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The DNA methylome of cervical cells can predict
the presence of ovarian cancer
James E. Barrett1,2,3, Allison Jones3, Iona Evans3, Daniel Reisel3, Chiara Herzog 1,2, Kantaraja Chindera3,

Mark Kristiansen4, Olivia C. Leavy 5,6, Ranjit Manchanda7,8,9, Line Bjørge10,11, Michal Zikan12,13,

David Cibula 13 & Martin Widschwendter1,2,3,14✉

The vast majority of epithelial ovarian cancer arises from tissues that are embryologically

derived from the Müllerian Duct. Here, we demonstrate that a DNA methylation signature in

easy-to-access Müllerian Duct-derived cervical cells from women with and without ovarian

cancer (i.e. referred to as the Women’s risk IDentification for Ovarian Cancer index or WID-

OC-index) is capable of identifying women with an ovarian cancer in the absence of tumour

DNA with an AUC of 0.76 and women with an endometrial cancer with an AUC of 0.81. This

and the observation that the cervical cell WID-OC-index mimics the epigenetic program of

those cells at risk of becoming cancerous in BRCA1/2 germline mutation carriers (i.e.

mammary epithelium, fallopian tube fimbriae, prostate) further suggest that the epigenetic

misprogramming of cervical cells is an indicator for cancer predisposition. This concept has

the potential to advance the field of risk-stratified cancer screening and prevention.
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Epithelial ovarian cancer is by far the most common cause of
gynaecological cancer-associated death1. To address this,
the biggest challenge faced has been to identify the group of

women at the highest risk of developing this devastating disease
for which measures to diagnose early and/or prevent the disease
can be offered. Currently, the best performing model has used a
combination of single nucleotide polymorphisms (SNPs) as well
as a large number of epidemiological parameters and has
achieved a Receiver Operating Characteristic (ROC) Area Under
the Curve (AUC) of 0.66 in an internal validation set2. Recent
data show that women with the highest and lowest 5% of the
resulting polygenic risk score (PRS) have a 2.8% and a 0.9% risk
of developing ovarian cancer until 80 years of age (the general
risk for ovarian cancer in this population was 1.86%)3. Several
other risk models using up to 214 combinations of various genetic
and non-genetic risk/protective factors have been developed4,5.
Hence, there is a clear need to improve upon the identification of
women at risk of developing ovarian cancer in order to offer
women at high risk those strategies which have been shown to
detect ovarian cancer earlier6,7 or target preventative measures
including removal of the fallopian tubes, the organ from which
the majority of ovarian cancers originate8.

Recent evidence has shown that an assay which combines
testing somatic mutations and aneuploidy in cervical brush
samples is capable of identifying 33% of women presenting with
ovarian cancer (although the majority of these women have
advanced stage III/IV cancers)9. In this study, which aimed to
detect tumour DNA, the average age of cases and controls was 58
and 34 years, respectively. The reported observations of a high
allele frequency of pathogenic driver mutations in DNA from
non-malignant normal uterine tissue with increasing age10–13

compromises the results of this test and makes it impossible to
judge the true specificity of the test.

Epigenetic (i.e. DNA methylation, DNAme) changes have been
identified in normal fimbriae from women with BRCA1/2
germline mutations14 and could potentially serve as surrogate
markers for both genetic and non-genetic factors including life-
style, reproductive, and environmental exposures contributing to
ovarian cancer development15. A number of proof of principle
studies, so far performed exclusively in blood, have demonstrated
that certain DNAme changes are associated with ovarian cancer
predisposition16–18. Sample heterogeneity and the choice of sur-
rogate tissue (i.e. tissue which is both easy to access and best
reflects the tissue at risk) are among the most important factors
impeding clinical implementation19.

The vast majority of epithelial ovarian cancers arise from
structures derived from the Müllerian Duct and includes the
fallopian tube and endosalpingiosis, endometriosis, and endo-
cervicosis, representing non-neoplastic counterparts of serous,
endometrioid/clear cell, and mucinous ovarian carcinomas,
respectively20.

Here we assess whether DNAme profiles, derived from cervical
smear samples that contain hormone sensitive epithelial cells
capable of recording ovarian cancer-predisposing factors at the
level of the epigenome19 and arising from the Müllerian Duct, are
capable of identifying women with primary epithelial ovarian
cancer. We take particular care to demonstrate that the DNAme
profiles originate from the normal cervical sample and are not
driven by tumour DNA.

We perform an epigenome-wide DNAme analysis in cervical
smear samples from women who were subsequently diagnosed
with ovarian cancer, and in matched controls (i.e. the Discovery
Set), and establish/validate the WID-OC-index (Women’s risk
IDentification for Ovarian Cancer index) which we then further
validate in an independent set of cervical samples (i.e. External
Validation Set). We establish that the WID-OC signature is not

driven by tumour DNA, is high in healthy women with a BRCA1
mutation as well as in women with poor prognostic breast cancer
and furthermore has a very high sensitivity and specificity for
identifying women with endometrial cancer, which like ovarian
cancer also arises from Müllerian Duct epithelial cells. In addi-
tion, we assess the WID-OC-index in normal fimbrial and high-
grade serous tissue and cell lines, and in a large range of tissue
samples, and find that the WID-OC-index is significantly asso-
ciated with those tissues that show a high rate of BRCA-1/2
germline-mediated cancer formation.

Results
For the Discovery Set (Supplementary Fig. 1), we collected sam-
ples from 242 women with ovarian cancers from 15 European
centres before a definitive histological diagnosis was undertaken
(either during surgery or via a percutaneous biopsy) and 869
women without a cancer (593 from the general population and
276 from women attending hospital for benign women-specific
conditions) (Supplementary Table 1; samples from a greater
proportion of younger women were deliberately used in the dis-
covery set in order to develop a risk predictor which was also
applicable to younger women; the external validation set was
composed of age-matched cases and controls). Epigenome-wide
DNAme was analysed using an Illumina Infinium EPIC bead chip
array that encompasses over 850,000 CpG sites21.

