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Abstract

For a family F of graphs and a nonnegative integer k, F + ke and F − ke, respectively,
denote the families of graphs that can be obtained from F graphs by adding and deleting at
most k edges, and F + kv denotes the family of graphs that can be made into F graphs by
deleting at most k vertices.
This paper is mainly concerned with the parameterized complexity of the vertex colouring

problem on F + ke, F − ke and F + kv for various families F of graphs. In particular, it
is shown that the vertex colouring problem is 5xed-parameter tractable (linear time for each
5xed k) for split + ke graphs and split − ke graphs, solvable in polynomial time for each 5xed
k but W [1]-hard for split + kv graphs. Furthermore, the problem is solvable in linear time for
bipartite + 1v graphs and bipartite + 2e graphs but, surprisingly, NP-complete for bipartite + 2v
graphs and bipartite + 3e graphs. ? 2002 Published by Elsevier Science B.V.
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1. Introduction

Many graph problems are intractable for general graphs but tractable for various
special families of graphs. Let � be an NP-hard problem and F be a family of graphs
for which � is solvable in polynomial time. Consider the situation that an instance G
of � is not an F graph, but is “close” to an F graph in the sense that it can be made
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into an F graph by altering a few vertices or edges. We often need to deal with such
a situation in solving practical problems because of incomplete information or errors
in data. In most cases, polynomial algorithms for solving � on F graphs cannot be
applied directly to G and may become totally useless, and the NP-hardness of � for
general graphs does not imply the tractability of � on G. This calls for a study of the
complexity of � for the families of graphs formed by graphs like G that are nearly
F graphs. Surprisingly, very little attention, if any, has been paid to the complexity
of graph problems for such graph families despite the enormous amount of work on
their complexity for various special families of graphs.
We now discuss the situation in a formal setting. Let k be a nonnegative integer.

We use F+ke to denote the family of graphs that can be obtained from F graphs by
adding at most k edges (but no new vertices). Similarly, we use F− ke (respectively,
F − kv) to denote the families of graphs that can be obtained from F graphs by
deleting at most k edges (vertices), and F + kv to denote the family of graphs that
can be made into F graphs by deleting at most k vertices. Clearly, every graph is an
F + ke graph for some k whenever F contains all edgeless graphs. Similarly, every
graph is an F−ke graph for some k whenever F contains all complete graphs, and an
F+kv graph for some k whenever F contains the single-vertex graph. (However, this
kind of statement does not hold for F− kv graphs.) Therefore, for most F, F+ ke,
F − ke, and F + kv parameterize graphs with respect to F, and will be referred to
as parameterized graph families.
The observations in the previous paragraph imply that for most graph families F, if

k is part of input, problem � is NP-hard for F+ ke, F− ke and F+ kv. However,
its complexity status becomes elusive when k is not part of input but a 5xed constant,
i.e., when we regard problem � for F+ ke (similarly, for other parameterized graph
families) as a 5xed-parameter problem. Is � solvable in polynomial time for each 5xed
k? If so, is � 5xed-parameter tractable, i.e., is it solvable in polynomial time (as a
function of instance size) with the degree of the polynomial independent of k? If not,
does the complexity of � jump from polynomial to NP-hard when some k increases
to k + 1? In this paper, we try to answer these questions for the following classical
VERTEX COLOURING problem ([GT4] in [11]):

Instance: Graph G = (V; E), positive integer t6 |V |.
Question: Is G t-colourable, i.e., is there a function f :V → {1; 2; : : : ; t} such that

for every edge uv of G, f(u) �=f(v)?
The problem is NP-complete even for t = 3 [12], but polynomial-time solvable for

many special families of graphs, such as bipartite graphs, split graphs, interval graphs
and partial k-trees [19].
The research in this paper is mainly inspired by the parameterized complexity theory

of Downey and Fellows [9], and also motivated by the polynomial-time solvability of
many NP-hard problems on partial k-trees [1–4,7]. An algorithm for a 5xed-parameter
problem (I; k), where I is an instance and k is the parameter, is uniformly polynomial
if it runs in time O(f(k)|I |c), where |I | is the size of I , for an arbitrary function
f(k) and a constant c independent of k. A 5xed-parameter problem is 3xed-parameter
tractable if it admits a uniformly polynomial algorithm. This notion of 5xed-parameter
tractability attempts to distinguish tractable and intractable 5xed-parameter problems,
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which is very akin to the notion of polynomial algorithms in distinguishing tractable
and intractable problems. Downey and Fellows also de5ned a W -hierarchy, which
corresponds to NP-completeness, to capture intractable 5xed-parameter problems: a
5xed-parameter problem that is hard for any level of the hierarchy is unlikely to be
5xed-parameter tractable. The reader is referred to their monograph [9] for the theory
of parameterized complexity.
In this paper, we study the complexity of VERTEX COLOURING from the parameterized

complexity point of view. Usually, we parameterize a problem by a parameter asso-
ciated with solutions, such as t in VERTEX COLOURING. However, this approach does
not make the parameterized complexity theory applicable to VERTEX COLOURING as the
problem is NP-complete for every 5xed t¿ 3. In this paper we parameterize VERTEX

