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Abstract—We consider diffusion fields induced by multiple
localised and instantaneous sources. We assume a mobile sensor
samples the field, uniformly along a piecewise linear trajectory,
which is unknown. The problem we address is the estimation of
the amplitudes and locations of the diffusion sources, as well as
of the trajectory of the sensor. We first propose a method for
diffusion source localisation and trajectory mapping (D-SLAM)
in 2D, where we assume the activation times of the sources
are known and the evolution of the diffusion field over time
is negligible. The reconstruction method we propose maps the
measurements obtained using the mobile sensor to a sequence of
generalised field samples. From these generalised samples, we can
then retrieve the locations of the sources as well as the trajectory
of the sensor (up to a 2D orthogonal geometric transformation).
We then relax these assumptions and show that we can perform
D-SLAM also in the case of unknown activation times, from
samples of a time-varying field, as well as in 3D spaces. Finally,
simulation results on both synthetic and real data further validate
the proposed framework.

Index Terms—Diffusion equation, finite rate of innovation
(FRI), field and trajectory reconstruction, simultaneous locali-
sation and mapping (SLAM), sampling theory.

I. INTRODUCTION

Sampling of spatiotemporal fields is a problem that has
been previously considered, both for retrieving sources of a
diffusion field [2]–[14], as well as for estimation of the field
from samples [15]–[23]. Some of the real-life applications of
sampling and reconstruction of physical fields are the localisa-
tion of neuronal source activities from electroencephalographic
(EEG) signals [24], the retracing of chemical leakages and nu-
clear leakages [25], [26], as well as environmental monitoring
[27], [28] which has experienced renewed interest in recent
years due to the rise in wild forest fires and pollution [29].

Several authors have addressed the problem of sampling
and reconstructing physical fields that can be modelled using
the diffusion equation [3], [5], whilst some other works have
considered more general setups where the fields are modelled
by constant coefficient linear partial differential equations,
e.g. [16]. With the exception of [16], [21], most of the
other methods assume the sensors are fixed and at known
locations. Sampling physical fields along trajectories using
mobile sensors was considered also in [30]–[32], but in these
cases the trajectories are known.

In many applications, however, it is not always possible to
know the position of the mobile sensor. This may happen for
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example, for unmanned aerial vehicles (UAVs) such as drones
monitoring remote inaccessible areas or for robots scanning an
under-water environment [33], where GPS sensors may not ac-
curately work. A research problem of great interest is therefore
the estimation of the position of the mobile sensor, without
relying on GPS signal, whilst simultaneously monitoring the
environment in which it moves. Simultaneous localisation and
mapping (SLAM) is a topic which has received significant
interest in robotics [34]. The problem is to localise a moving
sensor whose position is unknown, whilst jointly creating
a map of the surrounding environment. SLAM algorithms
have been proposed for a wide range of applications, such as
autonomous robots, self-driving cars or virtual reality devices.
Most methods rely on information obtained using optical
sensors [35], [36], whilst some methods are tailored to acoustic
signals [37], [38].

Recently, the problem of simultaneous localisation and
mapping has also been studied in [39], [40], in the context
of estimation of a static image, using samples from a moving
sensor whose location is unknown. The algorithm proposed in
[40] achieves reconstruction of both the sampling trajectory
(up to a linear transformation and a shift), as well as the 2D
image being sampled.

Nevertheless, there are settings in which visual SLAM
is not practical, and therefore other sensor modalities are
required to capture information of the surrounding environ-
ment. For example, many processes governed by the diffusion
equation, such as plume sources, biochemical and nuclear
leakage and thermal fields, cannot be captured using visual
cameras. Instead, these fields are monitored using infrared
thermography or odour detection sensors [41], [42]. Given the
different modality of the data, existing SLAM methods based
on visual or LiDAR data would not be suitable for these real-
life applications.

In this paper, we present a method that allows a mobile
sensor to move within an environment in order to estimate
sources of diffusion. We consider a diffusion field induced
by multiple instantaneous point-like sources and through the
use of the Green’s theorem, we are able to convert the
field measurements taken along an unknown trajectory into a
sequence of generalised field samples. We then use these field
samples to perform simultaneous diffusion source localisation
and trajectory mapping (D-SLAM) up to a 2D orthogonal
transformation, as depicted in Fig. 1. In order to achieve
reconstruction, we make the following assumptions. First, we
assume that the variation of the diffusion field over time is
negligible and that the activation times of the sources are
known. In addition, we assume that there are at least two
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Fig. 1: Unmanned aerial vehicles can help determine radiation after incidents in nuclear facilities or during routine monitoring in (a), and
localise wild fires in (b) and (c). The problem we consider in this paper is localising the diffusion sources and the trajectory of the mobile
sensor from samples along unknown trajectories, as illustrated in (d).

sources and at least three lines in the trajectory, and that
the sources and lines are located on a plane. The framework
we develop finds an algebraic solution up to an orthogonal
transformation from the true source locations and lines. This
framework is then extended to the 3D case as well as the case
in which the field is time-varying and the activation times
of the sources are unknown. We also relate the problem to
classical SLAM, by showing how we can estimate a single
diffusion source when the trajectory of the mobile sensor is
closed (i.e. the sensor returns to the origin point).

This paper is organised as follows. In Section II we intro-
duce the problem of localising multiple instantaneous diffusion
sources from field samples taken along a piecewise linear
trajectory. Then, in Section III we show that it is possible
to retrieve the source locations and amplitudes as well as the
sensor trajectory up to an orthogonal transformation, when the
field is static and the source activation times are known. Then,
in Section IV we develop a generalised D-SLAM algorithm
that deals with the case in which the diffusion process is time-
varying, the activation times of the sources are unknown, as
well as the case in which the samples are corrupted by noise.
We also provide experimental results in Section V, which
validate the proposed mathematical framework and generalised
D-SLAM algorithm on both synthetic and real thermal data.
Finally, we present concluding remarks in Section VI.

II. PROBLEM FORMULATION

Consider the diffusion field induced by an instantaneous
source (localised in both space and time), within a two-
dimensional region. The diffusion field will diffuse according
to the Green’s function [43] as follows:

f(x, t) =
1

4πµ(t− τk)
ake
− ||x−Sk||

2

4µ(t−τk) H(t− τk),

where:
ak = amplitude of the diffusion source,
τk = activation time of the diffusion source,
Sk = coordinates of the source in R2,
H(t) = unit step function,
µ = diffusivity of the medium.

Then, suppose we sample a field induced by K diffusion
sources, and take measurements along a trajectory made up of
L lines, as illustrated in Fig. 2 for K = 2 and L = 3. Assume
that the measurements are taken at uniform points, with a step
size equal to Ts, and that the length of each line is equal to

lj . Let us denote the start point of each line j with bj ∈ R2,
and describe the vector equation of this line as follows:

qj(s) = bj + s(bj+1 − bj),

where qj(s) are points on line j and s ∈ [0, 1]. Then, the
spatio-temporal measurements along line j, due to K sources
with coordinates Sk are computed as in [3], [43] and given
by:

f
(
qj(s), t

)
=

K∑
k=1

1

4πµ(t− τk)
ake
−
||qj(s)−Sk||

2

4µ(t−τk) H(t− τk).

We now note that we can express ||qj(s)−Sk||2 as follows:

||qj(s)− Sk||2 = ||bj − Sk + s(bj+1 − bj)||2

= ||bj − Sk||2 + 2s(bj − Sk)T (bj+1 − bj)

+ s2||(bj+1 − bj)||2

(a)
=

(
ljs+

(bj − Sk)T (bj+1 − bj)

lj

)2

+ ||bj − Sk||2 −

(
(bj − Sk)T (bj+1 − bj)

lj

)2

,

(1)

where (a) follows from the fact that the length of segment j
is ||(bj+1 − bj)|| = lj .

Let us denote the direction vector of line j with cj, where:

cj =
bj+1 − bj

lj
, (2)

such that cj
T cj = 1. Then, the definition in (2) allows us to

re-write (1) as:

||qj(s)− Sk||2 =
(
ljs+

(
bj − Sk

)T
cj

)2
+ ||bj − Sk||2 −

((
bj − Sk

)T
cj

)2
.