Sample heterogeneity and differential methylation. We assessed
the number of CpGs, which were significantly differentially
methylated between cancer cases and controls (Fig. 1a); after
Bonferroni multiple test adjustment, 91 CpGs showed sig-
nificantly differential methylation (Supplementary Table 2).
Previously, we found that methylation differences may vary due
to immune cell-type composition in cases compared to controls22.
Hence, we assessed the level of cell type heterogeneity in each
cervical smear sample using HEpiDISH23, an algorithm that
infers the relative proportion of epithelial cells, fibroblasts, and
seven subtypes of immune cells (IC) in each sample. The cell-type
distributions were broadly similar between cancer cases and
controls although there was a significantly greater proportion of
epithelial cells in cancer cases (Fig. 1b; this remained significant
after adjusting for age and menopausal status). A similar trend
was observed in the external validation dataset but was not sig-
nificant (Supplementary Fig. 2a).

Identification of CpGs with differential methylation between
cases and controls was hampered by contaminating ICs, since any
differential methylation in epithelial cells was greatly diminished
in samples with high IC. In order to infer which CpGs may
contain a potential discriminatory signal we developed a
statistical protocol to estimate the delta-beta (i.e. difference in
mean proportion of methylated cells) between cases and controls
in epithelial and immune cells. We linearly regressed beta values
on IC fraction in both cases and controls separately. The
difference between the two points where these lines intercept the
y-axis at IC= 0 gives an estimate of the delta-beta between cases
and controls in pure epithelial cells (Fig. 1c). Conversely, the
difference between intercept points at the IC= 1 axis gives a
delta-beta estimate in immune cells.

Development of discriminatory index. In order to derive a
diagnostic methylation signature, i.e. the WID-OC-index, we
used ridge and lasso regression to classify individuals as cases or
controls. Classifiers were trained on two thirds of the discovery
dataset (572 cancer-free controls, 159 ovarian cancer cases) and
the remaining one third was used as an internal validation set
(297 controls, 83 cases) with the intention of evaluating their
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Fig. 1 Sample heterogeneity, differential methylation, and development of discriminatory index. a Distribution of p-values obtained by comparing cases
and controls at each CpG site and after controlling for immune cell proportion and age. b The distribution of different cell types in the discovery dataset
inferred using the EpiDISH algorithm. p-values were computed using a two-tailed Mann–Whitney test. For indicated significant differences, exact p-
values= 0.00014 (epithelial), <0.0001 (neutrophil), <0.0001 (fibroblast), <0.0001 (eosinophil). The centre line of each box corresponds to the median.
The lower and upper hinges correspond to the first and third quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 *
IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to
the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are plotted individually. c An example of a CpG with epithelial
specific differential methylation. d Area under the curve (AUC) values in the internal validation set as a function of the number of CpGs used to train the
classifier. e ROC curves of the WID-OC-index in the internal validation set for samples with an immune cell (IC) proportion ≤0.5 and >0.5. f Distribution of
the WID-OC-index with respect to immune cell proportion in the internal validation set. g Distribution of the estimated variance in epithelial and immune
cells across all CpGs used in the WID-OC- index. h Odds ratios corresponding to the four genomic regions when comparing the CpGs used in the WID-
OC-index to the overall EPIC array. Error bars correspond to 95% confidence intervals computed using the median-unbiased estimation method. For
indicated significant differences, all exact p values <0.0001. i AUC values in the internal validation set after training classifiers on different subsets of the
CpGs used in the WID-OC-index. The top n CpGs were either retained or removed. CpGs were also split into separate bins of size 500. Source data are
provided as a Source Data file.
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performance as a function of the number of CpGs used to con-
struct the index (Supplementary Fig. 1). The area under the
receiver operator characteristic curve (AUC) was used as a
measure of predictive performance. CpGs were ranked according
to their epithelial delta-beta.

Predictive performance was evaluated as a function of the
number of CpGs used to train the classifier using the internal
validation dataset and an optimal performance of 0.78 (95% CI:
0.72–0.84) was achieved using 14,000 CpGs (Supplementary
Data 1) with ridge regression (Fig. 1d; i.e. the WID-OC-index is
defined as a linear combination of these 14,000 beta values). In
samples with an immune cell proportion ≤0.5 the AUC was 0.82
(Fig. 1e; 95% CI: 0.75–0.88), and in those with a proportion >0.5
the AUC was 0.71 (95% CI: 0.60–0.82). The WID-OC-index was
not associated with IC fraction in controls (Fig. 1f, linear
regression coefficients of 0.03, p= 0.81), but a strong negative
association was observed in cancer cases (linear regression
coefficient of −0.76, p-value= 0.005). Classifiers were also
developed after ranking CpGs according to immune delta-betas
and a combined ranking based on both epithelial and immune
delta-betas but these approaches offered inferior performance.

We developed a statistical model to infer the variance in
epithelial and immune cells at each of the 14,000 CpG sites used in
the WID-OC-index, and classified each CpG as “epithelial”
(92.4%), “shared” (7.1%), or “immune” (0.5%) as shown in Fig. 1g.
These findings suggest that the discriminatory signal originates
primarily in epithelial cells and the discriminatory power is
diminished in samples with higher levels of immune cells.

We found that the index was highly depleted of CpG islands
and enriched for Open Sea regions (Fig. 1h). Ridge regression
combines information from all input CpGs in contrast to lasso
regression, which typically selects a small subset of inputs. Ridge
regression offered consistently superior performance suggesting
that the discriminatory signal is most robustly extracted by
combining a large number of comparatively weak signals from
multiple CpG sites. We ranked the 14,000 CpGs used to define
the WID-OC-index according to the absolute value of the
regression coefficients from the ridge model. In order to assess
how informative the top CpG sites are we trained sub-classifiers
on the top n sites (Fig. 1i). We observed that AUCs of 0.74 and
0.76 could be achieved with the top 500 and 3,000 CpGs,
respectively, indicating that these subsets are particularly
informative. We also trained sub-classifiers after removing the
top n CpGs, and on subsets of 500 CpGs after partitioning the
ranked list into bins of size 500. In both cases, we found that a
substantial predictive signal is present. These observations suggest
that the predictive signal is widely distributed among Open Sea
CpGs with a high degree of redundancy.

External validation. A separate independent external validation
dataset consisting of 47 ovarian cancer cases and 225 controls was
used to validate the index performance (Supplementary Fig. 1).
The WID-OC-index was computed for each woman (Fig. 2a)
resulting in an overall AUC of 0.76 (95% CI: 0.68–0.84), with the
AUC being 0.77 (95% CI: 0.67–0.88) and 0.75 (95% CI:
0.63–0.87) for IC ≤ 0.5 and >0.5 samples, respectively (Fig. 2b).

