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We study the breakup of a liquid thread inside another liquid at different surface tensions. In general, the
pinch-off of a liquid thread is governed by the dynamics of fluid flow. However, when the interfacial
tension is ultralow (2–3 orders lower than normal liquids), we find that the pinch-off dynamics can be
governed by bulk diffusion. By studying the velocity and the profile of the pinch-off, we explain why the
diffusion-dominated pinch-off takes over the conventional breakup at ultralow surface tensions.
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The breakup of a liquid thread, or pinch-off, has been
extensively studied. The pinch-off dynamics are classified
into different regimes according to its governing fluid
mechanics [1–5]. Typically, apart from a few exceptions
[6–11], the thinning dynamics is driven by surface tension,
and balanced by inertia and/or viscous resistance, and the
interface motion is described by self-similar solutions
which are independent of initial conditions [12–26].
In the conventional theory, lowering the surface tension

would slow down the pinch-off process, but the fundamental
picture described by force balance and fluid flow remains
essentially unchanged. However, recent studies find that when
surface tension becomes extremely low, on the order of nN=m,
the pinch-off dynamics would enter a new regime, which is
governed by thermal fluctuation [27,28]. Surprisingly, our
experiment now reveals that, in addition to the thermal
fluctuation regime, the pinch-off dynamics could also be
dominated by bulk diffusion. This bulk diffusion regime
appears when the interfacial tension is 2–3 orders lower than
normal liquids (i.e., 0.1–0.01 mN=m), but still much higher
than that required by the thermal fluctuation regime.
The diffusion-dominated pinch-off represents a new class

of breakup phenomenon, which was recently discovered
in metal alloy at the liquid-solid interface [29]. We now
observe this phenomenon at the liquid-liquid interface for
the first time, and identify a new regime for pinch-off
dynamics inside fluid systems. Besides improving the
general understanding of fluids pinch-off, our study could
also make an important impact on the research field of
breakup at very small length scales, such as the study of
nanojets [30,31], and the area related to ultralow interfacial
tensions, for instance, the division of active droplets [32,33]
and the applications of aqueous two-phase systems [34–36].
Our experiment is performed in an aqueous two-phase

system (ATPS) because its surface tension can be widely
adjusted across 3 orders of magnitude. The ATPS we are
using is a ternary mixture made of water, polyethylene

glycol (PEG), and tripotassium phosphate [37,38]. Two
phases, one polymer rich and one salt rich, can sponta-
neously form and create a clear interface. By adjusting the
ratio of the three components, the system can approach or
depart from a critical point at room temperature. Surface
tension decreases significantly as the system approaches
the critical point. In other words, by adjusting the concen-
tration of the three components, systems with different
surface tensions can be realized. To promote general
validity, in addition to varying surface tensions, two types
of PEG with distinct polymer chain lengths are used. We
name these two groups of samples ATPS-A and ATPS-B.
A very small amount of fluorescent dye, 0.03 wt% rhod-
amine-B, is added into the solution to increase the contrast
between the polymer-rich phase and the salt-rich phase.
The two phases are homogeneous and have reached an
equilibrium state. Surface tensions are measured by the
spinning drop method [39]. More details are provided in the
Supplemental Material (SM) [40].
The pinch-off experiments at ultralow surface tensions

are carried out in a thin cell 50 μm thick. The experiments
at normal surface tensions are carried out in a flow-focusing
microfluidic device (cross section 50 × 100 μm), because
pinch-off events at normal surface tensions rarely occur
in the thin cell. We inject one phase of liquid into another
phase, and then observe the narrowing liquid thread
and pinch-off event by a fluorescence microscope coupled
with a high-speed camera, with 63× magnification and
5000–10 000 frames=s. We make sure that the narrowing
liquid thread locates near the middle of the cell without
touching any boundary walls.
We first demonstrate typical pinch-off events in Fig. 1(a)