If we denote 4µ(t− τk) = Ck(t) and assuming t ≥ τk, the
cumulative measurements along line j from all instantaneous
sources k = 1, ...,K, are given by:

f
(
qj(s), t

)
:= fj(s, t) =

K∑
k=1

ak
πCk(t)

e
−
||qj(s)−Sk||

2

Ck(t)

=

K∑
k=1

ak
πCk(t)

e
−
||bj−Sk||

2−
(
(bj−Sk)T cj)

)2

Ck(t) e
−

(
ljs+(bj−Sk)

T
cj

)2

Ck(t)

:=

K∑
k=1

Ak,j(t)e
−

(ljs−Yk,j)
2

Ck(t) ,

(3)
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Fig. 2: In (a) we show two thermal sources and the 2D field generated by these sources, sampled by a mobile sensor along a piecewise
linear trajectory made of three lines. In (b) we show the projection of the 2D diffusion field across the second line in the trajectory, and the
uniform samples taken along this line. The sources are located at S1 and S2 respectively, the start point of each line j has coordinates bj

and the uniformly spaced measurements on line j are denoted with qj,n, as in (c).

where:

Ak,j(t) =
ak

πCk(t)
e
−
||bj−Sk||

2+Y 2
k,j

Ck(t)

and

Yk,j =
(
Sk − bj

)T
cj. (4)

If we assume that within the time interval of observation the
evolution in time is negligible, we can remove the dependence
on t in fj(s, t). Moreover, if we assume that the activation
time of each source k is known and is the same, we have that
Ck(t) = C for some constant C and we set for simplicity
Ck(t) = 1. Therefore, fj(s) becomes:

fj(s) =

K∑
k=1

Ak,je
−(ljs−Yk,j)2 .

Finally, given that the measurements are taken at uniform
points with step size equal to Ts, the reconstruction problem
reduces to retrieving the location Sk, the intensity ak of each
source k, and the trajectory from the spatial measurements
taken at uniformly spaced locations nTs, with n ∈ N:

fj(nTs) =

K∑
k=1

Ak,je
−(ljnTs−Yk,j)

2

, (5)

where

Ak,j =
ak
π
e−||bj−Sk||2+Y 2

k,j , (6)

and

Yk,j =
(
bj − Sk

)T
cj, for j = 1, .., L and k = 1, ...,K.

(7)

Geometrically we note that, when the evolution of the
diffusion field over time is negligible, the diffusion field from
point-like sources is a sum of 2D Gaussians, as seen in Fig. 2
for the case of two sources. Sampling along straight lines
results in a sum of 1D Gaussians, as given in Eq. (5) and
shown in Fig. 2 (b). Moreover, the parameters Yk,j in Eq. (7)
are the centers of these 1D Gaussians, and also represent the
projection of the point Sk onto line j. This is depicted in
Fig. 2 (c), where we see that Y1,1 is the projection of S1

onto the first line. In addition, the parameters Ak,j in (6) are
dependent on the amplitude ak of the source and its shortest
distance to line j. For example for the case in Fig. 2 (c), we
have A1,1 = a1e

−d2
1,1 .

The problem we consider is the estimation of the unknown
parameters Ak,j and Yk,j , from the measurements given in
Eq. (5) along L lines, i.e. for j = 1, ..., L. Once the parameters
Yk,j and Ak,j are estimated, we can then use back-projection
to retrieve the source locations Sk and amplitudes ak, as well
as the lines in the trajectory (determined by the start point bj

and end point bj+1).
In the following section we present the D-SLAM method

for estimation of K ≥ 2 sources and L ≥ 3 lines, when the
activation time of the sources is the same and is known and
the variation of the field during the observation window is
negligible. We show that the solution we obtain is unique and
up to a 2D orthogonal transformation from the true source
locations and trajectory. We then develop a generalised D-
SLAM algorithm, by relaxing some of these assumptions and
we consider the case in which the field is time-varying, as
well as the case in which the activation times of the sources
are unknown.

III. D-SLAM USING SPATIAL SAMPLES ALONG
PIECEWISE LINEAR TRAJECTORIES

In this section we present a method for estimating the
diffusion field and the trajectory of the sensor in 2D, when
the number of sources is K ≥ 2 and the number of lines
L ≥ 3. We assume that the activation times of the sources are
known and equal and that the diffusion field does not evolve
over time, such that we have access to the field measurements
described in Eq. (5). We also leverage the assumption that the
diffusion sources activate before the start of the observation
and stay active throughout the observation, such that each
source contributes to the measurements on all lines. The
trajectory is composed of linear segments located on the same
plane as the sources. In addition, all lines whose measurements
we use for estimation are adjacent, and their lengths are
known. Under these hypotheses, we can state the following
result:
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Fig. 3: The problem we consider in this paper is localising the diffusion sources and the trajectory of the mobile sensor from samples along
unknown piecewise linear trajectories, as illustrated in (a). Under the hypotheses of Theorem 1, we show that the estimation we obtain is up
to a 2D orthogonal transformation (angles and lengths of lines preserved), from the true trajectory and source locations, as seen in the two
possible solutions in (b) and (c), provided K ≥ 2 sources and L ≥ 3 lines. If the locations of any three points in the trajectory are known,
we can exactly retrieve the source locations and the trajectory of the mobile sensor, as seen in (d).

Theorem 1. Given uniform spatial measurements along an
unknown piecewise-linear trajectory, the locations of the
sources and the linear segments of the trajectory can be exactly
reconstructed up to a 2D orthogonal transformation (shift and
rotation), whilst the amplitudes of the sources can be retrieved
exactly. For the case in which K ≥ 3 and L ≥ 3 or K = 2
and L ≥ 4, the algorithm retrieves a single solution, whereas
for K = 2 and L = 3 there are two solutions, out of which
one is up to a 2D orthogonal transformation.

Proof. In what follows we concentrate on the case K ≥ 3
and L ≥ 3. The case K = 2 and L ≥ 3 is discussed in
Appendix C. We estimate the trajectory and source locations in
the following way. We first estimate the unknown parameters
Yk,j and Ak,j from the samples fj(nTs). We then pair the
estimated parameters to the correct source Sk, k = 1, ...,K.
Finally, given the properly paired parameters, we present an
algebraic method to retrieve the sources and the trajectory. As
illustrated in Fig. 3, our solution is exact up to an orthogonal
transformation.

A. Estimation of Yk,j and Ak,j

We first need to estimate the parameters Yk,j and Ak,j

from the measurements in Eq. (5). This is equivalent to a
standard estimation problem in the context of finite rate of
innovation (FRI) theory [44]. Therefore, these parameters can
be retrieved uniquely and exactly using the method in [44] or
approximately but more robustly using the approach detailed
in Appendix A.

B. Pairing Yk,j and Ak,j with Sk

In order to be able to use the estimated parameters Yk,j and
Ak,j for source localisation, we need to first ensure these are
paired across different adjacent lines. In other words, we need
to identify whether two parameters Yk,j and Yk′,j+1 (and the
corresponding Ak,j and Ak′,j+1 respectively) estimated using
measurements on line j and j + 1 respectively, correspond to
the same source Sk, i.e. whether k = k′.

First, the parameter Ak,j depends on the amplitude ak of
source k, as well as on the shortest distance dk,j from source
k to line j, and can also be expressed as:

Ak,j = ake
−||bj−Sk||2+Y 2

k,j
(b)
= ake

−d2
k,j , (8)

where (b) follows from Pythagoras’ theorem.
Using the derivations in Eq. (8), we get:

log

(
Ak,j

ak

)
= −d2k,j =

(
lj − Yk,j

)2 − ||bj+1 − Sk||2, (9)

where we have used d2k,j+
(
lj − Yk,j

)2
= ||bj+1−Sk||2 which

follows from Pythagoras’ theorem, as illustrated in Fig. 4. Here
the angle between the vector

−−−−→
SkPk,j and line j is 90°, which

allows us to express ||bj+1 − Sk||2 as the sum of d2k,j and(
lj − Yk,j

)2
.

