

The Chinese University of Hong Kong Department of Chemistry

Research Seminar Series

Speaker: Prof. Dr. Ernst Wagner

Department of Pharmacy

Ladwig-Maximilians-Universität München

Germany

Title: Chemical evolution of macromolecular

sequences: for intracellular DNA, siRNA,

protein and drug delivery

Date: September 8, 2017 (Friday)

Time: 4:30 p.m.

Venue: L1

Science Centre

The Chinese University of Hong Kong Department of Chemistry

Research Seminar Series

Speaker: Professor Jye-Shane Yang

Department of Chemistry

National Taiwan University

Title: Mechanochromic Luminescent Materials for

Multicolor Fluorescence Drawing and

Sensing

Date: September 12, 2017 (Tuesday)

Time: 2:30 p.m.

Venue: Room 101

Liang Y. C. Hall (潤昌堂)

The Chinese University of Hong Kong Department of Chemistry

Research Seminar Series

Speaker: Prof. Yufen Zhao

Department of Chemical Biology

Xiamen University

Title: Phosphorous Chemistry and Evolution of

Biological Molecules

Date: September 22, 2017 (Friday)

Time: 4:30 p.m.

Venue:

Science Centre

रू उद रू

The Chinese University of Hong Kong Department of Chemistry Research Seminar Series

Speaker: Prof. Stefan A. F. Bon

Department of Chemistry
The University of Warwick

Title: Dynamic Supracolloidal Engineered Materials

<< Abstract >>

In this talk we will highlight a selection of our latest research on dynamic materials made from colloidal building blocks.

We will discuss the fabrication of catalytic matchstick-shaped particles and their chemotactic "swimming" behaviour when placed in a liquid containing a fuel. We will use catalysis to "shake" colloidal particles that are part of a vesicular membrane hereby tailoring permeability to allow temporary control of release.

We will show the fabrication of hydrogel-based fibers using emulsion droplets as building blocks. We will demonstrate that we can tailor their response behaviour and storage/release characteristics. This will be extended using the concept of an outer protective membrane which allows us to program rupture-based droplet release dynamics.

Finally we will show that hydrogel objects in the form of beads, fibers, and other shapes can be programmed and communicate with time and space as key parameters and colour changes and/or hydrogel disintegration as response outputs.

Date: September 29, 2017 (Friday)

Time: 4:30 p.m.

Venue: L1, Science Centre

