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I. Experimental Details and Phase Diagram

To prepare the soft-repulsive systems, we suspend NBD dyed poly(methyl methacrylate)

(PMMA) colloids in a mixture of the non-polar solvent (tetrahydronaphthalene, Aldrich) and

the weakly-polar solvent (mixture of Iododecane and Iodododecane, Aldrich) inside a glass

capillary. The volume ratio between the non-polar and weakly polar solvents are varied

from 1:2 to 1:8, which results in suspensions with conductivity ranging from 100pS/cm

to 1nS/cm. The volume ratio between the two weakly polar solvents, Iododecane and

Iodododecane, is adjusted from 2:1 to 4:1, to make sure an excellent density match between

the solvent and particles. To avoid surface nucleation, the glass walls are coated with

one layer of randomly packed particles. The colloids have the diameter σ = 2.2µm with the

polydispersity less than 2.5%. They are purchased from Edinburgh Research and Innovation

Ltd. (see the detailed information at http://www2.ph.ed.ac.uk/~abs/). The solvent

closely matches both the refractive index and the density of particles. The particles are

grafted with polyhydroxystearic acid polymers negatively charged in the solvent and interact

with each other via weakly screened electric repulsion (hard-core Yukawa potential), which

leads to the formation of Wigner crystal at low concentrations1−3. We fix the concentration

at 17% to avoid the hard-core direct contacts among particles.

By varying the relative fractions between non-polar and weakly polar solvents, we can

adjust the Debye screening length, κ−1, and the surface charge, Z, to tune the stable solid

state 2,4. The phase diagram is established from the measurements of various samples, as

shown in Fig.SI-1A. To compare with the previous phase diagram 4, we use the variables

of λ and U0 which are calculated from the screening length and the surface charge: λ =

κσ/(6ϕ/π)−1/3, U0 = eκσϵ(6ϕ/π)1/3. Here σ is the particle diameter, κ−1 is the screening

length, ϕ is the volume fraction, ϵ = Z2e2/4πϵs[σ(1 + κσ/2)2], with ϵs being the dielectric

constant of the solvent. The symbols are from our measurements and the solid lines are

from the previous simulation 4. The two sets of values agree well. The two arrows indicate

the locations of the two systems (BCC-stable and FCC-stable respectively) shown in the

main text. To have a more complete picture, we have also varied the volume fraction of the

samples.

The phase diagram is obtained by quantitative measurements on the screening length,

κ−1, and the surface charge number, Z, as shown in Fig.SI-1B. We obtain the screening
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FIG. SI- 1: The phase diagram of our systems. A, phase diagram as the function of λ and U0.

Here λ = κσ/(6ϕ/π)−1/3 and U0 = eκσϵ(6ϕ/π)1/3. σ is the particle diameter, κ−1 is the screening

length, ϕ is the volume fraction, ϵ = Z2e2/4πϵs[σ(1+κσ/2)2], with ϵs being the dielectric constant

of the solvent. The symbols are from our measurements and the solid lines are from the previous

simulation 4. The two sets of values agree well. The two arrows indicate the locations of the two

systems (BCC-stable and FCC-stable respectively) shown in the main text. Two volume fractions,

ϕ = 12% and ϕ = 17%, are measured. B, measurements of the screening length, κ−1, and the

surface charge number, Z. C, the pair potential between two particles measured at very low volume

fraction, ϕ = 0.0007. Our data is consistent with the hard-core Yukawa potential, as indicated

by the solid line. The surface charge Z = −1054e and the screening length κ−1 = 0.975µm are

obtained from fitting.