Similarly, for line j + 1 and source k′, we get:

log

(
Ak′,j+1

ak′

)
= −d2k′,j+1 = Y 2

k′,j+1−||bj+1−Sk
′||2. (10)

Eq. (9) and Eq. (10) yield:

log

(
Ak,j

Ak′,j+1

ak′

ak

)
= d2k′,j+1 − d2k,j

(c)
= ||Sk′ − bj+1||2 − Y 2

k′,j+1 +
(
lj − Yk,j

)2 − ||bj+1 − Sk||2,
(11)

where (c) follows from Pythagoras’ theorem.
When k = k′, the sources k and k′ coincide and have

same amplitude ak, as well as location Sk. If we replace
ak = ak′ and Sk = Sk′ into Eq. (11), we get the identity
log
(

Ak,j
Ak′,j+1

)
= (Yk,j − lj)2 − Y 2

k′,j+1.

This means that log
(

Ak,j
Ak′,j+1

)
= (Yk,j − lj)2 − Y 2

k′,j+1

whenever k = k′. Hence, the two parameters Yk,j and
Yh,j+1 with corresponding amplitudes Ak,j and Ah,j+1

respectively, are related to the same source k, when
log
(

Ak,j
Ah,j+1

)
= (Yk,j − lj)2 − Y 2

h,j+1
1.

C. Estimation of the trajectory and source parameters

We are now in a position to find the source amplitudes and
locations, as well as the trajectory, that are consistent with the
field measurements.

1The equality log

(
Ak,j

Ak′,j+1

)
= (Yk,j − lj)

2 − Y 2
k′,j+1

may also

hold for cases when k 6= k′. However, this only happens for degenerate
arrangements of the sources with respect to the trajectory, for example when
the distances from the source Sk and Sk′ to point bj+1 are equal.
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Fig. 4: Single diffusion source and trajectory composed of two
lines. The parameter Yk,j is estimated using FRI and represents the
projection of the vector Sk − bj onto line j. The point Pk,j is the
intersection between the perpendicular from source k to line j, and
line j. The shortest distance between the source k and line j is dk,j .

Using the parameters Yk,j = (bj − Sk)T cj

from Eq. (7), we can also obtain the difference
Ωj,q = Yq+1,j − Yq,j =

(
Sq − Sq+1

)T
cj for each line

j and any two different sources q and q+ 1. This leads to the
following matrix:

Ω =


(S2 − S1)T c1 . . . (S2 − S1)T cL
(S3 − S2)T c1 . . . (S3−S2)T cL

...
. . .

...
(Sk − SK−1)T c1 . . . (Sk − SK−1)T cL



=


(S2 − S1)T

(S3 − S2)T

...
(Sk − SK−1)T


︸ ︷︷ ︸

(K−1)×2

[
c1 c2 . . . cL

]︸ ︷︷ ︸
2×L

:= SC.

(12)

Since we assume the diffusion field is induced within a 2D
region, Sk and cj are two-dimensional vectors and hence the
dimensions of S and C are (K−1)×2 and 2×L respectively.
Therefore, Ω is a matrix of rank ≤ 2.

We can factorise the matrix Ω using singular value decom-
position as Ω = Ũ∆̃ṼT , where the first two diagonal entries
of ∆̃ may be non-zero and the other entries of ∆̃ are zero.
Therefore, selecting the first two columns of Ũ and the first
two rows of ṼT , we can obtain the following factorisation:

Ω = U∆VT , (13)

where:

U = (K − 1)× 2 orthogonal matrix,
∆ = 2× 2 diagonal matrix,
V = L× 2 orthogonal matrix.

Hence, ∆VT = UTΩ = C̃, which we denote as:

UTΩ = C̃ =
[
c̃1 c̃2 . . . c̃L

]
.

Moreover, denoting the transformation matrix between the
estimated direction vectors c̃j and the true lines cj with A,
we get:

UTΩ =
[
c̃1 c̃2 . . . c̃L

]
= A

[
c1 c2 . . . cL

]
,
(14)

or equivalently2:[
c1 c2 . . . cL

]
= A−1

[
c̃1 c̃2 . . . c̃L

]
= A−1︸︷︷︸

2×2

UTΩ. (15)

Since ||cj|| = 1 and given that cj = A−1c̃j, we have 1 =
c̃Tj A−TA−1c̃j, ∀j. We then denote

A−TA−1 =

[
a b
b c

]
,

where the unknowns a, b, c can be found by solving the system
of L linear equations 1 = c̃Tj A−TA−1c̃j, for j = 1, ..., L,
which has a unique solution provided L ≥ 3.

Once a, b and c are found, we get A−1 = R

√[
a b
b c

]
,

where R is an arbitrary orthogonal matrix. Given A−1, we
then find the direction vectors cj using Eq. (15). By arbitrarily
setting the first point in the trajectory b1, we then retrieve all
the other points bj using Eq. (2). Finally, the source locations
and amplitudes can be retrieved by solving the system of
equations obtained using parameters Yk,j given in Eq. (7) for
each source k and lines j = 1, 2, ..., L:

cT1
cT2
...

cTL

 [Sk

]
=


Yk,1 + cT1 b1

Yk,2 + cT2 b2

...
Yk,L + cTLbL

 .
Once the locations of the sources have been retrieved, their

amplitudes can be computed using the estimated parameters
Ak,j in (6). Finally, given that R is an arbitrary orthogonal
matrix, the final estimation of the trajectory and source loca-
tions will be up to an orthogonal transformation from the true
lines and locations respectively.

Remark 1. By making additional assumptions, the D-SLAM
algorithm can also be extended to the case of a single diffusion
source. For instance, by assuming the mobile sensor follows
a trajectory composed of three linear segments, and that it
returns to the starting point as in classical SLAM, we can
localise a single source, whilst jointly estimating the trajectory.
This estimation method is described in Appendix D.

Remark 2. The D-SLAM framework can also be extended to
the case in which the sources and trajectory are located in
3D. In this case, we would need K ≥ 4 sources and L ≥ 6
lines to solve the problem using the factorisation in (13), as
described in Appendix E.

Remark 3. If any three points in the trajectory are known, we
can use Procrustes analysis to perfectly estimate the sources
and trajectory. Alternatively, the orthogonal transformation
can also be specified if we know an axis (e.g. the first line
in the trajectory), and an angle (e.g. the angle between the
first two lines in the trajectory).

2The inverse A−1 does not exist when matrix S in (12) loses rank,
which may happen for a degenerate arrangement of the sources, for example
all sources being located on the same line. When this happens, the matrix
UT Ω in (14) has rank one which means A also has rank one.
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TABLE I: Summary of results for localising diffusion sources from samples taken along unknown trajectories. For each case,
we highlight the assumptions made, as well as the nature of the solution obtained.

Trajectory Separation of
sources

Time evolution
of the field

Activation
times

Solution

1 Piecewise
linear

Overlapping
sources

Negligible Known Estimation of trajectory and source locations up to an orthogonal transformation.
Exact retrieval of the source amplitudes.

2 Piecewise
linear

Overlapping
sources

Present Known Approximate estimation of trajectory and sources up to an orthogonal
transformation. Approximate retrieval of the source amplitudes.

3 Piecewise
linear

Sufficiently
separated sources

Negligible Unknown Estimation of trajectory and source locations up to an orthogonal transformation.
Exact retrieval of the source amplitudes and their activation times.

4 Parametric Sufficiently
separated sources

Negligible Known Estimation of trajectory and source locations up to an orthogonal transformation.
Exact retrieval of the amplitudes of the sources [46].

5 Parametric Sufficiently
separated sources

Negligible Unknown Estimation of trajectory and source locations up to a scaled orthogonal
transformation. Exact retrieval of the source amplitudes and activation times [46].

Remark 4. The number K of sources may be determined
by leveraging the properties of the matrix S, built as in (20)
in Appendix B, using 2K + 1 consecutive samples, when we
know the maximum number of sources Kmax and assuming
the number of samples on each line satisfies N ≥ 2Kmax +1.
When there are K sources, this matrix is built using 2K + 1
consecutive samples, and its rank is exactly K [45]. Therefore,
for each possible value of K = 1, ...,Kmax, we scan all
consecutive groups of 2K+1 samples, in order to build S, and
check whether this matrix has rank K. The smallest retrieved
value of K is the number of sources.