The vast majority of ovarian cancers arise from the fallopian
tube—a part of the Müllerian Duct system. In order to assess
whether the WID-OC-index reflects cancer predisposition of
other parts of the Müllerian Duct such as the endometrium, we
assessed its performance to discriminate women with and without
endometrial cancer. Analysing 217 cervical samples from women
with endometrial cancer, and the 297 control samples from the
ovarian cancer internal validation set, we obtained an AUC of
0.90 (95% CI: 0.88–0.93; Fig. 2c, d).

To further assess the risk predictive nature of the WID-OC-
index we analysed 329 cervical samples from women with
primary breast cancers with poor prognosis features (defined as
>2 cm cancers and/or lymph-node positive and/or hormone-
receptor negative and/or grade 3) and the 297 control samples
from the ovarian cancer internal validation set. We obtained an
AUC of 0.68 (95% CI: 0.64–0.72; Fig. 2e, f). The ability of the
WID-OC-index to discriminate between healthy controls and
women with an anatomically distant cancer supports the
interpretation that the index reflects cancer predisposition rather
than a diagnostic signal based on tumour DNA.

In order to assess whether the WID-OC-index is also
informative in healthy women who are known to have an
extremely high probability of developing ovarian cancer in the
future, we analysed a separate dataset consisting of cervical smear
samples from 57 healthy BRCA1 mutation carriers (who have an
up to 40 fold increased cancer risk24) and 114 BRCA1/2 wild-type
controls (Fig. 2g). We observed an AUC of 0.62 (95% CI:
0.52–0.71; Fig. 2h) overall with an AUC of 0.61 (95% CI:
0.48–0.74) and 0.65 (95% CI: 0.52–0.78) for IC ≤ 0.5 and
>0.5 samples, respectively. We also analysed 53 women with a
BRCA2 mutation and found that the discriminatory performance
was poorer (0.54; 95% CI: 0.45–0.64; Supplementary Fig. 3).

For each of our validation datasets we computed odds ratios
corresponding to quartiles defined on the internal validation
dataset (Table 1). We also computed the specificities and
sensitivities in different age groups at different cutoffs (Supple-
mentary Table 3). The cell-type composition of the four
validation datasets described was broadly similar to the discovery
dataset used to develop the index and did not show any
significant differences between cases and controls (Supplementary
Fig. 2).

Association with epidemiological, clinical, and technical fac-
tors. We investigated the relationship between the WID-OC-
index and various epidemiological and clinical variables. A sta-
tistically significant association was found between the WID-OC-
index and age in controls (correlation= 0.52, p= 10−37;
Fig. 3a), which resulted in a slightly better performance of the
index in younger women (Fig. 3b). The Illumina 650k Infinium
Global Screening Array was used to genotype matched blood
samples from a subset of 74 cases and 255 controls in our internal
validation dataset. We computed a polygenic risk score (PRS;
described in methods; Supplementary Table 4) for ovarian cancer
prediction. We found a correlation close to zero (−0.04, p= 0.48)
between the PRS and the WID-OC-index (Fig. 3c) and the PRS
was not predictive in this set (Fig. 3d). We compared the different
cancer histologies and interestingly found a significant and pro-
gressive decrease of the WID-OC-index according to the long-
itudinal anatomy of the Müllerian Duct [i.e. fallopian tube
(serous), endometrium (clear cell and endometrioid), and endo-
cervix (mucinous)] (Fig. 3e). The WID-OC-index was sig-
nificantly higher in stage III/IV cancers compared to stage I/II
cancers (Fig. 3f). No significant association in controls was found
between the WID-OC-index and family history (Supplementary
Fig. 4a), age at menarche (Supplementary Fig. 4b), oral contra-
ceptive pill use (Supplementary Fig. 4c), or ethnicity (Supple-
mentary Fig. 4d). We observed a trend of increasing WID-OC-
index values with respect to age at menopause (Supplementary
Fig. 4e; linear regression p-value= 0.01), and parity in post-
menopausal women (Supplementary Fig. 4f; linear regression not
significant).

We investigated whether any association existed between the
WID-OC-index and various technical parameters including date
of sample processing, plate number (samples were processed on
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96 sample plates), and sentrix position but no significant
associations were found. We compared the 593 control samples
from healthy volunteers to 276 control samples taken from
women presenting with benign women-specific conditions but
did not find any significant differences (Supplementary Fig. 5a).
We also observed no significant dependence on the time from
sample collection to DNA extraction (Supplementary Fig. 5b).

The performance of the WID-OC-index to discriminate between
healthy controls and women with ovarian, endometrial, or breast
cancer was highly consistent across different study centres
(Fig. S5c–e).

CA-125 data on 48 samples (40 cancers and 8 controls) from
the internal and external dataset had a non-significant correlation
of 0.14 (p= 0.35) with the WID-OC-index.
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Fig. 2 External validation. a The WID-OC-index versus immune cell proportion in an independent external validation set. b ROC curve from the external
validation set. c The WID-OC-index versus immune cell proportion in a separate cohort of endometrial cancer samples and the same control samples from
the internal validation set. d ROC curve from the endometrial cancer dataset. e The WID- OC-index versus immune cell proportion in a separate cohort of
breast cancer samples and the same control samples from the internal validation set. f ROC curve from the breast cancer dataset. g The WID-OC-index
versus immune cell proportion in an independent cohort of BRCA1 mutation carriers. h ROC curve from the BRCA1 dataset. Source data are provided as a
Source Data file.
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Inferred proportion of tumour DNA. Due to the anatomical
proximity between the cancer (i.e. ovary/fallopian tube) and the
area from which the sample was taken (i.e. cervix), we investi-
gated whether the signal, which discriminates between a case and
a control, is driven by tumour DNA draining from the peritoneal
cavity via the fallopian tube and the uterus to the cervix or
whether the signal is a generic risk signal retained in cervical
epithelial cells. We used 11 epithelial, 7 fibroblast, 42 immune
cell, and 11 high-grade serous ovarian carcinoma (HGSOC) cell
line samples (Supplementary Table 5) in order to develop a new
reference panel for use with the EpiDISH algorithm (see Meth-
ods). For each sample, we obtained estimates of the proportion of
DNA from each of the four cell types. We observed that the
proportion of tumour DNA in both cases and controls is close to
zero, with the exception of two cases that were composed of
approximately 50% tumour DNA (Fig. 4a).

