True Positive Rate (Sensitivity) and True Negative Rate (Specificity) are both proportions that follow the binomial
distribution. Where two groups are being compared, the model does not differ from that of comparing two proportions
as described in Sample size for Two Proportions Explanations and Tables Page
More recently Casagrande et.al. suggested an improved sample size calculation
that provides greater precision, which allows both paired and unpaired comparisons. This algorithm is used
for tables in this page, and calculations in the Sample Size for Prediction Statistics Program Page
.
Unpaired comparisons
Unpaired comparison involves two groups of unrelated individuals. An example
may be to compare the Sensitivity of the mother feeling decreased fetal movement as a
predictor of impending stillbirth between one group with first pregnancies
and another group who had a baby before. The sample size calculated is the number
of subject needed in each of the groups.
<
Paired comparisons
Paired comparison is used to compare two tests or predictors, when both are
administered to the same individual to predict the same outcome. An example is
to compare the Sensitivities of the mother feeling decreased fetal movement,
and that of an ultrasound detection of abnormal blood flow pattern, as predictors
of impending stillbirth. Both tests can be administered to the same pregnant woman,
and the qualities of the tests compared against the outcome.
Paired comparison is very much more powerful, as it reduces or eliminates
variations between individuals. The sample size required pertains to the number of
subjects that received both tests, or the number of matched pairs.
Two sample sizes are calculated for paired comparisons, the minimum and the maximum. In theory,
the correct sample size is somewhere between the minimum and the maximum,
depending on the correlation (agreeing with each other) between the tests. In practice,
a conclusion that a statistically significant difference exists can be drawn
if this is demonstrated when the sample size reaches or exceeds the minimum,
but a conclusion that there is no significant difference can only be drawn
after the maximum sample size has been reached.
The sample size for paired comparison can also be used to calculate the approximate sample size required to
estimate an effective predictor (True Positive or True Negative Rates), comparing the value to be detected
against the3 diagnostic equivalent of null value (0.5). The program however over-estimates the sample size requirement
as it assumes both values in the pair are sample estimates, when 0.5 is a constant with no error. A table for this sample
size is also presented in this page
StatTools follows Casagrande's example and calculate sample size for prediction parameters using the one tail model.
Users needing the two tail model can use the algorithm provided, but halve the Probability of Type I Error (α)
Sample Size for 1 Group
Sample Size for 2 Groups
Sample Size required for a True Positive Rate (TPR) or True Negative Rate (TNR) that is significantly greater than 0.5
s=TPR or TNR ssiz = sample size
Power(1-β) | 0.8 | 0.9 | 0.95 | Power(1-β) | 0.8 | 0.9 | 0.95 | Power(1-β) | 0.8 | 0.9 | 0.95 |
α | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | α | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | α | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 |
s | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | s | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | s | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz | ssiz |
0.51 | 449 | 617 | 1001 | 654 | 853 | 1298 | 852 | 1077 | 1571 | 0.52 | 224 | 308 | 500 | 326 | 425 | 647 | 424 | 536 | 782 | 0.53 | 149 | 204 | 332 | 216 | 282 | 430 | 281 | 356 | 520 |
0.54 | 111 | 153 | 249 | 161 | 211 | 321 | 210 | 266 | 388 | 0.55 | 89 | 122 | 199 | 129 | 168 | 256 | 167 | 211 | 309 | 0.56 | 74 | 101 | 165 | 107 | 139 | 213 | 138 | 175 | 257 |
0.57 | 63 | 87 | 141 | 91 | 119 | 182 | 118 | 150 | 219 | 0.58 | 55 | 76 | 123 | 79 | 104 | 159 | 103 | 130 | 191 | 0.59 | 49 | 67 | 109 | 70 | 92 | 140 | 91 | 115 | 169 |
0.6 | 44 | 60 | 98 | 63 | 82 | 126 | 81 | 103 | 152 | 0.61 | 40 | 55 | 89 | 57 | 75 | 114 | 73 | 93 | 137 | 0.62 | 36 | 50 | 81 | 52 | 68 | 104 | 67 | 85 | 125 |
