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Wavelets, Fractals, and Radial Basis Functions

Thierry Blu and Michael Unseirellow, IEEE

Abstract—Wavelets and radial basis functions (RBFs) lead to x and x;. The basis functions in (1) depend only on the
two distinct ways of representing signals in terms of shifted basis distance to their corresponding grid paigtand are thus called
functions. RBFs, unlike wavelets, are nonlocal and do not involve 54ial. The a, are weighting coefficients that are typically
any scaling, which makes them applicable to nonuniform grids. De- C " . .
spite these fundamental differences, we show that the two types.determ'n?d by fitting the funct|or-1 to ;ome datg. In the classical
of representation are closely linked together. . . through fractals.  interpolation problem, the functiofi is determined such that
First, we identify and characterize the whole class of self-similar f(x) = f%, where thef; are some data values; in this case,
radiz_al basis_ functions that can be localized to yield conventional there is exactly one linear constraint per basis function, and the
multiresolution wavelet bases. Conversely, we prove that for any ,responding linear system of equations is invertible under
compactly supported scaling functiong(z), there exists a one- relatively mild conditions [11]. The better-known examples of
sm!ed central basis functionp. (x) that spans the same multlre_so- " _ . R :
lution subspaces. The central property is that the multiresolution ~fadial basis functions ay&r) =  (linear or membrane spline),
bases are generated by simple translation gb, without any dila-  p(r) = 7?logr (thin-plate spline), anth(r) = +/c2 + 72
tion.l We alsq present an explicit timg-domain represenf[ation of a (Hardy’s multiquadric).
scaling function as a sum of harmonic splines. The leading termin ~ para \ve are interested in discussing the connection between
the decomposition corresponds to the fractional splines: a recent, such radial basis functions and wavelets. In this latter context
continuous-order generalization of the polynomial splines. X : : ‘ e : d

the generic multiresolution approximation of a functiffx) at

Index Terms—Central basis functions, fractals, fractional _
scalea = 27 has the form

splines, localization, multiresolution, radial basis functions, re-
finement filter, scaling functions, self-similarity, splines, tempered
distributions, two-scale difference equation, wavelets. fi (g;) = Z ci(k)¢($/a — k) @3]

kcZ

|. INTRODUCTION where the basis functions at levele 7 are dilated by the

ADIAL basis functions (RBFs) constitute a powerful toofactora and spaced accordingly. While (1) and (2) both involve

for working with data that is nonuniformly sampled. Thehifts of some basic template functiopx||), and¢(2'xz),
are used extensively for scattered data interpolation [1]. Thifespectively—there are some crucial differences that need to
plate splines, in particular, have some remarkable variatiod¥ emphasized. First, although it is easy to define a multires-
properties: They minimize a Laplacian energy functional whigplution hierarchy of radial basis functions by simply dropping
makes the solution invariant to rigid-body coordinate transfo@r adding some points, there is no provision for scaling in (1).
mations [2]. They are often used in medical imaging for th&econd, the generating functions used in both cases are fun
estimation of deformation fields based on the specification @amentally differentio(x) is a relatively tame, well-localized
fiducial points (or landmarks) [3]-[5]. Radial basis functions ar&inction which is at least square-integralj€;), on the other
also frequently applied to neural networks; they have been ph&nd, typically extends over the whole axis and is unbounded at
posed as an efficient mean for establishing a multidimensionafinity. Conversely,o(r) has a convenient closed form expres-
mapping between some input feature space and some targesien, whereasy(z) usually has no such formula (it is defined
sponse given a collection of (noisy) input—output pairs (learnirgplicitly through a infinite recusion) [12]-[14]. Third, the ra-
by example) [6], [7]. Their use has been justified through regdial basis function framework is ideally suited for a nonuniform
larization theory in connection with their energy minimizatiosetting, whereas conventional wavelet theory is restricted to uni-

properties [8]-[10]. form grids.
A radial basis function approximation prdimensions% € Yet, there is an interesting link between both types of
R?) has the generic form representations. This was recognized early on by mathemati-
cians working in approximation theory and has been the basis
F&) =" anp(llx — %)) (1) for several interesting generalizations of wavelets [15]. The
kcz first step in this realization was the construction multivariate

where p(r): Ry — R is a univariate function and wherescaling functions (or pre-wavelets) that are linear combinations

||lx — xx || denotes the Euclidean distance betweerpthectors of some radial basis functions [16], [17]. Utreras specified
the class of refinable radial basis functions as those whose

. . . , _Fourier transform ig(w) = |w|~7 [17]; this is a condition
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[18], [19]. Finally, there have also been extensions of wavelets ,
to nonuniform grids based again on radial basis functions [20], A
[21]. A univariate example of special interest that falls into this
last category are the nonuniform spline wavelets [22], [23].

Our purpose in this paper is to strengthen the connection be-
tween radial basis functions and wavelets even further. We will
mainly concentrate on the standard wavelet setting (approxima-
tion of univariate functions on a uniform grid) and approach the
problem from its two different sides. First, in Section I, we will
show how to construct scaling functions (or wavelets) starting
from some radial basis functigrir), extending some of the ear-
lier results of Buhmann and Utreras. In particular, we will iden-
tify a self-similarity condition forp(r) that justifies the use of
the wordfractalin the title. We will then characterize the whole
class of these “fractal” functions and show how these can be lo-
calized to yield valid scaling functions. We will illustrate our
theoretical results with the construction of fractional B-splines
and other related functions. In Section 1V, we will look at the (b)
converse side of the problem and prove that any standard mul- _ , , _ .

