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Wavelets, Fractals, and Radial Basis Functions
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Abstract—Wavelets and radial basis functions (RBFs) lead to
two distinct ways of representing signals in terms of shifted basis
functions. RBFs, unlike wavelets, are nonlocal and do not involve
any scaling, which makes them applicable to nonuniform grids. De-
spite these fundamental differences, we show that the two types
of representation are closely linked together. . . through fractals.
First, we identify and characterize the whole class of self-similar
radial basis functions that can be localized to yield conventional
multiresolution wavelet bases. Conversely, we prove that for any
compactly supported scaling function ( ), there exists a one-
sided central basis function +( ) that spans the same multireso-
lution subspaces. The central property is that the multiresolution
bases are generated by simple translation of+ without any dila-
tion. We also present an explicit time-domain representation of a
scaling function as a sum of harmonic splines. The leading term in
the decomposition corresponds to the fractional splines: a recent,
continuous-order generalization of the polynomial splines.

Index Terms—Central basis functions, fractals, fractional
splines, localization, multiresolution, radial basis functions, re-
finement filter, scaling functions, self-similarity, splines, tempered
distributions, two-scale difference equation, wavelets.

I. INTRODUCTION

RADIAL basis functions (RBFs) constitute a powerful tool
for working with data that is nonuniformly sampled. They

are used extensively for scattered data interpolation [1]. Thin-
plate splines, in particular, have some remarkable variational
properties: They minimize a Laplacian energy functional which
makes the solution invariant to rigid-body coordinate transfor-
mations [2]. They are often used in medical imaging for the
estimation of deformation fields based on the specification of
fiducial points (or landmarks) [3]–[5]. Radial basis functions are
also frequently applied to neural networks; they have been pro-
posed as an efficient mean for establishing a multidimensional
mapping between some input feature space and some target re-
sponse given a collection of (noisy) input–output pairs (learning
by example) [6], [7]. Their use has been justified through regu-
larization theory in connection with their energy minimization
properties [8]–[10].

A radial basis function approximation in-dimensions (
) has the generic form

(1)

where is a univariate function and where
denotes the Euclidean distance between the-vectors
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and . The basis functions in (1) depend only on the
distance to their corresponding grid pointand are thus called
radial. The are weighting coefficients that are typically
determined by fitting the function to some data. In the classical
interpolation problem, the function is determined such that

, where the are some data values; in this case,
there is exactly one linear constraint per basis function, and the
corresponding linear system of equations is invertible under
relatively mild conditions [11]. The better-known examples of
radial basis functions are (linear or membrane spline),

(thin-plate spline), and
(Hardy’s multiquadric).

Here, we are interested in discussing the connection between
such radial basis functions and wavelets. In this latter context,
the generic multiresolution approximation of a function at
scale has the form

(2)

where the basis functions at level are dilated by the
factor and spaced accordingly. While (1) and (2) both involve
shifts of some basic template function— , and ,
respectively—there are some crucial differences that need to
be emphasized. First, although it is easy to define a multires-
olution hierarchy of radial basis functions by simply dropping
or adding some points, there is no provision for scaling in (1).
Second, the generating functions used in both cases are fun-
damentally different: is a relatively tame, well-localized
function which is at least square-integrable; , on the other
hand, typically extends over the whole axis and is unbounded at
infinity. Conversely, has a convenient closed form expres-
sion, whereas usually has no such formula (it is defined
implicitly through a infinite recusion) [12]–[14]. Third, the ra-
dial basis function framework is ideally suited for a nonuniform
setting, whereas conventional wavelet theory is restricted to uni-
form grids.

Yet, there is an interesting link between both types of
representations. This was recognized early on by mathemati-
cians working in approximation theory and has been the basis
for several interesting generalizations of wavelets [15]. The
first step in this realization was the construction multivariate
scaling functions (or pre-wavelets) that are linear combinations
of some radial basis functions [16], [17]. Utreras specified
the class of refinable radial basis functions as those whose
Fourier transform is [17]; this is a condition
that is unnecessarily restrictive, as we will see here. The next
step, while still working with a uniform grid, was to extend the
multiresolution concept without the two-scale relation. This led
to the construction ofnonstationarywavelets where the basis
functions at distinct scales are no longer dilates of each other
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[18], [19]. Finally, there have also been extensions of wavelets
to nonuniform grids based again on radial basis functions [20],
[21]. A univariate example of special interest that falls into this
last category are the nonuniform spline wavelets [22], [23].

