

香港中文大學 The Chinese University of Hong Kong

Efficient Computing of Deep Neural Networks

Bei Yu Department of Computer Science & Engineering Chinese University of Hong Kong byu@cse.cuhk.edu.hk

September 30, 2021

Computer Vision

- Humans use their eyes and their brains to visually sense the world.
- Computers user their cameras and computation to visually sense the world

Jian Sun, "Introduction to Computer Vision and Deep Learning".

Revolution of Depth

Slide Credit: He et al. (MSRA)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

3x3 conv. 64
*
3x3 conv, 64, pool/2
*
3x3 conv, 128
*
3x3 conv, 128, pool/2
3x3 conv, 256
3x3 conv, 256
¥
3x3 conv, 256
¥
3x3 conv, 256, pool/2
3x3 conv, 512
¥
3x3 conv, 512
*
3x3 conv, 512
*
3x3 conv, 512, pool/2
¥
3X3 CONV, 512
2.2
3x3 conv, 512
3x3 copy 512
5x5 conv, 512
3x3 conv 512 pool/2
5x5 cont, 512, poor 2
fc, 4096
¥
fc, 4096
*
fc, 1000

Slide Credit: He et al. (MSRA) **Revolution of Depth** VGG, 19 AlexNet, 8 ResNet, 152 layers layers layers (ILSVRC 2012) (ILSVRC (ILSVRC 2015) 2014)

<u>, Maria</u>

- AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
- Network in Network (Lin, Q. Chen, and Yan 2013) 29MB
- VGG (Simonyan and Zisserman 2015) 549MB
- GoogleNet (Szegedy, Liu, et al. 2015) 51MB
- ResNet (K. He et al. 2016) 215MB
- Inception-ResNet (Szegedy, Vanhoucke, et al. 2016)
- DenseNet (Huang et al. 2017)
- Xception (Chollet 2017)
- MobileNetV2 (Sandler et al. 2018)
- ShuffleNet (Zhang, Zhou, et al. 2018)

<u>, Maria</u>

- AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
- Network in Network (Lin, Q. Chen, and Yan 2013) 29MB
- VGG (Simonyan and Zisserman 2015) 549MB
- GoogleNet (Szegedy, Liu, et al. 2015) 51MB
- ResNet (K. He et al. 2016) 215MB
- Inception-ResNet (Szegedy, Vanhoucke, et al. 2016) 23MB
- DenseNet (Huang et al. 2017) 80MB
- Xception (Chollet 2017) 22MB
- MobileNetV2 (Sandler et al. 2018) 14MB
- ShuffleNet (Zhang, Zhou, et al. 2018) 22MB

¹Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2017). "An analysis of deep neural network models for practical applications". In: *arXiv preprint*.

When Machine Learning Meets Hardware

Convolution layer is one of the most expensive layers

- Computation pattern
- Emerging challenges

More and more end-point devices with limited memory

- Cameras
- Smartphone
- Autonomous driving

Hard to distribute large models through over-the-air update

²Song Han and William J. Dally (2018). "Bandwidth-efficient Deep Learning". In: *Proc. DAC*, 147:1–147:6.

2nd Challenge: Energy Efficiency

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

on mobile: drains battery on data-center: increases TCO

3

Convolution Is the Bottleneck

2 Convolution Basis

3 GEMM

4 Direct Convolution

5 Sparse Convolution

Convolution Basis

$$A = a \cdot 1 + b \cdot 2 + c \cdot 3$$
$$+f \cdot 4 + g \cdot 5 + h \cdot 6$$
$$+k \cdot 7 + l \cdot 8 + m \cdot 9$$

- H: Height of input feature map •
- W: Width of input feature map
- R: Height of filter
- S: Width of filter •
- P: Height of output feature map ٠
- Q: Width of output feature map

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

$$P = \frac{(H-R)}{\text{stride}} + 1;$$
$$Q = \frac{(W-S)}{\text{stride}} + 1.$$