and Movie 1 of SM [40]. The narrowing process of the
liquid thread is measured by a high-speed camera as shown
in Movie 1. In Fig. 1(a), the neck radius measured at the
thinnest location, r, is plotted against the time to pinch-off
t. Here we define t ¼ 0 as the moment of pinch-off.
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To make a clear comparison, we choose two systems with
100 times difference in surface tension. The higher system
has γ ¼ 10.7 mN=m, comparable to that between olive oil
and water. For this normal system, the neck radius decreases
linearly with time, as expected in the Stokes regime. By
contrast, the lower system has an ultralow surface tension,
γ ¼ 0.1 mN=m, and the neck radius follows a power law
with an exponent n ¼ 0.33. Such a significant change in the
narrowing dynamic clearly indicates a new pinch-off
regime. To make sure of its generality, we repeat the same
measurement on various samples with different surface
tensions and viscosities, as shown in Fig. 1(b). Clearly
there exist two distinct classes of behaviors.
Next, we theoretically show that the new behavior at low

surface tensions is due to bulk diffusion, and this diffusion
regime must dominate the Stokes regime at sufficiently low
surface tensions. For viscous liquids, pinch-off is governed
by the balance between the capillary pressure from surface
tension and the viscous resistance from viscosity, leading to
the famous Stokes regime [1,15,16]. In this regime, the
neck radius of the liquid thread rSt is a linear function of
time:

rSt ¼ hðmÞγ=μt; ð1Þ

where t is the time to pinch-off, γ is surface tension, μ and
mμ are viscosities of the liquid thread (inner phase) and
surrounding liquid (outer phase), respectively, and h is a
dimensionless prefactor depending only on m. The corre-
sponding radial velocity is simply a constant:

vSt ≡ d
dt

rSt ¼ hðmÞγ=μ: ð2Þ

For the bulk diffusion regime, the underlying mechanism
is entirely different. In the model established by Aagesen

et al. [29], the curvature of the interface changes the
equilibrium concentration at the interface, as described
by the Gibbs-Thomson equation [41,42], which sub-
sequently induces bulk diffusion and hence movement of
the interface. This movement is governed by diffusion
equations coupled with boundary conditions at the inter-
face, and forms a new class of self-similar interface motion.
In this regime, the neck radius follows a 1=3 power law
with respect to time, consistent with our observation:

rdiff ¼ f0ðDd0tÞ1=3; ð3Þ

where f0 is a dimensionless constant, D is the diffusivity
in the inner phase, and d0 is the capillary length defined
thermodynamically [41,42] (not

ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ=Δρg
p

). The corre-
sponding radial velocity is

vdiff ≡ d
dt

rdiff ¼
1

3

f30Dd0
r2diff

: ð4Þ

To summarize, the thinning dynamics in the Stokes
regime is governed by mechanical equilibrium, while in the
diffusion regime it is governed by chemical equilibrium. In
general, mechanical and chemical mechanisms should
coexist and be independent of each other; however, in real
situations we should only be able to observe the dynamics
driven by the dominant factor. Here we hypothesize that the
dominant mechanism would simply be the one which
causes a faster pinch-off. At normal surface tensions, the
mechanical driving force moves the interface so fast that the
diffusion effect can be totally neglected; however, at
ultralow surface tensions, the mechanical driving force
reduces significantly and the diffusion effect catches up and
takes over. This hypothesis will be further tested by

FIG. 1. Neck radius r as a function of the time to pinch-off t. (a) Two example curves in which there is a 100 times difference in surface
tension γ. The solid curves are the best fit. For γ ¼ 10.7 mN=m, the curve is linear. For γ ¼ 0.1 mN=m, the curve follows a power law
with an exponent 0.33. Both samples are ATPS-A samples. The upper inset shows a fluorescence image of liquid thread before pinch-
off. The outer phase (polymer rich) is brighter than the inner phase (salt rich). The scale bar is 10 μm. The lower inset shows a sketch of
free energy [see Eq. (5)], and the dashed curve indicates a near-critical situation with a very small ε0. (b) Log-log plots of typical
measurements for samples with various surface tensions. The solid lines are the best fit. (c) Replotting the low surface tension data in
(b) as a function of t=