. . . 5 . Fig. 1. Example of linear splines. (a) One-sided ramp, which exhibits
tiresolution analyS|S ok (R) can be eXpressed in terms of ceny discontinuity at the origin. (b) B-spline of degree 1. The function in (b) is
tral basis functions, which are a slight extension of the radi@atalized, whereas the one in (a) is not.

ones. In other words, we will uncover the central basis function

that lies hidden behind any scaling function or wavelet. Finallywhere we have set, (z) = z.

by combining our results, we will present a general parametriza-By taking the second forward finite differencesmf(z)—a
tion of all compactly supported wavelets that will provide uspecific instance of (4) withg = 1, a; = —2, anda, = 1—we

A

B (x)

>

o

A

- 4
n

with a better understanding of their fractal nature. obtain the hat function (or causal B-spline of degree 1)
The next section is meant as an introduction. Rather than 3L () = A2 g — 9 1 9 6
starting with mathematics right away, we will consider a con- Prle)=Dtay =op = 2r— Dy +(z-2)+ ()

crete example that contains most of the flavor of what will b@hich is the more standard, compactly supported basis function
investigated in more generality in the later sections of the papg the linear splines [cf. Fig. 1(b)]. The remarkable fact with
(6) is that the one-sided functions cancel out#op 2; in other
[l. MOTIVATION: THE EXAMPLE OF LINEAR SPLINES words, we are able ttocalize p, by taking a suitable linear
Here, we use piecewise linear functions to build a multire§@mbination of its shifted versions. Moreover, we can invert (6)

olution analysis ofL2(R), but we proceed in a nonstandardNd express the one-sided power function as a weighted sum of
fashion. B-spline basis functions

p—— 1 p—
A. Splines and One-Sided Power Functions T+ = l;) (k+ 1)z = k). ()
The simplest conceivable linear spline is the one-sided ra .

(or power) function TRis shows that our definition (5) of the basic spline space is

equivalent to the standard one that involves linear combinations
[z 220 3) of B-splines. Thus{p;(z — k)}rez is a valid basis fony,
T+ = 0, elsewhere albeit not a Riesz basis; the main difficulty is that tlag in
which has exactly one knot (or discontinuity) at the origin [ci.(.4) are not necg;sanly it7, which "?"50 means that th's.baS'S
. . I . . .- is not well conditioned. Thus, we will need to exert special care
Fig. 1(a)]. By simply shifting and adding up such buildin

blocks, we can generate functions of the form QNhHe manipulating expansions such as (4) both numerically and

mathematically.
s(@) =Y anle — o)y 4)

k
where theq,, are some (arbitrary) weights and thg an in- The advantage of the present formulation is that it makes
creasing sequence of knots. Sin¢e) in (4) is a sum of splines, the multiresolution structure of splines stand out quite naturally
it is a spline as well that inherits the discontinuities of its indiCf. Fig. 2). Consider the coarse-to-fine sequence of subspaces
vidual constituants. Hence, it is a piecewise linear function with- V-1 C Vo C V1 --- CV;-- -, where); represents the space
knots atz,. Thus, by placing the knots at the integers & &), of linear splines with knots at;, = k27, k € Z. These splines

we can specify the basic spaasf uniform splines of degree 1 are generated simply by dropping all the basis functions in (5)
that are not positioned at the desired knots. Thus, we define our

Vo = span.cz{p+(z — k)} (5)  uniform spline space with scalg = 2= as

~ 1in this paper, spap.{p(x — k)} stands for the function space of all the V; = spar{py(z — k2_i)}. (8)
linear combinations of integer shifts pf:) that ardocally square integrable kez

B. How Multiresolution Becomes Trivial
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1 complement ofY; in V; ;. Such nonuniform spline wavelets
foeV, were first described by Lyche as early as in 1992 [22].

D. Central Basis Functions

Until now, we have worked with the one-sided function
p+(x) = x4. We could have also used its reversed version
p—(z) = py(—=), which can be localized using backward
finite (or divided) differences. Another option would have
been to use the symmetric functign(z) = |z|, which is
the prototypical example of a radial basis function. In the
sequel, we will consistently use the subscriptst, and— to
denote symmetric (or radial), causal, and anti-causal generating
functions, respectively. These are all special cases of what we
call central basis functionand which we denote by the generic
symbolp(z). The one-sided functions are typically simpler to

T - T I"" T > work with in the univariate case. The symmetric ones, on the
other hand, are usually preferred in a multivariate setting, for
Fig. 2. Multiresolution spaces using one-sided power functions.  they fall within the framework the well-developed theory of
radial basis functions.