IV. GENERALISED D-SLAM

In this section we highlight the potential for the real-world
implementation of the mathematical framework developed in
the previous section. We first relax some of the assumptions
leveraged and consider the case in which the diffusion field is
time-varying, as well as the case in which the activation times
of the sources are unknown. We also address the case in which
the sensor moves along an arbitrary unknown parametric
trajectory, showing how we can estimate the locations of the
sources and the trajectory up to an orthogonal transformation.
Finally, we show that the reconstruction of the diffusion
sources and the trajectory of the mobile sensor can also be
achieved when the spatial measurements are corrupted by
noise.

In Table I we present a summary of the different settings
we consider, by showing the assumptions made and describing
the solution we obtain.

A. Time-varying diffusion field

The method we have presented in the previous section
requires the diffusion field to be constant over time, so that
the uniformly-spaced measurements we obtain are not time-
dependent. We now relax this assumption and consider a time-
evolving diffusion process, parameterised by Eq. (3).

Let us denote the time at which the observation starts with
t0 and the temporal sampling period with T . Then, the discrete

uniform measurements taken at point qj(nTs) on line j in (3)
become:

fj,n = f(qj(nTs), nT ) =

K∑
k=1

Ak,j(nT )e
− (ljnTs−Yk,j)

2

4µ(nT+t0−τk) ,

(16)

where the time t0 and the activation times τk are assumed to
be known, and

Ak,j(nT ) =
ak

4πµ(nT + t0 − τk)
e
−
||bj−Sk||

2+Y 2
k,j

4µ(nT+t0−τk) .

We approximate the time-varying field with a constant
diffusion field, by setting nT + t0 − τk = t̂j − τk, where
t̂j is the time at which the middle sample on line j is taken.
Then, the field measurements in (16) become equivalent to
the ones in (5), and we can estimate the source locations and
trajectory as described in Section III.

In Fig. 5 we show the actual time-varying field, which is
approximated by a static field as described in this section, in
the case in which the diffusion starts at τ1 = 0s, the first
measurement is taken at t1 = 0.1s, the diffusivity of the
medium is µ =0.0939 m2/s and the temporal sampling period
is T = 7.8125× 10−5s.

In Fig. 6 we show the errors between the estimated and the
actual parameters Yk,j for the first line of the trajectory in
Fig. 10 (a). We observe that the estimation error reduces as
the speed of the mobile sensor increases and is negligible for
speeds larger than 11m/s.

B. Unknown activation times

We now consider multiple instantaneous sources, with un-
known activation times τk. As we mentioned in Section II,
the diffusion fields generated by K instantaneous point-like
sources is a sum of K 2-D Gaussians. However, when the
activation times are different and unknown, the variances of
these Gaussians are different and unknown. Consequently, in
this new setting and neglecting the time evolution, the field
measured along a straight line is a sum of 1-D Gaussians with
different variances. Therefore, the problem is now equivalent
to estimating the amplitude, location and variance of the
Gaussians.
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Fig. 5: Time-varying field measurements of a single diffusion source
located at distance d = 0.5m from a line, when µ = 0.0939m2/s
and the diffusion starts at τ1 = 0s, the first measurements is taken at
t1 = 0.1s and the temporal sampling period is T = 7.8125×10−5s.

Fig. 6: We consider the setting shown in Fig. 10 (a) and approximate
the time-varying field with a static one. We show the relative error
of the estimated parameters Yk,j for the first line, for different values
of the speed of the mobile sensor, which is computed as v = Ts

T
.

If the Gaussians are sufficiently separated, we can estimate
the parameters of each Gaussian using maximum likelihood
estimation, as follows:

First, since we assume the sources are sufficiently separated,
groups of samples induced by nearby sources will be separated
by samples of small amplitude, sn < ε where ε > 0 and ε ≈ 0.
Therefore, we select the first samples n = 1, 2, ..., N1 such that
the next sample has amplitude sN1+1 < ε. Using Eq. (3) and
assuming the evolution of the diffusion field is negligible, the
first N1 samples are given by:

f1(n) =
a1
πC1

e−
(ljnTs−Y1,1)2

C1 ,

for n = 1, 2, ..., N1, where C1 = 4πµ(t0−τ1) with t0 denoting
the start of the observation.

Using maximum likelihood estimation, we can then estimate
the parameters of the Gaussian field induced by the first
source, using the samples f1(n). In other words, we can re-
trieve the optimal amplitude a1, location Y1,1, and variance C1.
Once the unknown parameters are estimated, we retrieve the
activation time τ1 from the variance, using C1 = 4πµ(t0−τ1).

We can then find the next group of samples with amplitude
sn > ε in order to retrieve the amplitude a2, location Y1,2 and
variance C2 of the second source. Finally, we repeat these
steps in order to estimate the amplitudes and activation times
of all sources, as well as the parameters Yk,j for all sources
k and lines j. We can then use the method in Section III to
retrieve the locations and amplitudes of the diffusion sources,

Fig. 7: Actual parametric trajectory and locations of two diffusion
sources and estimated trajectory and sources up to an orthogonal
transformation, when the activation times of the sources are known.

as well as the trajectory.

C. D-SLAM for parametric trajectories

In many real-world applications, the mobile sensor is
required to be highly maneuverable, which means that its
trajectory cannot be limited to linear segments. Although this
assumption was used to derive our algorithm, it is by no means
critical as we have shown in [46].

Inspired by the setting in [47], it is possible to consider the
following parametric trajectory:

r(t) =

L∑
j=1

cjϕj(t),

where the multidimensional basis coefficients cj ∈ R2 are
unknown and the functions ϕj(t) are known, and as regular
as wished.

If the diffusion sources are sufficiently separated and the
parametric trajectory is defined using at least two independent
basis functions, we can reconstruct the locations of the sources
and the parameters of the trajectory up to an orthogonal
transformation.

In Fig. 7 we show an example of a parametric trajectory
of the mobile sensor and locations of two diffusion sources
(taken from [46]), as well as the reconstructed trajectory and
source locations, in the case in which the activation times of
the sources are known. The estimation is up to an orthogonal
transformation from the true parameters.

D. D-SLAM in the presence of noise

The first challenge when the samples are corrupted by noise
is the robust estimation of the parameters Yk,j and Ak,j . One
approach to solve the problem is based on the matrix pencil
algorithm [48], [49], which was introduced for FRI in [50].
This approach is tailored to the case in which the samples are
perturbed by white Gaussian noise. However, in many practical
applications this may not be the case, and hence a more robust
estimation algorithm such as [51] will be used to denoise the
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samples and retrieve the unknowns Yk,j and Ak,j for each
source k and line j.

Second, given that the retrieved parameters may still not
be ideal, the solution found using the estimation method in
Section III-C may not always be accurate. To mitigate this
problem, once we find the amplitudes and locations of the
sources as well as the trajectory using the method in Section
III, we refine the estimation as follows.

For each line j, we estimate the perpendicular points from
the sources to the lines Pk,j = bj + Yk,j(bj+1 − bj), for
k = 1, ...,K (see Fig. 4). Using the estimated source locations,
we get the following re-synthesized K field measurements:

g(Pk,j) =

K∑
k=1

ãke
−||Pk,j−Sk||2 .

Suppose that the estimated point Pk,j on line j sat-
isfies ||xj,n − bj|| ≤ ||Pk,j − bj|| ≤ ||xj,n+1 − bj||, where
xj,n = bj + nTs

(
bj+1 − bj

)
is the nth measurement point

on line j. Then using linear interpolation, we set:

ĝ(Pk,j) = f(xj,n)+
(
f(xj,n+1)− f(xj,n)

) ||Pk,j − xj,n||
||xj,n+1 − xj,n||

,

where f(xj,n) is the actual measured field at point xj,n. Hence,
we can construct the following system of LK ×K equations
(derived from all L lines and K points Pk,j on each line), by
imposing ĝ(Pk,j) = g(Pk,j)

3:

e−||P1,1−S1||2 . . . e−||PK,1−SK||2

...
. . .

...
e−||PK,1−S1||2 . . . e−||PK,1−SK||2

e−||P1,2−S1||2 . . . e−||P1,2−SK||2

...
. . .

...
e−||PK,2−S1||2 . . . e−||PK,2−SK||2

...
. . .

...
e−||P1,L−S1||2 . . . e−||P1,L−SK||2

...
. . .

...
e−||PK,L−S1||2 . . . e−||PK,L−SK||2




ã1
...
ãK

 =



ĝ(P1,1)
...