length from conductivity measurements as the following: first we measure the conductivity

of the suspension in a 1cm × 1cm × 5cm cell, and then acquire the conductivity of the

solvent with the Maxwell-Garnett Theory 5; the screening length is then obtained from

the conductivity data from the Walden’s rule 6,7, which gives the molar conductivity of

the ions in the solvent. The surface charge, Z, is measured from electrophoresis 8. Inside

a rectangular capillary (0.12mm × 2mm × 2.5cm), we measure the mobility of particles

driven by an AC electric field (Vpp = 10V , f = 0.05Hz) between two parallel platinum

wires (diameter 0.076mm, Aldrich). The zeta potential is calculated from mobility9, and

the surface charge is obtained from the empirical relation proposed by Loeb et al10. We

have also measured the pair potential between two particles in a dilute sample with volume

fraction ϕ = 0.0007. The potential is consistent with the hard-core Yukawa potential, as

shown in Fig.SI-1C. The surface charge Z = −1054e and the screening length κ−1 = 0.975µm

are obtained from fitting. The surface charge Z is also separately obtained from the Zeta

potential measurements (Z = −1075e, zeta potential=-110 mV, ZetaPLUS, Brookhaven),
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and is consistent with the data from Fig.SI-1C.

We shear melt colloidal crystals with a magnetic wire driven by a magnet and record the

re-crystallization process immediately after agitation, with a Leica SP5 confocal microscope.

After agitation stops, the flow in the capillary ceases within a few tens of seconds, and the

subsequent recrystallization occurs on the time scale of several hours to a few tens of hours.

We use image-processing 11 to determine the 3D positions of all colloidal particles in each

imaging stack. A typical imaging stack has the x× y× z dimensions of 110× 110× 100µm3

and contains about 40000 particles. The scanning speeds in all dimensions are at least 30

times faster than the particle free diffusion, which enables the precise locating of particles.

We typically collect data over 40 to 50 stacks in each sample for a good statistics. We

estimate the degree of supercooling, ∆T , below the melting temperature, Tm, for the various

solid samples in the phase diagram (Fig.SI-1A). Two different approaches are applied: the

distance from the melting line yields ∆T = 0.2Tm ∼ 0.44Tm; and the Lindemann parameter

approach 12,13 gives ∆T = 0.2Tm ∼ 0.4Tm. The two independent estimations agree with

each other within the experimental accuracy.

II. Local Bond Order Analysis

A. Previous Method

The local bond order parameters are first introduced by Steinhardt et. al 14, and Ten

Wolde et al.15 used them to identify the nuclei from liquid background. To measure the local

bond order parameters for any particle i, a list of neighbors is first determined by finding

all particles within a distance rc from the particle. rc is typically determined from the first

minimum of the radial distribution function g(r). The total number of neighbors is denoted

as Nb(i). A bond orientational order parameter ql(i) is then defined for this particle i as:

ql(i) = ( 4π
2l+1

Σm=l
m=−l|ql,m(i)|2)1/2, with ql,m(i) = 1

Nb(i)
Σ

Nb(i)
j=1 Yl,m(θi,j, ϕi,j). Here Yl,m(θi,j, ϕi,j)

are the spherical harmonics with m ∈ [−l, l]. θi,j and ϕi,j are the polar and azimuthal angles

of the vector rij = ri − rj with ri the position vector of particle i and rj the position vector

of any neighboring particle j.

ql(i) can further be coarse grained over all neighbors to obtain ql(i)
16: ql(i) =

( 4π
2l+1

Σm=l
m=−l|ql,m(i)|2)1/2, with ql,m(i) = 1

Nc(i)+1
Σ

Nc(i)
j=0 ql,m(j). Here the sum from j = 0 to
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FIG. SI- 2: Categorizing the 13-neighbor particles. A, number distribution of solid particles

with different neighbors. The particles with 12, 13 and 14 neighbors dominate. B, the distribution

of q4(i) for all particles shown in A. The peak for the 14-neighbor particles corresponds to the

BCC symmetry, and the two peaks for the 12-neighbor particles correspond to HCP and FCC

symmetries. The 13-neighbor particles do not correspond to any crystalline structure. C, Using

the quantity δ = r13+r14
2 −rc, we can categorize the 13-neighbor particles back into the 12-neighbor

and the 14-neighbor branches. D, the new approach gives three sharp peaks in the q4 distribution

which correspond to BCC, HCP and FCC structures respectively.