We used 9 endometrial cancer samples to derive an additional
EpiDISH reference panel to infer the proportion of tumour DNA
in samples from women with endometrial cancer. We found a
substantial level of contaminating tumour DNA with 43% of
samples from women with cancer containing >10% tumour DNA
(Fig. 4b). Importantly, we found that the WID-OC-index
discriminated between cases and controls in samples with no
tumour DNA (Fig. 4c). In 229 controls and 41 cases with a
tumour DNA proportion <1% the AUC was 0.81 (95% CI:
0.74–0.89; Fig. 4d).

In order to assess further the absence of tumour DNA in the
cervical smear samples we used MethyLight, a real time PCR-
based method, to amplify methylated ZNF154, a pan-cancer

marker primarily discovered in ovarian cancer25,26. We detected a
strong signal in cervical smear samples from 20 endometrial
cancer cases but not from 20 ovarian cancer patients or 20
cancer-free women (Fig. 4e), providing further evidence that the
signal in cancer patients is not driven by tumour DNA.

We performed a copy number variation (CNV) analysis of the
cervical samples based on EPIC array data using the conumee R
package27. We found that samples with a high inferred tumour
DNA had a CNV profile very similar to the CNV profiles of
HGSOC samples (Supplementary Fig. 6a, b). In contrast, samples
with no inferred tumour DNA had completely normal CNV
profiles (Supplementary Fig. 6c). The median and standard
deviation of the estimated copy number per genomic bin in
cervical samples was close to zero, consistent with our estimation
that almost all of these samples contain no tumour DNA
(Supplementary Fig. 6d, e). The standard deviation of the
estimated copy number correlated strongly with estimated
tumour DNA fraction (Supplementary Fig. 6f). These findings
suggest that the estimated genomic copy number profiles are
highly consistent with the inferred tumour DNA proportion.

Finally, we performed an in silico experiment to estimate how
much contaminating tumour DNA would be required to explain
the observed difference between cases and controls in the internal
validation dataset (the mean value of the index in cases was
1.25 standard deviations higher than the mean in controls). We
numerically simulated a mixture of beta values from a HGSOC
cell line sample and the 144 control samples with an immune cell
proportion <0.5 in the internal validation set. We estimated that
we would need approximately 25% tumour DNA in order to

Table 1 Odds ratios corresponding to quartiles defined using the internal validation ovarian cancer dataset.

Quartile Control (N= 297) Internal validation ovarian cancer
(N= 83)

Unadjusted OR (95% CI) Adjusted OR (95% CI)

(−2.38, −0.57) 75 3 1.00 (reference) 1.00 (reference)
(−0.57, −0.21) 74 10 3.25 (0.93,15.68) 2.38 (0.56, 12.99)
(−0.21, 0.17) 74 13 4.20 (1.27,19.79) 3.65 (0.87, 19.42)
(0.17, 2.21) 74 57 18.20 (6.33,79.95) 10.26 (2.89, 49.1)

Quartile Control (N= 225) External validation ovarian cancer
(N= 47)

Unadjusted OR (95% CI) Adjusted OR (95% CI)

(−2.38, −0.57) 59 2 1.00 (reference) 1.00 (reference)
(−0.57, −0.21) 57 6 2.94 (0.62,22.94) 4.88 (0.85, 41.76)
(−0.21, 0.17) 49 6 3.42 (0.72,26.71) 4.57 (0.77, 40.12)
(0.17, 2.21) 60 33 14.99 (4.26,103.18) 26.25 (5.89, 194.92)

Quartile Control (N= 297) Endometrial cancer (N= 217) Unadjusted OR (95% CI) Adjusted OR (95% CI)
(−2.38, −0.57) 75 4 1.00 (reference) 1.00 (reference)
(−0.57, −0.21) 74 6 1.50 (0.4,6.32) 0.72 (0.17, 3.26)
(−0.21, 0.17) 74 15 3.68 (1.25,13.77) 0.92 (0.24, 3.92)
(0.17, 2.21) 74 192 46.44 (18.41,159.14) 11.20 (3.91, 40.51)

Quartile Control (N= 297) Breast cancer (N= 329) Unadjusted OR (95% CI) Adjusted OR (95% CI)
(−2.38, −0.57) 75 28 1.00 (reference) 1.00 (reference)
(−0.57, −0.21) 74 49 1.77 (1.01,3.14) 1.50 (0.83, 2.76)
(−0.21, 0.17) 74 91 3.27 (1.94,5.64) 2.30 (1.29, 4.14)
(0.17, 2.21) 74 161 5.78 (3.49,9.8) 5.27 (2.91, 9.78)

Quartile Control (N= 114) BRCA1 cases (N= 87) Unadjusted OR (95% CI) Adjusted OR (95% CI)
(−2.38, −0.57) 41 12 1.00 (reference) 1.00 (reference)
(−0.57, −0.21) 26 15 1.95 (0.79,4.95) 1.66 (0.64, 4.31)
(−0.21, 0.17) 31 12 1.32 (0.51,3.39) 1.20 (0.42, 3.4)
(0.17, 2.21) 16 18 3.76 (1.49,9.88) 2.59 (0.84, 8.08)

Adjustment was based on a logistic regression model with age, menopausal status, age at menarche, number of first degree relatives with ovarian cancer, and BMI included as covariates for the ovarian
cancer datasets. For endometrial cancers and the BRCA1 dataset age and menopause were included as covariates. For the endometrial cancers adjusted estimates are unavailable as the logistic regression
model failed to converge. In addition, it was assumed that there was 1 cancer case in the first quartile in order to estimate ORs for the remaining quartiles.
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observe a comparable difference to what was in fact observed
(Supplementary Fig. 7a). Taken together these findings strongly
suggest that the WID-OC-index does not depend on tumour by-
products, and is instead based on the local cervical epigenome.
This is also consistent with the detection of women with breast
cancer, where anatomical distance precludes the presence of
tumour material.