ĝ(PK,1)
ĝ(P1,2)

...
ĝ(PK,2)

...
ĝ(P1,L)

...
ĝ(PK,L)



,

which we solve to retrieve the amplitudes ãk, for k = 1, ...,K.
Once the amplitudes are re-estimated, we can also re-

estimate the distance from the source to each line using Eq. (8)
as d̃k,j =

√
ln( ãk

Ak,j
). Finally, we can use the method in

Appendix C-A2 to re-estimate the first two lines in the tra-
jectory based on d̃k,j . This allows us to re-estimate the source
locations as in Appendix C-A3, and hence to sequentially re-
estimate the remaining trajectory as in Appendix C-A5.

V. NUMERICAL SIMULATIONS AND RESULTS

In order to validate the performance of our proposed
framework, we perform simulations on both synthetic and
real thermal data. In addition, we analyse our approach also
for the case of noisy measurements, time-varying fields and

3A different set of points may be used to construct the system of linear
equations. However, it has been empirically observed that using the projection
points Pk,j leads to higher accuracy of estimation.

unknown activation times. In all cases, once we have estimated
the trajectory ĉj and the source locations Ŝk, ∀j, k, we find
the orthogonal transformation Q between the estimated and
real lines by solving

[
ĉ1 ĉ2

]
Q =

[
c1 c2

]
. Once the

transformation has been found, we can compute the estimation
c̃j = Q−1ĉj. We validate the performance by comparing the
estimated trajectory c̃j and sources S̃k with the real values cj

and Sk respectively.

A. D-SLAM in the noiseless setting

Fig. 8 shows the estimation results for the retrieval of
the 3 lines of a piecewise linear trajectory and 3 diffusion
sources, based on the method presented in Section III, when
the diffusivity of the medium is µ =1 m2/s and the source
amplitudes are all equal to A = 100. The estimated locations
in Fig. 8 (c) are up to a 2D orthogonal transformation.

The error in the source locations is computed as:

Esources =
1

K

K∑
k=1

||S̃k − Sk||2
||Sk||2

,

where Sk is the true location of the source, S̃k is the estimated
location of source k and ||x||2 denotes the L2-norm of x.

The error in the amplitudes Eamp is similarly computed and
the error of the trajectory is computed as:

Elines =
1

L

L∑
j=1

∫ 1

0

||̃rj(s)− rj(s)||2
||rj(s)||2

ds,

where r̃j(s) = b̃j + lj c̃js is the estimated line j and
rj(s) = bj + ljcjs is the true line j.

The error in the estimated source locations is
Esources = 4.6036× 10−10, the error in the estimated
amplitudes is Eamp = 3.8365× 10−9 and the error of
the lines is Elines = 9.2052× 10−10, which shows that
reconstruction is exact up to numerical precision.

Fig. 9 shows the results of the D-SLAM algorithm, for
estimation of the sources and trajectory of the mobile sensor
in 3D. This estimation is up to an orthogonal transformation,
which is validated by the fact that the resynthesized field
measurements are the same as the observed ones.

B. Generalised D-SLAM in the presence of noise

For the case depicted in Fig. 10, we assume the mobile
sensor moves along a piecewise linear trajectory, and takes
uniform spatio-temporal samples of a time-evolving diffusion
field generated by two instantaneous sources, whose activation
times are equal and known. The samples are corrupted by
additive white Gaussian noise, the diffusivity of the medium
is µ =0.0939 m2/s and the temporal sampling period is
T = 1.65× 10−3s. The samples are denoised using the al-
gorithm in [51], and then we use the method in Section IV-D
to perform D-SLAM. The reconstructed trajectory and source
locations in (d) as well as the resynthesized field measurements
in (e) demonstrate that the D-SLAM algorithm performs well
in non-ideal settings.

For the results in Table II we consider the case in which
we take measurements of a field generated by K diffusion
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Fig. 8: Three diffusion sources and linear trajectory of three lines in (a), observed measurements along the trajectory in (b), reconstruction
of the sources and trajectory up to an orthogonal transformation (rotation and shift) in (c), and resynthesized measurements in (d). The
diffusivity is equal to µ =1m2/s and the start times of the sources are equal and known.

Fig. 9: True source locations and piecewise linear trajectory of the mobile sensor in 3D in (a), observed measurements in (b), estimation
up to an orthogonal transformation in (c), and resynthesized measurements along the estimated trajectory in (d). The diffusivity is equal to
µ =1m2/s and the start times of the sources are equal and known.

sources of equal amplitudes A = 100, whose activation times
are known and equal. The temporal sampling period is denoted
with T and a value T = 0 means that the field is static,
whereas T 6= 0 implies a time-varying field. We show errors
for the trajectory and locations of the sources, for different
values of K and different levels of noise. The results are
averaged over 1000 experiments. In Table III we show the
reconstruction errors for the case in which the activation times
of the sources are unknown. We assume the samples are
corrupted by additive white Gaussian noise, and the sources
are sufficiently separated as in Fig. 13, which allows us to use
the method in Section IV-B to reconstruct the trajectory and
source locations. A value T = 0 implies that the field is static,
as illustrated in Eq. (16) and (5)).

In addition, we use the Cramér-Rao bound to measure the
difficulty of estimating the parameters Yk,j from the samples
taken on the same line j. This bound allows us to assess
the accuracy of the FRI retrieval procedures used in our
reconstruction framework, under additive Gaussian noise (see
Section III-A). For a comprehensive analysis of the Cramér-
Rao bound we refer the reader to [52], [53].

For the setting in Fig. 11, we assume there are K = 2
diffusion sources and we use the samples on a single line to
estimate Y1,1 and Y2,1 respectively. The number of samples is
N = 64, the spatial sampling period is Ts = 0.0313m and the
diffusivity is equal to µ =0.0939 m2/s. We show the average
error in the estimated parameters ∆Yk,1 for different distances

between the two sources. In Fig. 12, we set the noise level
to SNR=20dB and show the estimation errors for different
distances between the sources. We can see that the estimation
of the parameters is fairly close to the Cramér-Rao bound and
that the bound indicates that the estimation is difficult when
the distance between the sources is less than 0.3m.

C. D-SLAM for estimation using real thermal data

Next, we evaluate the D-SLAM algorithm for estimation of
a single source from real temperature data, obtained by the
authors in [3]. A thermal imaging camera has been used to
obtain the temperature samples of a diffusion field process in
a silicon wafer disc, due to a localised and instantaneous heat
source generated by a heat gun [3].

Here we assume a mobile sensor takes uniform samples
along an unknown, closed trajectory, such that the start and
end points in the trajectory coincide. We first denoise these
samples and estimate the parameters Y1,j using the method in
[51]. We then leverage the method presented in Appendix D,
in order to estimate the location of the source and the lines.

For the results in Fig. 14 we assume the mobile sensor
moves at a speed of v = 0.3292 m/s (or equivalently 1.18
km/h), and that the temporal sampling period is T = 0.0027s.
The N = 180 uniform measurements from each of the line
are plotted in Fig. 14 (a). The results in Fig. 14 (b) show
that the source location and the trajectory can be reliably
estimated when the activation time of the source is known.
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Fig. 10: Estimation of diffusion sources and trajectory of mobile sensor, from noisy spatio-temporal measurements, when SNR=10dB, the
activation times of the sources are known and equal, and where the diffusivity is equal to µ =0.0939m2/s. The true source locations and
trajectory are shown in (a), the noiseless field measurements in (b), the noisy samples in (c), the reconstructed trajectory and source locations
when the first line in the trajectory is known in (d), and the resynthesized field measurements in (e).

Fig. 11: In (a) we show a setting of two diffusion sources and a single
line. In (b) we show the average error and the Cramér-Rao bound for
the estimated parameters Yk,1 for different levels of noise, when the
distance between the two sources is equal to d = 1m, as seen in (a).

Fig. 12: Average error and the Cramér-Rao bound for the estimated
parameters Yk,1 for different distances between the two sources,
under a 20dB noise corruption.

The distance between the estimated and true source location
is ε = 0.0028m.