Clearly, the basis functions fay; are a subset of those %
for ¢’ > 4, which implies thatV; c V., for all ¢ > ¢, which
is a multiresolution property. Since eabhalso has a B-spline  Let us now briefly show how to extend this type of construc-
Riesz basi{2'/2 3% (2ix — k)}xez, the whole ladder of spline tion to a nonuniform grid irp dimensions. Here, it becomes
subspaces for € Z generates a multiresolution &?(R) in  preferable to work with the radial basis functipn(z) = |x|.

the sense specified by Mallat [24]. Hence, it is possible to colée also need to specify our nonuniform grid at the finest scale
struct a whole variety of corresponding wavelet bases using awailable. It is given in the form of an ordered set of (distinct)
of the standard design techniques. Specific examples of ling@intsx;, € R?, with k € Z. These may, for example, corre-
spline wavelets that are orthogonal [24], semi-orthogonal [25jpond to the discrete locations at which the samples of an input
biorthogonal [26], or even shift-orthogonal [27] have been d&4nction are given. We then specify our basic radial spline space

scribed in the literature.
Vo = spar{pu([x — )} (11)
cE

E. Extension to Higher Dimensions: Variational Splines

C. Nonuniform Linear Splines , . . o
Forp > 1, the functions inV, are no longer piecewise linear.

The power of the present formulation really becomegy; they are compatible with the variational formulation of
apparent if we move one step further and consider a giVgRear splines. The problem is the following: Given the samples
nonuniform sequence of knots- <y < @it1 < - WIth ¢ 4 function f(x;) = fu, k € Z, one wishes to find the best
k € 2. We then define a corresponding embedded sequencepbpolant inL?(Rr) such that an adequate Duchon semi-norm

nonuniform spline spaces is minimized [2]. It can be shown that the optimum solution is
necessarily included iby; specifically, it is the unique function
V_; = spa — X0t 9 . g . . .
k;ézr{er(x k) ©) s(x) € V), that satisfies the interpolation constraifik;) = fx,

k € Z. The functionalf ||V f(x)||? dx may be thought of as

which share the same inclusion properties as before:C the bending energy of a thin membrane; hence, we have the

Vi C...V_1 C Vp. Here, 100, we are able to produce CoMggy memprane splineFinding the expansion coefficients for

pactly supported basis functions (nonuniform B-splines), except, basis. (||x — xx||) is precisely what the radial basis func-
that they lose the convenient shift-invariant structure that is iﬂ(’)ns interpolation problem is all about

herent to standard (uniform) multiresolution analysis. Specifi-

cally, thekth (nonuniform) B-spline at resolution: is F. Road Map to the Paper
(x—zp2)4 — (z — x<k+1)2;)+ The manipulations that we have madg S0 far.us'ing linear
- R splines are also valid for higher order splines. This is all well
(k+1)2 = k! known in approximation theory. In the remainder of the paper,

(37 - x(k+1)27')+ - (37 - x(k+2)27')+ we will generalize these ideas further and show that the first
- T(kr2)2i — T(hy1)2: - (10) part of the process described above (Sections II-A and II-B, in
particular) is applicable in a much wider setting as had been re-
Itis atriangular function that takes the value one at ;. 1),:  alized so far. First, we will identify the whole class of central
and vanishes far < x5 andz > x4 2)2:. Note that this lo-  basis functiong() (one-sided or radial) that can be used to
calization process involves divided differencesgfx) rather specify a multiresolution analysis &f(R) in the sense defined
than finite differences, as in (6). This nonuniform setting is aldony Mallat. We will see that an admissible central basis func-
suitable for constructing wavelet bases that span the orthogotiah must satisfy a self-similarity relation. This, together with
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a suitable localization process [similar to (6)], will allow us to i) Two-Scale RelatianThe functiony at a coarser resolu-

specify new classes of scaling functions much more explicitly tion can be expressed using its shifts

than is done usually by means of an infinite recursion (two-scale

relation). Second, we will look at the converse problem and p(x/2) = Z grp(x — k). (12)

prove that a central basis functi@z) can be found for any kez

compactly supported—and more generally, one-sided—scalingii) L2(R) Stability. {¢(z — k)}rcz is a Riesz basis ofp,

functione (). The next logical step, which will not be pursued which is equivalent to require that there exist two positive

here, is to use these results to extend the standard wavelet con- ., ctants4 and B such that

structions to the nonuniform case similar to what we have done

with the linear splines in the example above. A< Z |p(w +27k)? < B (13)
kez

Ill. FROM CENTRAL BASIS FUNCTIONS TOWAVELETS
almost everywhere.

We will now show how it is possible to construct wavelets jii) Partition of Unity:.
starting from a radial (or central) basis functigiiz). We
will not consider wavelets literally but, rather, their associated (@ —k)=1& @(2rk) = 6. (14)
scaling functions, which are the key to the multiresolution kez
structure of the wavelet transform. Once the scaling function
has been specified, it is comparatively easy to construct
corresponding wavelet basis using standard techniques [
[13].

The two first conditions are implicit to Mallat's axiomatic
finition of a multiresolution analysis dt?(R) [24]. More-

er, it can be shown that Mallat's completeness requirement
[denseness ik?(R)] is equivalent the partition of unity condi-
tion, which has the merit of being explicit (cf. [30]). It follows

A. Notation
] ] that the three conditions are sufficient to build a multiresolution
We will need to raise complex numbers to some Compl%ihalysis ofL.2(R).