COLOURING by a parameter linked to the input graph instead, and demonstrate through
interesting results that this new way of parameterizing problems adds a new dimension
to the applicability of the parameterized complexity theory.
We prove that VERTEX COLOURING is linear-time solvable for each 5xed k for split+ke

graphs and split− ke graphs, polynomial-time solvable for each 5xed k but W [1]-hard
for split + kv graphs (Section 4). Furthermore, we show that it is linear-time solvable
for bipartite + 1v graphs and bipartite + 2e graphs but, surprisingly, NP-complete for
bipartite+ 2v graphs and bipartite+ 3e graphs (Section 5). We also give some general
results regarding the colouring problem for parameterized graphs in Section 3, and
discuss future research directions in Section 6. To set the stage for our discussion, we
establish notation and de5nitions and give some elementary results in Section 2.

2. Preliminaries

All graphs in this paper are undirected simple graphs. We follow standard notations
in graph theory (see [22], for instance) with the convention that m and n, respectively,
denote the number of edges and number of vertices of the input graph. A graph is a
split graph if its vertex set can be partitioned into an independent set and a clique. Split
graphs are precisely the family of graphs that contain no induced subgraph isomorphic
to 2K2, C4 or C5 [10].
For two nonadjacent vertices u and v of G, we use G(u = v) to denote the graph

obtained from G by identifying u with v, i.e., replacing vertices u and v by a new
vertex and connecting all vertices adjacent to either u or v to the new vertex. For an
edge e in G, G · e denotes the graph obtained from G by contracting edge e, i.e.,
deleting e and identifying its two ends.
A family F of graphs is hereditary if for every graph G ∈F, all its induced sub-

graphs are F graphs; closed under edge contraction if for every G ∈F and every
edge e of G, G · e∈F; and closed under identi3cation of nonadjacent vertices if for
every G ∈F and every pair of nonadjacent vertices u and v of G, G(u= v)∈F. Note
that for every hereditary family F and every k, F− kv=F.
A modulator of an F + ke graph G is a subset Ek of at most k edges in G such

that G−Ek ∈F. Modulators of F− ke and F+ kv graphs are de5ned similarly. It is
clear that F+ ke ⊆ F+ k ′e for every k6 k ′ and F+ ke = (F+ (k − 1)e) + 1e for
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every k¿ 1, and similar relations hold for F− ke and F+ kv. However we should
note that normally (F+ ke)− ke �=F. The following properties of parameterized F
graphs are useful and can be easily proved from de5nitions.

Lemma 2.1. Let F be hereditary. Then for every k; F − ke; F + ke and F + kv
are all hereditary; and; furthermore; F− ke ⊆ F+ kv and F+ ke ⊆ F+ kv.

We note that the set inclusions in the above lemma may not hold when F is not
hereditary. For example, let C be the family of all cycles. Then C − 1e is the family
of all paths and cycles, and C+1e is the family of all cycles with at most one chord.
Neither family is a subset of C + 1v.

Lemma 2.2. If F is closed under edge contraction then for every k; F− ke is also
closed under edge contraction.

Lemma 2.3. If F is closed under identi3cation of nonadjacent vertices; then for every
k; F+ ke is also closed under identi3cation of nonadjacent vertices.

We now turn to vertex colourings. A t-colouring of G=(V; E) is a function f :V →
{1; 2; : : : ; t} such that for every edge uv∈E, f(u) �=f(v). The chromatic number of G,
denoted �(G), is the least integer t for which G has a t-colouring, and a t-colouring
is an optimal colouring if t = �(G). The chromatic polynomial �(G; t) of G is a
polynomial in t whose value at a given t equals the number of t-colourings of G.
The LIST COLOURING problem is to determine, given a graph G and a list L(v) of
admissible colours for each vertex v of G, whether there is a colouring f of G such
that f(v)∈L(v) for every vertex.
The following fundamental connection–contraction method is a useful tool for deal-

ing with a vertex colouring problem �: Whenever the input graph G is not a complete
graph, 5nd two nonadjacent vertices u and v in G, construct two graphs G1=G+uv and
G2=G(u=v), and then recursively solve � on G1 and G2 and combine their solutions to
get a solution for G. Note that �(G)=min{�(G1); �(G2)}, �(G; t)=�(G1; t)+�(G2; t), G
is t-colourable iO at least one of G1 and G2 is t-colourable, and an optimal colouring of
G can be obtained from an optimal colouring of G1 or G2. It was proved by Walsh [21]
that the total number of complete graphs generated by using the contraction–connection
method is at most B(n), the nth Bell number which equals the number of ways to par-
tition a set of n distinct elements into disjoint nonempty subsets. Asymptotically, B(n)
grows faster than cn for any constant c but much slower than n factorial.
To end this section, we remark that if F has bounded treewidth, then F−ke, F+ke,

and F+kv all have bounded treewidth, and thus VERTEX COLOURING is 5xed-parameter
tractable for all of them [3]. Finally, for algorithms in the paper, we use the adjacency
list representation for input graphs.