In Fig. 14 (c) we show the estimation of the source location
and trajectory, for the case in which the start time is unknown
and the temporal sampling period is T = 1.1× 10−4s. In this
case, we use a maximum likelihood estimation method to get
an initial estimation for the activation time of the source, and
the parameters Y1,j for each line j, as described in Section
IV-B. Using the estimated activation time, we then refine the
estimation of the unknown parameters Y1,j using the method
in [51] and in Appendix D. The distance between the estimated
and true source location is ε = 0.0048m. The error between the

TABLE II: Estimation errors when the sources have the
same activation time which is known and the samples are
corrupted by additive white Gausian noise. The fields diffused
by the sources overlap as in Fig. 10. The spatial sampling
period is fixed and equal to Ts = 0.0313m, the diffusivity
is µ =0.0939 m2/s and the speed of the mobile sensor is
calculated as v = Ts

T for the case in which the field is time-
varying.

K SNR
(dB)

T (s) v (m/s) Esources Elines

2 30 0 n/a 0.0331 0.0148

2 20 0 n/a 0.0340 0.0132

2 10 0 n/a 0.0373 0.0135

2 5 0 n/a 0.0601 0.0195

2 0 0 n/a 0.0663 0.0188

3 30 0 n/a 0.1561 0.0323

3 20 0 n/a 0.1110 0.0360

3 10 0 n/a 0.1278 0.0375

3 5 0 n/a 0.6613 0.0461

3 0 0 n/a 0.4729 0.0503

3 20 1.65×10−2 1.8969 0.0753 0.0068

3 20 1.65×10−3 18.9696 0.6330 0.0568

3 0 1.65×10−2 1.8969 0.0593 0.0150

2 30 1.65×10−2 1.8969 0.0683 0.0048

2 30 1.65×10−3 18.9696 0.0536 0.0097

2 0 1.65×10−2 1.8969 0.0718 0.0131

actual start time and the estimated start time is εt = 0.1684s.

VI. CONCLUSIONS

In this paper, we have presented a method to estimate mul-
tiple instantaneous diffusion sources, from uniform samples
taken along unknown piecewise linear trajectories. The source
locations, as well as the trajectory can be estimated exactly up
to an orthogonal transformation, when we assume we know the
activation times of the sources, and that the diffusion field does
not evolve over time. The algorithm also achieves accurate
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TABLE III: Estimation errors when the field is time varying,
the activation times of the sources are unknown and the
samples are corrupted by additive white Gausian noise of
SNR=30dB. The fields diffused by the sources are sufficiently
separated as in Fig. 13.

SNR
(dB)

T (s) t1
(s)

t2
(s)

Esources Elines Et1
(s)

Et2
(s)

30 0 1 1 0.0876 0.1195 0.0233 0.0023

30 1.67×10−4 1 1 0.0885 0.1156 0.0247 0.0024

30 1.67×10−3 1 1 0.0397 0.1105 0.0325 0.0110

30 1.67×10−4 1 1.3 0.0267 0.0982 0.1166 0.0157

20 1.67×10−4 1 1.3 0.5454 0.1465 0.3841 0.3412

Fig. 13: Two diffusion sources with unknown activation times and
trajectory composed of four lines.

estimation when we relax these assumptions. Experimental
results on both synthetic and real data show the potential of
the proposed algorithm.

APPENDIX A
ESTIMATING THE CENTERS OF GAUSSIAN FUNCTIONS

FROM THEIR SUM

Leveraging the results in [44], we can multiply the
measurements fj,n by the coefficients cn = e−(ljnT)

2

,
to obtain the signal moments of the form sn =∑K

k=1

(
Ak,je

−(Yk,j)2
)
e2ljnTYk,j :=

∑K
k=1 bku

n
k . We then

use the annihilating filter method, also known as Prony’s
method [54] on sn, to obtain the frequency components uk, as
well as the amplitudes bk, for k = 1, ...,K, provided N ≥ 2K.
This is detailed in Appendix B.

An alternative method is to approximately retrieves the
unknown frequencies and amplitudes, which in many cases
proves to be more stable and robust to noise.

Using the results in [53], [55], we can find coefficients
cm,n that allow us to approximately reproduce exponentials,
as follows: ∑

n∈N
cm,ne

−(t−nT )2 ≈ ejωmt, (17)

for ωm = ω0(1− 2
2K−1m), m = 0, 1, ..., 2K − 1, where K is

the number of sources we aim to estimate and ω0 is arbitrary.
Then, we can multiply the measurements fj,n by the coef-

ficients cm,n, to obtain the signal moments:

sm =
∑
n

cm,nfj,n =
∑
n

cm,n

K∑
k=1

Ak,je
−(ljnT−Yk,j)2

=

K∑
k=1

Ak,j

∑
n

cm,ne
−(ljnT−Yk,j)2 (a)

≈
K∑

k=1

Ak,je
jωmYk,j ,

where (a) follows from Eq. (17).
We then use Prony’s method [54] on sm, to obtain the

frequency components Yk,j , as well as the terms Ak,j , for
each line j and source Sk.

APPENDIX B
PRONY’S METHOD

One can retrieve the unknown parameters {bk, uk}Kk=1 from
the sequence sn =

∑K
k=1 bku

n
k using the annihilating filter

method, also known as Prony’s method [54]. Let hn be a filter
with zeros at {uk}Kk=1, such that when we filter the sequence
sn with this filter, the result will be zero.

The z-transform of this annihilating filter is given by:

H(z) =

K∑
n=0

hnz
−n =

K∏
k=1

(1− ukz−1), (18)

which evaluates to zero when z = uk, and whose coefficients
hn can be convolved with the sequence sn, to obtain:

hn ∗ sn =

K∑
l=0

hlsn−l =

K∑
k=1

bku
n
k

K∑
l=0

hlu
−l
k

(a)
= 0, (19)

where (a) holds since z = uk is a zero of H(z) in Eq. (18).
The filter coefficients hn can be uniquely retrieved by

involving at least 2K consecutive values of the signal moments
sn, in order to form K distinct equations as in (19). These can
be written in a Toeplitz matrix form, as follows:

sK sK−1 · · · s0
sK+1 sK · · · s1

...
...

. . .
...

s2K−1 s2K−2 · · · sK−1




1
h1
...
hK

 = Sh = 0. (20)

If {bk}Kk=1 are non-zero and {uk}Kk=1 are distinct, matrix
S ∈ CK×(K+1) has full row rank K, which means the solution
h given by the system in (20) is unique. This solution can be
found using the singular value decomposition of S, where h is
the singular vector corresponding to the zero singular value.

Once the filter coefficients hn of the polynomial H(z)
have been found, the parameters {uk}Kk=1 are obtained from
the roots of this filter, and the parameters {bk}Kk=1 can be
computed from the linear system of K equations given by
sn =

∑K
k=1 bku

n
k , for n = 0, 1, ...,K − 1.

APPENDIX C
D-SLAM WHEN K = 2 AND L ≥ 3

We present a method for simultaneous estimation of the
locations of the sources, relative to the lines. In particular,
this method retrieves the shortest distances dk,j between all
sources k and lines j. Using the knowledge of the shortest
distances, we can then estimate the trajectory and location of
the sources up to an orthogonal transformation.

A. D-SLAM when L ≥ 4

We first consider the case in which the number of lines
satisfies L ≥ 4, and show that we can uniquely estimate
the shortest distances between the sources and the lines. For
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Fig. 14: In (a) we plot the measurements observed along each line in the trajectory (blue for the first line, red for the second, and yellow
for the third line respectively). In (b) we display the estimation of a single diffusion source from samples of a real thermal diffusion field,
taken along a trajectory of three lines, where the first line is known and when the activation time of the source is assumed to be known.
The mobile sensor’s speed is v = 0.3292 m/s, and the temporal sampling period is T = 2.7 × 10−3s. In (c) we show the reconstruction
results for the case in which the activation time of the source is unknown, and the temporal sampling period is T = 1.1× 10−4s.

simplicity, let us first assume that the number of sources is
K = 2, and consider the parameters Yk,j in Eq. (6), estimated
for three lines j − 1, j and j + 1, depicted in Fig. 15.

1) Simultaneous source localisation relative to all lines

Fig. 15: Two diffusion sources located at S1 and S2 respectively,
and trajectory made of three lines.

We denote with c̃j the unit vector orthogonal to cj in the
couterclockwise direction, and we have that c̃Tj c̃j = 1.

