four organizations in our experiment
and we follow the recent works [1, 14, 18, 20] to use Kafka as the
consensus layer.

We use both YCSB [5] and Smallbank [16] as the benchmarks.
For YCSB, we set the number of keys to 10k and follow [12, 22, 24]
to wrap 10 operations into one transaction. Each operation has
equal probabilities of being a read (SELECT) or a write (UPDATE). For
Smallbank, we also set the number of accounts to 10k and use the
standard mix. Both benchmarks have a skewness of 0.6 by default
to create medium contention.

We measure the peak throughput and the end-to-end latency of
the committed transactions for all systems. Figures 6 and 7 show the
results. HarmonyBC attains 3.5× and 2.0× throughput over the best
of the existing private blockchains (i.e., RBC in this experiment)
in Smallbank and YCSB, respectively. It also achieves the latency
comparably good as the best of the state-of-the-art.
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Figure 6: Overall performance on Smallbank
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Figure 7: Overall performance on YCSB
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Figure 8: Impact of contention on Smallbank

Simply implementing Aria as a private blockchain (i.e., AriaBC)
readily yields better throughput than existing private blockchains,
which shows the benefits of using an advanced deterministic con-
currency control from a deterministic database to improve private
blockchain. Harmony attains a larger margin (e.g., 1.5× throughput
over AriaBC in YCSB), demonstrating the effectiveness of Har-
monyBC’s blockchain-specific optimizations.

To further compare the performance under different contentions,
we vary the skewness of the accessed data to control the degree of
contention. As shown in Figures 8 and 9, all systems incur more
aborts with a larger skewness and thus their performances drop
(less severe in Smallbank since it generally has lower contention
compared to YCSB). But, Harmony outperforms its competitors
under all skewnesses and it consistently has lower abort rates.

4.2 Contributions
This paper makes the following major contributions.

• We take the first step to explicitly connect private blockchain
with deterministic database. By exploiting the connections,
we are able to fast-forward the development of private
blockchain using lessons learned from deterministic databases.

• Based on the state-of-the-art deterministic concurrency
control in the latest deterministic database, we proposed
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Figure 9: Impact of contention on YCSB

effective techniques to further boosts its performance in
blockchain setting.

• Harmony is extensively evaluated using benchmarks com-
monly used in blockchains including YCSB [5] and Small-
Bank [16]. Empirical results show that Harmony achieves
2.0× to 3.5× throughput better than RBC [14] and Fast-
Fabric# [18], and 2.3× throughput better than AriaBC (the
blockchain implemented using the same framework as Har-
mony but using Aria) under high contention.
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