3. General graphs

In general, it appears that we need to know a modulator of the input graph in
order to solve the vertex colouring problem on parameterized F graphs. Therefore,
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we will separate the issue of 5nding a modulator, and assume that a modulator of the
input graph is also given as input when we discuss colouring problems in this section.
Note that whenever F graphs are recognizable in polynomial time, a modulator of a
parameterized F graph can be found in polynomial time for each 5xed k by exhaustive
search.
Given an ePcient algorithm for solving VERTEX COLOURING on F graphs, how can it

help us in solving the problem on parameterized F graphs? It is not clear in general;
however, for some F, it is possible to utilize the algorithm for F graphs to obtain an
ePcient colouring algorithm for parameterized F graphs. In this section, we present
such an algorithm to optimally colour F−ke graphs for F closed under edge contrac-
tion. We also solve VERTEX COLOURING for certain F+ ke graphs by using algorithms
for computing chromatic polynomials of F graphs, and for certain F+ kv graphs by
using algorithms for solving LIST COLOURING on F graphs.
We consider F− ke graphs 5rst. It appears that, amongst parameterized F graphs,

F−ke graphs are the easiest in terms of the hardness of solving VERTEX COLOURING. As
we will see, if F is closed under edge contraction, then VERTEX COLOURING is solvable
in polynomial time for F − ke graphs whenever it is solvable in polynomial time
for F graphs. This is quite useful as many families of graphs are closed under edge
contraction, for instance, planar graphs, chordal graphs, split graphs, interval graphs,
cographs, as well as graphs that are closed under taking minors. Note that the following
theorem can be also stated in terms of VERTEX COLOURING instead of 5nding an optimal
colouring.

Theorem 3.1. Let F be a family of graphs closed under edge contraction; and T (m; n)
denote the time to compute an optimal colouring of an F graph. Then an optimal
colouring of an F − ke graph G; given a modulator of G; can be found in time
O(2k max{T (m+ k; n); m+ n+ k}).

Proof. We use the connection–contraction method. Let Ek be a modulator of G. Then
G + Ek ∈F. Pick an arbitrary edge uv in Ek (note that uv is not an edge in G) and
construct from G two graphs G+ uv and G(u= v). Clearly G+ uv is an F− (k − 1)e
graph with modulator Ek − uv. Furthermore; since G(u = v) equals (G + uv) · uv;
G(u= v) is also an F− (k− 1)e graph by Lemma 2.2 and the corresponding edges of
Ek − uv in G(u= v) is a modulator of G(u= v). Therefore; the problem of 5nding an
optimal colouring of G is reduced to the problem of 5nding optimal colourings of two
F− (k − 1)e graphs; and we recursively apply the connection–contraction method to
these two F− (k − 1)e graphs and their modulators inherited from Ek . The recursion
terminates when an input graph is an F graph; and an optimal colouring of the graph
is computed directly.
To analyze the complexity of this algorithm, we consider its recursion tree. Since

the tree is a binary tree of height at most k, it has at most 2k leaves and 2k−1 internal
vertices. Each leaf takes at most T (m+ k; n) time since it is an F graph with at most
m+ k edges and n vertices, and each internal node takes at most O(m+ n+ k) time.
Therefore the total time is O(2k(T (m+ k; n) +m+ n+ k)), which is O(2k max{T (m+
k; n); m+ n+ k}).
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In fact, Theorem 3.1 implies that, for F closed under edge contraction, the prob-
lem of 5nding an optimal colouring of F − ke graphs is not only polynomial-time
solvable but also 5xed-parameter tractable whenever the problem for F graphs is
polynomial-time solvable and the problem of 5nding a modulator of an F−ke graph is
5xed-parameter tractable. For instance, from the facts that a modulator of a chordal−ke
graph can be found in time O(f(k)(m+n)) [6,20] and an optimal colouring of a chordal
graph can be found in time O(m+ n) [13], we deduce from Theorem 3.1 that an opti-
mal colouring of a chordal−ke graph can be found in time O(f(k)(m+ n)), which is
linear time for each 5xed k.
We now turn our attention to F+ke graphs. It is unclear how a colouring algorithm

for F graphs can help in obtaining colouring algorithms for F+ ke graphs. However,
for some F, when an algorithm for computing chromatic polynomials of F graphs
is available, we can use it to compute chromatic polynomials of F + ke graphs, and
hence solve VERTEX COLOURING for F+ ke graphs.

Theorem 3.2. Let F be a family of graphs closed under identi3cation of nonadjacent
vertices; and T (m; n) denote the time to compute the chromatic polynomial of an F
graph. Then the chromatic polynomial of an F+ ke graph G; given a modulator of
G; can be computed in time O(2k max{T (m; n); m+ n}).