power. Euler showed that this is a well-defined operation, as

long as one specifies the argument in a unique, unambigu@t!s Admissible Central and Radial Basis Functions

i — |»led 28(=) with are( — . ) _ . . .
fashion, e.g.z = |z|e with arg() € [, x[. Then, we A central (either one-sided or radial) basis functigm) has

specify properties that are quite distinct from those of a scaling function
27 = o7 (loglzl+iarg2) @ because of fundamental differences in the replication mech-
anism. With radial basis functions, the multiresolution bases
For instance, we have® | = |z|R()¢ T ()arg =, (e.g.,{p(x — 2'k)}rc7) are generated by simple translation of
Euler's Gamma function is defined far > 0 by p(x), as opposed to dilation plus translation (edge(z /2" —
00 k)}rez), as is traditionally the case with the wavelet transform.
I(z) = / t" et dt. The most evident difference between the two species of func-
0

tions is that the central basis functions are not well localized. To

This is aC* interpolation of the factorial since! = I'(n +1)  avoid gaps, they must be infinitely supported. In general, they
if n € N. Itis further possible to extend this function by anaare not even integrable, and yet, it can be shown that this ap-
lytic continuation to complex values ef except at the negative parent disadvantage brings approximation order (i.e., the ability
integers, wherd'(x) is unbounded (see [28]). to reproduce polynomials) to the generated spaces.

We denote byf(w) = [ f(z)e™/“* dx the Fourier trans-  Definition 2: A central basis functiop(z) € S’ is admis-
form of the absolutely integrable functigf(z). For functions sible if and only if the series of subspadés= span,.z{p(z —
such ag(x) that are not bounded ab but do not increase fasterkz—i)} for ¢ € Z are such that we have the following.
than a polynomial [i.eg(x) € S’ whereS’ is Schwartz’ class of i) V, is localizable, i.e.V; N L(R) # {0}.
tempered distributions], we will use a weaker definition. Specif- ii) There existsp; € V; N L2(R) such that

ically, p(w) is the Fourier transform gf(z) in the sense of dis- — L(R) stability: {g;(z — k2~ }rcz is a Riesz basis
tributions if and only if{p, ¥} = (p, ¢) for any indefinitely of V; N L2(R) ' '

differentiable fastly decreasing functigne S (“test function”) — Partition of unity:3", ¢;(z — k277 = 1.

[29]. ‘

The existence ofp; € V; N L%(R) means thap(z) can be

localized by taking a suitable linear combination of its shifts.

The implication of the partition of unity is more intriguing. This
Often, a scaling function is defined indirectly through its remeans that it is possible to represent the constant as a linear

finement filterG [cf. (12) below]. One then has to worry about.gmbination ofp(z — KT}), irrespective of the scalf; = 2.

the delicate issues of the convergence of the iterated filterbagyg nonunigue way of writing the constant implies tpét)

and thel.?(R)-completeness of the wavelet expansion. Here, WRelf cannot generate a Riesz basis, which points out another

propose a more explicit definition that avoids these problemsighdamental difference betweet) and(z).

the outset. _ _ _ o By construction, the spaca$ are embedded
Definition 1: ¢(x) is a valid scaling function if and only if it

satifies the following three conditions. e CV Vo O Vs C V1 T

B. Scaling Functions
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but this does not mean that the in Definition 2 are linked to « A self-similar central basis functions is entirely and

each other through a two-scale relation. uniquely specified by its definition within the interval

Some good examples of admissible central basis functions [1/2, 1] and its eigenvalug. More precisely, if we denote
are the one-sided power function$ /»! with » integer. These by pp1,2, 1) the restriction op to [1/2, 1], we have
can be localized using the backwapd + 1)-order difference ‘ "
operator to yield the causal B-splines of degedef. [31], [32]): plx) = Z APz, 1 (5) .

pal ez
n n4+1 xi Fourier 1—e™¢ . . . .
Bl (x) = ALY T ™ . (15) Conversely, this expression defines a self-similar central

basis function with eigenvaluk.

The B-splines satisfy the three conditions in Definition 1; they « The product and the convolution of two self-similar func-

constitute one of the earliest example of valid scaling functions tions are self-similar as well. Admissibility, however, does

[24]. not carry over so easily, e.g., the product of the admissible
Localizing less simple central basis functions turns out to  central basis functiongr| x |x| yields x?, which is not

be more intricate. It is theoretically possible in the good cases admissible.

(see Buhmann in [33]) to localize them by building the corre-

sponding interpolator, although it might not be an easy task ko General Parametrization

get the coefficients of the interpolating filter, especially when A nice feature of one-sided self-similar central basis func-
the Fourier transform of is not a true function. Moreover, theijons is that they can be expressed as a (countable) sum of one-
interpolator is not always stable; see the classical exampleggieq power functions.

the quadratic splines for which, () = 2%.. We will give our  Theorem 2: Consider a self-similar one-sided central basis
alternative localization technique in Section IlI-F. function p. with eigenvalue\. Then,p is square integrable in

1, 2] if and only if it can be expressed as
D. Self-Similar Central Basis Functions [t 2] y P

We will say that a functionp is self-similar (for dyadic pr() = ™ AMi@nr/lee2) g e, (17)

zooming factors) iff it satisfies nez
x where
p@) = (3) (16) .
1 —lo —1—j(2nn/lo

forallz € R. T foga /1 p+ ()¢ Tom Amiminm e ge - (18)

Theorem 1: Every self-similar admissible central basis func-
tion generates a valid multiresolution bf (R). is a square summable sequence.