Nc(i) runs over the particle i itself plus the neighbor particles which are in the same phase

(liquid or solid) as the particle i (Nc(i) ≤ Nb(i)) 17. This treatment avoids the spatial

average over particles of different phases, and thus provides a more precise characterization

for the coarse grained local structure .

Another set of bond order parameters, Wl(i) =

Σl
m1,m2,m3=0(

l l l

m1 m2 m3

)
ql,m1

(i)ql,m2
(i)ql,m3

(i)

|ql(i)|3
, are also used in this paper. The paren-

theses term is the Wigner 3j symbol, which is different from zero only for m1+m2+m3 = 0

5NATURE PHYSICS | www.nature.com/naturephysics	 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS2817

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2817


14. Wl is rotational invariant and useful to distinguish different crystalline polymorph such

as BCC, HCP and FCC.

When two neighboring particles have very similar local environment, they are said to

be connected with one solid bond. The solid bond number for any particle i is defined as:

ξ(i) = Σ
Nb(i)
j=1 (H(dl(i, j) − dc), with H being the Heaviside step function, dc = 0.7 being

the cutoff value, and dl(i, j) =
Σl

m=−lql,m(i)q∗l,m(j)

(Σl
m=−l|ql,m(i)|2)1/2(Σl

m=−l|ql,m(j)|2)1/2 quantifying the similarity of

local environment between particle i and particle j 18. Particle i is defined as a solid particle

if ξ(i) ≥ ξc, with ξc = 7 being the typical boundary between liquid and solid. Precursors are

identified as the particles with ξ(i) < ξc but q6(i) > 0.27, which means that they are liquid

structures but have relatively-high local bond order19.

We first use the previous method to analyze our solid particles (ξ(i) ≥ 7), as shown in

Fig.SI-2A and Fig.SI-2B. Fig.SI-2A shows the statistics on the number of neighbors within

the first minimum of g(r), for all solid particles in a randomly selected sample (different

from the sample in the main text). Clearly, particles with 12, 13 and 14 neighbors dominate

(> 98%) while other components are negligible. We therefore focus on these three types

of particles only. The particles with HCP and FCC symmetries have 12 neighbors; and

the ones with BCC symmetry have 14 neighbors. However, no crystalline structure has

13 neighbors. These results are clearly demonstrated by the statistics on q4 in Fig.SI-2B.

The single peak in the 14-neighbor branch corresponds to the BCC-symmetry; and the two

peaks in the 12-neighbor branch correspond respectively with HCP and FCC structures.

The peak of the 13-neighbor particles, however, does not correspond to any crystalline

structure. To deal with these significant amount of 13-neighbor particles, we develop a new

approach as described below.

B. Our Approach

We believe the origin of most 13-neighbor particles is still the 12-neighbor (HCP or FCC)

or the 14-neighbor (BCC) ones, with local bond orders deformed by thermal fluctuations.

However, the deformations are typically small and most 13-neighbor structures are either

closer to a 12-neighbor structure or to a 14-neighbor one. Based on this property, we

categorize 13-neighbor particles back into either the 12-neighbor or the 14-neighbor branch,

which do have corresponding crystalline structures. We use the quantity δ = (r13+r14)/2−rc

66	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2817

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2817


q
4

q
4

W
4

W
4

0 0.25 0 0.25

-0.2

 0.2

-0.2

 0.2

0 5 10 15 20

g
(r

)

r (µm)

 HCP Nuclei
 FCC Nuclei
 BCC Nuclei

BCC HCP

FCC

A B

C

FIG. SI- 3: A better structure distinction from our approach. A, number distribution in

the W4 − q4 plane using previous method. The BCC and HCP structures are heavily mixed due

to the 13-neighbor particles. B, our approach achieves a good separation for all three structures.