Functional assessment of the WID-OC-index. In order to eval-
uate further the nature and meaning of the DNAme signature
which forms the WID-OC-index we calculated the index in the
fimbriae of the fallopian tube, the organ from which the vast
majority of ovarian cancers arise and which originates from the
Müllerian Duct, the embryological structure which also gives rise to
the cervix. Since the fimbrial tissue contains a heterogenous set of
various cells, we isolated and cultured pure fimbrial cells (without
any modification, see Methods) from surgical specimens. Interest-
ingly, the WID-OC-index was comparatively high in the normal
fimbrial cells (Fig. 4f). Two cancer cell lines had higher WID-OC-
index values compared to both the cervix-based WID-OC-index
and the fimbrial cells. The observation that the discriminatory

DNAme signature observed in the cervixes of ovarian cancer
patients is more pronounced in the fallopian tube is suggestive of an
epigenetic field defect in which DNAme patterns in the cervix
resemble the epigenome of the cell of origin, the fallopian tube.

In order to assess additionally whether the WID-OC-index is
reflective of a cell-specific program we analysed all ENCODE28

samples for which EPIC array data were available (Supplementary
Table 6). We ranked and plotted the WID-OC-index in all
primary cell samples and in vitro differentiated cell samples
(Supplementary Fig. 8). We observed that those tissues at the
highest risk of becoming cancerous in BRCA carriers—such as
fallopian tube, breast, pancreas, and prostate—had the highest
WID-OC-index. In order to quantify this observation, we
correlated the proportion of cancers per organ which arise in
BRCA1 and BRCA2 mutation carriers29 with the WID-OC-index
of the respective normal tissue and found correlations of 0.23
(p= 0.22) and 0.43 (p= 0.019) in BRCA1- and BRCA2-driven
cancers, respectively (Fig. 4g, h).

Finally, a gene set enrichment analysis was performed using the
Broad Institute’s Molecular Signatures database but no signifi-
cantly enriched pathways were detected (Supplementary Table 7).
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Discussion
To date, the best performing ovarian cancer risk prediction model
which incorporates 17 established epidemiologic risk factors and
17 genome-wide significant SNPs using data from 11
case–control studies provided an AUC of 0.66. Here we
demonstrate that the WID-OC-index—an index that is purely

based on a DNAme signature in cervical smear samples—can
predict ovarian cancer risk with an AUC of 0.76. We did not
observe a striking association between the WID-OC-index and
any of the known epidemiological risk factors for ovarian cancer
(apart from age and a BRCA1 germline mutation), and neither
did we find any evidence that the WID-OC-index is triggered by
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tumour DNA draining from the peritoneal cavity via the uterine
cavity and detected by the cervical smear. The absence of
detectable tumour DNA, in conjunction with our in silico
simulations which suggest that approximately 25% tumour DNA
contamination would be required to account for the magnitude of
the signal we have observed, imply that the index is based on
cervical epigenetic profiles rather than tumour by-products.

Therefore, we speculate that the striking ovarian cancer risk
reflected by the WID-OC-index is due to an epigenetic Müllerian
Duct differentiation defect assessed at the level of the uterine
cervix (a part of the Müllerian Duct) using a DNAme signature.
Several lines of evidence support this proposal: (i) the WID-OC-
index is high in fallopian tube fimbrial cells and reflective of
organs that are at high risk of a BRCA-mediated cancer; (ii) the
index also identifies women with other cancers despite the
absence of tumour DNA arising from the Müllerian Duct (i.e.
endometrial cancer); (iii) HOXA 9, 10, and 11 genes regulate the
differentiation of the Müllerian Duct into fallopian tube, uterus,
and cervix, respectively, and given that serous, clear cell/endo-
metrioid, and mucinous cancers express these genes differentially,
may reflect their origin30. The fact that we observe a decrease of
the WID-OC-index from serous to clear cell/endometrioid to
mucinous cancers again suggests a “shift” of epigenetic differ-
entiation (i.e. differentiation of fallopian tube reflected in cervical
epithelial cells) predisposes individuals to ovarian cancer forma-
tion; (iv) given that the index is more discriminatory in samples
with a high epithelial cell content and that the index almost
exclusively consists of CpGs, which are highly variable in epi-
thelial but not in immune cells, attests to this. The fact that the
WID-OC-index also identifies women with breast cancer sup-
ports the clinically well-known link between breast and ovarian
cancer predisposition31 and again testifies that the index derived
in cervical liquid-based cytology samples is not driven by
tumour DNA.

Whether the WID-OC-index can identify women at risk of
developing future ovarian cancer will have to be assessed by
studying population-based cervical samples (from within a cer-
vical screening cohort) and linked to cancer-registries; establish-
ing such a biobank of samples stored as a pellet at −80 °C and
waiting until a sufficiently large number of donors have devel-
oped ovarian cancer will take some time.

The WID-OC-index requires assessment of a relatively large
number of CpGs. Whether the number of regions required to
assess the WID-OC-index by assessing CpGs within the neigh-
bourhood of the index CpGs (i.e. using target sequencing or real-
time PCR) is able to achieve a similar performance will need to be
studied.

Currently, 75% of ovarian cancers are picked up at an
advanced stage where the tumour has spread within the entire
abdominal cavity and beyond1. The WID-OC test identifies
71.4% and 54.5% of <50 and ≥50 year old ovarian cancer patients
with a specificity of 75%. Further clinical studies will demonstrate
whether women identified to have a high WID-OC-index (e.g.
highest 25%) would benefit from regular screening using cell-free
DNA and/or advanced imaging technologies.

Overall, we provide considerable evidence that an epigenetic
differentiation defect in these easy-to-access epithelial samples is
strongly associated with cancer risk.

Methods
Study design and epidemiological data acquisition. The study was conducted as
part of a multi-centre study involving several recruitment sites in five European
countries (i.e. the UK, Czech Republic, Italy, Norway, and Germany). Women over
the age of 18 were eligible to participate in the study who had not undergone a
previous hysterectomy, had not received treatment (within 2 years of recruitment)
for a non-gynaecological cancer, were not pregnant or menstruating at the time of

recruitment, and had not undergone a cervical smear in the last 12 weeks. Prior to
taking part, each prospective study volunteer was given a Participant Information
Sheet as well as a Consent Form and the rationale for the study was explained.
Additional resources, including an explanatory video and further online resources,
were also made available. Women diagnosed with ovarian or endometrial cancer
(case) or a non-malignant benign gynaecological condition (control) were
approached during outpatient hospital clinics, while women recruited with a
documented BRCA1 or BRCA2 mutation or as healthy volunteers from the general
population (control) were approached via outreach campaigns, public engagement,
and as part of cervical screening programmes. After signing an informed consent,
participants completed an epidemiological questionnaire as well as a feedback form
after their participation. The study itself is a sub-study of the FORECEE (4 C)
Programme, which has ethical approval from the UK Health Research Authority
(REC 14/LO/1633).