0.63 | 33 | 46 | 75 | 48 | 63 | 96 | 61 | 78 | 115 | 0.64 | 31 | 43 | 69 | 44 | 58 | 89 | 57 | 72 | 106 | 0.65 | 29 | 40 | 65 | 41 | 54 | 83 | 53 | 67 | 99 |
0.66 | 27 | 37 | 60 | 38 | 50 | 77 | 49 | 63 | 92 | 0.67 | 25 | 35 | 57 | 36 | 47 | 72 | 46 | 59 | 87 | 0.68 | 24 | 33 | 53 | 34 | 44 | 68 | 43 | 55 | 81 |
0.69 | 22 | 31 | 51 | 32 | 42 | 64 | 41 | 52 | 77 | 0.7 | 21 | 29 | 48 | 30 | 39 | 61 | 38 | 49 | 73 | 0.71 | 20 | 28 | 46 | 28 | 37 | 58 | 36 | 46 | 69 |
0.72 | 19 | 26 | 43 | 27 | 36 | 55 | 34 | 44 | 65 | 0.73 | 18 | 25 | 41 | 26 | 34 | 52 | 33 | 42 | 62 | 0.74 | 17 | 24 | 40 | 24 | 32 | 50 | 31 | 40 | 59 |
0.75 | 17 | 23 | 38 | 23 | 31 | 48 | 30 | 38 | 57 | 0.76 | 16 | 22 | 36 | 22 | 30 | 46 | 28 | 37 | 54 | 0.77 | 15 | 21 | 35 | 21 | 28 | 44 | 27 | 35 | 52 |
0.78 | 15 | 20 | 34 | 21 | 27 | 42 | 26 | 34 | 50 | 0.79 | 14 | 20 | 32 | 20 | 26 | 41 | 25 | 32 | 48 | 0.8 | 14 | 19 | 31 | 19 | 25 | 39 | 24 | 31 | 46 |
0.81 | 13 | 18 | 30 | 18 | 24 | 38 | 23 | 30 | 44 | 0.82 | 13 | 18 | 29 | 18 | 23 | 36 | 22 | 29 | 43 | 0.83 | 12 | 17 | 28 | 17 | 22 | 35 | 21 | 28 | 41 |
0.84 | 12 | 16 | 27 | 16 | 22 | 34 | 21 | 27 | 40 | 0.85 | 11 | 16 | 26 | 16 | 21 | 33 | 20 | 26 | 39 | 0.86 | 11 | 15 | 25 | 15 | 20 | 32 | 19 | 25 | 37 |
0.87 | 11 | 15 | 25 | 15 | 20 | 31 | 19 | 24 | 36 | 0.88 | 10 | 15 | 24 | 14 | 19 | 30 | 18 | 23 | 35 | 0.89 | 10 | 14 | 23 | 14 | 18 | 29 | 17 | 23 | 34 |
0.9 | 10 | 14 | 23 | 13 | 18 | 28 | 17 | 22 | 33 | 0.91 | 10 | 13 | 22 | 13 | 17 | 27 | 16 | 21 | 32 | 0.92 | 9 | 13 | 21 | 13 | 17 | 26 | 16 | 20 | 31 |
0.93 | 9 | 13 | 21 | 12 | 16 | 26 | 15 | 20 | 30 | 0.94 | 9 | 12 | 20 | 12 | 16 | 25 | 15 | 19 | 29 | 0.95 | 9 | 12 | 20 | 12 | 15 | 24 | 14 | 19 | 28 |
0.96 | 8 | 12 | 19 | 11 | 15 | 24 | 14 | 18 | 28 | 0.97 | 8 | 11 | 19 | 11 | 15 | 23 | 14 | 18 | 27 | 0.98 | 8 | 11 | 18 | 11 | 14 | 23 | 13 | 17 | 26 |
0.99 | 8 | 11 | 18 | 10 | 14 | 22 | 13 | 17 | 26 |
Sample size for comparison between two True Positive (TPR, Sensitivity) or Negative (TNR, Specificity) Rates
α=Probability of Type I Error, β=Probability of Type II Error
s1 and s2 are the TPR or TNR in the two groups being compared
ssU = sample size per group in an unpaired comparison
ssMin and ssMax are the minimum and maximum sample size (pairs) in a paired comparison
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.05 | 0.1 | 288 | 89 | 251 | 382 | 122 | 345 | 595 | 199 | 560 | 402 | 129 | 365 | 513 | 168 | 476 | 760 | 256 | 725 | 513 | 167 | 475 | 638 | 211 | 601 | 912 | 309 | 877 |
0.05 | 0.15 | 100 | 44 | 82 | 130 | 60 | 113 | 199 | 98 | 183 | 136 | 63 | 119 | 172 | 82 | 155 | 252 | 126 | 237 | 172 | 81 | 154 | 212 | 103 | 195 | 301 | 152 | 286 |
0.05 | 0.2 | 56 | 29 | 45 | 72 | 40 | 62 | 110 | 65 | 100 | 75 | 41 | 64 | 95 | 54 | 84 | 138 | 83 | 129 | 94 | 53 | 83 | 116 | 67 | 106 | 164 | 99 | 155 |
0.05 | 0.25 | 38 | 21 | 30 | 48 | 29 | 41 | 73 | 48 | 67 | 50 | 30 | 42 | 63 | 39 | 56 | 91 | 61 | 85 | 62 | 38 | 54 | 76 | 49 | 69 | 107 | 73 | 102 |
0.05 | 0.3 | 28 | 17 | 22 | 36 | 23 | 30 | 53 | 38 | 49 | 37 | 23 | 31 | 46 | 31 | 40 | 66 | 48 | 62 | 45 | 30 | 39 | 55 | 38 | 50 | 78 | 57 | 75 |
0.05 | 0.35 | 22 | 14 | 17 | 28 | 19 | 23 | 41 | 31 | 38 | 28 | 19 | 24 | 35 | 25 | 31 | 51 | 39 | 48 | 35 | 24 | 30 | 43 | 31 | 39 | 60 | 46 | 58 |
0.05 | 0.4 | 18 | 11 | 14 | 22 | 16 | 19 | 33 | 26 | 31 | 23 | 16 | 19 | 28 | 21 | 25 | 41 | 33 | 39 | 28 | 20 | 24 | 34 | 26 | 31 | 48 | 39 | 46 |
0.05 | 0.45 | 15 | 10 | 11 | 19 | 14 | 16 | 27 | 23 | 26 | 19 | 13 | 16 | 23 | 18 | 21 | 33 | 28 | 33 | 23 | 17 | 20 | 28 | 22 | 26 | 39 | 33 | 38 |
0.05 | 0.5 | 12 | 9 | 10 | 16 | 12 | 13 | 23 | 20 | 22 | 16 | 12 | 13 | 20 | 15 | 18 | 28 | 24 | 28 | 19 | 14 | 17 | 23 | 19 | 21 | 32 | 28 | 32 |
0.05 | 0.55 | 11 | 8 | 8 | 13 | 11 | 12 | 20 | 18 | 19 | 14 | 10 | 11 | 17 | 14 | 15 | 24 | 21 | 24 | 16 | 12 | 14 | 20 | 16 | 18 | 27 | 25 | 28 |
0.05 | 0.6 | 9 | 7 | 7 | 12 | 9 | 10 | 17 | 16 | 17 | 12 | 9 | 10 | 14 | 12 | 13 | 20 | 19 | 21 | 14 | 11 | 12 | 17 | 14 | 16 | 23 | 22 | 24 |
0.05 | 0.65 | 8 | 6 | 6 | 10 | 8 | 9 | 15 | 14 | 15 | 10 | 8 | 8 | 12 | 11 | 11 | 18 | 17 | 18 | 12 | 9 | 10 | 14 | 13 | 14 | 20 | 19 | 21 |