In Section IV, we will see that the converse is also true, Likewise, under the same hypothesis, a self-simggm-
provided that the scaling functiapis one-sided or compactly Metric central basis functiorp. with eigenvalueX can be
supported. expressed as a sum of symmetric monomials

Proof: Let p be an admissible central basis function satis- o log, A+j(2nx/ log2
fying (16). Then, there exists € Vy, which is a Riesz basis for pa(z) = Z nfafE AT ae. (19)
Vo NL2(R). Sincey is in the span op(z — k), ¢(x/2) is in the
span ofp(z/2 — k), that s, in the span gf(z — 2n) because of where{v, }.cz € £*.
the self-similarity ofp. This also implies thag(z/2) is in the For completeness, we have derived in Appendix A the Fourier
span ofp(z — n). Thus,p(x/2) € Vo N L3(R). Sinceyp is a transform of (17), which is defined in the sense of distributions.
basis ofVy N L3(R), ¢(x/2) is itself in the span of(z — k), Proof: As we have seen, a one-sided dyadic central basis
which proves thap satisfies the scale relation (12). All the othefunction is completely defined by its restriction to the interval
required properties are provided by the definition 2 of an admig-, 2].

nCZ

sible central basis function. n We definepy(z) = x~(ee?loe2)y, (1) and observe that
Because of the self-similarity relation, the graph of such ceps(2”) is a 1-periodic function, i.e.pp(2°T1) = po(27).
tral basis functions are fractals. Thus, we can apply Fourier's theorem a(2%). If po(z)
Remarks: is square integrable in1, 2] (which is the case when
« Equation (16) implies that(z) is either 0 or tends to in- #(¢) IS square integrable in1,2]), so is po(27), and
finity at one end £ = 0 orz — o). If [A\| > 1, thenp(z) then, po(2%) = 37,7 ¥ne’?"™ almost everywhere, with
tends to grow globally from 0 te-oc; otherwise, when v, = fol po(2%)e72m"¢ d¢. A change of variables then yields
[A| < 1, it globally tends to decrease fro#c to 0. the expansion formula (17).
« In order forp to be square integrable [A, 1], itis neces- ~ When the central basis function is symmetric, it can be ex-
sary thai\| > 1/+/2. This is because pressed ap.(x) = p4+(z) + p+(—x), wherep,. is the restric-
L - . ) tion of p to [0, +oo[. Applying (17) to p4+ and noticing that
/ p(z)? do = — / p(22)% dz = —— / p(z)? dx |z[* = z§ + (—z)F immediately yields (19). .
0 Ao 23 Jo Of course, we may also consider more general self-similar

L central basis functions and express them as a sum of two
> p(z)? dx L ; . .
2)2 J, self-similar one-sided central basis functiops and ps:
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p(z) = p1(x) + p2(—2), each of which can be decomposed4]. This also means that the scaling function will reproduce all

according to (17). polynomials of degre&/ < [log, A] and that the corresponding
wavelet will have[log, A] 4 1 vanishing moments [35].
F. Localization Contrary toits inverse, the filtdP(z) in Theorem 3 is not nec-

Theorem 3: Let p. be a one-sided self-similar central basi
function with eigenvalug,, |\| > 1/+/2. If its representation in
(17) is a finite sum, then the filte? defined through itg-trans-
form P(z) = 3, .7 pxz7" as

gssarily causal; this means that the localized function might not
e one-sided. However, whéf{z) has only a finite number of
poles{{; }r=1...n outside the unit circle, it is possible to choose
BPy(2) = P(2) Hfle (1 — ¢x~~1) as an alternative localization
filter; the advantage is thdt, is causal and, thus, thatz) is

oo . one sided.
PE) = [ e e

0

G. Refinement Filter and Perfect Reconstruction Filterbank
n

_ S .
=) % p(&) e S d¢ (20)  Once the localization filte’(¢’*) has been specified, we
n20 0 may obtain the Fourier transform of refinement filgem (12)
by evaluating the ratio betwe@®(2w) andg(w). With the hy-

localizes the cgntraQI basis functign., i.e., ¢(z) = X.iez  potheses of Theorem 3 [finite sum representation in (17)], this
prp+(x — k) is in L7(R). simplifies to
Similarly, if p is a symmetric self-similar central basis func-

oo n

tion and if its representation in (19) is a finite sum, then the o 1 P(ei?)
symmetric filterP defined through itg-transform as G(e™) = X P(eiw) (22)
Pzt = /Oo p(6) (e—(l—z’l)f + e—(l—z)f) de A corre_sponding (highpass) wavelet filték(ef“_‘) can thgn be
0 determined by using any of the standard design techniques. For

_ —n n " e a complete specification of the wavelet transform algorithm,
= Z (27" + = )/ p*(ﬁ)m@ . (21) we also need the complementary analysis filt€¥s/“) and
=0 H(e’*). These are determined by imposing the perfect recon-

localizes the symmetric central basis functjgn struction conditions in the Fourier domain. .