The epidemiological survey was administered via the Qualtrics web-based
survey application on dedicated iPads. The survey contained questions relating to
current and historical health habits, relevant risk factors, as well as obtaining a
thorough medical and obstetric history. Cervical samples were collected at
appropriate clinical venues by trained staff and the cervical smears were carried out
by a small group of research midwives or physicians with a view to establishing
standard practice.

Biological samples and survey data were pseudo-anonymised using a
participant study number. Each recruitment site maintained a securely stored file
linking personal identifiers to the study number. Following sample taking, an email
survey was sent to each participant, enabling them to feedback with respect to the
recruitment process. Women with a current diagnosis of (a) primary malignant
ovarian cancer of high grade serous, endometrioid, mucinous or clear cell
morphology or (b) endometrial cancer with poor prognostic features
(endometrioid, serous or clear cell morphology of Grade III and/or stage > IB) and
recruited prior to receiving any systemic chemotherapy treatment or surgery or
radiotherapy were eligible as ovarian or endometrial cancer cases. Cancer
histological data was collected post-recruitment either by clinicians directly
involved in the diagnosis/treatment of the cancer cases or by a nominated data
manager with access to the in-house hospital systems.

Cervical smear sample collection. Cervical smears were taken at collaborating
hospitals and recruitment centres using the ThinPrep system (Hologic Inc., cat
#70098-002). Cervical cells were sampled from the cervix using a cervix brush
(Rovers Medical Devices, cat #70671-001) which was rotated 5 times through 360
degrees whilst in contact with the cervix to maximise cell sampling. The brush was
removed from the vagina and immersed in a ThinPrep vial containing Preservecyt
fluid and then pushed against the bottom of the vial 10 times in order to facilitate
release of the cells from the brush into the solution. The sample vial was sealed and
stored locally at room temperature.

Primary fallopian tube secretory epithelial cell culture. Patients undergoing a
salpingectomy at University College London Hospitals (UCLH), provided a written
informed consent in order to donate fallopian tube tissue surplus to diagnostic
requirements following UCL ethical guidelines (samples were collected under the
NRES Committee London—Surrey Borders Research Ethics Committee approval;
14/LO/1633). Fimbrial fallopian tube secretory epithelial cells were isolated and
cultured. Briefly, fimbrial tissues were carefully excised by an experienced
pathologist, macerated, and digested in a dissociation medium (0.05% collagenase
and 0.01% DNase in DMEM) for 48 h at 4 °C. Cells were harvested by cen-
trifugation, resuspended in DMEM/F-12 supplemented with 2% Ultroser G (Pall
Corporation, France) and 1% penicillin-streptomycin, and transferred into a tissue
culture flask. Cells were phenotyped: firstly by determining mRNA expression of
PAX8 (Müllerian marker) and Cytokeratin 7 (CK7, epithelial marker) using
quantitative PCR; and secondly by immunofluorescent staining. All experiments
were performed before the cells started to senesce and all FT cells were used
without modification (such as hTERT or SV40T antigen immortalisation) in order
to enhance self-renewal.

Sample processing and DNA extraction. When preparing for sample storage in
the laboratory, cervical smear samples were poured into 50ml falcon tubes and left to
sediment at room temperature for 2 h. 1 mL wide bore tips were then used to transfer
the enriched cellular sediment into a 2mL vial. The cervical sediments were washed
twice with PBS, lysed, and stored temporarily at −20 °C ahead of extraction. For
ovarian tissues, DNA was extracted from 30mg of tissue using the AllPrep DNA/
RNA Mini Kit (#80204, Qiagen Ltd), following the manufacturer’s protocol. DNA
concentration and quality absorbance ratios were measured using Nanodrop-8000,
Thermoscientific Inc. Extracted DNA was stored at −80 °C until further analysis.

DNA methylation array analysis. Cervical, and fallopian tube and ovarian cancer
cell line DNA was normalised to 25 ng/µl and 500 ng total DNA was bisulfite
modified using the EZ-96 DNA Methylation-Lightning kit (Zymo Research Corp,
cat #D5047) on the Hamilton Star Liquid handling platform. 8 µl of modified DNA
was subjected to methylation analysis on the Illumina InfiniumMethylation EPIC

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26615-y ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:448 | https://doi.org/10.1038/s41467-021-26615-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


BeadChip (Illumina, CA, USA) at UCL Genomics according to the manufacturer’s
standard protocol.

Real-time PCR analysis. MethyLight, a quantitative PCR analysis specific to
bisulfite converted DNA, was performed on cervical smear samples from 20
endometrial cancer patients, 20 ovarian cancer patients, and 20 controls collected
as part of the FORECEE project. Primers and probes specific to ZNF154 were used
(Supplementary Table 8). Ct values of the target reaction were normalised for DNA
concentration using a reference gene reaction against COL2A1 (Supplementary
Table 8). Specificity of the reactions for methylated DNA was confirmed separately
using SssI‐treated fully methylated human white blood cell DNA. The percentage
of fully methylated molecules at a specific locus was calculated by dividing the
ZNF154:COL2A1 ratio of a sample by the ZNF154:COL2A1 ratio of the SssI‐treated
human white blood cell DNA and multiplied by 100. Results are expressed as
‘PMR’ (percentage of methylated ref. 32).

Processing of the DNA methylation data. All methylation microarray data were
processed through the same standardised pipeline. Raw data was loaded using the
R package minfi. Any samples with median methylated and unmethylated inten-
sities <9.5 were removed. Any probes with a detection p-value > 0.01 were regarded
as failed. Any samples with >10% failed probes, and any probes with > 10% failure
rate were removed from the dataset. Beta values from failed probes (approximately
0.001% of the dataset) were imputed using the impute.knn function as part of the
impute R package.

Non-CpG probes (2,932), SNP-related probes as identified by Zhou et al.33

(82,108), and chrY probes were removed from the dataset. An additional 6,102
previously identified probes that followed a trimodal methylation pattern
characteristic (unpublished data) of an underlying SNP were removed.