C, g(r) for the three types of structures obtained from our approach. The peak locations match

the ideal crystals reasonably well.

to categorize the 13-neighbor particles as shown in Fig.SI-2C. Here r13 and r14 are the

distances of the 13th and 14th nearest neighbors. For a normal BCC-symmetry particle,

the 13th and 14th neighbors are within the first minimum of g(r) (i.e., rc). A thermal

deviation may move the 14th neighbor slightly out of rc to form a 13-neighbor structure,

but the average distance over the 13th and the 14th neighbors are most likely still less than

rc (δ < 0). Similarly, for a particle with FCC or HCP-symmetry, normally both the 13th

and the 14th nearest particles are out of rc. The thermal deviation may move the 13th

particle slightly inside rc to form a 13-neighbor structure but the average distance over the

13th and the 14th particles is most likely still larger than rc (δ > 0). The effective separation

in Fig.SI-2C demonstrates the robustness of our approach.

Consequently we analyze our nuclei particles with the following procedure: for any par-

ticle i, if it has Nb(i) = 12 or Nb(i) = 14, we do nothing; if it has Nb(i) = 13, we set Nb(i)

7NATURE PHYSICS | www.nature.com/naturephysics	 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS2817

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2817


-0.2

0.2

W4

q
4

0 0.25
0.0 0.1 0.2 0.3
0

2000

4000

C
o
u
n
t

q
4

 All
 BCC - like precursors
 FCC - like precursors
 HCP - like precursorsBCC-like HCP-like

FCC-like

HCP Nuclei

BCC-like Precursor HCP-like Precursor FCC-like Precursor

FCC Nuclei

A B

C

BCC Nuclei

0.2 0.3 0.4
0.99

1.00

1.01

L
o

c
a
l 

D
e
n

s
it

y
 ρ

q
6

Precursors
q

6
> 0.27, ζ < 7

dense and locally 

ordered

D

FIG. SI- 4: Analyzing precursors with our approach. A, three types of precursors are

identified in the W4 − q4 plane, which have good correspondence with the nuclei structures in

Fig.SI-3B. B, the three structures directly exacted from A produce three sharp peaks in the q4

distribution. They add up to reach the total distribution very nicely, without any fitting. C,

similar local structures between precursors and nuclei are observed in experiments. The purple

spheres are hexagonally packed particles for HCP and FCC symmetries; and eight corner particles

for BCC symmetry. D, the density of precursors (the box region) is higher than the normal liquid

(the region left to the box), but less than the nuclei (the region right to the box).
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FIG. SI- 5: Time evolution of precursors in a BCC-stable system. At the beginning (A,

ϕnuclei=0.019, ϕprecursor=0.056, t=240s), HCP-like symmetry dominates. Around the critical stage

(B, ϕnuclei=0.071, ϕprecursor=0.116, t=2640s), BCC-like symmetry catches up. In the post-critical

stage (C, ϕnuclei=0.214, ϕprecursor=0.204, t=6480s), BCC-like symmetry dominates.

to 12 for δ > 0 or 14 for δ < 0. This procedure effectively eliminates the 13-neighbor par-

ticles and divide almost all particles into two branches: the 12-neighbor or the 14-neighbor

branch. The two branches are unambiguously composed by BCC, HCP and FCC symme-

tries, as demonstrated by the three sharp peaks in Fig.SI-2D. The power of our approach

is further illustrated by the particle number distribution in the W4 − q4 plane: Fig.SI-3A

comes from the previous method whose BCC and HCP structures are heavily mixed due to

the 13-neighbor particles; while our approach in Fig.SI-3B yields a clear distinction for all

three structures, which correspond to BCC, HCP and FCC symmetries respectively 20,21.

Fig.SI-3C shows the g(r) functions for the three crystalline structures calculated with our

technique, whose peak locations have good correspondence with the ideal structures.

With exactly the same procedure used for solid particles, we can also analyze the precursor

particles in the liquid stage, as shown in Fig.SI-4 (as well as in Fig.1F of main text). From

Fig.SI-4A, we can clearly identify three types of precursors: BCC-like, HCP-like and FCC-

like ones. The three types of precursors exacted directly from Fig.SI-4A produce three sharp

peaks in the q4 distribution in Fig.SI-4B, and add up to reach the total distribution very

nicely. Thus our approach achieves direct structure separation in the W4 − q4 plane and

avoids the method of fitting from total distribution previously employed 21. The precursors

and corresponding nuclei are observed to have similar local structures, as demonstrated by

Fig.SI-4C. They also have densities higher than normal liquid but lower than nuclei, as

shown in Fig.SI-4D.