The location of the source k relative to line j can be com-
puted as Sk = bj +Yk,jcj +dk,j c̃j, where dk,j is the shortest
distance from the source to line j (see Fig. 15). Similarly, for
line j−1 we have that Sk = bj−1 +Yk,j−1cj−1 +dk,j−1c̃j−1.
Equating the two expressions and hence eliminating Sk leads
to the following equality for k ∈ {1, 2}:
Yk,j−1cj−1 −

(
bj − bj−1

)
+ dk,j−1c̃j−1 = Yk,jcj + dk,j c̃j,

which, given cj−1 =
bj−bj−1

lj−1
, can be re-written as:(

Yk,j−1 − lj−1
)
cj−1 + dk,j−1c̃j−1 = Yk,jcj + dk,j c̃j. (21)

We can express Eq. (21) algebraically as follows:[
Y1,j−1 − lj−1 d1,j−1
Y2,j−1 − lj−1 d2,j−1

]
︸ ︷︷ ︸

Aj−1

[
cj−1 c̃j−1

]T︸ ︷︷ ︸
Ωj−1

=

[
Y1,j d1,j
Y2,j d2,j

]
︸ ︷︷ ︸

Aj

[
cj c̃j

]T︸ ︷︷ ︸
Ωj

.

(22)

Given the counterclockwise orientation of c̃j relative to
line cj, we have that det

(
Ωj

)
= 1, ∀j. Since det

(
Ωj

)
=

det
(
Ωj−1

)
= 1, from Eq. (22) we have that:

det
(
Aj−1

)
= det

(
Aj

)
,

or equivalently:

d2,j−1
(
Y1,j−1 − lj−1

)
− d1,j−1

(
Y2,j−1 − lj−1

)
= Y1,jd2,j − Y2,jd1,j .

(23)

Moreover, squaring both sides of (23), we get:

d21,j−1
(
Y2,j−1 − lj−1

)2
+ d22,j−1

(
Y1,j−1 − lj−1

)2
− 2d1,j−1d2,j−1

(
Y2,j−1 − lj−1

) (
Y1,j−1 − lj−1

)
= d21,jY

2
2,j + d22,jY

2
1,j − 2d1,jd2,jY1,jY2,j .

(24)

Since c̃j and cj are orthonormal vectors, we have that
ΩT

j Ωj = I, ∀j, where Ωj is defined in (22). Using (22) we
then have that Aj−1Ω

T
j−1Ωj−1A

T
j−1 = AjΩ

T
j ΩjA

T
j , and

therefore Aj−1A
T
j−1 = AjA

T
j . This leads to the following

three equations:(
Yk,j−1 − lj−1

)2
+ d2k,j−1 = Y 2

k,j + d2k,j , for k ∈ {1, 2},
(25)

and(
Y1,j−1 − lj−1

) (
Y2,j−1 − lj−1

)
+ d1,j−1d2,j−1

= Y1,jY2,j + d1,jd2,j .
(26)

Denoting
αj =

(
Y1,j−1 − lj−1

)2 − Y 2
1,j

βj =
(
Y2,j−1 − lj−1

)2 − Y 2
2,j

γj =
(
Y1,j−1 − lj−1

) (
Y2,j−1 − lj−1

)
− Y1,jY2,j ,

(27)

we can then use Eq. (25) and (26) to find:
d21,j = d21,1 +

∑j
k=2 αk := d21,1 + aj

d22,j = d22,1 +
∑j

k=2 βk := d22,1 + bj

d1,jd2,j = d1,1d2,1 +
∑j

k=2 γk := d1,1d2,1 + cj ,

(28)

where aj =
∑j

k=2 αk, bj =
∑j

k=2 βk and cj =
∑j

k=2 γk.

We can then replace the expressions in (28) for d21,j , d22,j
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and d1,jd2,j , into Eq. (24) to get:

d21,1

((
Y2,j−1 − lj−1

)2 − Y 2
2,j

)
+ d22,1

((
Y1,j−1 − lj−1

)2 − Y 2
1,j

)
− 2d1,1d2,1

((
Y2,j−1 − lj−1

) (
Y1,j−1 − lj−1

)
− Y1,jY2,j

)
+ aj−1

(
Y2,j−1 − lj−1

)2 − ajY 2
2,j + bj−1

(
Y1,j−1 − lj−1

)2
− bjY 2

1,j − 2cj−1
(
Y2,j−1 − lj−1

) (
Y1,j−1 − lj−1

)
+ 2cjY1,jY2,j = 0.

(29)

Leveraging Eq. (27) and (28), we can express (29) in matrix
form for j = 2, ..., L as follows:

[
A B −2G

]︸ ︷︷ ︸
(L−1)×3

 d21,1
d22,1

d1,1d2,1

+ V = 0, (30)

where the jth entry in vector V is:

Vj = aj−1βj +
(
aj−1 − aj

)
Y 2
2,j + bj−1αj +

(
bj−1 − bj

)
Y 2
1,j

− 2
(
cj−1γj +

(
cj−1 − cj

)
Y1,jY2,j

)
,

and 
A =

[
α1 α2 . . . αL

]T
B =

[
β1 β2 . . . βL

]T
G =

[
γ1 γ2 . . . γL

]T
.

The system in (30) can be solved exactly when the matrix[
A B −2G

]
has rank 3. This requires that the number of

lines satisfies L ≥ 4 4. Nevertheless, the problem can also be
solved when K = 2 and L = 3, in which case we can find
two solutions as described in Appendix C-B.

Then, for L ≥ 4, we can solve (30) to uniquely retrieve d21,1,
d22,1 and d1,1d2,1. We can then obtain d21,j , d22,j and d1,jd2,j
from (28).

From the estimated parameters d21,j , d22,j and d1,jd2,j , we
can retrieve two different solutions for each line j, given by
{sjd1,j , sjd2,j} for sj ∈ {−1, 1}.

We can then arbitrarily select the sign for the first line, and
for simplicity we choose s1 = 1. Given d1,1 and d2,1 we can
then use Eq. (23) to infer the correct sign sj for all subsequent
lines j = 2, ..., L.

2) Estimation of the first two lines of the trajectory
Once the shortest distances from all sources to all lines

have been estimated, we arbitrarily select the first line, and
for simplicity we set b1 = [0, 0], c1 = [1, 0] and c̃1 = [0, 1].
We then estimate the direction vector c2 of the second line
from the system of equations in (22).

4Matrix
[
A B −2G

]
may lose rank when the equations in (29) are

equivalent using the parameters Yk,j for different lines j. This may happen for
a degenerate arrangement of the sources relative to the lines in the trajectory.
For example, when the lines j − 1 and j are orthogonal, the sources S1 and
S2 are collinear with the point bj and the angle between S1 − bj and line
j measures 45◦. In this case Yk,j−1− lj−1 = Yk,j , for k = 1, 2 and hence
the jth row of matrix

[
A B −2G

]
is zero.

3) Estimation of the locations of the sources
Using the estimated c2 and X = c1

T c2, we can then
retrieve the location of each source k, by solving the following
system of equations:[

c1
T

c2
T

] [
Sk − b1

]
=

[
Yk,1

Yk,2 + l1X

]
, (31)

from which we find Sk − b1, and hence Sk.
4) Estimation of the amplitudes of the sources
For each source k, once we find its location Sk, we can also

find the distance from this source to the first line using d2k,1 =
||S1 − b1||2 − Y 2

k,1, since the parameters Yk,1 are known.
Finally, we can use the parameters Ak,1 estimated using FRI,
to get the amplitude of the source as ak = Ak,1e

d2
k,1 .

5) Estimation of the remaining lines
Once the locations of two sources have been estimated, we

can sequentially retrieve the parameter cj of each line j from
the system of equations:

(
S1 − bj

)T
...(

SK − bj

)T
 [cj

]
=


Y1,j

...
YK,j

 ,
for j = 3, ..., L, and where bj−1 has been estimated using
bj = bj−1 + ljcj−1.

Finally, in Appendix F we show that this solution is up to
an orthogonal transformation.