0.05 | 0.7 | 7 | 5 | 6 | 9 | 8 | 8 | 13 | 13 | 14 | 9 | 7 | 7 | 11 | 9 | 10 | 15 | 15 | 16 | 10 | 8 | 9 | 12 | 11 | 12 | 17 | 17 | 18 |
0.05 | 0.75 | 6 | 5 | 5 | 8 | 7 | 7 | 11 | 12 | 12 | 8 | 6 | 6 | 9 | 8 | 9 | 13 | 14 | 14 | 9 | 7 | 8 | 11 | 10 | 10 | 15 | 15 | 16 |
0.05 | 0.8 | 6 | 4 | 5 | 7 | 6 | 6 | 10 | 11 | 11 | 7 | 5 | 6 | 8 | 7 | 8 | 12 | 12 | 13 | 8 | 6 | 7 | 9 | 9 | 9 | 13 | 14 | 14 |
0.05 | 0.85 | 5 | 4 | 4 | 6 | 6 | 6 | 9 | 10 | 10 | 6 | 5 | 5 | 7 | 7 | 7 | 10 | 11 | 11 | 7 | 6 | 6 | 8 | 8 | 8 | 11 | 12 | 13 |
0.05 | 0.9 | 5 | 4 | 4 | 6 | 5 | 5 | 8 | 9 | 9 | 5 | 4 | 4 | 6 | 6 | 6 | 9 | 10 | 10 | 6 | 5 | 5 | 7 | 7 | 7 | 10 | 11 | 11 |
0.05 | 0.95 | 4 | 3 | 3 | 5 | 5 | 5 | 7 | 8 | 8 | 5 | 4 | 4 | 5 | 5 | 5 | 8 | 9 | 9 | 5 | 4 | 4 | 6 | 6 | 6 | 8 | 10 | 10 |
0.1 | 0.15 | 433 | 89 | 395 | 580 | 122 | 542 | 917 | 199 | 881 | 613 | 129 | 575 | 787 | 168 | 750 | 1177 | 256 | 1141 | 787 | 167 | 749 | 984 | 211 | 947 | 1417 | 309 | 1382 |
0.1 | 0.2 | 134 | 44 | 116 | 177 | 60 | 159 | 275 | 98 | 259 | 186 | 63 | 168 | 237 | 82 | 219 | 350 | 126 | 334 | 236 | 81 | 218 | 293 | 103 | 276 | 419 | 152 | 404 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.1 | 0.25 | 70 | 29 | 59 | 92 | 40 | 81 | 141 | 65 | 132 | 96 | 41 | 85 | 121 | 54 | 111 | 178 | 83 | 169 | 121 | 53 | 110 | 150 | 67 | 139 | 213 | 99 | 204 |
0.1 | 0.3 | 45 | 21 | 37 | 58 | 29 | 51 | 89 | 48 | 83 | 61 | 30 | 53 | 77 | 39 | 69 | 112 | 61 | 106 | 76 | 38 | 68 | 94 | 49 | 87 | 133 | 73 | 128 |
0.1 | 0.35 | 32 | 17 | 26 | 42 | 23 | 36 | 63 | 38 | 59 | 43 | 23 | 37 | 54 | 31 | 49 | 79 | 48 | 75 | 54 | 30 | 48 | 66 | 38 | 61 | 93 | 57 | 90 |
0.1 | 0.4 | 25 | 14 | 20 | 32 | 19 | 27 | 47 | 31 | 45 | 33 | 19 | 28 | 41 | 25 | 37 | 59 | 39 | 56 | 40 | 24 | 36 | 49 | 31 | 45 | 69 | 46 | 67 |
0.1 | 0.45 | 20 | 11 | 16 | 25 | 16 | 22 | 37 | 26 | 35 | 26 | 16 | 22 | 32 | 21 | 29 | 46 | 33 | 45 | 31 | 20 | 28 | 38 | 26 | 36 | 54 | 39 | 53 |
0.1 | 0.5 | 16 | 10 | 13 | 20 | 14 | 18 | 30 | 23 | 29 | 21 | 13 | 18 | 26 | 18 | 23 | 37 | 28 | 36 | 25 | 17 | 22 | 31 | 22 | 29 | 43 | 33 | 43 |
0.1 | 0.55 | 13 | 9 | 11 | 17 | 12 | 15 | 25 | 20 | 24 | 17 | 12 | 15 | 21 | 15 | 19 | 31 | 24 | 30 | 21 | 14 | 18 | 25 | 19 | 24 | 36 | 28 | 36 |
0.1 | 0.6 | 11 | 8 | 9 | 14 | 11 | 13 | 21 | 18 | 21 | 14 | 10 | 12 | 18 | 14 | 16 | 26 | 21 | 26 | 17 | 12 | 15 | 21 | 16 | 20 | 30 | 25 | 30 |
0.1 | 0.65 | 10 | 7 | 8 | 12 | 9 | 11 | 18 | 16 | 18 | 12 | 9 | 10 | 15 | 12 | 14 | 22 | 19 | 22 | 15 | 11 | 13 | 18 | 14 | 17 | 25 | 22 | 26 |
0.1 | 0.7 | 9 | 6 | 7 | 11 | 8 | 9 | 16 | 14 | 16 | 11 | 8 | 9 | 13 | 11 | 12 | 19 | 17 | 19 | 12 | 9 | 11 | 15 | 13 | 14 | 21 | 19 | 22 |
0.1 | 0.75 | 7 | 5 | 6 | 9 | 8 | 8 | 14 | 13 | 14 | 9 | 7 | 8 | 11 | 9 | 10 | 16 | 15 | 17 | 11 | 8 | 9 | 13 | 11 | 12 | 18 | 17 | 19 |
0.1 | 0.8 | 7 | 5 | 5 | 8 | 7 | 7 | 12 | 12 | 12 | 8 | 6 | 7 | 10 | 8 | 9 | 14 | 14 | 15 | 9 | 7 | 8 | 11 | 10 | 11 | 16 | 15 | 17 |
0.1 | 0.85 | 6 | 4 | 5 | 7 | 6 | 7 | 10 | 11 | 11 | 7 | 5 | 6 | 8 | 7 | 8 | 12 | 12 | 13 | 8 | 6 | 7 | 10 | 9 | 9 | 13 | 14 | 15 |
0.1 | 0.9 | 5 | 4 | 4 | 6 | 6 | 6 | 9 | 10 | 10 | 6 | 5 | 5 | 7 | 7 | 7 | 10 | 11 | 11 | 7 | 6 | 6 | 8 | 8 | 8 | 11 | 12 | 13 |
0.1 | 0.95 | 5 | 4 | 4 | 6 | 5 | 5 | 8 | 9 | 9 | 5 | 4 | 4 | 6 | 6 | 6 | 9 | 10 | 10 | 6 | 5 | 5 | 7 | 7 | 7 | 10 | 11 | 11 |
0.15 | 0.2 | 560 | 89 | 522 | 753 | 122 | 716 | 1198 | 199 | 1162 | 797 | 129 | 759 | 1027 | 168 | 990 | 1541 | 256 | 1506 | 1027 | 167 | 989 | 1287 | 211 | 1250 | 1859 | 309 | 1823 |
0.15 | 0.25 | 163 | 44 | 145 | 217 | 60 | 199 | 340 | 98 | 324 | 229 | 63 | 211 | 292 | 82 | 275 | 434 | 126 | 419 | 292 | 81 | 274 | 364 | 103 | 347 | 522 | 152 | 506 |
0.15 | 0.3 | 82 | 29 | 71 | 108 | 40 | 97 | 168 | 65 | 158 | 114 | 41 | 102 | 144 | 54 | 134 | 213 | 83 | 204 | 144 | 53 | 133 | 179 | 67 | 168 | 255 | 99 | 246 |
0.15 | 0.35 | 51 | 21 | 43 | 67 | 29 | 59 | 103 | 48 | 97 | 70 | 30 | 62 | 89 | 39 | 81 | 130 | 61 | 124 | 88 | 38 | 80 | 109 | 49 | 102 | 155 | 73 | 150 |
0.15 | 0.4 | 36 | 17 | 30 | 47 | 23 | 41 | 71 | 38 | 67 | 48 | 23 | 42 | 61 | 31 | 56 | 89 | 48 | 85 | 60 | 30 | 55 | 75 | 38 | 69 | 106 | 57 | 102 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.15 | 0.45 | 27 | 14 | 22 | 35 | 19 | 30 | 52 | 31 | 50 | 36 | 19 | 31 | 45 | 25 | 41 | 65 | 39 | 63 | 44 | 24 | 40 | 55 | 31 | 51 | 77 | 46 | 75 |