Our purpose in this paper is to strengthen the connection be-
tween radial basis functions and wavelets even further. We will
mainly concentrate on the standard wavelet setting (approxima-
tion of univariate functions on a uniform grid) and approach the
problem from its two different sides. First, in Section III, we will
show how to construct scaling functions (or wavelets) starting
from some radial basis function , extending some of the ear-
lier results of Buhmann and Utreras. In particular, we will iden-
tify a self-similarity condition for that justifies the use of
the wordfractal in the title. We will then characterize the whole
class of these “fractal” functions and show how these can be lo-
calized to yield valid scaling functions. We will illustrate our
theoretical results with the construction of fractional B-splines
and other related functions. In Section IV, we will look at the
converse side of the problem and prove that any standard mul-
tiresolution analysis of can be expressed in terms of cen-
tral basis functions, which are a slight extension of the radial
ones. In other words, we will uncover the central basis function
that lies hidden behind any scaling function or wavelet. Finally,
by combining our results, we will present a general parametriza-
tion of all compactly supported wavelets that will provide us
with a better understanding of their fractal nature.

The next section is meant as an introduction. Rather than
starting with mathematics right away, we will consider a con-
crete example that contains most of the flavor of what will be
investigated in more generality in the later sections of the paper.

II. M OTIVATION: THE EXAMPLE OF LINEAR SPLINES

Here, we use piecewise linear functions to build a multires-
olution analysis of , but we proceed in a nonstandard
fashion.

A. Splines and One-Sided Power Functions

The simplest conceivable linear spline is the one-sided ramp
(or power) function

elsewhere
(3)

which has exactly one knot (or discontinuity) at the origin [cf.
Fig. 1(a)]. By simply shifting and adding up such building
blocks, we can generate functions of the form

(4)

where the are some (arbitrary) weights and the an in-
creasing sequence of knots. Since in (4) is a sum of splines,
it is a spline as well that inherits the discontinuities of its indi-
vidual constituants. Hence, it is a piecewise linear function with
knots at . Thus, by placing the knots at the integers ( ),
we can specify the basic space1 of uniform splines of degree 1

span (5)

1In this paper, span f�(x � k)g stands for the function space of all the
linear combinations of integer shifts of�(x) that arelocally square integrable.

Fig. 1. Example of linear splines. (a) One-sided rampx , which exhibits
a discontinuity at the origin. (b) B-spline of degree 1. The function in (b) is
localized, whereas the one in (a) is not.

where we have set .
By taking the second forward finite differences of —a

specific instance of (4) with , , and —we
obtain the hat function (or causal B-spline of degree 1)

(6)

which is the more standard, compactly supported basis function
for the linear splines [cf. Fig. 1(b)]. The remarkable fact with
(6) is that the one-sided functions cancel out for ; in other
words, we are able tolocalize by taking a suitable linear
combination of its shifted versions. Moreover, we can invert (6)
and express the one-sided power function as a weighted sum of
B-spline basis functions

(7)

This shows that our definition (5) of the basic spline space is
equivalent to the standard one that involves linear combinations
of B-splines. Thus, is a valid basis for ,
albeit not a Riesz basis; the main difficulty is that the in
(4) are not necessarily in , which also means that this basis
is not well conditioned. Thus, we will need to exert special care
while manipulating expansions such as (4) both numerically and
mathematically.

B. How Multiresolution Becomes Trivial

The advantage of the present formulation is that it makes
the multiresolution structure of splines stand out quite naturally
(cf. Fig. 2). Consider the coarse-to-fine sequence of subspaces

, where represents the space
of linear splines with knots at , . These splines
are generated simply by dropping all the basis functions in (5)
that are not positioned at the desired knots. Thus, we define our
uniform spline space with scale as

span (8)
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Fig. 2. Multiresolution spaces using one-sided power functions.