B. D-SLAM when K = 2 and L = 3

When K = 2 and L = 3, matrix
[
A B −2G

]
in (30)

does not have full rank. Hence, we cannot uniquely find the
distances dk,j . Nevertheless, we can define:

Dj =

[
d1,j
d2,j

] [
d1,j d2,j

]
=

[
d21,j d1,jd2,j

d1,jd2,j d22,j

]
(a)
=

[
d21,1 d1,1d2,1

d1,1d2,1 d22,1

]
+

[
aj cj
cj bj

]
,

where (a) follows from (28).
Matrix Dj satisfies det

(
Dj

)
= 0 and this allows us to

obtain the following system of equations for j = 2, 3:{
b2d

2
1,1 + a2d

2
2,1 − 2c2d1,1d2,1 + c22 − a2b2 = 0

b3d
2
1,1 + a3d

2
2,1 − 2c3d1,1d2,1 + c23 − a3b3 = 0.

We can then set d2,1 = ad1,1 to get:{
d21,1

(
b2 + a2a

2 − 2c2a
)

+ c22 − a2b2 = 0

d21,1
(
b3 + a3a

2 − 2c3a
)

+ c23 − a3b3 = 0.

Equating the two expressions for d21,1 we have that:(
c23 − a3b3

)(
b2 + a2a

2 − 2c2a
)

=(
c22 − a2b2

)(
b3 + a3a

2 − 2c3a
)
,

which we can solve to retrieve two values for the unknown a.
Therefore, there are two solutions for d21,1 and hence two

solutions for the source locations and trajectory. However,
at least one of these solutions ensures the estimated inner
products between vectors are equal to the true inner product
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values (i.e. the parameter X = c1
T c2 is correctly retrieved

in one of these solutions, given the estimation is based on
ideal parameters Yk,j). As a result, this solution will be
consistent with the field measurements and up to an orthogonal
transformation from the true source locations and trajectory,
as shown in Appendix F.

APPENDIX D
D-SLAM FOR ONE SOURCE AND CLOSED TRAJECTORY

When K = 1, the only knowledge we have is
cj

(
S1 − bj

)
= Y1,j for j = 1, ..., L and hence, it is

not possible to use the method in Appendix C to estimate
the source location S1 and the piecewise linear trajectory.
Nevertheless, by leveraging the fact that the lines in the
trajectory belong to a 2D plane and by assuming the trajectory
is closed (such that the end point coincides with the start of
the trajectory), we can solve the problem as follows.

For simplicity, let us consider the case in which the tra-
jectory is closed and composed of L = 3 lines. We denote
the term c1

T c2 = X , and try to express the parameters
Yk,j we estimate for each source k and line j, as a function
of the unknown X . We can replace b2 = b1 + l1c1 and
b3 = b2 + l2c2 = b1 + l1c1 + l2c2 in Eq. (4), to get:

c1
T (S1 − b1) = Y1,1

c2
T (S1 − b1 − l1c1) = Y1,2

c3
T (S1 − b1 − l1c1 − l2c2) = Y1,3,

which we can re-write as:
c1

T (S1 − b1) = Y1,1

c2
T (S1 − b1) = Y1,2 + l1c1

T c2

c3
T (S1 − b1) = Y1,3 + l1c3

T c1 + l2c3
T c2

or equivalently, in matrix form:cT1
cT2
cT3

 [S1 − b1

]
=

 Y1,1
Y1,2 + l1c1

T c2

Y1,3 + l1c3
T c1 + l2c3

T c2

 . (32)

Since we are considering a diffusion problem in 2D, we
have cj ∈ R2. This means that we can find α and β such that
c3 = αc1 + βc2. As a result, we get c3

T c1 = αc1
T c1 +

βc2
T c1, which knowing c1

T c1 = c2
T c2 = 1 and c1

T c2 =
X , can be re-written as c3

T c1 = α+βX . Similarly, c3
T c2 =

αX + β. Then, we can re-write Eq. (32) as:cT1
cT2
cT3


︸ ︷︷ ︸

C

[
S1 − b1

]
=

 Y1,1
Y1,2 + l1X

Y1,3 + l1(α+ βX) + l2(αX + β)


︸ ︷︷ ︸

d

.

We know that this system of equations must have at least
one solution, due to the physics of the problem. Moreover,
provided none of the three lines are parallel, then rank (C) =
2. Given the system above is an overdetermined system with
3 equations and 2 unknowns, rank (C) = 2 implies that this
solution is unique. In addition, in order for this solution to

exist, we must also have that rank
(
C|d

)
= rank (C) = 2. In

order to ensure rank
(
C|d

)
= 2 we then need to impose:

Y1,3 + l1(α+ βX) + l2(αX + β) = αY1,1 + β(Y1,2 + l1X),

or equivalently:

α(l1 + l2X − Y1,1) + β(l2 − Y1,2) + Y1,3 = 0. (33)

Given the trajectory is closed, we have c3 = −c1 − c2,
which means that α = β = −1. We can then replace these
values in (33), in order to obtain X = c1

T c2. Finally, we can
retrieve the location of the source as in Eq. (31).

APPENDIX E
D-SLAM IN 3D

In a d-dimentional space,where d ≥ 1, the Green’s function
for the diffusion field becomes [5]:

f(x, t) =
1(

4πµ(t− τk)
) d

2

ake
− ||x−Sk||

2

4µ(t−τk) H(t− τk),

where d = 3 for propagation in a 3D space.
Following the derivations in Section II, at discrete uniform

points qj(nTs) along line j, the diffusion field for d = 3 is:

f(qj,n) = fj(nTs) =

K∑
k=1

Āk,je
−

(ljnTs−Yk,j)
2

Ck(t) ,

where Ck(t) = 4µ (t− τk) and:

Āk,j =
ak(

πCk(t)
) 3

2

e
−
||bj−Sk||

2−
(
(bj−Sk)T cj)

)2

Ck(t) ,

Yk,j =
(
Sk − bj

)T
cj.

We can then use the derivations in Section III, to retrieve the
parameters Āk,j and Yk,j . The only difference is that, given we
are now in a 3D space, matrix A in (14) will be a symmetric
3 × 3 matrix, with 6 unknowns. As a result, we need L ≥ 6
lines in order to estimate these unknowns. In addition, the
factorisation in (13) requires rank (Ω) = 3, which is the case
for K ≥ 4 sources not located in the same plane.

In summary, if we allow the diffusion field to propagate in
a 3D space, we can estimate the sources and trajectory up to
an orthogonal transformation, provided K ≥ 4 and L ≥ 6.

APPENDIX F
D-SLAM SOLUTION IS UP TO AN ORTHOGONAL

TRANSFORMATION

In Appendix C we have presented sufficient conditions that
ensure we retrieve a unique solution for K = 2 and L ≥ 4. In
what follows, we show that this will be up to an orthogonal
transformation from the true source locations and trajectory
(i.e. the inner products between vectors are preserved).

Let us denote the true direction vectors with cj and the
estimated ones with c̃j. Similarly, we denote the true source
locations with Sk and the estimated locations with S̃k. As we
have seen in Appendix C-A2, we can exactly retrieve c1

T c2

from the parameters Yk,j . This ensures:

c1
T c2 = c̃T1 c̃2. (34)
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Suppose c1 = Qc̃1. Then, given c1
T c1 = 1, we get

c̃T1 QTQc̃1 = 1. Moreover, since c̃1 also satisfies c̃T1 c̃1 = 1,
this shows that QTQ = I, i.e. that Q is orthogonal. Then,
from c̃T1 c̃2 = c1

T c2 in Eq. (34), we get c̃T1 c̃2 = c̃T1 QT c2,
which gives c̃2 = QT c2, or equivalently c2 = Qc̃2.

In addition, we have seen that we can then retrieve the
sources from the equation:[

c̃T1
c̃T2

] [
S̃k − b̃1

]
=

[
Yk,1

Yk,2 + c̃T1 c̃2,

]
where we can replace c̃T1 c̃2 = c1

T c2, to get:[
c̃T1
c̃T2

] [
S̃k − b̃1

]
=

[
Yk,1

Yk,2 + c̃T1 c̃2

]
=

[
Yk,1

Yk,2 + c1
T c2

]

=

[
c1

T

c2
T

] [
Sk − b1

]
.

(35)

Since c̃1 = Qc1, c̃2 = Qc2 and QTQ = I, from Eq. (35)
we get Sk − b1 = Q(S̃k − b̃1). As a result, we also have
that S̃k = QTSk, showing that the estimated source locations
are also up to an orthogonal transformation from the true
locations.
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