0.15 | 0.5 | 21 | 11 | 17 | 27 | 16 | 24 | 41 | 26 | 39 | 28 | 16 | 24 | 35 | 21 | 32 | 50 | 33 | 49 | 34 | 20 | 30 | 42 | 26 | 39 | 59 | 39 | 58 |
0.15 | 0.55 | 17 | 10 | 14 | 22 | 14 | 19 | 32 | 23 | 31 | 22 | 13 | 19 | 28 | 18 | 25 | 40 | 28 | 39 | 27 | 17 | 24 | 33 | 22 | 31 | 47 | 33 | 46 |
0.15 | 0.6 | 14 | 9 | 11 | 18 | 12 | 16 | 27 | 20 | 26 | 18 | 12 | 16 | 23 | 15 | 21 | 33 | 24 | 32 | 22 | 14 | 20 | 27 | 19 | 25 | 38 | 28 | 38 |
0.15 | 0.65 | 12 | 8 | 9 | 15 | 11 | 13 | 22 | 18 | 22 | 15 | 10 | 13 | 19 | 14 | 17 | 27 | 21 | 27 | 18 | 12 | 16 | 22 | 16 | 21 | 31 | 25 | 32 |
0.15 | 0.7 | 10 | 7 | 8 | 13 | 9 | 11 | 19 | 16 | 19 | 13 | 9 | 11 | 16 | 12 | 15 | 23 | 19 | 23 | 15 | 11 | 13 | 19 | 14 | 18 | 26 | 22 | 27 |
0.15 | 0.75 | 9 | 6 | 7 | 11 | 8 | 10 | 16 | 14 | 16 | 11 | 8 | 9 | 13 | 11 | 12 | 19 | 17 | 20 | 13 | 9 | 11 | 16 | 13 | 15 | 22 | 19 | 23 |
0.15 | 0.8 | 8 | 5 | 6 | 9 | 8 | 8 | 14 | 13 | 14 | 9 | 7 | 8 | 11 | 9 | 11 | 16 | 15 | 17 | 11 | 8 | 10 | 13 | 11 | 13 | 19 | 17 | 20 |
0.15 | 0.85 | 7 | 5 | 5 | 8 | 7 | 7 | 12 | 12 | 13 | 8 | 6 | 7 | 10 | 8 | 9 | 14 | 14 | 15 | 9 | 7 | 8 | 11 | 10 | 11 | 16 | 15 | 17 |
0.15 | 0.9 | 6 | 4 | 5 | 7 | 6 | 7 | 10 | 11 | 11 | 7 | 5 | 6 | 8 | 7 | 8 | 12 | 12 | 13 | 8 | 6 | 7 | 10 | 9 | 9 | 13 | 14 | 15 |
0.15 | 0.95 | 5 | 4 | 4 | 6 | 6 | 6 | 9 | 10 | 10 | 6 | 5 | 5 | 7 | 7 | 7 | 10 | 11 | 11 | 7 | 6 | 6 | 8 | 8 | 8 | 11 | 12 | 13 |
0.2 | 0.25 | 668 | 89 | 630 | 901 | 122 | 864 | 1439 | 199 | 1403 | 955 | 129 | 917 | 1233 | 168 | 1196 | 1854 | 256 | 1818 | 1232 | 167 | 1195 | 1547 | 211 | 1510 | 2237 | 309 | 2202 |
0.2 | 0.3 | 188 | 44 | 170 | 251 | 60 | 233 | 395 | 98 | 379 | 265 | 63 | 247 | 339 | 82 | 322 | 506 | 126 | 490 | 339 | 81 | 321 | 423 | 103 | 406 | 608 | 152 | 593 |
0.2 | 0.35 | 92 | 29 | 81 | 122 | 40 | 111 | 190 | 65 | 181 | 128 | 41 | 117 | 163 | 54 | 153 | 242 | 83 | 233 | 163 | 53 | 152 | 203 | 67 | 192 | 290 | 99 | 281 |
0.2 | 0.4 | 56 | 21 | 48 | 74 | 29 | 66 | 114 | 48 | 108 | 78 | 30 | 69 | 98 | 39 | 91 | 145 | 61 | 139 | 98 | 38 | 90 | 121 | 49 | 114 | 173 | 73 | 167 |
0.2 | 0.45 | 39 | 17 | 33 | 51 | 23 | 45 | 77 | 38 | 73 | 53 | 23 | 47 | 66 | 31 | 61 | 97 | 48 | 94 | 66 | 30 | 60 | 82 | 38 | 76 | 116 | 57 | 112 |
0.2 | 0.5 | 29 | 14 | 24 | 37 | 19 | 33 | 56 | 31 | 53 | 38 | 19 | 34 | 48 | 25 | 44 | 70 | 39 | 68 | 48 | 24 | 43 | 59 | 31 | 55 | 83 | 46 | 81 |
0.2 | 0.55 | 22 | 11 | 18 | 29 | 16 | 25 | 43 | 26 | 41 | 29 | 16 | 26 | 37 | 21 | 34 | 54 | 33 | 52 | 36 | 20 | 33 | 45 | 26 | 42 | 63 | 39 | 62 |
0.2 | 0.6 | 18 | 10 | 14 | 23 | 14 | 20 | 34 | 23 | 33 | 23 | 13 | 20 | 29 | 18 | 27 | 42 | 28 | 41 | 29 | 17 | 25 | 35 | 22 | 33 | 49 | 33 | 49 |
0.2 | 0.65 | 15 | 9 | 12 | 19 | 12 | 16 | 28 | 20 | 27 | 19 | 12 | 16 | 23 | 15 | 21 | 34 | 24 | 33 | 23 | 14 | 20 | 28 | 19 | 26 | 40 | 28 | 40 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.2 | 0.7 | 12 | 8 | 10 | 15 | 11 | 14 | 23 | 18 | 22 | 16 | 10 | 13 | 19 | 14 | 18 | 28 | 21 | 28 | 19 | 12 | 17 | 23 | 16 | 22 | 32 | 25 | 33 |
0.2 | 0.75 | 10 | 7 | 8 | 13 | 9 | 11 | 19 | 16 | 19 | 13 | 9 | 11 | 16 | 12 | 15 | 23 | 19 | 23 | 16 | 11 | 14 | 19 | 14 | 18 | 27 | 22 | 27 |
0.2 | 0.8 | 9 | 6 | 7 | 11 | 8 | 10 | 16 | 14 | 16 | 11 | 8 | 9 | 14 | 11 | 13 | 19 | 17 | 20 | 13 | 9 | 11 | 16 | 13 | 15 | 22 | 19 | 23 |
0.2 | 0.85 | 8 | 5 | 6 | 9 | 8 | 8 | 14 | 13 | 14 | 9 | 7 | 8 | 11 | 9 | 11 | 16 | 15 | 17 | 11 | 8 | 10 | 13 | 11 | 13 | 19 | 17 | 20 |
0.2 | 0.9 | 7 | 5 | 5 | 8 | 7 | 7 | 12 | 12 | 12 | 8 | 6 | 7 | 10 | 8 | 9 | 14 | 14 | 15 | 9 | 7 | 8 | 11 | 10 | 11 | 16 | 15 | 17 |
0.2 | 0.95 | 6 | 4 | 5 | 7 | 6 | 6 | 10 | 11 | 11 | 7 | 5 | 6 | 8 | 7 | 8 | 12 | 12 | 13 | 8 | 6 | 7 | 9 | 9 | 9 | 13 | 14 | 14 |
0.25 | 0.3 | 758 | 89 | 720 | 1025 | 122 | 988 | 1640 | 199 | 1604 | 1086 | 129 | 1048 | 1404 | 168 | 1367 | 2114 | 256 | 2079 | 1404 | 167 | 1366 | 1764 | 211 | 1727 | 2552 | 309 | 2517 |
0.25 | 0.35 | 208 | 44 | 190 | 279 | 60 | 261 | 440 | 98 | 424 | 294 | 63 | 276 | 378 | 82 | 361 | 565 | 126 | 549 | 378 | 81 | 360 | 472 | 103 | 455 | 679 | 152 | 664 |