The time evolution of precursors is shown in Fig.SI-5. In a BCC-stable system, the
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precursors are initially dominated by HCP-like symmetry (image A); while the BCC-like

symmetry catches up around the critical stage (image B), and eventually takes over in the

post-critical stage (image C). This symmetry transformation is consistent with the descrip-

tion in the maintext: there is a major cross-symmetry pathway from HCP symmetry to

BCC symmetry.
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FIG. SI- 6: Similarity between precursors and the particles with 3 ≤ ξ ≤ 6. The almost

identical g(r) functions suggest that the two should have a large overlap.

We also find that the precursors and the particles with 3 ≤ ξ ≤ 6 largely overlap with

each other, as demonstrated by the almost identical g(r) functions in Fig.SI-6.

C. The Comparison Between Our Approach and the Previous Method

We further compare the our approach with the previous method by analyzing more bond

order parameters, as show in Fig.SI-7. In the q4 − q8 plane, we can see clear symmetry

differentiation for both nuclei and precursors with our approach (the top row); while the

previous method does not distinguish them as nicely (the bottom row).

Moreover, we must clarify one important point: the local order of precursors we talked

about is quite short-ranged, typically extending only to the first shell (the central particle

plus its 12 or 14 neighbors). When the coarse grained bond order parameters that involve

a longer range (the 1st and 2nd shells) are considered (q4 − q8 map for example), the result

is quite different. As plotted in Fig.SI-8, the q4 − q8 map from our approach is almost

identical to the previous method, demonstrating no clear symmetry differentiation at this

longer range. This is due to the following reason: the bulk phase of precursors is a mixture

of various components with different local symmetries, and therefore lacks the translational
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FIG. SI- 8: Comparison between two approaches in the q4 − q8 plane. The two approaches

are very similar in this coarse grained order parameter plane, indicating that the symmetry found

in precursors are only short ranged.

coherence and can not be considered as bulk crystal-like. Therefore, we emphasize that our

precursors have local order at short range but are still amorphous at the medium-range and
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FIG. SI- 9: g(r) for normal liquid (T > Tm), supercooled liquid (T < Tm) and precursors.

These g(r) functions indicate amorphous structures at the bulk level.

at the bulk level. In the previous studies 22−25 the order is mainly quantified with ql or

g(r) at medium range or bulk level, and therefore the conclusion of amorphous precursors is

obtained . Our results at these levels (i.e., ql or g(r)) are consistent with previous studies;

however with the new approach we can also reveal multiple local orders at the short-range

level.

To have a better understanding of the precursor structure at the bulk level, we plot

the pair correlation function, g(r), in Fig.SI-9. Unlike the g(r) plotted in the main text

(Fig.1H), which is from the particles picked within each symmetry, here we plot the g(r)

for all precursor particles. For comparison, we also plot the g(r) for normal (T > Tm) and

supercooled (T < Tm) liquids. All plots indicate amorphous structures at the bulk level.

One important question remains to be answered: by splitting the 13-neighbor particles

into 12-neighbor and 14-neighbor branches, does the new approach artificially add order?

The best way to address this question is to analyze a completely amorphous structure with

both methods, and compare their results. We analyze the completely amorphous structure,
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FIG. SI- 10: A quantitative analysis on normal liquid (T > Tm) with two methods.

The solid lines are from the previous method, and the dashed lines are from our approach. The

comparison demonstrates very little difference between the two approaches, confirming that the

two methods are almost identical for a truly amorphous structure.

i.e. the normal liquid at T > Tm, with the two approaches. The coarse-grained bond order

parameters, ql , W l, and the local bond order parameters, ql, Wl, are plotted in Fig.SI-10.

The solid lines are from the previous method, and the dashed lines are from our approach.

The comparison demonstrates very little difference between the two approaches, confirming
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FIG. SI- 11: Comparison of analysis on 13-neighbor particles between two methods.