The proof of this result is given in Appendix B. The nonlocal Since the underlying filters are not necessarily compactly
character of(z) is entirely due to thed(1/w! 1% *) singu- supp_orted, the best way to |mpl.em¢nt this kind of Wavelet. trans-
larity of its Fourier transform at the origin (cf. Appendix A).formis to perform the computation in the frequency domain. For
Thus, the essence of the localization process is to cancel Blif PUrPose, we may use the fast FFT-based implementation
these singularities. The intuitive explanation of Theorem 3 ff the wavelet transform described in [35] and [36].
as follows. Sincel — ¢« =~ jw asw — 0, the integral on
the first line of (20) forz = ¢/* andw close to zero is essen-
tially equivalent to the Fourier transform ofz). This means  As a first example within our general class of self-similar
that the localization filter(¢’*) will have multiple zeros at functions, we consider the first term = 0) of (17): 2§ with
w = 0, which will precisely cancel all the singularities pfw). o =log, A (cf. Fig. 3). The Fourier transform of this one-sided
An ideal localization [i.e.ip(x) — 6(x)] would be achieved if power function is given by the first term in (33). The application
we could design afilter such thafw) = p(w)P(e’) ~ 1 over of Theorem 3 [cf. (35)] leads to the localization filter
the whole frequency axis. While we can obviously not enforce
this constraint everywhere becauBée’) is 2r-periodic and p(ejw) =
p(w) is not, we make sure that it is satisfied around the origin. I(a+1)

In effect, our localization method is akin to using the bilinegghich is essentially a fractional iterate of the finite difference
transform to convert a continuous-time filter into a discrete ongperatorA «— (1 — ¢=9=). Interestingly, this localization

We conjecture that Theorem 3 still holds true when (17) srocess yields the fractional B-splines of degree
not finite, at least under wide conditions pn(x). Our proof,
however, can hardly be extended since, in that gasgy) is no " atl @S Fourier 1— e\
longer a function, which makes the product witic’*) highly pi(z) = A% T(a+1) < ; )
guestionable. S _ _
Note that by constructionj(w) is boundedly differentiable Which is a recently proposed extension of the polynomial
at 0 and has singularities of ordert log, A atw = 2nr for B_—splmes for noninteger de_grees [34]. As car?'be seen in
n € Z\{0}. This implies that if\ > 1, ¢(z) decreases at least™id- 4, thesg funct|ons. provide a smooth transition betwee'n
like |z| =2 whenz — oo (an elaborate proof of a similar cIaimth_e conve_ntlonal B-spl_lnes. Each_(_)f them g_enerate_s a valid
can be found in [34, App. B]). Riesz basis and satisfies th_e partition of unity, pr(_)wd_ed that
The multiple zeros of(¢?) at the origin [or, equivalently, @ > —(1/2) (cf. [34]) or, equivalently\ > 1/v/2, which is a
the singularities ofy(w)] have another desirable effect. Theyecessary condition for Theorem 2.

willendow the scaling function(x) with a corresponding order  2yati_ A and Java sources are available at http:/bigwww.epfl.ch/blu/fract-
of approximationl + log, A, which may even be nonintegersplinewavelets/.

oo
0

H. Example 1: Fractional Splines

(1 _ e—jw)a-l—l

Jw
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Fig. 3. Central basis functions, (x) = x¢ of the fractional B-splines (see
[37]) shown in Fig. 4. Fig. 4. Fractional B-splineg$ («) with o > 0. These functions interpolate
the conventional B-splines that are represented using a thicker line. The

Next, we apply (22) to determine the corresponding refin oninteger degree splines are not compactly supported, although they decrease
t, we apply ponding refing®t 70 7
ment filter
. _ o—j2wya+l —jwya+1
G(e'*) = 1d=e e )a+1 = (1+e - ) (23) Note that by construction,.(z) = 8p4(x/2). Obviously, even
A (I—e) 2 if its integral does not vanish [in facf ¢(z)dx = 1], this

which happens to be the generalized version of the celebragealing function has a bandpass character that is rather unusual
binomial filter. This clearly shows that the fractional B-spline#or a scaling function. It can also yield wavelet bases. In fact, we
are valid scaling functions. They have led to interesting gensed the reconstruction part of a wavelet transform algorithm to
eralizations of the traditional spline wavelets—including thgraph the function in Fig. 5.
Battle—Lemarie orthogonal splines [35], [36]. The remarkable
feature he_re is that these wavelets are indexed by a continu- |vv FrRoM WAVELETS TO CENTRAL BASIS FUNCTIONS
ously-varying order parametet { 1), as opposed to an integer,

as is usually the case in wavelet theory. We will now show that one can also follow the reverse path
and uncover the central basis function(s) that lies hidden behind
|. Example 2: Harmonic Splines any scaling functiorp(z). To this end, we need to assume that

. . is one sided. This includes all compactly supported scaling
for-rrr?e second type of elementary component in (17) is of tI?f?nctions but excludes those that are supported on the whole

real line.
log, A +j(2nw/ log 2)
Ty

_ xligz A(COS(%H logy 2.4) + j sin(27n logy 74)). A. Finding the Central Basis Function

. ] ~ Theorem 4: Let p(x) be an admissible scaling function with
These are essentially modulated versions of the power functiggresponding causal refinement filt€y() = S oo Or7
with the period of the harmonic component increasing logaritlyith 4, - 0. Then, there exists a unique self-similar one-sided
mically. We can combine two complex conjuguate componerﬁge_, supported irf0, -+oo[) central basis functiop., (z) that

with index —n and to obtain a real-valued central basis funcyenerates the same multiresolution analysis. The self-similarity
tion. These are the generating functions of what we define ggrameten defined by (16) is simply; .