0.25 | 0.4 | 100 | 29 | 89 | 133 | 40 | 122 | 208 | 65 | 199 | 140 | 41 | 129 | 179 | 54 | 168 | 265 | 83 | 256 | 178 | 53 | 167 | 222 | 67 | 211 | 318 | 99 | 309 |
0.25 | 0.45 | 60 | 21 | 52 | 79 | 29 | 72 | 123 | 48 | 117 | 83 | 30 | 75 | 106 | 39 | 98 | 156 | 61 | 150 | 105 | 38 | 97 | 131 | 49 | 124 | 186 | 73 | 181 |
0.25 | 0.5 | 41 | 17 | 35 | 54 | 23 | 48 | 82 | 38 | 78 | 56 | 23 | 50 | 71 | 31 | 65 | 104 | 48 | 100 | 70 | 30 | 64 | 87 | 38 | 82 | 123 | 57 | 120 |
0.25 | 0.55 | 30 | 14 | 25 | 39 | 19 | 34 | 59 | 31 | 56 | 40 | 19 | 35 | 51 | 25 | 47 | 74 | 39 | 72 | 50 | 24 | 46 | 62 | 31 | 58 | 88 | 46 | 86 |
0.25 | 0.6 | 23 | 11 | 19 | 30 | 16 | 26 | 45 | 26 | 43 | 30 | 16 | 27 | 38 | 21 | 35 | 56 | 33 | 54 | 38 | 20 | 34 | 46 | 26 | 44 | 66 | 39 | 65 |
0.25 | 0.65 | 18 | 10 | 15 | 23 | 14 | 21 | 35 | 23 | 34 | 24 | 13 | 21 | 30 | 18 | 27 | 43 | 28 | 42 | 29 | 17 | 26 | 36 | 22 | 34 | 51 | 33 | 50 |
0.25 | 0.7 | 15 | 9 | 12 | 19 | 12 | 17 | 28 | 20 | 27 | 19 | 12 | 17 | 24 | 15 | 22 | 34 | 24 | 34 | 23 | 14 | 21 | 29 | 19 | 27 | 40 | 28 | 40 |
0.25 | 0.75 | 12 | 8 | 10 | 16 | 11 | 14 | 23 | 18 | 23 | 16 | 10 | 13 | 19 | 14 | 18 | 28 | 21 | 28 | 19 | 12 | 17 | 23 | 16 | 22 | 33 | 25 | 33 |
0.25 | 0.8 | 10 | 7 | 8 | 13 | 9 | 11 | 19 | 16 | 19 | 13 | 9 | 11 | 16 | 12 | 15 | 23 | 19 | 23 | 16 | 11 | 14 | 19 | 14 | 18 | 27 | 22 | 27 |
0.25 | 0.85 | 9 | 6 | 7 | 11 | 8 | 10 | 16 | 14 | 16 | 11 | 8 | 9 | 13 | 11 | 12 | 19 | 17 | 20 | 13 | 9 | 11 | 16 | 13 | 15 | 22 | 19 | 23 |
0.25 | 0.9 | 7 | 5 | 6 | 9 | 8 | 8 | 14 | 13 | 14 | 9 | 7 | 8 | 11 | 9 | 10 | 16 | 15 | 17 | 11 | 8 | 9 | 13 | 11 | 12 | 18 | 17 | 19 |
0.25 | 0.95 | 6 | 5 | 5 | 8 | 7 | 7 | 11 | 12 | 12 | 8 | 6 | 6 | 9 | 8 | 9 | 13 | 14 | 14 | 9 | 7 | 8 | 11 | 10 | 10 | 15 | 15 | 16 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.3 | 0.35 | 830 | 89 | 792 | 1124 | 122 | 1087 | 1800 | 199 | 1764 | 1191 | 129 | 1153 | 1541 | 168 | 1504 | 2322 | 256 | 2287 | 1541 | 167 | 1503 | 1937 | 211 | 1900 | 2805 | 309 | 2770 |
0.3 | 0.4 | 224 | 44 | 206 | 300 | 60 | 283 | 476 | 98 | 459 | 317 | 63 | 299 | 408 | 82 | 391 | 610 | 126 | 595 | 408 | 81 | 390 | 510 | 103 | 493 | 735 | 152 | 719 |
0.3 | 0.45 | 106 | 29 | 95 | 141 | 40 | 130 | 221 | 65 | 212 | 149 | 41 | 137 | 190 | 54 | 179 | 283 | 83 | 274 | 190 | 53 | 178 | 236 | 67 | 226 | 339 | 99 | 330 |
0.3 | 0.5 | 63 | 21 | 55 | 83 | 29 | 76 | 129 | 48 | 123 | 87 | 30 | 79 | 111 | 39 | 104 | 164 | 61 | 159 | 111 | 38 | 103 | 137 | 49 | 130 | 196 | 73 | 191 |
0.3 | 0.55 | 42 | 17 | 36 | 55 | 23 | 50 | 85 | 38 | 81 | 58 | 23 | 52 | 73 | 31 | 68 | 108 | 48 | 104 | 73 | 30 | 67 | 90 | 38 | 85 | 128 | 57 | 125 |
0.3 | 0.6 | 31 | 14 | 26 | 40 | 19 | 35 | 61 | 31 | 58 | 41 | 19 | 37 | 52 | 25 | 48 | 76 | 39 | 74 | 52 | 24 | 47 | 64 | 31 | 60 | 90 | 46 | 88 |
0.3 | 0.65 | 23 | 11 | 19 | 30 | 16 | 27 | 46 | 26 | 44 | 31 | 16 | 27 | 39 | 21 | 36 | 57 | 33 | 55 | 38 | 20 | 35 | 47 | 26 | 44 | 67 | 39 | 66 |
0.3 | 0.7 | 18 | 10 | 15 | 23 | 14 | 21 | 35 | 23 | 34 | 24 | 13 | 21 | 30 | 18 | 28 | 44 | 28 | 43 | 30 | 17 | 27 | 36 | 22 | 34 | 51 | 33 | 51 |
0.3 | 0.75 | 15 | 9 | 12 | 19 | 12 | 17 | 28 | 20 | 27 | 19 | 12 | 17 | 24 | 15 | 22 | 34 | 24 | 34 | 23 | 14 | 21 | 29 | 19 | 27 | 40 | 28 | 40 |
0.3 | 0.8 | 12 | 8 | 10 | 15 | 11 | 14 | 23 | 18 | 22 | 16 | 10 | 13 | 19 | 14 | 18 | 28 | 21 | 28 | 19 | 12 | 17 | 23 | 16 | 22 | 32 | 25 | 33 |
0.3 | 0.85 | 10 | 7 | 8 | 13 | 9 | 11 | 19 | 16 | 19 | 13 | 9 | 11 | 16 | 12 | 15 | 23 | 19 | 23 | 15 | 11 | 13 | 19 | 14 | 18 | 26 | 22 | 27 |
0.3 | 0.9 | 9 | 6 | 7 | 11 | 8 | 9 | 16 | 14 | 16 | 11 | 8 | 9 | 13 | 11 | 12 | 19 | 17 | 19 | 12 | 9 | 11 | 15 | 13 | 14 | 21 | 19 | 22 |
0.3 | 0.95 | 7 | 5 | 6 | 9 | 8 | 8 | 13 | 13 | 14 | 9 | 7 | 7 | 11 | 9 | 10 | 15 | 15 | 16 | 10 | 8 | 9 | 12 | 11 | 12 | 17 | 17 | 18 |
0.35 | 0.4 | 884 | 89 | 846 | 1198 | 122 | 1161 | 1921 | 199 | 1885 | 1270 | 129 | 1232 | 1644 | 168 | 1607 | 2479 | 256 | 2443 | 1644 | 167 | 1606 | 2067 | 211 | 2030 | 2994 | 309 | 2959 |
0.35 | 0.45 | 236 | 44 | 217 | 316 | 60 | 298 | 501 | 98 | 485 | 334 | 63 | 316 | 429 | 82 | 412 | 643 | 126 | 627 | 429 | 81 | 411 | 537 | 103 | 520 | 774 | 152 | 759 |
0.35 | 0.5 | 110 | 29 | 99 | 147 | 40 | 136 | 230 | 65 | 221 | 155 | 41 | 143 | 198 | 54 | 187 | 294 | 83 | 285 | 197 | 53 | 186 | 246 | 67 | 236 | 353 | 99 | 344 |