Clearly, the basis functions for are a subset of those of
for , which implies that , for all , which
is a multiresolution property. Since eachalso has a B-spline
Riesz basis , the whole ladder of spline
subspaces for generates a multiresolution of in
the sense specified by Mallat [24]. Hence, it is possible to con-
struct a whole variety of corresponding wavelet bases using any
of the standard design techniques. Specific examples of linear
spline wavelets that are orthogonal [24], semi-orthogonal [25],
biorthogonal [26], or even shift-orthogonal [27] have been de-
scribed in the literature.

C. Nonuniform Linear Splines

The power of the present formulation really becomes
apparent if we move one step further and consider a given
nonuniform sequence of knots with

. We then define a corresponding embedded sequence of
nonuniform spline spaces

span (9)

which share the same inclusion properties as before:
. Here, too, we are able to produce com-

pactly supported basis functions (nonuniform B-splines), except
that they lose the convenient shift-invariant structure that is in-
herent to standard (uniform) multiresolution analysis. Specifi-
cally, the th (nonuniform) B-spline at resolution is

(10)

It is a triangular function that takes the value one at
and vanishes for and . Note that this lo-
calization process involves divided differences of rather
than finite differences, as in (6). This nonuniform setting is also
suitable for constructing wavelet bases that span the orthogonal

complement of in . Such nonuniform spline wavelets
were first described by Lyche as early as in 1992 [22].

D. Central Basis Functions

Until now, we have worked with the one-sided function
. We could have also used its reversed version

, which can be localized using backward
finite (or divided) differences. Another option would have
been to use the symmetric function , which is
the prototypical example of a radial basis function. In the
sequel, we will consistently use the subscripts, , and to
denote symmetric (or radial), causal, and anti-causal generating
functions, respectively. These are all special cases of what we
call central basis functionsand which we denote by the generic
symbol . The one-sided functions are typically simpler to
work with in the univariate case. The symmetric ones, on the
other hand, are usually preferred in a multivariate setting, for
they fall within the framework the well-developed theory of
radial basis functions.

E. Extension to Higher Dimensions: Variational Splines

Let us now briefly show how to extend this type of construc-
tion to a nonuniform grid in dimensions. Here, it becomes
preferable to work with the radial basis function .
We also need to specify our nonuniform grid at the finest scale
available. It is given in the form of an ordered set of (distinct)
points , with . These may, for example, corre-
spond to the discrete locations at which the samples of an input
function are given. We then specify our basic radial spline space

span (11)

For , the functions in are no longer piecewise linear.
Yet, they are compatible with the variational formulation of
linear splines. The problem is the following: Given the samples
of a function , , one wishes to find the best
interpolant in such that an adequate Duchon semi-norm
is minimized [2]. It can be shown that the optimum solution is
necessarily included in ; specifically, it is the unique function

that satisfies the interpolation constraint ,
. The functional may be thought of as

the bending energy of a thin membrane; hence, we have the
term membrane spline. Finding the expansion coefficients for
the basis is precisely what the radial basis func-
tions interpolation problem is all about.

F. Road Map to the Paper

The manipulations that we have made so far using linear
splines are also valid for higher order splines. This is all well
known in approximation theory. In the remainder of the paper,
we will generalize these ideas further and show that the first
part of the process described above (Sections II-A and II-B, in
particular) is applicable in a much wider setting as had been re-
alized so far. First, we will identify the whole class of central
basis functions (one-sided or radial) that can be used to
specify a multiresolution analysis of in the sense defined
by Mallat. We will see that an admissible central basis func-
tion must satisfy a self-similarity relation. This, together with
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a suitable localization process [similar to (6)], will allow us to
specify new classes of scaling functions much more explicitly
than is done usually by means of an infinite recursion (two-scale
relation). Second, we will look at the converse problem and
prove that a central basis function can be found for any
compactly supported—and more generally, one-sided—scaling
function . The next logical step, which will not be pursued
here, is to use these results to extend the standard wavelet con-
structions to the nonuniform case similar to what we have done
with the linear splines in the example above.