harmonic splines o ~ This central basis function, (x) can be expressed as
Fig. 5 illustrates the result of the localization of the function
xi—j(%/ log 2) xi—l—i(?ﬂ/ log 2) p+(z) = Z rne(x —n) (24)
p+($) = =+ . n>0
(o) ()
log2 log 2 where the coefficient sequeneg satisfies
The Fourier transform of the corresponding localization filter,
as given by Theorem 3, is o= 11
' 1 Ty = g_ Z Gn—2kTk, VYn>0. (25)
JWy — 0
P(C ) - <(1 _ e—jw)4—j(2ﬂ'/ log 2) k>0
1 -t Proof. BecauseX is a causal filtery is one-sided, i.e.,
+ (1 — ¢Jw)4+i(2r/log2) its support is contained if), +oc[. We now dilate the function
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Fig. 5. Top: Central basis functign. (=) and its localized versiop () (harmonic spline). Bottom: Fourier transforgis (w) and(w). See Section Il for
more details.

p, as defined by (24), and apply the two-scale equation (12)Then, there exist a radial basis functipp(x) that generates

show that it is self-similar. the same multiresolution analysis
p(x/2) = rap(z/2—n) p(2) = poy(@) + p () (26)
= Z gr—2nrn(x — k) [using (12)] wherep, (x) is given by (24).
n, k
=Y gorrp(z — k) [using (25)] B. One-Sided Localization Filter
k In the present case; is givena priori, which means that
= gop(). the localization filter is specified implicitly. To get its explicit

. ... form, we consider the matrix form of (24
Note that we need not have technical convergence conditions (24)

for interverting sum signs here; this is because the summation ro 71

in (24) is finite for fixedz. Thus, we have spdp(z — n)} C p+(z) 0

spar{p(x — n)}. pela— | _ | T T e |y
Conversely, as shown later, (24) can be inverted exactly to _ o .o _ (@7)

yield ¢(x) as a linear combination of shifted versionsaf. :

This shows that spdp(z — n)} C spaf{p+(xz — n)}. In fact,

we even havex(z) = p4(x) for z € [0, 1], which shows that h N

p+ is unigue since a self-similar function is uniquely defined by

its value in[1/2, 1]. m where the infinite matriR is Toeplitz upper triangular. To de-
Corollary 1: Let ¢(x) be a symmetric compactly supportederminep such thatp(z) = >, <, pnp(x—n), we simply need

scaling function with corresponding refinement filté(z). to evaluate the inverse &, which turns out to be Toeplitz upper
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One can check that the results for= 1 are compatible with
1 (7); therefore, we have gone full circle.

E. Time-Domain Parametrization of Scaling Functions

Theorem 4 allows us to state the utmost result of this paper,
i.e., afull parametrization of one-sided dyadic scaling functions.

Corollary 2: Lety be an admissible one-sided or compactly
supported scaling function. Then, there exist a real number
—0.5, a complex sequendey, }nez € £2, and a real sequence
{pn }nen such that

(p(.’L') — Z pk’Yl(-/L' i If)i—'—j(mﬂ/ log 2)' (31)
keEN, 1cZ

. . . . K . . . . ’ . Conversely, any function described by (31) satisfies a
S0 s 1 15 2z 25 s a5 4 45 5  two-scale difference equation but is not necessarily compactly
Fig. 6. Scaling function (dotted li d self-simil tral basis functi supported.

1. (solc ine) corresponding to Daubechies minimuim phase wavelets of orcerS far as We know, this is the first time that an explicit time
2. Note thafp, and» coincide over0, 1]. domain formula is given for scaling functions. Equation (31) is
interesting because it explains the fractal nature of scaling func-

triangular as well. By solving this triangular system of equdlons and wavelets. The expansion can also be interpreted as an

tions, we find that infinite sum of harmonic splines. This points to a new funda-
. mental aspect of splines as elementary constituents of scaling
-1 functions.
Pe = 2:1 "nPk-n- (28) Note that the exponent in (31) has a very special role.

_ S ) Whenever the sum ovey; is finite, it is tightly linked to four
Note that this localization is not necessarily the same as tgportant wavelet properties:

one described in Theorem 3, which may yield another scaling

S i) the Hold larity, which is;
function in Vs, i) the Hoélder regularity, which is

ii) the Solobev regularity, which ig + (1/2);
iii) the order of approximation, which is + 1;

] i ) iv) the polynomial degree reconstruction, whicH ig|.
Daubechies scaling functions [38] are compactly support%ie remark that except for the case of splines, there is a whole

andtcalnbthu.s bfe eﬁpres:%redlllljsTgfl unlqutﬁ self—S|m|Ir;11r one—&%e of such wavelets that has not yet been explored.
central basis function. 10 Hlustrate our theory, We nave eval-\ye - snoyid mention, however, that the meaning of

uated the sequence, using (25) for a Daubechies filter of _log, g0 is Not as transparent for the traditional

. (8% =
length 33 WTCh gorrespontljstttoda_ wgvelgt I(\)If ?rder 2. ;_hf] CQlavelets such as Daubechies whose harmonic decomposition
responding functions are plotted in Fig. 6. Note that whic involves an infinite number of terms. This leaves us with the

i.s clearly fractql, also corregppnds to the self-similar eXt,rapOHao'Ilowing interrogation: The Holder regularity of the minimum
tion of ¢y, /2,1y, i.€., the restriction op(z) to € [1/2, 1], with phase Daubechies wavelets turns out tavbe — log, go (cf.
A =4/(1+ V3) = 1.46. [39]-[41)). Is this fact coincidental or not?