0.35 | 0.55 | 65 | 21 | 57 | 86 | 29 | 78 | 133 | 48 | 127 | 90 | 30 | 82 | 114 | 39 | 107 | 169 | 61 | 163 | 114 | 38 | 106 | 142 | 49 | 134 | 202 | 73 | 197 |
0.35 | 0.6 | 43 | 17 | 37 | 56 | 23 | 51 | 87 | 38 | 83 | 59 | 23 | 53 | 75 | 31 | 69 | 110 | 48 | 106 | 74 | 30 | 68 | 92 | 38 | 87 | 131 | 57 | 128 |
0.35 | 0.65 | 31 | 14 | 26 | 40 | 19 | 36 | 61 | 31 | 59 | 42 | 19 | 37 | 53 | 25 | 49 | 77 | 39 | 75 | 52 | 24 | 47 | 64 | 31 | 61 | 91 | 46 | 89 |
0.35 | 0.7 | 23 | 11 | 19 | 30 | 16 | 27 | 46 | 26 | 44 | 31 | 16 | 27 | 39 | 21 | 36 | 57 | 33 | 55 | 38 | 20 | 35 | 47 | 26 | 44 | 67 | 39 | 66 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.35 | 0.75 | 18 | 10 | 15 | 23 | 14 | 21 | 35 | 23 | 34 | 24 | 13 | 21 | 30 | 18 | 27 | 43 | 28 | 42 | 29 | 17 | 26 | 36 | 22 | 34 | 51 | 33 | 50 |
0.35 | 0.8 | 15 | 9 | 12 | 19 | 12 | 16 | 28 | 20 | 27 | 19 | 12 | 16 | 23 | 15 | 21 | 34 | 24 | 33 | 23 | 14 | 20 | 28 | 19 | 26 | 40 | 28 | 40 |
0.35 | 0.85 | 12 | 8 | 9 | 15 | 11 | 13 | 22 | 18 | 22 | 15 | 10 | 13 | 19 | 14 | 17 | 27 | 21 | 27 | 18 | 12 | 16 | 22 | 16 | 21 | 31 | 25 | 32 |
0.35 | 0.9 | 10 | 7 | 8 | 12 | 9 | 11 | 18 | 16 | 18 | 12 | 9 | 10 | 15 | 12 | 14 | 22 | 19 | 22 | 15 | 11 | 13 | 18 | 14 | 17 | 25 | 22 | 26 |
0.35 | 0.95 | 8 | 6 | 6 | 10 | 8 | 9 | 15 | 14 | 15 | 10 | 8 | 8 | 12 | 11 | 11 | 18 | 17 | 18 | 12 | 9 | 10 | 14 | 13 | 14 | 20 | 19 | 21 |
0.4 | 0.45 | 920 | 89 | 882 | 1248 | 122 | 1210 | 2001 | 199 | 1965 | 1323 | 129 | 1285 | 1713 | 168 | 1675 | 2583 | 256 | 2547 | 1712 | 167 | 1674 | 2153 | 211 | 2116 | 3120 | 309 | 3085 |
0.4 | 0.5 | 242 | 44 | 224 | 325 | 60 | 308 | 516 | 98 | 500 | 344 | 63 | 326 | 442 | 82 | 425 | 662 | 126 | 647 | 442 | 81 | 424 | 553 | 103 | 536 | 798 | 152 | 782 |
0.4 | 0.55 | 112 | 29 | 101 | 150 | 40 | 139 | 235 | 65 | 225 | 158 | 41 | 146 | 202 | 54 | 191 | 300 | 83 | 291 | 201 | 53 | 190 | 251 | 67 | 240 | 360 | 99 | 351 |
0.4 | 0.6 | 66 | 21 | 57 | 86 | 29 | 79 | 134 | 48 | 128 | 91 | 30 | 83 | 115 | 39 | 108 | 171 | 61 | 165 | 115 | 38 | 107 | 143 | 49 | 136 | 204 | 73 | 199 |
0.4 | 0.65 | 43 | 17 | 37 | 56 | 23 | 51 | 87 | 38 | 83 | 59 | 23 | 53 | 75 | 31 | 69 | 110 | 48 | 106 | 74 | 30 | 68 | 92 | 38 | 87 | 131 | 57 | 128 |
0.4 | 0.7 | 31 | 14 | 26 | 40 | 19 | 35 | 61 | 31 | 58 | 41 | 19 | 37 | 52 | 25 | 48 | 76 | 39 | 74 | 52 | 24 | 47 | 64 | 31 | 60 | 90 | 46 | 88 |
0.4 | 0.75 | 23 | 11 | 19 | 30 | 16 | 26 | 45 | 26 | 43 | 30 | 16 | 27 | 38 | 21 | 35 | 56 | 33 | 54 | 38 | 20 | 34 | 46 | 26 | 44 | 66 | 39 | 65 |
0.4 | 0.8 | 18 | 10 | 14 | 23 | 14 | 20 | 34 | 23 | 33 | 23 | 13 | 20 | 29 | 18 | 27 | 42 | 28 | 41 | 29 | 17 | 25 | 35 | 22 | 33 | 49 | 33 | 49 |
0.4 | 0.85 | 14 | 9 | 11 | 18 | 12 | 16 | 27 | 20 | 26 | 18 | 12 | 16 | 23 | 15 | 21 | 33 | 24 | 32 | 22 | 14 | 20 | 27 | 19 | 25 | 38 | 28 | 38 |
0.4 | 0.9 | 11 | 8 | 9 | 14 | 11 | 13 | 21 | 18 | 21 | 14 | 10 | 12 | 18 | 14 | 16 | 26 | 21 | 26 | 17 | 12 | 15 | 21 | 16 | 20 | 30 | 25 | 30 |
0.4 | 0.95 | 9 | 7 | 7 | 12 | 9 | 10 | 17 | 16 | 17 | 12 | 9 | 10 | 14 | 12 | 13 | 20 | 19 | 21 | 14 | 11 | 12 | 17 | 14 | 16 | 23 | 22 | 24 |
0.45 | 0.5 | 938 | 89 | 900 | 1273 | 122 | 1235 | 2041 | 199 | 2005 | 1349 | 129 | 1311 | 1747 | 168 | 1710 | 2635 | 256 | 2599 | 1746 | 167 | 1708 | 2197 | 211 | 2160 | 3183 | 309 | 3148 |
0.45 | 0.55 | 245 | 44 | 226 | 328 | 60 | 311 | 521 | 98 | 505 | 347 | 63 | 329 | 447 | 82 | 429 | 669 | 126 | 653 | 446 | 81 | 428 | 559 | 103 | 542 | 806 | 152 | 790 |
0.45 | 0.6 | 112 | 29 | 101 | 150 | 40 | 139 | 235 | 65 | 225 | 158 | 41 | 146 | 202 | 54 | 191 | 300 | 83 | 291 | 201 | 53 | 190 | 251 | 67 | 240 | 360 | 99 | 351 |
0.45 | 0.65 | 65 | 21 | 57 | 86 | 29 | 78 | 133 | 48 | 127 | 90 | 30 | 82 | 114 | 39 | 107 | 169 | 61 | 163 | 114 | 38 | 106 | 142 | 49 | 134 | 202 | 73 | 197 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.45 | 0.7 | 42 | 17 | 36 | 55 | 23 | 50 | 85 | 38 | 81 | 58 | 23 | 52 | 73 | 31 | 68 | 108 | 48 | 104 | 73 | 30 | 67 | 90 | 38 | 85 | 128 | 57 | 125 |
0.45 | 0.75 | 30 | 14 | 25 | 39 | 19 | 34 | 59 | 31 | 56 | 40 | 19 | 35 | 51 | 25 | 47 | 74 | 39 | 72 | 50 | 24 | 46 | 62 | 31 | 58 | 88 | 46 | 86 |