Proof. Let Ek be a modulator of G. Then G− Ek ∈F. For each e∈Ek; G− e∈F+
(k − 1)e; and it follows from Lemma 2.3 that G · e∈F + (k − 1)e. Furthermore;
Ek − e is a modulator of G − e; and the corresponding edges of Ek − e in G · e is a
modulator of G ·e. Since for each edge e of G; the chromatic polynomial of G satis5es
�(G; t) = �(G − e; t)− �(G · e; t); we can use this recurrence relation with e being an
edge in a modulator to compute the chromatic polynomial of G recursively. Using an
analysis similar to that in the proof of Theorem 3.1; we obtain the claimed complexity.

We note that split graphs and nonbipartite graphs are closed under identi5cation
of nonadjacent vertices. Since the chromatic polynomial of a split graph can be easily
computed in linear time and a modulator of a split+ke graph can be found in uniformly
polynomial time [6], it follows from Theorem 3.2 that VERTEX COLOURING on split + ke
graphs is 5xed-parameter tractable. It should be pointed out, however, that Theorem
3.2 is not as useful as Theorem 3.1 because very few families of graphs are closed
under identi5cation of nonadjacent vertices and, in the meantime, admit polynomial
algorithms for computing their chromatic polynomials.
Finally, we consider F+ kv graphs. Again, it is unclear how a colouring algorithm

for F graphs can help in obtaining colouring algorithms for F + kv graphs. Never-
theless, we can use algorithms for LIST COLOURING on F graphs to obtain algorithms
for VERTEX COLOURING on F+ kv graphs.

Theorem 3.3. If LIST COLOURING is solvable in time O(T (m; n)) for F graphs; then
VERTEX COLOURING for an F+ kv graph G; given a modulator of G; can be solved in
time O(B(k)max{T (m; n); m+ n+ k}); where B(k) is the kth Bell number.
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Proof. Let Vk be a modulator of G. Then G′ = G − Vk is an F graph. Let Zt =
{1; : : : ; t} be a set of t colours. We use the following method to determine whether
G is t-colourable. If G[Vk ] is a clique; then we colour vertices in Vk by colours from
1 to |Vk | respectively; and then assign to each vertex v∈V (G) − Vk a list L(v) of
admissible colours with respect to Zt; i.e.; L(v) contains colours in Zt that have not
been used by neighbours of v in Vk . Clearly; G is t-colourable iO G′ is L-colourable.
Otherwise; G[Vk ] contains two nonadjacent vertices u and v; and we construct from G
two graphs G + uv and G(u = v). Then G is t-colourable iO G + uv or G(u = v) is
t-colourable; and we recursively determine whether at least one of these two graphs is
t-colourable. Note that G + uv is an F + kv graph with modulator Vk; and G(u = v)
is an F + (k − 1)v graph with the corresponding vertices of Vk in G(u = v) as a
modulator of G(u= v).
For the time complexity of the above algorithm, we note that, as shown by Walsh

[21], the number of leaves in the recursion tree is at most B(k), the kth Bell num-
ber. Therefore, the time for determining whether an F + kv graph is t-colourable is
O(B(k)(T (m; n) + m+ n+ k)), which equals the claimed complexity.

We note that LIST COLOURING can be solved in polynomial time for complete graphs
by transforming it into a matching problem. Let K be the family of complete graphs.
Then a modulator of a K+ kv graph G is a k-vertex cover in the complement of G
and thus can be found in uniformly polynomial time [9]. It follows from Theorem 3.3
that VERTEX COLOURING on K+ kv graphs is 5xed-parameter tractable. Unfortunately,
Theorem 3.3 is of limited use because LIST COLOURING is NP-complete for almost all
interesting families of graphs, and even remains NP-complete for complete bipartite
graphs [18].

4. Split graphs

In this section, we consider VERTEX COLOURING on parameterized split graphs. Note
that an optimal colouring of a split graph can be found in linear time [14], and that
VERTEX COLOURING is NP-complete on parameterized split graphs when k is not 5xed.
We will prove that VERTEX COLOURING on both split + ke and split − ke graphs is
linear-time solvable for each 5xed k. On the other hand, we will prove that the problem
on split + kv graphs is 5xed-parameter intractable (W [1]-hard) but polynomial-time
solvable for each 5xed k.
First we consider split + ke graphs and split− ke graphs. By Theorems 3.1 and 3.2,

given a modulator, an optimal colouring of a split − ke graph can be found and the
t-colourability of a split + ke graph can be determined both in uniformly linear time.
Unfortunately, although we can 5nd a modulator of a split + ke or split− ke graph in
uniformly polynomial time [6], we do not know how to 5nd it in uniformly linear-time.
Furthermore, no result in the previous section enables us to 5nd an optimal colouring
of a split + ke graph in uniformly polynomial time. Here we will derive a uniformly
linear-time algorithm for 5nding an optimal colouring of a split+ke or split−ke graph
by considering a larger family of graphs.
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The splittance of a graph G is the minimum number of edges that need to be added
to or deleted from G in order to make G a split graph. Therefore both split+ke graphs
and split − ke graphs are graphs of splittance at most k. Hammer and Simeone [15]
showed that the splittance of a graph can be determined from the degree sequence of
the graph, and gave a linear algorithm for 5nding a minimum set of edges that need
to be added to or deleted from the graph to make the graph a split graph. We now
show that an optimal colouring of a graph of splittance k can be found in uniformly
linear time.