Background intensity correction and dye bias correction was performed using
the minfi single sample preprocessNoob function. Probe bias correction was
performed using the beta mixture quantile normalisation (BMIQ) algorithm.

The fraction of immune cell contamination, and the relative proportions of
different immune cell subtypes in each sample, were estimated using the EpiDISH
algorithm using the epithelial, fibroblast, and immune cell reference dataset. The
top 1,000 most variable probes (ranked by standard deviation) were used in a
principal component analysis. Statistical tests were performed in order to identify
any anomalous associations between plate, sentrix position, date of array
processing, date of DNA creation, study centre, immune contamination fraction,
age, type (case versus control), and the top ten principal components. Finally, two-
thirds of the discovery dataset was randomly selected for use as the training dataset
and the remaining third was allocated to the internal validation dataset. This split
was carried out once, and the same training and validation sets were used in all
subsequent analyses.

A total of 113 samples were downloaded from the ENCODE database (https://
www.encodeproject.org/; see Supplementary Table 6)28. The beta mixture quantile
normalisation was applied to these samples after using minfi to extract beta values.

Statistical analyses for classifier development. Contamination by immune cells
presented a challenge with respect to the identification of differentially methylated
positions (DMPs) as differential methylation that occurred solely in epithelial cells
was diminished in samples with high IC and vice versa. In order to overcome this,
we linearly regressed the beta values on IC for each CpG site, the linear models
being fitted to cases and controls separately. The intercept points at IC= 0 were
used as estimates of mean beta values in cases and controls in a pure epithelial cell
population. The difference between these intercept points provided a delta-beta
estimate in epithelial cells. The difference between intercept points at IC= 1
provided immune cell delta-beta estimates. An example is provided in Fig. 1c. A list
of ranked CpGs was produced according to delta-beta estimates in epithelial cells.

The R package glmnet was used to train classifiers with a mixing parameter value
of alpha= 0 (ridge penalty) and alpha= 1 (lasso penalty) with binomial response
type. Data from the training dataset were used to fit the classifiers. The top n CpGs
from the list of CpGs ranked by epithelial delta-beta estimates were used as inputs to
the classifier. Ten-fold cross-validation was used inside the training set by the
cv.glmnet function in order to determine the optimal value of the regularisation
parameter lambda. The AUC was used as a metric of classifier performance which
was evaluated on the internal validation dataset as a function of n, the number of
CpGs used as inputs during training. The maximum value of n was 30,000.

The optimal classifier was selected based on the highest AUC obtained in the
internal validation dataset. Once the optimal number of inputs was determined, the
training and internal validation datasets were combined and the classifier was
refitted using the entire discovery dataset with alpha and lambda fixed to their
optimal values. This finalised classifier was then applied to the external validation
dataset and the corresponding AUC was computed.

Denoting the top n CpGs as x1; ¼ ; xn and the regression coefficients from the
trained classifier as w1; ¼ ;wn then WID-OC-index = ∑n

i¼1ðwixi � μÞ=σ where μ
and σ are defined as the mean and standard deviation of the quantity ∑n

i¼1 wixi in
the training dataset (i.e. the index is scaled to have zero mean and unit standard
deviation in the training dataset). Code to compute the WID-OC-index is provided
(DOI is 10.5281/zenodo.4757468, 2021; see also Code Availability section).

Enrichment analyses. A gene set enrichment analysis (GSEA) was carried out by
first selecting for each gene TSS200 region in the CpG with the largest epithelial
delta-beta estimate (both hyper- and hypo-methylated). Genes were then ranked
according to the absolute value of these delta-beta estimates. The C2 curated gene
set, c2.all.v6.2.symbols.gmt, was downloaded from MSigDB. The fgseaR package
was used to perform the enrichment analysis with parameters minSize, maxSize,
and nperm set to 15, 500, and 10,000 respectively.

Estimation of tumour DNA proportion. The EpiDISH algorithm provides an
estimate of cell type proportions within a given sample. A reference dataset con-
sisting of CpGs that are unique to each cell type must be provided. In order to
construct such a reference dataset 11 epithelial, 7 fibroblast, 48 immune, and 11
high grade serous ovarian cancer cell line samples were downloaded from GEO
(Supplementary Table 5). Each cell type was in turn compared to the other three
cell types (which were combined into one group) in order to identify CpGs that are
unique to that cell type. A Wilcoxon rank sum test was used to test for differential
methylation at each CpG. For epithelial cells any CpGs with a p-value > 0.01 after
false discovery rate (FDR) adjustment and an absolute difference in methylation >
0.54 were selected (204 in total). For fibroblasts any CpGs with FDR adjusted p-
values > 0.01 and differential methylation >0.7 were selected (208 in total). For
immune cells any CpGs with FDR adjusted p-values > 0.01 and differential
methylation >0.89 were selected (225 in total). For high-grade serous ovarian
carcinoma (HGSOC) cells, any CpGs with FDR adjusted p-values >0.01 and dif-
ferential methylation >0.77 were selected (203 in total). The final reference dataset
therefore consisted of 840 CpGs.

A similar protocol was followed for the endometrial cancer reference dataset
using 9 endometrial cancer tissue samples. For epithelial cells any CpGs with a
p-value > 0.01 after false discovery rate (FDR) adjustment and an absolute
difference in methylation > 0.56 were selected (212 in total). For fibroblasts any
CpGs with FDR adjusted p-values > 0.01 and differential methylation > 0.67 were
selected (201 in total). For immune cells any CpGs with FDR adjusted p-values >
0.01 and differential methylation > 0.84 were selected (218 in total).

It was observed that the inferred proportion of tumour DNA and epithelial cells
were strongly associated in control samples. Local polynomial regression fitting
(using the loess R function) was used to regress the inferred tumour DNA
proportion on the epithelial proportion (in control samples only, Supplementary
Fig. 7b, c) and the residuals were used as estimates for tumour DNA proportion.

Numerical simulation of tumour DNA contamination. Beta values from the
single HGSOC cell line 1 sample (Fig. 4e) were combined with beta values from 144
cervical smear control samples with IC < 0.5 in the internal validation set. If βt are
beta values from the tumour cell line and βc are beta values from cervical samples
and ρ is the simulated proportion of tumour DNA then the simulated beta values
are given by β ¼ ð1� ρÞβc þ ρβt . This was carried out for all 144 control samples
in order to simulate 144 cancer samples. The WID-OC-index was computed in
both groups for different values of tumour proportion.