0.45 | 0.8 | 22 | 11 | 18 | 29 | 16 | 25 | 43 | 26 | 41 | 29 | 16 | 26 | 37 | 21 | 34 | 54 | 33 | 52 | 36 | 20 | 33 | 45 | 26 | 42 | 63 | 39 | 62 |
0.45 | 0.85 | 17 | 10 | 14 | 22 | 14 | 19 | 32 | 23 | 31 | 22 | 13 | 19 | 28 | 18 | 25 | 40 | 28 | 39 | 27 | 17 | 24 | 33 | 22 | 31 | 47 | 33 | 46 |
0.45 | 0.9 | 13 | 9 | 11 | 17 | 12 | 15 | 25 | 20 | 24 | 17 | 12 | 15 | 21 | 15 | 19 | 31 | 24 | 30 | 21 | 14 | 18 | 25 | 19 | 24 | 36 | 28 | 36 |
0.45 | 0.95 | 11 | 8 | 8 | 13 | 11 | 12 | 20 | 18 | 19 | 14 | 10 | 11 | 17 | 14 | 15 | 24 | 21 | 24 | 16 | 12 | 14 | 20 | 16 | 18 | 27 | 25 | 28 |
0.5 | 0.55 | 938 | 89 | 900 | 1273 | 122 | 1235 | 2041 | 199 | 2005 | 1349 | 129 | 1311 | 1747 | 168 | 1710 | 2635 | 256 | 2599 | 1746 | 167 | 1708 | 2197 | 211 | 2160 | 3183 | 309 | 3148 |
0.5 | 0.6 | 242 | 44 | 224 | 325 | 60 | 308 | 516 | 98 | 500 | 344 | 63 | 326 | 442 | 82 | 425 | 662 | 126 | 647 | 442 | 81 | 424 | 553 | 103 | 536 | 798 | 152 | 782 |
0.5 | 0.65 | 110 | 29 | 99 | 147 | 40 | 136 | 230 | 65 | 221 | 155 | 41 | 143 | 198 | 54 | 187 | 294 | 83 | 285 | 197 | 53 | 186 | 246 | 67 | 236 | 353 | 99 | 344 |
0.5 | 0.7 | 63 | 21 | 55 | 83 | 29 | 76 | 129 | 48 | 123 | 87 | 30 | 79 | 111 | 39 | 104 | 164 | 61 | 159 | 111 | 38 | 103 | 137 | 49 | 130 | 196 | 73 | 191 |
0.5 | 0.75 | 41 | 17 | 35 | 54 | 23 | 48 | 82 | 38 | 78 | 56 | 23 | 50 | 71 | 31 | 65 | 104 | 48 | 100 | 70 | 30 | 64 | 87 | 38 | 82 | 123 | 57 | 120 |
0.5 | 0.8 | 29 | 14 | 24 | 37 | 19 | 33 | 56 | 31 | 53 | 38 | 19 | 34 | 48 | 25 | 44 | 70 | 39 | 68 | 48 | 24 | 43 | 59 | 31 | 55 | 83 | 46 | 81 |
0.5 | 0.85 | 21 | 11 | 17 | 27 | 16 | 24 | 41 | 26 | 39 | 28 | 16 | 24 | 35 | 21 | 32 | 50 | 33 | 49 | 34 | 20 | 30 | 42 | 26 | 39 | 59 | 39 | 58 |
0.5 | 0.9 | 16 | 10 | 13 | 20 | 14 | 18 | 30 | 23 | 29 | 21 | 13 | 18 | 26 | 18 | 23 | 37 | 28 | 36 | 25 | 17 | 22 | 31 | 22 | 29 | 43 | 33 | 43 |
0.5 | 0.95 | 12 | 9 | 10 | 16 | 12 | 13 | 23 | 20 | 22 | 16 | 12 | 13 | 20 | 15 | 18 | 28 | 24 | 28 | 19 | 14 | 17 | 23 | 19 | 21 | 32 | 28 | 32 |
0.55 | 0.6 | 920 | 89 | 882 | 1248 | 122 | 1210 | 2001 | 199 | 1965 | 1323 | 129 | 1285 | 1713 | 168 | 1675 | 2583 | 256 | 2547 | 1712 | 167 | 1674 | 2153 | 211 | 2116 | 3120 | 309 | 3085 |
0.55 | 0.65 | 236 | 44 | 217 | 316 | 60 | 298 | 501 | 98 | 485 | 334 | 63 | 316 | 429 | 82 | 412 | 643 | 126 | 627 | 429 | 81 | 411 | 537 | 103 | 520 | 774 | 152 | 759 |
0.55 | 0.7 | 106 | 29 | 95 | 141 | 40 | 130 | 221 | 65 | 212 | 149 | 41 | 137 | 190 | 54 | 179 | 283 | 83 | 274 | 190 | 53 | 178 | 236 | 67 | 226 | 339 | 99 | 330 |
0.55 | 0.75 | 60 | 21 | 52 | 79 | 29 | 72 | 123 | 48 | 117 | 83 | 30 | 75 | 106 | 39 | 98 | 156 | 61 | 150 | 105 | 38 | 97 | 131 | 49 | 124 | 186 | 73 | 181 |
0.55 | 0.8 | 39 | 17 | 33 | 51 | 23 | 45 | 77 | 38 | 73 | 53 | 23 | 47 | 66 | 31 | 61 | 97 | 48 | 94 | 66 | 30 | 60 | 82 | 38 | 76 | 116 | 57 | 112 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.55 | 0.85 | 27 | 14 | 22 | 35 | 19 | 30 | 52 | 31 | 50 | 36 | 19 | 31 | 45 | 25 | 41 | 65 | 39 | 63 | 44 | 24 | 40 | 55 | 31 | 51 | 77 | 46 | 75 |
0.55 | 0.9 | 20 | 11 | 16 | 25 | 16 | 22 | 37 | 26 | 35 | 26 | 16 | 22 | 32 | 21 | 29 | 46 | 33 | 45 | 31 | 20 | 28 | 38 | 26 | 36 | 54 | 39 | 53 |
0.55 | 0.95 | 15 | 10 | 11 | 19 | 14 | 16 | 27 | 23 | 26 | 19 | 13 | 16 | 23 | 18 | 21 | 33 | 28 | 33 | 23 | 17 | 20 | 28 | 22 | 26 | 39 | 33 | 38 |
0.6 | 0.65 | 884 | 89 | 846 | 1198 | 122 | 1161 | 1921 | 199 | 1885 | 1270 | 129 | 1232 | 1644 | 168 | 1607 | 2479 | 256 | 2443 | 1644 | 167 | 1606 | 2067 | 211 | 2030 | 2994 | 309 | 2959 |
0.6 | 0.7 | 224 | 44 | 206 | 300 | 60 | 283 | 476 | 98 | 459 | 317 | 63 | 299 | 408 | 82 | 391 | 610 | 126 | 595 | 408 | 81 | 390 | 510 | 103 | 493 | 735 | 152 | 719 |
0.6 | 0.75 | 100 | 29 | 89 | 133 | 40 | 122 | 208 | 65 | 199 | 140 | 41 | 129 | 179 | 54 | 168 | 265 | 83 | 256 | 178 | 53 | 167 | 222 | 67 | 211 | 318 | 99 | 309 |
0.6 | 0.8 | 56 | 21 | 48 | 74 | 29 | 66 | 114 | 48 | 108 | 78 | 30 | 69 | 98 | 39 | 91 | 145 | 61 | 139 | 98 | 38 | 90 | 121 | 49 | 114 | 173 | 73 | 167 |
0.6 | 0.85 | 36 | 17 | 30 | 47 | 23 | 41 | 71 | 38 | 67 | 48 | 23 | 42 | 61 | 31 | 56 | 89 | 48 | 85 | 60 | 30 | 55 | 75 | 38 | 69 | 106 | 57 | 102 |
0.6 | 0.9 | 25 | 14 | 20 | 32 | 19 | 27 | 47 | 31 | 45 | 33 | 19 | 28 | 41 | 25 | 37 | 59 | 39 | 56 | 40 | 24 | 36 | 49 | 31 | 45 | 69 | 46 | 67 |