D. Example 2: Polynomial Splines

C. Example 1: Daubechies

. . F. Borderline Cases
The same kind of exercise can be performed for the causal

B-splines (15) to recover the one-sided power functiofis We have established a full equivalence between self-similar

Here, instead of using (25), we will determine the Sequeﬂcé:entral functions and scaling functions only for the one-sided
as the inverse of the localization operatdo illustrate the link case. Itis likely that a similar equivalence holds for most scaling
in Section II-A. functions that are not one-sided as well, but we also have evi-

The z-transform of the localization operator for the B-splinéjence_that th|§ will not always be th? case.
of degreen is Aq mteres_tmg cour_lterexample is prowd_ed by the_ sym-
metric fractional splines whose generating function is
P(z) = 1 (1— 2yt (29) p«(z) = %" log |x|, wheren is some integer. We have shown
n! recently that this classical radial basis function could be local-
Formally, R™(z) is obtained by taking the convolution inverse ofzed to yield the symmetric fractional B-splirn&™, which is
P"(z). Using the Taylor development 6f —~—1)~"~! (which a perfectly valid scaling function [34]. Yet, the corresponding

is given, e.g., in [28]), this yields p«(x) is not strictly self-similar; it is only self-similar up to
a polynomial term:p,(z/2) = (1/4™)(p«(x) — 2** log?2).
R™(2) = 1 = nl n+k k. 30) However, the span of these radial basis functions is still a
(%) = - > (30)
pPr(z) ko N multiresolution space becaus&® belongs to it.
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V. CONCLUSION We now use (20) to derive the filter contribution associated
‘th a single component of the foraty, making the complex

We have presented new results that make the connection . 1
change of variabkeu = (1 — 27 1)z

tween radial basis functions and wavelets very explicit.
The fact that we can move from radial basis functions to pee 1 o0 u o du
a, —(1—-z"")=z dr = —u
/ z-e T = / <1 _1>
0

wavelets enables us to control some of their key mathemat 1_ -1

— Z
ical properties: regularity and order of approximation. It also 0

oo
yields wavelets that have an explicit analytical form, the frac- = +a+l / ue” " du
tional splines being a notable example. (1-274)
The existence of a link in the reverse direction—from — Il +a) ) (34)
wavelets to central basis functions—is especially interesting (1= 27ttt

conceptually. It leads to an alternative interpretation of muj
tiresolution. Basis functions are simply removed (resp. add
instead of being dilated (resp. contracted), as is usually the

summing over all components, we get the explicit form of
inverse of the localization filter

case. This opens up the door to many possible extensions, such r <1 +logy A+ j 2nm )
as wavelets on nonuniform grids. (Cjw),l _ Z log 2 (35)
This study has also brought out the fundamental role ofp 7"(1 — emiw)ltlog, A+i(2nm/log2) "

finiten

splines and their harmonic extensions that are the elementary

constituents of wavelets. The decomposition in terms of h&ecausd — e/« = jw + O(w?), it is clear thatP(e’“) ! is

monic splines leads to an explicit formula for scaling functiongquivalent tgp(w) in the neighborhood ab = 0 [except for the
and wavelets in the continuous-time domain. It also providespatential5*)(w) correction in the few cases wheke= 2*].

clear understanding of their fractal properties. Clearly, the localization filte”(c’*) will be well defined and
bounded provided that(c/“)~1 # 0 over[0, 2x[. Under those
APPENDIX A conditions, we can state th@{w) = P(e’“)p(w) is bounded
FOURIER TRANSFORM OF AONE-SIDED SELF-SIMILAR overR due to the fact that(w) is bounded away frow = 0.
CENTRAL BASIS FUNCTION The same argument holds far= 2* because thenP?(¢/«) =

_ , *+1) and because*t16%)(w) = 0. Now, we claim that
It turns out that the Fourier transform of the tempered dIStI’-IO-(w ) («) v

) : : s in L%(R). This is because
butionu.(x) = 27 is known in the general case wheres C. S (R). This .

It is given by (see [42]) 1 _ e/ o8 25ig( )
) F(z 1 1) . (jw)l'Hng A+ji(2nw/ log2) |w|1+R(10g2 A)
(w) = Gy if z¢ N Constant

n! - |w|1-1—7€(log2 A)

M Gy

+ 76 (W) ifneN.
which implies that@(w)[?> < Constank |w|~2~2R(e8: A) away

Thus, in the sense of distributions, we have fromw = 0. Thus,|¢|? is integrable ovef—oo, —1] U [1, ocf,
provided that|\| > 1/+/2. Since|¢|? is also bounded, it is
r <a F14 2””) obviously integrable ovef—1, 1]. By Plancherel identity, we
. log 2 - conclude thaty € L2(R).
— . : if @ =1log,A¢N , . .
pl) ;E:Z 7 (jw)ati+iCnm/log2 a=log: A ¢ If p is symmetric, we decompose it as(z) + p4+(—z) and
’ o proceed similarly to show thgt(w) = P(e?*)p(w) is bounded
Na+14+y and square integrable, which proves thas square integrable.
R B log 2 e s(e) [ |
p(LU) - Z Tn (jw)a—l—l—l—j(QnTr/ log 2) + Yo7] (w)
nez
if @ =1logy A € N. (32) REFERENCES
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