Theorem 4.1. For each 3xed k; an optimal colouring of a graph of splittance k can
be found in linear time.

Proof. First we show that an optimal colouring of a split + ke graph G; given a
modulator Ek of G; can be found in time O(m + n + f(k)) for some function f(k)
independent of m and n. Since G − Ek is a split graph; we can partition its vertices
into an independent set I and a clique K in linear time. Let E′ be the set of edges in
Ek whose ends are all inside I . Then G−E′ is also a split graph and {I; K} partitions
its vertices into an independent set I and a clique K . Denote by H the subgraph
of G induced by vertices incident with edges in E′. Then V (H) ⊆ I ; E(H) = E′

and G − V (H) is a split graph. Furthermore; H is only connected to vertices in the
clique K .
To construct an optimal colouring of G, we 5rst compute an optimal colouring g

of G − V (H) in linear time, and then try to extend the colouring to H . Let {1; : : : ; j}
be the set of colours used in the colouring g. Then j6 �(G)6 j + k + 1, since
j6 �(G − E′)6 j + 1 and the addition of an edge in E′ to G − E′ requires at most
one new colour to recolour one end of the edge.
For an integer t between j and j + k + 1, we construct a t-colouring of G, if it

exists, by solving the following list colouring problem of H . For each vertex v in
H , its admissible colours are the colours in {1; : : : ; t} not used by neighbours of v in
G−V (H). Note that H contains at most k edges. Thus if v has more than k admissible
colours, it can always be coloured by one of its admissible colours since v has at most
k neighbours in H . Therefore, we compute, for each v, up to k +1 admissible colours
and assign them to v as the list Lt(v) of admissible colours. This takes O(m+ n+ k2)
time since it takes O(d(v)+k) time to obtain Lt(v) for each v, where d(v) is the degree
of v. Now since H is only connected to the clique K of G−V (H), an Lt-colouring of
H extends the j-colouring g of G−V (H) to a t-colouring of G. By exhaustive search,
we can construct an Lt-colouring of H , if it exists, in time O((2k)k+1) as H has at
most 2k vertices and |Lt(v)|6 k +1. Therefore we can construct an optimal colouring
of G by using a binary search on t for j6 t6 j + k + 1 in O(m+ n+ (2k)k+1 log k)
time. 1

1 In fact, we can reduce (2k)k+1 log k to B(k + 1)k3 by applying the connection–contraction method on
each connected component of H independently, and then solving list colouring problems on complete graphs
by matching.
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Now for a graph G of splittance k, we 5rst use the linear algorithm of Hammer
and Simeone [15] to 5nd disjoint sets E1 and E2 of edges so that |E1|+ |E2|= k and
G + E1 − E2 is a split graph. Set k1 = |E1| and k2 = |E2| and let F be the family of
split+k2e graphs. Then G+E1 is an F graph with modulator E2 and G is an F−k1e
graph with modulator E1. Since split + k2e graphs are closed under edge contraction
and it takes O(m+ n+f(k2)) time to 5nd an optimal colouring of a split + k2e graph,
it follows from Theorem 3.1 that an optimal colouring of G can be found in time
O(2k1 (m+ n+ k1 + f(k2))), which is linear time for 5xed k as k = k1 + k2.

Corollary 4.2. For each 3xed k; an optimal colouring of a split + ke or split − ke
graph can be found in linear time.

The vertex colouring problem appears to be diPcult for split + kv graphs, and
Theorem 3.3 is not applicable since LIST COLOURING is NP-complete on split graphs.
However, we can use polynomial algorithms for solving LIST COLOURING on partial
k-trees to 5nd an optimal colouring of a split + kv graph in polynomial time for each
5xed k.

Theorem 4.3. An optimal colouring of a split + kv graph G can be obtained in time
O(nk+2k log k).

Proof. First 5nd a modulator Vk of G; which can be done easily in time O(nk+2).
Partition the vertex set of G − Vk into a clique K and an independent set I ; which
can be done in linear time. Clearly |K |6 �(G)6 |K |+ k + 1. Now; given an integer
t between |K | and |K | + k + 1; we can construct a t-colouring of G; if it exists; by
solving a list colouring problem as follows. Let H = G[I ∪ Vk ]. Then H is a partial
k-tree. Let Zt={1; : : : ; t} be a set of t colours. First; colour each vertex in the clique K
by a distinct colour in {1; : : : ; |K |}. Then assign to each vertex v∈ I ∪Vk a list Lt(v) of
admissible colours with respect to Zt . Clearly; G is t-colourable iO H is Lt-colourable;
and an Lt-colouring of H yields a t-colouring of G. Since H is a partial k-tree; we use
an algorithm of Jansen and ScheRer [18] to construct an Lt-colouring of H in time
O((|I |+ |Vk |)tk+1k). By using a binary search on t for |K |6 t6 |K |+ k + 1; we can
construct an optimal colouring of G in time O(nk+2k log k).