ffiffiffiffi

N
p

, where N are the molecular weights of polymers. Panels (b) and (c) share the same legend.
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comparing relevant speeds caused by the two mechanisms,
both theoretically and experimentally.
To theoretically compare the speeds of the two mech-

anisms, vdiff and vSt, we need to relate vdiff to liquid
properties, γ and μ, as the following. Let the Landau free-
energy density around the critical point be [43]

f ¼ ε0ðψ4 − 2ψ2 þ 1Þ; ð5Þ

where ε0 ≡ fð0Þ is the energy barrier between the two
phases in our system, and ψ is the normalized concentration
such that f has two minima at ψ ¼ �1, which correspond
to the two phases of our system. The profile of the free
energy is illustrated in the lower inset of Fig. 1(a). One can
show that d0 is related to γ [43,44] (see also SM [40]):

γ

d0
¼ 16ε0: ð6Þ

Furthermore, by the Zimm model and the Stokes-Einstein
relation, the diffusivity is D ¼ kBT=ð6πμsaÞ, where kBT is
the product of the Boltzmann constant and temperature,
a ∝

ffiffiffiffi

N
p

is the hydrodynamic radius of polymers, N is the
molecular weight, and μs is the viscosity of the solvent,
which is close to the solution viscosity μ in our samples
(see SM [40]). Compared with surface tension, the viscos-
ity remains roughly a constant as the critical point is
approached. Therefore, Eq. (4) can be expressed as

vdiff ∝
kBT
ar2diff

γ

μs

1

ε0
∝

kBT
ffiffiffiffi

N
p

r2diff

γ

μs

1

ε0
: ð7Þ

Finally, by Eqs. (2) and (7), at constant temperature and
neck radius, we have

vdiff
vSt

∝
1

ε0
: ð8Þ

Because the energy barrier ε0 would vanish at the critical
point, Eq. (8) gives vdiff ≫ vSt near the critical point. At the
same time, the surface tension also approaches zero near
the critical point. Consequently, the bulk diffusion regime
would eventually dominate the Stokes regime when the
surface tension is sufficiently low, or equivalently, when the
system is sufficiently close to the critical point.
Note that the model assumes a binary system, but a

ternary mixture of polymer, salt, and water is used in our
experiment. Nevertheless, we argue that our system can be
“coarse grained" as a binary system by treating salt and
water as the high-diffusivity component, and polymer as
the low-diffusivity component.
To confirm the existence of the bulk diffusion regime in

our system, we carefully compare the experimental results
with the established model predictions [29]. The model
predicts several characteristic features. First, the interface
profile should be self-similar with the same time-dependent

length scale in both radial and axial directions. Figure 2 and
Movie 1 (of SM [40]) confirm this self-similarity by
rescaling the captured images with the same length
scale, L≡ tn, in both radial and axial directions. The
exponent n is obtained from fitting the r-t curves as shown
in Fig. 1.
Second, the neck radius should follow r ∝ t1=3 as

mentioned in Eq. (3). In Fig. 3, we plot the exponents
measured experimentally across a broad range of surface
tensions. The error bars include the standard deviation of
multiple measurements and instrumental uncertainties. At
high surface tensions, the exponents agree well with the one
in the Stokes regime, n ¼ 1, as expected (red line). At low
surface tensions, the exponents are very different: across a
wide γ range from 0.015 to 0.2 mN=m, the exponents lie
between 0.32 and 0.38. It is consistent with the character-
istic exponent of the diffusion regime, n ¼ 1=3 (blue line).
Note that there is a break in the horizontal axis, corre-
sponding to the intermediate surface tension range
(0.3–6 mN=m). The experimental results in this range have
very low reproducibility, indicating complicated dynamics
in this transition range, where two factors with similar
magnitudes compete with each other. Because of low
reproducibility, we do not discuss this range in the Letter.
Third, the Stokes-Einstein relation and Zimm model

predict that the diffusivity scales with the molecular weight,
D ∝ 1=

ffiffiffiffi

N
p

[see Eq. (7)]. Therefore, the pinch-off dynam-
ics of APTS-A and APTS-B should also scale with
N: rdiff ∝ ðDtÞ1=3 ∝ ðt= ffiffiffiffi

N
p Þ1=3. To verify it, we plot the

rescaled data in Fig. 1(c): clearly the two separated sets of
data with 1=3 power in Fig. 1(b) collapse excellently in
Fig. 1(c). This nice collapse once again indicates that our
pinch-off dynamics is controlled by diffusion.