- H: Height of input feature map ٠
- W: Width of input feature map •
- R: Height of filter
- S: Width of filter •
- P: Height of output feature map •
- Q: Width of output feature map
- stride: # of rows/columns traversed • per step

$$P = \frac{(H - R + 2 \cdot \text{pad})}{\text{stride}} + 1;$$
$$Q = \frac{(W - S + 2 \cdot \text{pad})}{\text{stride}} + 1.$$

Output

- W: Width of input feature map
- R: Height of filter
- S: Width of filter •
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels
- K: # of output channels

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels
- K: # of output channels
- N: Batch size

Direct convolution: No extra memory overhead

- Low performance
- · Poor memory access pattern due to geometry-specific constraint
- Relatively short dot product

Background: Memory System

(Relative) size of the memory at each level

- Spatial locality
- Temporal Locality

GEMM

<pre>#include <stdio.h></stdio.h></pre>	- 1 #include <stdio.h></stdio.h>			
<pre>#include <memory.h></memory.h></pre>	1 2 #include <memory.h></memory.h>			
#include <time.h></time.h>	1 3 #include <time.h></time.h>			
#include <stdlib.h></stdlib.h>	4 #include <stdlib.h></stdlib.h>			
<pre>#include <svs time.h=""></svs></pre>	5 #include csys/time by			
	1 6			
double a arr[1024][1024]:	7 double a arr[1024][1024]:			
double b arr[1024][1024]:	8 double b arr[1024][1024]:			
adato staufiterili	9			
int main()	10 int main()			
{				
int N = 1024:	12 int N = 1024:			
for(int i=0:i<1024:i++) for(int i=0:i<1024:i++)	13 for(int i=0:i<1024:i++) for(int i=0:i<1024:i++)			
a $app[i][i] = 1; b app[i][i] = 2;$	1 15 a grafilfil - 1: h grafilfil - 2:			
a_art[:][]] = 1, b_art[:][]] = 2,	1 16 l			
doublo cum	1 17 double curre			
double sum,				
struct timoval startTimo ondTimo:	I 10 struct timoval startTimo andTimo:			
flast Timera	1 29 Struct Lineval start line, end line,			
active function and the second s	20 ribut rimedse,			
gettimeorday(astartime, NoLL),	21 gettimeorday(astartime, NoLL),			
//	23 //			
For the set of the key operations	25 for the state state state			
[0r(1nt t=0, t<1024, t+1)]	25 FOR $(1 + 2)$ (-1)			
ror(int j=0; j<1024; j++){	$20 \qquad \text{for(lift } j=0; \ j<1024; \ j+1){}$			
sum += o_orr[j][[] + o_orr[j][[],	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$			
	20 }			
1				
//	30 // ==================================			
get time of day (denoting, NOLL),	32 gettimediau(denaitime, NoLL), 33 Timediau (and Time hy see startTime ty see) (and Time hy uses startTime hy			
Timeuse = 1000000 (end time.tv_sec-start time.tv_sec) + (end time.tv_usec-start time.tv_us	33 Timeuse = 1000000 (enuitime.tv_set-startime.tv_set) + (enuitime.tv_uset-startime.tv			
print("====================================	25 printing ========= (actie optimization beno ========= (if);			
princi(totat timease = 8.21 as (n, nimease);	r_{33} princi (cotat cumeuse = $\kappa_2 r_{33}$ as an , rumeuse);			
noturn A:	1 30 1 37 notum 0:			
recorn o,	1 20 1			
	~			

Same complexity; same real runtime?