III. FROM CENTRAL BASIS FUNCTIONS TOWAVELETS

We will now show how it is possible to construct wavelets
starting from a radial (or central) basis function . We
will not consider wavelets literally but, rather, their associated
scaling functions, which are the key to the multiresolution
structure of the wavelet transform. Once the scaling function
has been specified, it is comparatively easy to construct a
corresponding wavelet basis using standard techniques [12],
[13].

A. Notation

We will need to raise complex numbers to some complex
power. Euler showed that this is a well-defined operation, as
long as one specifies the argument in a unique, unambiguous
fashion, e.g., with . Then, we
specify

For instance, we have .
Euler’s Gamma function is defined for by

This is a interpolation of the factorial since
if . It is further possible to extend this function by ana-
lytic continuation to complex values of, except at the negative
integers, where is unbounded (see [28]).

We denote by the Fourier trans-
form of the absolutely integrable function . For functions
such as that are not bounded at but do not increase faster
than a polynomial [i.e., where is Schwartz’ class of
tempered distributions], we will use a weaker definition. Specif-
ically, is the Fourier transform of in the sense of dis-
tributions if and only if for any indefinitely
differentiable fastly decreasing function (“test function”)
[29].

B. Scaling Functions

Often, a scaling function is defined indirectly through its re-
finement filter [cf. (12) below]. One then has to worry about
the delicate issues of the convergence of the iterated filterbank
and the -completeness of the wavelet expansion. Here, we
propose a more explicit definition that avoids these problems at
the outset.

Definition 1: is a valid scaling function if and only if it
satifies the following three conditions.

i) Two-Scale Relation: The function at a coarser resolu-
tion can be expressed using its shifts

(12)

ii) Stability: is a Riesz basis of ,
which is equivalent to require that there exist two positive
constants and such that

(13)

almost everywhere.
iii) Partition of Unity:

(14)

The two first conditions are implicit to Mallat’s axiomatic
definition of a multiresolution analysis of [24]. More-
over, it can be shown that Mallat’s completeness requirement
[denseness in ] is equivalent the partition of unity condi-
tion, which has the merit of being explicit (cf. [30]). It follows
that the three conditions are sufficient to build a multiresolution
analysis of .

C. Admissible Central and Radial Basis Functions

A central (either one-sided or radial) basis function has
properties that are quite distinct from those of a scaling function

because of fundamental differences in the replication mech-
anism. With radial basis functions, the multiresolution bases
(e.g., ) are generated by simple translation of

, as opposed to dilation plus translation (e.g.,
), as is traditionally the case with the wavelet transform.

The most evident difference between the two species of func-
tions is that the central basis functions are not well localized. To
avoid gaps, they must be infinitely supported. In general, they
are not even integrable, and yet, it can be shown that this ap-
parent disadvantage brings approximation order (i.e., the ability
to reproduce polynomials) to the generated spaces.

Definition 2: A central basis function is admis-
sible if and only if the series of subspaces span

for are such that we have the following.

i) is localizable, i.e., .
ii) There exists such that

— stability: is a Riesz basis
of
— Partition of unity: .

The existence of means that can be
localized by taking a suitable linear combination of its shifts.
The implication of the partition of unity is more intriguing. This
means that it is possible to represent the constant as a linear
combination of , irrespective of the scale .
This nonunique way of writing the constant implies that
itself cannot generate a Riesz basis, which points out another
fundamental difference between and .

By construction, the spaces are embedded
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but this does not mean that the in Definition 2 are linked to
each other through a two-scale relation.

Some good examples of admissible central basis functions
are the one-sided power functions with integer. These
can be localized using the backward -order difference
operator to yield the causal B-splines of degree(cf. [31], [32]):

(15)

The B-splines satisfy the three conditions in Definition 1; they
constitute one of the earliest example of valid scaling functions
[24].