Raw

Rescaled

8.0 ms 2.0 ms 0.6 ms

FIG. 2. Snapshots of Movie 1 of SM [40] showing the self-
similarity of the interface. Top: Raw images of the pinch-off
process at different time. Bottom: Corresponding rescaled im-
ages, which are resacled by a length scale L≡ tn in both radial
and axial directions. The exponent n is obtained from fitting the
r-t curves as shown in Fig. 1. The scale bars in all images are
10 μm.
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Fourth, the profile of interface should be symmetric with
an asymptotic cone angle of 76°. By contrast, the profile in
the Stokes regime is asymmetric [15,16]. In Fig. 4, we
overlay the theoretical 76° cone (black dashed line) on the
captured images for different low-surface-tension experi-
ments, at t ¼ 1 ms before pinch-off. The experimental
angle is consistent with the theoretical value, with a small
deviation around several degrees. This could be caused by
the nonzero diffusivity of the outer phase (polymer-rich

phase) in experiment, which is inconsistent with the liquid-
solid model. It is reasonable that the corresponding error in
cone angle is small, because even in the extreme case where
the liquid and solid phases are interchanged, the cone angle
only changes from 76° to 80° [29].
Next, we need to exclude the possibility that the observed

pinch-off is governed by thermal fluctuation, which also
occurs at low surface tensions. First, for the thermal
fluctuation regime, the characteristic exponent is 0.42
[27,28] and the characteristic cone angle is∼30° [27], which
are inconsistent with our measurements shown in Figs. 3
and 4. Second, it is well known that thermal fluctuation will
dominate only when the size of the system is comparable to
the thermal length scale, Lth ¼

ffiffiffiffiffiffiffiffiffiffi

kT=γ
p

[27,28]. In our
system, to obtain Lth ∼ 1 μm, the surface tension needs to
reach nN/m, which is 104 times smaller than the lowest value
in our experiment. Therefore, our results represent a new
regime irrelevant to thermal fluctuation.
We also discuss the possibility of viscoelastic effect

in our polymer solutions. By measuring shear stress vs
shear rate, we confirm that our experimental systems are
Newtonian (see SM [40]). In addition, the viscoelastic
effect typically induces an exponential dependence of
r vs t, while our results are well described by a 1=3 power
law [23,24]. Moreover, previous studies have shown that
varying polymer concentrations and chain lengths induce
significant changes in the viscoelastic response [45], while
our pinch-off behaviors under such various conditions
collapse onto a universal power law [see Fig. 1(c)]. There-
fore, we believe that the viscoelastic effect does not play a
significant role.
We have shown that, by Eqs. (7) and (8), the velocity of

the diffusion regime would surpass that of the Stokes
regime when surface tension is sufficiently low, and hence
become dominant. To verify, we compare the measured
velocities vexpt with the calculated vSt by using Eq. (2)
without any fitting parameter, as shown in Fig. 5. On the
right-hand side in the Stokes regime, the ratios are close to
unity (∼0.8) as expected. This proves that our calculations
are reliable. On the left-hand side in the diffusion regime,
the measured velocities are several times faster than vSt.
This confirms our hypothesis that, while both the mechani-
cal and the chemical pinch-off mechanisms coexist, only
the faster one will materialize. The reason that vdiff takes
over vSt at low surface tensions is predicted by Eq. (7): as
the surface tension decreases, vdiff=γ increases substan-
tially. The corresponding data are provided in the
Supplemental Material [40]. Note that in the calculations
of vSt, we adopt the dimensionless prefactor of hðmÞ ¼
0.0335 m−0.47 given by Cohen et al. [15]. This expression
of hðmÞ is valid for m ∼ 1 (i.e., two liquids with similar
viscosities), and thus only the ATPS-A samples fulfill this
requirement and are plotted. The same analysis for ATPS-B
shows a similar trend, as shown in Fig. S6 in the
Supplemental Material [40].