Can VERTEX COLOURING on split + kv graphs be solved in uniformly polynomial
time? Unfortunately, it seems very unlikely as we will show that the problem is
5xed-parameter intractable by a reduction from the following INDEPENDENT k-SET prob-
lem, which is W [1]-complete [8].

Instance: Graph G = (V; E).
Question: Does G contain an independent set of size k?

Theorem 4.4. VERTEX COLOURING is W [1]-hard for split + kv graphs.

Proof. We give a reduction from the INDEPENDENT k-SET problem. Let G=(V; E) be an
arbitrary instance of INDEPENDENT k-SET. For convenience; we assume V={v1; v2; : : : ; vn}.
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Fig. 1. The construction of G′, where k = 2 and I = {v1; v4} is an independent set in G.

Construct from G a split + kv graph G′ = (V ′; E′) as follows (see Fig. 1 for an
example):

1. Set V ′ = V ∪ E ∪ Vk , where Vk is a set of k new vertices disjoint from V ∪ E.
2. Connect every pair of vertices in V to form a complete graph on V , and connect

every pair of vertices in Vk to form a complete graph on Vk .
3. For each vertex vivj ∈E, connect it with every vertex but vi and vj in V .
4. Connect every vertex in Vk with every vertex in E.

The construction clearly takes uniformly polynomial time. We now show that G
contains an independent set of size k iO G′ is n-colourable.
Suppose that G contains an independent set I of size k. Then V − I is a vertex

cover in G of size n− k, and we can construct a vertex n-colouring of G′ as follows:

1. Colour vertex vi ∈V by colour i.
2. Arbitrarily colour the k vertices in Vk by the k colours used for vertices in the

independent set I of V .
3. For each vertex vivj ∈E, since V − I is a vertex cover of G, at least one of vi and

vj is in V − I . This implies that at least one of the colours used for vertices vi
and vj (i.e., colours i or j) is not used for vertices in Vk . Therefore colour vertex
vivj by colour i if vi ∈V − I and by colour j otherwise.

Conversely, suppose that f is an n-colouring of G′. Without loss of generality, we
may assume that f(vi) = i for each vertex vi ∈V . Then for each vertex vivj ∈E of
G′ , f(vivj) equals either i or j since vivj is adjacent to every vertex but vi and vj
in V . Let Zk be the set of k colours used for Vk . Then S = {1; 2; : : : ; n} − Zk equals
the set of colours used for the vertices in E since every vertex in Vk is adjacent to
every vertex in E. From this, we deduce that {vi: i∈ S} shares at least one vertex with
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each vertex in E. Therefore {vi: i∈ S} is a vertex cover of size n− k in G, and hence
V − {vi: i∈ S} is an independent set of size k in G.

5. Bipartite graphs

The VERTEX COLOURING problem is trivially solvable in linear time for bipartite
graphs, and one may expect that the addition of a few vertices or edges to a bipartite
graph would not make the problem much harder on the new graph. Surprisingly, the
addition of just a few vertices or edges to a bipartite graph drastically changes the
complexity of VERTEX COLOURING from linear time to NP-complete!

Theorem 5.1. VERTEX COLOURING is linear-time solvable for both bipartite+1v graphs
and bipartite + 2e graphs; but NP-complete on bipartite + kv graphs for every 3xed
k¿ 2 and bipartite + ke graphs for every 3xed k¿ 3.

Proof. Obviously; a bipartite + 1v graph is always 3-colourable; and it is not 2-
colourable iO it is not a bipartite graph. Since bipartite graphs can be recognized
in linear time; VERTEX COLOURING is linear-time solvable for bipartite + 1v graphs.
For a bipartite + 2e graph G, we 5rst note that four colours always suPce. Since it

is easy to tell in linear time whether G is 1- or 2-colourable, we need only consider
the problem of determining whether G is 3-colourable. It is easy to see that G is
3-colourable if G contains no 4-clique, which implies that G is 3-colourable iO G
contains no 4-clique. Therefore in order to solve VERTEX COLOURING in linear time, we
need only devise a linear algorithm for determining whether G contains a 4-clique.
We make a few simple observations. First, if G is not bipartite then G contains an

odd cycle C. Secondly, G− E(C) is a bipartite + 1e graph and thus every 4-clique of
G contains at least one edge in C. Thirdly, if an edge in C is contained in a 4-clique,
then its two ends must have at least two common neighbours in G. Therefore we can
determine whether G contains a 4-clique as follows: 5nd an odd cycle C in G and for
each edge in C check if it is contained in a 4-clique.

Algorithm 4-clique
Input: A bipartite + 2e graph G.
Output: “Yes” if G contains a 4-clique and “No” otherwise.