Copy number variation (CNV) analysis. CNV analysis based on Illumina
Methylation EPIC array data was conducted using the conumee R package (Version
1.22.0, Hovestadt & Zapatka)34, which was recently found to be the most reliable
tool for EPIC array CNV calling27. Raw methylation data from HGSOC and
normal fallopian tube samples was obtained from GEO (Accession no.
GSE133556). Raw methylation data (MethylSet) from (a) the normal fallopian
tube-HGSOC dataset and (b) cervical samples from controls and ovarian cancers
was normalised using the SWAN function in minfi. CNVs were then called using
conumee, whereby samples were initially normalised to samples processed in the
same experiment with an assumed “flat” genome using multiple linear regression to
control for probe and sample bias. Subsequently neighbouring probes were com-
bined in a hybrid approach, resulting in predefined genomic bins, and segmented
into regions of the same copy number state, which were visualised using the
conumee CNV.genomeplot() function. To assess overall CNVs and CNV variability
in distinct genomic bins, median or standard deviation per genomic bin compared
to respective controls were computed for HGSOC samples and cervical samples
from ovarian cancer cases and compared. For assessment of the association of CNV
variability with inferred tumour DNA, the overall CNV standard deviation per
sample was computed and plotted against inferred tDNA.

Estimation of epithelial and immune variance. We aimed to estimate how much
variability across the 14,000 CpGs in the WID-OC-index could be attributed to
epithelial cells or immune cells. An example of a CpG with high variability in
epithelial cells and low variability in immune cells is given in Supplementary
Fig. 7d. For each CpG we applied the following model. We assumed that the
epithelial beta values follow a beta distribution Betaðβja0; b0Þ with shape para-
meters a0 > 0 and b0 > 0, and that immune beta values followed Betaðβja1; b1Þ with
shape parameters a1 > 0 and b1 > 0. We assumed that each sample is a combination
of epithelial and immune cells and that ρi 2 ½0; 1� is the proportion of immune cells
in sample i; i ¼ 1; ¼ ;N: The quantities ρi were obtained from the EpiDISH
algorithm. The following log likelihood function was numerically optimised with
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respect to a0; b0; a1; b1:

Lða0; b0; a1; b1Þ ¼ � 1
N

∑
N

i¼1
log ½ð1� ρiÞBetaðβija0; b0Þ þ ρiBetaðβija1; b1Þ�

and the variance of the epithelial and immune beta distributions were used as
estimates of epithelial and immune variance.

SNP genotyping, QC and imputation. In total, 74 ovarian cancer case subjects and
225 controls from the methylation discovery cohort were genotyped using the
Illumina 650k Infinium Global Screening Array (GSA). Whole blood DNA was
normalised to 75 ng/µl and a total of 300 ng applied to the Infinium Global
Screening Array – 24 V2 (Illumina, CA, USA) at UCL Genomics according to the
manufacturer’s standard protocol.

One ovarian cancer case and one control subject from this cohort failed to
genotype. Genotype calling was performed using GenomeStudio, with genetic
variants found to be clustering poorly removed from further analyses. For duplicate
genetic variant pairs, the variant within each pair with the lowest calling and
clustering score was excluded. Autosomal SNPs were used in subsequent QC and
PRS analyses (except for checks for sex mismatches, where the X chromosome was
used to infer sex).

General subject and single nucleotide polymorphism (SNP) quality control
(QC) was performed using PLINK version 1.935. Four ovarian cancer cases and
eight controls with a call rate less than 95% were excluded. Three controls were
further removed due to genetically inferred sex not being female. Genetic variants
with a missing genotype rate greater than 5%, minor allele frequency (MAF) less
than 1% or a significant departure from Hardy–Weinberg equilibrium (p-value <
5 × 10−6) were excluded.

KING36, a relatedness inference algorithm, was used to identify duplicate/
monozygotic twin or first-degree relative pairs. One control subject pair was
identified as being a duplicate/monozygotic twin pair, and nine control pairs were
inferred to be first-degree relatives. The subject within each related pair with the
lowest call rate was excluded. After performing QC, 225 ovarian cancer case
subjects, 816 controls, and 479,105 variants were retained in the SNP discovery
sample.

Non-European subjects were identified by plotting the top two principal
components, generated using GCTA version 1.26.0, for the SNP discovery samples
and 270 HapMap phase II release 23 samples (CEU, YRI, JPT, and CHB
individuals) downloaded in PLINK-formatted binary files. Subjects found not to
cluster around HapMap European samples were excluded from further analyses.
After excluding non-European subjects, 217 ovarian cancer cases and 752 controls
were retained in the SNP discovery sample.

Using the Michigan Imputation Server37 and Haplotype Reference Consortium
(HRC) reference panel, the SNP discovery dataset went through further QC before
being phased (Eagle2) and imputed. Variants where strand, allele, genetic position
or allele frequencies were not concordant with the HRC reference panel were
removed before phasing and imputation using Strand Tools. After imputation,
variants with imputation R2 < 0.5 were removed. LD-based clumping was
performed to retain a set of independent variants (r2 > 0.1). 28 SNPs, associated
with ovarian cancer, were used to develop an ovarian cancer polygenic risk score
(PRS; Supplementary Table 4). We constructed an ovarian cancer PRS for each
subject in the discovery cohort, such that the PRS is equal to:

PRSj ¼ ∑
28

i¼1
β̂i xij

where, β̂i is the log odds ratio for the i-th SNP taken from publicly available ovarian
cancer summary association results and xij is the number of copies of the effect
allele present in each discovery cohort subject. The ovarian cancer summary results
used were based on weights given in Phelan et al.38, which were downloaded using
GWAS Catalog39 (Accession number: GCST004415). Scores were generated using
PLINK version 1.934.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DNAme data generated in this study have been deposited in the European Genome-
phenome Archive (EGA) database under accession codes EGAS00001005045 (cases) and
EGAS00001005055 and are available under restricted access. SNP data for calculation of
the polygenic risk score is also deposited for the above EGA studies, in EGA datasets
EGAD00001008143 and EGAD00001008145 (cases and controls, respectively). Source
data are provided with this paper. The remaining data are available within the Article and
Supplementary Information. Source data are provided with this paper.

Code availability
Software is available at github.com/IfWH-DoWC/OC-index.
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