Im2col (Image2Column) 2D-Convolution

- Large extra memory overhead
- Good performance
- BLAS-friendly memory layout to enjoy SIMD/locality/parallelism
- Applicable for any convolution configuration on any platform

SOTA 1: Memory-efficient Convolution

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

⁴Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

⁴Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

⁴Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

⁴Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

⁴Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

Over $2 \times$ memory saving:

Im2col (Image2Column) 3D-Convolution

- Transform convolution to matrix multiplication
- Unified calculation for both convolution and fully-connected layers

Direct Convolution

Dataflow


```
for(q=0; q<Q; q++) {
                                          for (s=0; s<S; s++) {
  for (s=0; s<S; s++) {
    OA[q] += IA[q+s] * W[s];
      Output Stationary (OS)
```

for(q=0; q<Q; q++) { **OA[q]** += **IA[q+s]** * W[s]; Weight Stationary (WS) Dataflow

Buffer Access Pattern 1: Output Stationary

Buffer Access Pattern 2: Weight Stationary

Direct Convolution

Direct Convolution: Loop Ordering

Direct Convolution: Loop Ordering + Unrolling

Direct Convolution: Loop Ordering + Unrolling + Tiling


```
for (n=0; n<N; n++) {
1
        for (r=0; r<R; r++) {
2
        for (s=0; s<S; s++) {</pre>
3
        for (c t=0; c t<C/16; c t++) {</pre>
4
        for (k_t=0; k_t<K/64; k_t++) {</pre>
5
        spatial_for (c_s=0; c_s<16; c_s++) {</pre>
6
        spatial for (k s=0; k s<64; k s++) {</pre>
7
8
             int curr_c = c_t * 16 + c_s;
             int curr k = k t * 64 + k s;
9
            float curr w = W[r][s][curr c][curr k];
10
             for (p=0; p<P; p++) for (q=0; q<Q; q++) {
11
                 h = p * stride - pad + r; w = q * stride - pad + s;
12
                 OA[n][curr_k][p][q] += IA[n][curr_c][h][w] * curr_w;
13
        } } } } }
14
```

Direct Convolution: Loop Ordering + Unrolling + Tiling

Questions:

- How many configurations we have?
- How to search for the BEST configuration?
- How to handle different backend devices?

Deep Learning Compiler Example: TVM⁵

⁵Only SOTA on some AI chips; but NOT for x86 CPU (OpenVINO), GPU (TensorRT), or Xilinx FPGA (Vitis AI).

Layer-wise Optimization: Autotuning

Tuning algorithms:

- Active learning.
- Transfer learning.
- Reinforcement learning.

Active Learning driven TVM [DATE'21]⁶

- Batch transductive experimental design
- Bootstrap-guided adaptive optimization

⁶Qi Sun, Chen Bai, Hao Geng, et al. (2021). "Deep neural network hardware deployment optimization via advanced active learning". In: *Proc. DATE*, pp. 1510–1515.

Deep Gaussian Transfer Learning [ICCV'21]⁷

- **1** preparation: learn a deep Gaussian process model from historical data
- **2** transfer: transfer knowledge of the DGP model to new tasks
- **3** optimal searching: guide the optimization of new tasks with the tuned DGP model

⁷Qi Sun, Chen Bai, Tinghuan Chen, et al. (2021). "Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning". In: *Proc. ICCV*. 35/48

Sparse Convolution

- Our DNN may be redundant, and sometimes the filters may be sparse
- Sparsity can be helpful to overcome over-fitting

Sparse Convolution: Naive Implementation 1

Algorithm 1 Sparse Convlution Naive 1

- 1: **for all** *w*[i] **do**
- 2: **if** *w*[i] = 0 **then**
- 3: Continue;
- 4: end if
- 5: output feature map $Y \leftarrow X \times w[i]$;

6: end for

Sparse Convolution: Naive Implementation 1

Algorithm 2 Sparse Convlution Naive 1

- 1: for all *w*[i] do
- 2: **if** *w*[i] = 0 **then**
- 3: Continue;
- 4: end if
- 5: output feature map $Y \leftarrow X \times w[i]$;

6: end for

BAD implementation for Pipeline!

Instr. No.	Pipeline Stage						
1	IF	ID	EX	мем	WB		
2		IF	ID	ΕX	мем	WB	
3			IF	ID	ΕX	мем	WB
4				IF	ID	ΕX	МЕМ
5					IF	ID	ΕX
Clock Cycle	1	2	3	4	5	6	7

38/48

Sparse Matrix Representation

- CSR: Good for operation on feature maps
- CSC: Good for operation on filters
- We have better control on filters, thus usually CSC.