1. if G is bipartite
2. then return “No” and stop
3. else 5nd an odd cycle C in G;
4. for each edge xy in C do
5. if |N (x) ∩ N (y)|¿ 2
6. then if G[N (x) ∩ N (y)] contains an edge
7. then return “Yes” and stop;
8. return “No”.
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We now show that the above algorithm runs in linear time. We use sorted adjacency
lists to represent G, which can be obtained from adjacency lists of G in linear time.
It is clear that lines 1–3 take time O(m + n). Line 5 takes O(d(x) + d(y)) time as
adjacency lists are sorted, and line 6 takes O(m+ n) time. The loop of lines 4–7 may
be executed O(n) times; however, we will show that line 6 is executed at most 3
times, which implies that the total time for the loop of lines 4–7 is O(m+ n) instead
of O(n(m+ n)).
Let e and e′ be two edges in G that makes G′=G−{e; e′} bipartite. Then for every

edge xy in G′, x and y have no common neighbour in G′ as G′ is bipartite. In order
for x and y to have at least two common neighbours in G, edge xy must be adjacent
to both edges e and e′. If e and e′ share a common vertex v (in this case, G contains
no 4-clique), then edge xy must be incident with v or form a triangle with e and e′.
Since the odd cycle C can have at most two edges incident with v, at most 3 edges in
C meet the condition in line 5 and thus line 6 is executed at most 3 times in this case.
Otherwise e and e′ are vertex disjoint, and at most four edges in G can be adjacent
to both e and e′. Together with edges e and e′, at most 6 edges in G may meet the
condition of line 5. But the odd cycle C can contain at most 3 of these 6 edges, and
hence line 6 is also executed at most 3 times in this case. Therefore, we conclude that
the whole algorithm runs in linear time.
For the NP-completeness part of the theorem, we give polynomial reductions from

the following restricted version of the 1-PRECOLOURING EXTENSION problem, whose NP-
completeness was established by Bodlaender et al. [5].

Instance: Bipartite graph G = (X; Y ;E) and three vertices x1; x2; x3 ∈X .
Question: Is there a 3-colouring of G that assigns vertices x1; x2; x3 diOerent colours?
Let G′ be the graph constructed from G by adding a triangle on three new ver-

tices v1; v2; v3, and 6 edges {x1v2; x1v3; x2v1; x2v3; x3v1; x3v2}. Then G′ is a bipartite+kv
graph for every k¿ 2 as G′ − {v1; v2} is bipartite. For every 3-colouring f of G′,
the connection between vertices x1; x2; x3 and the triangle on {v1; v2; v3} ensures that
vertices x1; x2; x3 receive diOerent colours. Therefore, the restriction of f to G pro-
duces a 3-colouring of G with x1; x2; x3 receiving diOerent colours. On the other hand,
every 3-colouring f′ of G with x1; x2; x3 receiving diOerent colours can be extended
to a 3-colouring of G′ by colouring vertices v1, v2 and v3, respectively, with colours
f′(x1), f′(x2) and f′(x3). This establishes the NP-completeness of VERTEX COLOURING

on bipartite + kv graphs for every 5xed k¿ 2.
Finally, let H be the graph constructed from G by adding three edges x1x2, x2x3,

x3x1 to G. Then H is a bipartite + ke graph for every k¿ 3. Since vertices x1; x2; x3
induce a triangle in H , it is clear that H is 3-colourable iO G is 3-colourable with
x1; x2; x3 receiving diOerent colours, which proves the NP-completeness on bipartite+ke
graphs for every 5xed k¿ 3.

6. Concluding remarks

We have studied the complexity of VERTEX COLOURING on parameterized graph fam-
ilies mainly from the 5xed-parameter point of view. Our results on parameterized
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split graphs and parameterized bipartite graphs have revealed a colourful diversity of
the complexity of VERTEX COLOURING on parameterized graph families: 5xed-parameter
tractable, 5xed-parameter intractable, polynomial-time solvable, and NP-complete. This
is a strong evidence that this line of research is worthwhile and interesting from both
theoretical and practical points of view.
An encouraging sign for this line of research is that polynomial algorithms for sev-

eral important graph problems on F can be used to obtain polynomial algorithms for
parameterized F graphs whenever the parameter value is 5xed. For instance, it can
be shown that for CLIQUE ([GT19] in [11]), INDEPENDENT SET ([GT20] in [11]), and
VERTEX COVER ([GT1] in [11]), whenever a problem is polynomial-time solvable for
a hereditary family F of graphs, the problem is 5xed-parameter tractable for parame-
terized F graphs, given modulators of input graphs. 2 However, for many other graph
problems, their complexity status on parameterized graphs is unknown and seems hard
to determine. In this regard, DOMINATING SET ([GT2] in [11]) may be of interest in view
of the tremendous amount of work in the literature concerning the problem [16,17].
Turning back to vertex colourings, we note that the complexity of VERTEX COLOURING

on F− ke graphs is unknown if F is not closed under edge contraction. How can we
obtain polynomial algorithms in this case? Is there an F for which VERTEX COLOURING