For the completely amorphous normal liquid (the 1st row), the two approaches give very similar

results, with no clear sign of artificially enhanced order in the new method. For the supercooled

liquid (the 2nd row), a little bit of symmetry differentiation starts to emerge in our approach;

while the old method can not find any clue. When the precursors are analyzed (the 3rd row), our

approach clearly reveals different symmetries; but the old method fails to do that.

that the two methods are almost identical for a truly amorphous structure, with no or very

little artificially added order in the new method.
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To make a more clear distinction between our method and the previous method, we focus

on the analysis of 13-neighbor particles, since the 12 and 14-neighbor particles are analyzed

identically in both methods. We analyze the 13-neighbor particles in normal liquid at

T > Tm, supercooled liquid at T < Tm and precursors with the two approaches, and make

careful comparison in Fig.SI-11. For the completely amorphous normal liquid in the 1st

row, the two approaches give very similar results, with no clear sign of artificially enhanced

order in the new method. In the 2nd row of supercooled liquid, a little bit of symmetry

differentiation starts to emerge in our approach; while the old method can not find any clue.

When the precursors are analyzed in the 3rd row, our approach clearly reveals different

symmetries; but the old method fails to do that. As confirmed by the real-space arrange-

ment in Fig.SI-4C, these local orders indeed correspond to the crystalline-symmetries,

instead of artificially added by our approach. Therefore, we conclude that our approach

and the old method are quite similar for the analysis of truly amorphous structures (i.e.,

amorphous in both short, medium, and bulk ranges); however, our method is particularly

good at identifying the short-ranged order, while the previous method is not able to do that.

III. Kinetic Pathways in Hard-Sphere Systems

In hard-sphere systems, the dominant meta-stable solid is RHCP instead of BCC. There-

fore, we measure the kinetic pathways in this situation and compare with the soft-repulsive

systems in the main text. To prepare hard-sphere systems, we suspend PMMA particles

in the mixture of cis-decahydronaphthalene and cyclohexylbromide, which matches both

the density and the refractive index of particles. We dissolve the salt tetrabutylammonium

chloride at the saturate concentration, which effectively screens the electric repulsion. The

volume fraction of particles is around 53%. The time evolutions of relative fractions for

different symmetries are shown in Fig.SI-12, for both precursors (open symbols) and nuclei

(close symbols). Once again we find that the HCP-like precursor curve is above the HCP

nuclei curve, while the opposite is true for BCC and FCC symmetries. This suggests kinetic

pathways from HCP-like precursors to BCC and FCC solids, which is the same as the

soft-potential systems. However, a main difference also exists: the major pathway is now

towards the FCC nuclei, instead of BCC. Since FCC is an important component of the

RHCP structure, the data again verify that the major pathway may lead to the dominant
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FIG. SI- 12: Kinetic pathways in a typical hard-sphere system. The HCP-like precursor

curve is above the nuclei one; while the opposite is true for BCC and FCC symmetries. This

indicates two kinetic pathways from HCP-like precursors to (1) FCC and (2) BCC nuclei. The

same results are also found in the soft-potential systems shown in the main text. However, here

the major pathway is towards the FCC nuclei instead of BCC, as indicated by the much larger gap

in the FCC panel than in the BCC panel. This major pathway should lead to the large amount

of FCC structures required by the dominant RHCP meta-stable solid. The critical nuclei size is

reached around t = 4760s.

meta-stable solid, consistent with the finding in soft-repulsive systems.

IV. Movies

movie S1: Precursor mediated crystallization. The dark-brown spheres represent nuclei

particles, the light-brown spheres indicate precursors, and the blue dots are liquid particles.

movie S2: Symmetry transformations for precursors and nuclei during crystallization.

The three symmetries are represented by three colors: HCP nuclei + HCP-like precursors

(purple spheres), BCC nuclei + BCC-like precursors (red spheres), and FCC nuclei + FCC-

like precursors (green spheres).

movie S3: Symmetry transformations for nuclei only. The three symmetries are repre-
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sented by three colors: HCP nuclei (purple spheres), BCC nuclei (red spheres), and FCC

nuclei (green spheres).
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