0.6 | 0.95 | 18 | 11 | 14 | 22 | 16 | 19 | 33 | 26 | 31 | 23 | 16 | 19 | 28 | 21 | 25 | 41 | 33 | 39 | 28 | 20 | 24 | 34 | 26 | 31 | 48 | 39 | 46 |
0.65 | 0.7 | 830 | 89 | 792 | 1124 | 122 | 1087 | 1800 | 199 | 1764 | 1191 | 129 | 1153 | 1541 | 168 | 1504 | 2322 | 256 | 2287 | 1541 | 167 | 1503 | 1937 | 211 | 1900 | 2805 | 309 | 2770 |
0.65 | 0.75 | 208 | 44 | 190 | 279 | 60 | 261 | 440 | 98 | 424 | 294 | 63 | 276 | 378 | 82 | 361 | 565 | 126 | 549 | 378 | 81 | 360 | 472 | 103 | 455 | 679 | 152 | 664 |
0.65 | 0.8 | 92 | 29 | 81 | 122 | 40 | 111 | 190 | 65 | 181 | 128 | 41 | 117 | 163 | 54 | 153 | 242 | 83 | 233 | 163 | 53 | 152 | 203 | 67 | 192 | 290 | 99 | 281 |
0.65 | 0.85 | 51 | 21 | 43 | 67 | 29 | 59 | 103 | 48 | 97 | 70 | 30 | 62 | 89 | 39 | 81 | 130 | 61 | 124 | 88 | 38 | 80 | 109 | 49 | 102 | 155 | 73 | 150 |
0.65 | 0.9 | 32 | 17 | 26 | 42 | 23 | 36 | 63 | 38 | 59 | 43 | 23 | 37 | 54 | 31 | 49 | 79 | 48 | 75 | 54 | 30 | 48 | 66 | 38 | 61 | 93 | 57 | 90 |
0.65 | 0.95 | 22 | 14 | 17 | 28 | 19 | 23 | 41 | 31 | 38 | 28 | 19 | 24 | 35 | 25 | 31 | 51 | 39 | 48 | 35 | 24 | 30 | 43 | 31 | 39 | 60 | 46 | 58 |
0.7 | 0.75 | 758 | 89 | 720 | 1025 | 122 | 988 | 1640 | 199 | 1604 | 1086 | 129 | 1048 | 1404 | 168 | 1367 | 2114 | 256 | 2079 | 1404 | 167 | 1366 | 1764 | 211 | 1727 | 2552 | 309 | 2517 |
0.7 | 0.8 | 188 | 44 | 170 | 251 | 60 | 233 | 395 | 98 | 379 | 265 | 63 | 247 | 339 | 82 | 322 | 506 | 126 | 490 | 339 | 81 | 321 | 423 | 103 | 406 | 608 | 152 | 593 |
0.7 | 0.85 | 82 | 29 | 71 | 108 | 40 | 97 | 168 | 65 | 158 | 114 | 41 | 102 | 144 | 54 | 134 | 213 | 83 | 204 | 144 | 53 | 133 | 179 | 67 | 168 | 255 | 99 | 246 |
0.7 | 0.9 | 45 | 21 | 37 | 58 | 29 | 51 | 89 | 48 | 83 | 61 | 30 | 53 | 77 | 39 | 69 | 112 | 61 | 106 | 76 | 38 | 68 | 94 | 49 | 87 | 133 | 73 | 128 |
| | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
s1 | s2 | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax | ssU | ssMin | ssMax |
0.7 | 0.95 | 28 | 17 | 22 | 36 | 23 | 30 | 53 | 38 | 49 | 37 | 23 | 31 | 46 | 31 | 40 | 66 | 48 | 62 | 45 | 30 | 39 | 55 | 38 | 50 | 78 | 57 | 75 |
0.75 | 0.8 | 668 | 89 | 630 | 901 | 122 | 864 | 1439 | 199 | 1403 | 955 | 129 | 917 | 1233 | 168 | 1196 | 1854 | 256 | 1818 | 1232 | 167 | 1195 | 1547 | 211 | 1510 | 2237 | 309 | 2202 |
0.75 | 0.85 | 163 | 44 | 145 | 217 | 60 | 199 | 340 | 98 | 324 | 229 | 63 | 211 | 292 | 82 | 275 | 434 | 126 | 419 | 292 | 81 | 274 | 364 | 103 | 347 | 522 | 152 | 506 |
0.75 | 0.9 | 70 | 29 | 59 | 92 | 40 | 81 | 141 | 65 | 132 | 96 | 41 | 85 | 121 | 54 | 111 | 178 | 83 | 169 | 121 | 53 | 110 | 150 | 67 | 139 | 213 | 99 | 204 |
0.75 | 0.95 | 38 | 21 | 30 | 48 | 29 | 41 | 73 | 48 | 67 | 50 | 30 | 42 | 63 | 39 | 56 | 91 | 61 | 85 | 62 | 38 | 54 | 76 | 49 | 69 | 107 | 73 | 102 |
0.8 | 0.85 | 560 | 89 | 522 | 753 | 122 | 716 | 1198 | 199 | 1162 | 797 | 129 | 759 | 1027 | 168 | 990 | 1541 | 256 | 1506 | 1027 | 167 | 989 | 1287 | 211 | 1250 | 1859 | 309 | 1823 |
0.8 | 0.9 | 134 | 44 | 116 | 177 | 60 | 159 | 275 | 98 | 259 | 186 | 63 | 168 | 237 | 82 | 219 | 350 | 126 | 334 | 236 | 81 | 218 | 293 | 103 | 276 | 419 | 152 | 404 |
0.8 | 0.95 | 56 | 29 | 45 | 72 | 40 | 62 | 110 | 65 | 100 | 75 | 41 | 64 | 95 | 54 | 84 | 138 | 83 | 129 | 94 | 53 | 83 | 116 | 67 | 106 | 164 | 99 | 155 |
0.85 | 0.9 | 433 | 89 | 395 | 580 | 122 | 542 | 917 | 199 | 881 | 613 | 129 | 575 | 787 | 168 | 750 | 1177 | 256 | 1141 | 787 | 167 | 749 | 984 | 211 | 947 | 1417 | 309 | 1382 |
0.85 | 0.95 | 100 | 44 | 82 | 130 | 60 | 113 | 199 | 98 | 183 | 136 | 63 | 119 | 172 | 82 | 155 | 252 | 126 | 237 | 172 | 81 | 154 | 212 | 103 | 195 | 301 | 152 | 286 |
0.9 | 0.95 | 288 | 89 | 251 | 382 | 122 | 345 | 595 | 199 | 560 | 402 | 129 | 365 | 513 | 168 | 476 | 760 | 256 | 725 | 513 | 167 | 475 | 638 | 211 | 601 | 912 | 309 | 877 |
Beam, C. A. (1992), "Strategies for Improving Power in Diagnostic Radiology
Research," American Journal of Radiology, 159, 631-637.
Casagrande, J. T., Pike, M. C., and Smith, P. G. (1978), "An Improved
Approximate Formula for Calculating Sample Sizes for Comparing Two Binomial
Distributions," Biometrics, 34, 483-486.
http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/casagrande.pdf
Original paper available on the www