is NP-complete on F − ke graphs? In particular, it would be interesting to know its
complexity on permutation−ke graphs and comparability−ke graphs. For F+ ke and
F + kv graphs, we actually know very little about the complexity of their vertex
colouring problem. Other than Theorems 3.2 and 3.3, we have very little idea for
obtaining ePcient algorithms. On the other hand, it seems also diPcult to establish
NP-completeness of the colouring problem on these parameterized graphs. It can be
shown that if LIST COLOURING with k colours (k is a 5xed constant) is NP-complete
for F, then VERTEX COLOURING is NP-complete for F + kv graphs and for F + k ′e
graphs with k ′=( k2 ). However this is not of much use in establishing NP-completeness
of VERTEX COLOURING because for most F, LIST COLOURING with k colours is not or
not known to be NP-complete. New ideas will be required to determine the complexity
status of the colouring problem for various F + ke graphs and F + kv graphs, for
instance, chordal + ke graphs and chordal + kv graphs.
Finally, we address the problem of 5nding a modulator. In most cases it may be

necessary to know a modulator in order to solve a problem ePciently on parameterized
graphs. In fact, 5nding a modulator can be a bottleneck for ePciently solving some
problems, such as CLIQUE. There has been some work for 5nding modulators of param-
eterized graphs. In particular, it takes uniformly polynomial time to 5nd modulators
of the following families of graphs: chordal−ke graphs [6,20], planar + ke graphs and
planar + kv graphs (since they are closed under taking minors), and parameterized F
graphs for F admitting a 5nite forbidden induced subgraph characterization [6]. Nev-
ertheless, the complexity status of 5nding modulators of parameterized F graphs is

2 Hints for solving CLIQUE on parameterized graphs, where !(G) denotes the clique number of G.
For every vertex v in G, !(G) = max{!(G − v); !(G[N (v)]) + 1}; for every edge uv in G, !(G) =
max{!(G − e); !(G[N (u) ∩ N (v)]) + 2}; and for every pair of nonadjacent vertices u and v in G,
!(G) = max{!(G − u); !(G − v)}.
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unknown for many F. Is there a uniformly polynomial algorithm to 5nd modulators of
chordal + ke graphs or chordal + kv graphs? It would be also interesting to determine
if the problems of 5nding modulators of bipartite + ke graphs or bipartite+kv graphs
are 5xed-parameter tractable.
Problems on parameterized graph families are abundant, and it is hoped that this

paper will stimulate further research on parameterized graph families to enhance our
knowledge about them from the perspectives of both traditional and parameterized
complexity theories.

Acknowledgements

The author thanks the referees for constructive suggestions.

References

[1] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of 5nding embeddings in a k-tree, SIAM J.
Algebraic Discrete Methods 8 (1987) 277–284.

[2] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12
(1991) 308–340.

[3] S. Arnborg, A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees,
Discrete Appl. Math. 23 (1989) 11–24.

[4] H.L. Bodlaender, A linear time algorithm for 5nding tree-decompositions of small treewidth, SIAM J.
Comput. 25 (1996) 1305–1317.

[5] H.L. Bodlaender, K. Jensen, G.J. Woeginger, Scheduling with incompatible jobs, Discrete Appl. Math.
55 (1994) 219–232.

[6] L. Cai, Fixed-parameter tractability of graph modi5cation problems for hereditary properties, Inform.
Process. Lett. 58 (1996) 171–176.

[7] B. Courcelle, Recognizability and second-order de5nability for sets of 5nite graphs, Inform. and Comput.
85 (1990) 12–75.

[8] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: on completeness for
W [1], Theoret. Comput. Sci. 141 (1995) 109–131.

[9] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, Berlin, 1999.
[10] S. FUoldes, P.L. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.
[11] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness,

Freeman, San Francisco, CA, 1979.
[12] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simpli5ed NP-complete graph problems, Theoret.

Comput. Sci. 1 (1976) 237–267.
[13] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and

maximum independent set of a chordal graph, SIAM J. Comput. 1 (1972) 180–187.
[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[15] P.L. Hammer, B. Simeone, The splittance of a graph, Combinatorica 1 (3) (1981) 275–284.
[16] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel

Dekker, New York, 1998.
[17] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel

Dekker, New York, 1998.
[18] K. Jansen, P. ScheRer, Generalized coloring for tree-like graphs, Discrete Appl. Math. 75 (1997) 135–

155.
[19] D.S. Johnson, The NP-completeness column: an ongoing guide (16), J. Algorithms 6 (1985) 434–451.
[20] H. Kaplan, R. Shamir, R.E. Tarjan, Tractability of parameterized completion problems on chordal,

strongly chordal, and proper interval graphs, SIAM J. Comput. 28 (1906–1922) 1999.



L. Cai / Discrete Applied Mathematics 127 (2003) 415–429 429

[21] T.R. Walsh, Worst-case analysis of Read’s chromatic polynomial algorithm, Ars Combin 46 (1997)
145–151.

[22] D.B. West, Introduction to Graph Theory, Prentice-Hall, New York, 1996.

For further reading

L. Cai, B. Schieber, A linear-time algorithm for computing the intersection of all odd cycles in a graph,
Discrete Appl. Math. 73 (1997) 27–34.


	Parameterized complexity of vertex colouring
	Introduction
	Preliminaries
	General graphs
	Split graphs
	Bipartite graphs
	Concluding remarks
	Acknowledgements
	References