- BAD implementation for Spatial Locality!
- Poor memory access patterns

SOTA 2: Sparse Convolution

Figure 1: Conceptual view of the direct sparse convolution algorithm. Computation of output value at (y, x)th position of *n*th output channel is highlighted.

```
for each output channel n {
  for j in [W.rowptr[n], W.rowptr[n+1]) {
    off = W.colidx[j]; coeff = W.value[j]
    for (int y = 0; y < H_OUT; ++y) {
      for (int x = 0; x < W_OUT; ++x) {
        out[n][y][x] += coeff*in[off+f(0,y,x)]
      }
   }
}</pre>
```

Figure 2: Sparse convolution pseudo code. Matrix W has *compressed sparse row* (CSR) format, where *rowptr*[n] points to the first non-zero weight of *n*th output channel. For the *j*th nonzero weight at (n, c, r, s), W.colidx[j] contains the offset to (c, r, s) the element of tensor in, which is pre-computed by layout function as f(c, r, s). If in has CHW format, $f(c, r, s) = (cH_{in} + r)W_{in} + s$. The "virtual" dense matrix is formed on-the-fly by shifting in by (0, y, x).

8

⁸Jongsoo Park et al. (2017). "Faster CNNs with direct sparse convolutions and guided pruning". In: *Proc. ICLR*. 41/48

 $\mathbf{Y} \in \mathbb{R}^{d imes n}$

Structured Sparse Convolution

Exploring the Granularity of Sparsity that is Hardware-friendly

Sparse DNN

- *Sparsification*: weight pruning;
- *Compression*: compressed sparse format for storage;
- *Potential acceleration*: sparse matrix multiplication algorithm.

⁹Wei Wen et al. (2016). "Learning structured sparsity in deep neural networks". In: *Proc. NIPS*, pp. 2074–2082.

¹⁰Yihui He, Xiangyu Zhang, and Jian Sun (2017). "Channel Pruning for Accelerating Very Deep Neural Networks". In: *Proc. ICCV*. 44/48

Low-rank DNN

- *Low-rank approximation:* matrix decomposition or tensor decomposition.
- *Compression and acceleration:* less storage required and less FLOP in computation.

¹²Xiyu Yu et al. (2017). "On compressing deep models by low rank and sparse decomposition". In: *Proc. CVPR*, pp. 7370–7379.

¹¹Xiangyu Zhang, Jianhua Zou, et al. (2015). "Efficient and accurate approximations of nonlinear convolutional networks". In: *Proc. CVPR*, pp. 1984–1992.

ReLU

- Activation unit: ReLU
- Error more sensitive to positive response;
- Enlarge the solution space.

$$\min_{\boldsymbol{W}} \sum_{i=1}^{N} \left\| \boldsymbol{W} \boldsymbol{X}_{i} - \boldsymbol{Y}_{i} \right\|_{F} \to \min_{\boldsymbol{W}} \sum_{i=1}^{N} \left\| \boldsymbol{r}(\boldsymbol{W} \boldsymbol{X}_{i}) - \boldsymbol{Y}_{i} \right\|_{F}$$

- *X*: input feature map
- *Y*: output feature map

¹³Xiangyu Zhang, Jianhua Zou, et al. (2015). "Efficient and accurate approximations of nonlinear convolutional networks". In: *Proc. CVPR*, pp. 1984–1992. 46/48

CENG 5030

Energy Efficient Computing

CENG5030 Energy Efficient (Deep Neural Network) Computing - Spring 2021

Lecture: M 12:30-14:15 Venue: zoom W 16:30-18:15 Venue: zoom Course Instructor: Prof. Bei Yu byu@cse.cuhk.edu.hk gsun@cse.cuhk.edu.hk Course Tutors: Qi Sun

- Honesty in Academic Work
- Staff Student Expectations ٠

Announcements

- Feb. 24, 2021: Course schedule is updated.
- ENG5030 Jan. 18, 2021: Grading policy is updated (in-class discussion and decent project
- . Dec. 01, 2020: Course webpage is built up and the teaching schedule is online.

