
Supplementary Information

Hongchuan Shen1, Peng Tan1,2∗ and Lei Xu1∗

1Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
2 State Key Laboratory of Surface Physics, Department of Physics,

Fudan University, Shanghai 200433, China

(Dated: December 14, 2015)

1



I. Experimental details and covariance matrix analysis

Our system is constructed by self-propelled active particles confined in a 2D square lattice.

Our particles are identical metal spheres with d = 13.00 ± 0.01mm and m = 9.915 ± 0.005g(the

total mass of one sphere plus one motor). Each particle is connected to four nearest neighbors by

identical springs (k = 2.97 ± 0.16N/m, l0 = 15.46 ± 0.36mm) and form a square lattice as shown

in Fig.1a. All springs are stretched to reach the lattice constant of 45.0 ± 1.5mm and the entire

system contains 15 × 15 = 225 particles. To control the mobility at single-particle level, under

every particle we attach a small vibrating motor independently driven by external power input.

Once turned on, motors will drive particles to move randomly around their equilibrium positions

in 2D (see the supplemental movie).

Since the attractive interaction between particles is harmonic, the spatial fluctuations (renor-

malized by local variance) obey an excellent Gaussian distribution as shown in Fig.1b. Clearly

every particle has a well-defined equilibrium position, and the time-averaged deviation from it,

⟨δri⟩ = ⟨
√
δx2

i + δy
2
i ⟩, provides a good description for the mobility of each particle. We measure

the local displacements by tracking the center of every particle and obtain their x and y coordinates

with respect to time. We then calculate the average position of every particle and the displacement

δri is calculated as the deviation from the average position. ⟨δri⟩ is then calculated from the average

of all frames.

The mobility of one typical particle versus time is shown in Fig.SI-1, and the three curves
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FIG. SI - 1. The persistence of mobility levels for one typical motor under three driving voltages. The

shaded area is the measurement period.
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correspond to three typical driving voltages. We choose a stable period to perform measurements,

as labeled by the shaded area. We determine the particle location uncertainties by measuring a

static sample and calculating the fluctuations of the static particles under the exact condition of a

real experiment. We find the uncertainty of ⟨δri⟩’s to be 0.007mm. Since the small ⟨δri⟩ values

only affect the high-ω̂ region, which are systematically measured in Fig.5, we make sure that the

smallest ⟨δri⟩ there is 0.064mm ≫ 0.007mm, and thus the uncertainty is much smaller than the

real movement and can be safely neglected.

With the data from particle tracking, we can construct the covariance matrix of spatial fluc-

tuations and calculate its eigenmodes [16, 35, 36]. More specifically, we track the positions of

all particles for 1250 frames and construct the covariance matrix [16, 35, 36]: Ci, j = ⟨[ri(t) −
⟨ri(t)⟩][r j(t) − ⟨r j(t)⟩]⟩, with i, j = 1, ..., 2Np running over the x and y coordinates of all parti-

cles, and ⟨⟩ indicating time average over all frames. To eliminate the boundary effect, we only

use the central Np = 11 × 11 = 121 particles which result in 2Np = 242 eigenmodes. In equi-

librium systems, these eigenmodes are identical to the vibrational modes, with the eigenvalue λ

directly related to the vibrational frequency ω: ω ∝ 1/
√
λ. Analogous to ω, therefore, in our

non-equilibrium system we define a dimensionless parameter, ω̂ ≡ ⟨δr⟩/
√
λ, which has the same

λ dependence and renormalized by the time-and-location averaged displacement ⟨δr⟩. Due to the

lack of equipartition, our eigenmodes are not equivalent to vibrational modes anymore, but they

still indicate specific patterns of collective movements (see Fig.2a), following which the system

can achieve the overall displacements described by
√
λ or 1/ω̂.

We then determine the density of states D(ω̂) by finding the distribution of ω̂ with the

commonly-used linear binning. We carefully choose the bin width to ensure enough statistics

in most bins (typically more than 4 or 5), and when the bin width is slightly varied our data remain

stable.

II. The statistics analysis

In our covariance matrix [16, 35, 36] calculations the degrees of freedom is N = 242 and we

take the statistics over T = 1250 frames. According to previous studies [35], the number of frames

must be significantly larger than the degrees of freedom. To determine whether our statistics is

good enough, we compare our measurements with Ref.[35]. As pointed out by Ref. [35], the ratio,

N/T , is the essential parameter determining whether the statistics is good enough: the smaller N/T
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is, the better the statistics is. For example, in Ref. [35] the sample contains 3600 particles, and

the measurement with the best statistics was achieved by taking T = 30000 frames of pictures,

which makes N/T = 2 ∗ 3600/30000 = 0.24. In our experiment, because of the relatively small

number of particles we used (Np = 121), the degrees of freedom is also small (N = 2 ∗ Np = 242).

