PHYS3710 Short Experimental Projects I

Department of Physics

The Chinese University of Hong Kong, Hong Kong

Topic: Rutherford Scattering

Designed by

H.K. Wong

(First edited on March 8, 2007, updated on January 27, 2011 & April 2, 2015)

Topics you should know first:

- 1. Derivation of differential cross-section for Rutherford scattering.
- 2. Principle of nuclear detector.

Objectives:

- 1. Verify Rutherford scattering.
- 2. Prepare targets for Rutherford scattering experiment.

Check-list for the project:

- 1. Learn derivation of differential cross-section for Rutherford scattering (Appendix 13 of PHYS 3202) and review some experimental techniques for this experiment. (See papers in the Ref. folder.)
- 2. Get familiar with the vacuum chamber & pumping procedure. (Ref. 2)
 - Caution: This detector must be operated in vacuum.
- 3. Get familiar with PIN detector for α particles (Ref. 3), detector electronics & the source handling. In particular, calibrate the multichannel analyzer with an α source, ²²⁶Ra.

<u>Caution</u>: Pay attention to radiation safety. α sources may also emit x-rays or gamma rays.

Figure 1 A ²²⁶Ra source

4. Without any target, measure the energy spectrum of the collimated 241 Am source as a function of angle θ ($\leq \pm 5^{\circ}$). Plot count rate as a function of angle to determine the actual zero angle position $\theta = 0^{\circ}$.

Figure 2 A collimated ²⁴¹Am source (loaded inside vacuum chamber)

5. Turn off detector voltage and then mount an Au foil target into the vacuum chamber.

<u>Caution</u>: Au/Al foil targets are fragile, please handle with care!

6. Pump down chamber (Pressure < 20 micron) and then turn on detector voltage.

Measure spectrum as a function of detector angle θ .

Get more data point in small angle range.

For large angle θ >10°, take data every 10°.

Collect sufficient counts. (Note: The error in counts N is \sqrt{N} .)

- 7. Analyze data by fitting to the differential cross-section equation.
- 8. Use other metal foils to repeat. Make sure that there is no attenuation or multiple scattering.
- 9. Verify equation for different elements (e.g. Al).

References:

- 1. Reference folder is available.
- 2. Equipment notes on pump (available on Course WebPage).
- 3. Notes on nuclear detectors (Appendix 11 of PHYS 3202).