Description:

This course is an intensive and research oriented course, discussing some practical and fundamental techniques, skills, and tools for deep neural network acceleration, in particular inference acceleration. The students selecting this course are assumed to have solid DNN experience and some programming skills (e.g, C/C).

Course Requirements

- . Lab (40%), in-class discussion (10%), midterm-project report (15%), final project (35%), and extra bonus.
- Please submit your lab reports through blackboard.
- The mid-term and final project report and presentation are judged very seriously, considering both idea novelty and workload.

. Schedule

Week	Date	Topic	Remark
1	Jan. 11	Lo1 Introduction (slides)	
	Jan. 13	Labo1 PyTorch (report, code)	Due: Jan. 27
2	Jan. 18	Labo2 Training (report, code)	Due: Feb. 02
	Jan. 20	Lo2 CNN Training (slides)	
3	Jan. 25	Lo3 Pruning (slides)	
	Jan. 27	L04 Accurate Speed-up I (slides)	
4	Feb. 01	continue on Lo4	
	Feb. 03	Labo3 GEMM (report, code)	Due: Feb. 17
5	Feb. 08	Lo5 Quantization (slides)	
	Feb. 10	Lo6 Binary/Tenary Networks (slides)	
6	Feb. 15	n/a	Lunar New Year Holiday
	Feb. 17	n/a	Lunar New Year Holiday
-	Fab an	Labor Distiller (report slides code)	Due: Mar. 08

CMSC 5743 Efficient Computing of Deep Neural Networks

CMSC 5743 Efficient Computing of Deep Neural Networks - Fall 2021

Lecture:	F 18:30-21:15	WMY 506
		Zoom: https://cuhk.zoom.us/j/9849705327
Instructor:	Prof. Bei Yu	byu@cse.cuhk.edu.hk
Course Tutors:	Yang Bai	ybai@cse.cuhk.edu.hk
	Qi Sun	qsun@cse.cuhk.edu.hk

- . Honesty in Academic Work Staff Student Expectations .
- Announcements

- Aug. 04, 2021: Course schedule is updated no final project but three homeworks are introduced. .
- May, 05, 2021; Course webpage is built up and the teaching schedule is online.

Course Requirements

- . Homework (30%), Lab (70%), and extra bonus.
- . Please submit your lab reports and homework through blackboard (link).

Schedule

Date	Topic	Lab/Tutorial	Homework	Note
Sep. 10	Lo1 Introduction (slides)	Lab01 PyTorch (report, code)		Due on Sep. 19
Sep. 17	Lo2 Conv Speedup (slides)	Labo2 GEMM (report, code, slides)		Due on Sep. 26
Sep. 24	Lo3 Pruning (slides)	OCR Model (slides)	HW 1	Due on Oct. 14
Oct. 01	N/A			National Day
Oct. o8	Lo4 Decomposition (slides)	Data Augmentation		
Oct. 15	Lo5 CUDA	Labo3 CUDA		Due on Oct. 17
Oct. 22	Lo6 Quantization (slides)	OCR Deployment	HW 2	Due on Nov. 10
Oct. 29	N/A			
Nov. 05	Lo7 MNN (slides)	Labo4 MNN		Due on Nov. 14
Nov. 12	Lo8 Binary/Tenary Networks (slides)	FPGA Deployment	HW 3	Due on Nov. 30
Nov. 19	Log TVM-1 (slides)	Labo5 TVM-1		Due on Nov. 21
Nov. 26	L10 TVM-2	Labo6 TVM-2		Due on Nov. 28
Dec. 03	L11 NAS (slides)	Labo7 TensorRT		Due on Dec. 05

References

All papers mentioned in lecture slides.

Sze. Vivienne, et al. "Efficient processing of deep neural networks". Synthesis Lectures on Computer Architecture. 2020