FIG. 4. Overlaying the theoretical cone angle on the captured
images at different surface tensions at t ¼ 1 ms. The black
dashed lines represent the theoretical asymptotic cone angle of
θ ¼ 76°. The brightness of the captured images is displayed in
pseudocolor to enhance contrast. The blue region is the inner
phase, the red region is the outer phase. The scale bar is 10 μm.

FIG. 3. Mean exponents n for different surface tensions γ in
log-log scale. The error bars include standard deviations of
multiple measurements and instrumental uncertainties. The red
line indicates the characteristic exponent of Stokes regime, which
is 1. The blue line indicates the characteristic exponent of bulk
diffusion regime, which is 1=3. The measured exponents are
consistent with these two corresponding characteristic exponents.
The green dashed line indicates the characteristic exponent of
thermal fluctuation regime (∼0.42). Apparently it does not agree
with the data.
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To conclude, we study the pinch-off process in two-fluid
systems across a wide range of surface tensions. We find a
new regime governed by bulk diffusion at ultralow inter-
facial tensions, which locates below the normal Stokes
regime and above the thermal fluctuation regime. We verify
this diffusion regime by comparing the measurements with
the theoretical predictions. We further hypothesize and
verify that when both mechanical and diffusion mecha-
nisms coexist, only the much faster one will materialize.
Even beyond the ultralow surface tension systems, we
speculate that the diffusion regime may generally appear at
small enough neck radius [see Eq. (7)] and suggest more
studies in this direction.

This project is supported by Hong Kong RGC (GRF
14306518, 14303415, 17304017, 17305414, 17305518,
17306315, CRF C6004-14G, C1018-17G), and CUHK
Direct Grants (No. 4053313, No. 4053231, No. 4053167,
No. 4053354). We thank Peter W. Voorhees, Xiaohu Zhou,
Yang Song, and Hao Yuan for helpful discussions. We also
acknowledge an anonymous referee for suggesting the
Zimm model.

H. Y. L. and Y. L. contributed equally to this work.

*ashum@hku.hk
†xuleixu@cuhk.edu.hk

[1] J. R. Lister and H. A. Stone, Capillary breakup of a viscous
thread surrounded by another viscous fluid, Phys. Fluids 10,
2758 (1998).

[2] J. C. Burton and P. Taborek, Bifurcation from Bubble to
Droplet Behavior in Inviscid Pinch-off, Phys. Rev. Lett. 101,
214502 (2008).

[3] J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K.
Sambath, I. M. Hutchings, J. Hinch, J. R. Lister, and O. A.
Basaran, Plethora of transitions during breakup of liquid
filaments, Proc. Natl. Acad. Sci. U.S.A. 112, 4582 (2015).

[4] Y. Li and J. E. Sprittles, Capillary breakup of a liquid bridge:
Identifying regimes and transitions, J. Fluid Mech. 797, 29
(2016).

[5] A. Lagarde, C. Josserand, and S. Protière, Oscillating path
between self-similarities in liquid pinch-off, Proc. Natl.
Acad. Sci. U.S.A. 115, 12371 (2018).

[6] P. Doshi, I. Cohen, W.W. Zhang, M. Siegel, P. Howell,
O. A. Basaran, and S. R. Nagel, Persistence of memory in
drop breakup: the breakdown of universality, Science 302,
1185 (2003).

[7] N. C. Keim, P. Møller, W.W. Zhang, and S. R. Nagel,
Breakup of Air Bubbles in Water: Memory and Breakdown
of Cylindrical Symmetry, Phys. Rev. Lett. 97, 144503
(2006).

[8] R. Bergmann, D. van der Meer, M. Stijnman, M. Sandtke, A.
Prosperetti, andD. Lohse,Giant Bubble Pinch-Off, Phys. Rev.
Lett. 96, 154505 (2006).

[9] J. M. Gordillo and M. Pérez-Saborid, Axisymmetric
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