Therefore, using T = 1250 frames of images already achieves a very small ratio of N/T = 0.19,

which is even better than the best situation in Ref. [35] (i.e., N/T = 0.24 there).

Moreover, to accurately quantify the errors caused by the statistics, we performed a new set of

measurements and increased the frame number by one order of magnitude to Tmax = 12955. With

this new set of experiment, we can study the influence of T values in the range of T = 1250−12955

frames. According to Ref.[17], the ratio N/T mainly affects the spectrum by changing the values

of ω̂ in the high-ω̂ regime, while making very little influence to the low-ω̂ modes. Here we plot

our measurements in Fig.SI-2: the left panel shows three typical low-ω̂ modes (m1, m4, m6) and

the right panel plots three typical high-ω̂ modes (m237, m240, m242).
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FIG. SI - 2. The influence of statistics. We increase the frame number T up to Tmax = 12955, and keep the

degrees of freedom N = 242 constant. The left panel shows three typical low-ω̂ modes, and the right panel

shows three high-ω̂ modes.

Clearly, as N/T decreases with the increase in T , the left panel shows very little variation, with

the values of ω̂ changing within 3%. For the high-ω̂modes in the right panel, however, we observe

a small-slope linear dependence, and the ω̂ values vary around 10%. All these results are in great

agreement with Ref.[17]. Therefore, in the low-ω̂ regime all our discussions on the boson peak

formation should be quantitatively valid within 3% of uncertainty; while there may exist errors

around 10% in the high-ω̂ region, which however should not affect the qualitative conclusions we
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have drawn there.

III. Restore to the Debye behavior from boson peak spectrum

To completely confirm that the boson peak in samples C and D are indeed caused by the large-

activity particles, we tune these active particles back to normal activity, and measure the reduced

density of states as shown in Fig.SI-3. As we expect, the D(ω̂)/ω̂ spectra return back to the

flat Debye-like behavior! This experiment unambiguously verified that the boson peak is indeed

caused by the active particles and when they are turned back to normal the peak also goes away.

0.1 1

1

10

no active 
C

D
(ω

) /
ω

ω

<δ
r 

>
 d

is
tr

ib
u

tio
n

renormalized <δr >

0

5

10

15

20

0 1 2 3 4 5
0

5

10

15

20

 D

no active

<δ
r 

>
 d

is
tr

ib
u

tio
n

0.1 1

1

10

  D

D
(ω

) /
ω

ω

no active 

renormalized <δr  >

0

5

10

15

20

0 1 2 3 4 5
0

5

10

15

20

 C

 

no active

i

i

i
i

FIG. SI - 3. The restoring of the Debye behavior in samples C and D. As we tune the active particles to

normal activity in C and D, boson peak disappears and the Debye behavior is re-established.

IV. More data with inactive particles

As shown in Fig.5c, it seems that inactive particles also reduce the participation ratio in low-
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ω̂ region. However, here we show that there is no consistent trend in the low-ω̂ region. In two

different samples demonstrated in Fig.SI-4, the participation ratio does not always decrease in the

low-ω̂ region, and in some places it even increases. Therefore, by combining all the results we

have, the only conclusion we can make is that at high-ω̂ region the participation ratio decreases

with Ni, while no conclusive conclusion can be drawn in the low-ω̂ region.
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FIG. SI - 4. More data sets for the influence of inactive particles to the high-ω̂ region. The two samples are

different from the one shown in Fig.5c and they again show a decrease in high-ω̂ region. However there is

no consistent trend in the low-ω̂ region.

V. Projection of the real displacement field onto the modes

To further probe the relation between the real dynamics and the modes. We project the real

displacement field onto the modes in Fig.SI-5, for three different time delays. Here Σ|Cm|2 is

the cumulative projection probabilities and m is the mode number, running from low to high

ω̂. Different curves correspond to different time delays during which the real displacement field

is measured, and we use the number of frames T to label the time delay. Clearly as the time

interval increases, the low-ω̂ modes become more and more important for the real displacement,

indicating that low-ω̂ does correspond to long time interval. This is similar to the relation between

real displacements and the vibrational modes in equilibrium systems. Therefore, the modes from

covariance matrix [16, 35, 36] in non-equilibrium systems do seem to relate to real displacements

and this phenomenon raises an intriguing question asking for further study.
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FIG. SI - 5. Projecting real displacement with different time delays onto the modes. Σ|Cm|2 is the cumulative

projection probabilities and m is the mode number, running from low to high ω̂. The time delay is labeled

by the number of frames T.
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