Localizing less simple central basis functions turns out to
be more intricate. It is theoretically possible in the good cases
(see Buhmann in [33]) to localize them by building the corre-
sponding interpolator, although it might not be an easy task to
get the coefficients of the interpolating filter, especially when
the Fourier transform of is not a true function. Moreover, the
interpolator is not always stable; see the classical example of
the quadratic splines for which . We will give our
alternative localization technique in Section III-F.

D. Self-Similar Central Basis Functions

We will say that a function is self-similar (for dyadic
zooming factors) iff it satisfies

(16)

for all .
Theorem 1: Every self-similar admissible central basis func-

tion generates a valid multiresolution of .
In Section IV, we will see that the converse is also true,

provided that the scaling function is one-sided or compactly
supported.

Proof: Let be an admissible central basis function satis-
fying (16). Then, there exists which is a Riesz basis for

. Since is in the span of , is in the
span of , that is, in the span of because of
the self-similarity of . This also implies that is in the
span of . Thus, . Since is a
basis of , is itself in the span of ,
which proves that satisfies the scale relation (12). All the other
required properties are provided by the definition 2 of an admis-
sible central basis function.

Because of the self-similarity relation, the graph of such cen-
tral basis functions are fractals.

Remarks:

• Equation (16) implies that is either 0 or tends to in-
finity at one end ( or ). If , then
tends to grow globally from 0 to ; otherwise, when

, it globally tends to decrease from to 0.
• In order for to be square integrable in , it is neces-

sary that . This is because

• A self-similar central basis functions is entirely and
uniquely specified by its definition within the interval

and its eigenvalue. More precisely, if we denote
by the restriction of to , we have

Conversely, this expression defines a self-similar central
basis function with eigenvalue.

• The product and the convolution of two self-similar func-
tions are self-similar as well. Admissibility, however, does
not carry over so easily, e.g., the product of the admissible
central basis functions yields , which is not
admissible.

E. General Parametrization

A nice feature of one-sided self-similar central basis func-
tions is that they can be expressed as a (countable) sum of one-
sided power functions.

Theorem 2: Consider a self-similar one-sided central basis
function with eigenvalue . Then, is square integrable in

if and only if it can be expressed as

a.e. (17)

where

(18)

is a square summable sequence.
Likewise, under the same hypothesis, a self-similarsym-

metric central basis function with eigenvalue can be
expressed as a sum of symmetric monomials

a.e. (19)

where .
For completeness, we have derived in Appendix A the Fourier

transform of (17), which is defined in the sense of distributions.
Proof: As we have seen, a one-sided dyadic central basis

function is completely defined by its restriction to the interval
.

We define and observe that
is a 1-periodic function, i.e., .

Thus, we can apply Fourier’s theorem to . If
is square integrable in (which is the case when

is square integrable in ), so is , and
then, almost everywhere, with

. A change of variables then yields
the expansion formula (17).

When the central basis function is symmetric, it can be ex-
pressed as , where is the restric-
tion of to . Applying (17) to and noticing that

immediately yields (19).
Of course, we may also consider more general self-similar

central basis functions and express them as a sum of two
self-similar one-sided central basis functions and :
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, each of which can be decomposed
according to (17).

F. Localization

Theorem 3: Let be a one-sided self-similar central basis
function with eigenvalue , . If its representation in
(17) is a finite sum, then the filter defined through its -trans-
form as

(20)

localizes the central basis function , i.e.,
is in .

Similarly, if is a symmetric self-similar central basis func-
tion and if its representation in (19) is a finite sum, then the
symmetric filter defined through its -transform as

(21)

localizes the symmetric central basis function.
The proof of this result is given in Appendix B. The nonlocal

character of is entirely due to the singu-
larity of its Fourier transform at the origin (cf. Appendix A).
Thus, the essence of the localization process is to cancel out
these singularities. The intuitive explanation of Theorem 3 is
as follows. Since as , the integral on
the first line of (20) for and close to zero is essen-
tially equivalent to the Fourier transform of . This means
that the localization filter will have multiple zeros at

, which will precisely cancel all the singularities of .
An ideal localization [i.e., ] would be achieved if
we could design a filter such that over
the whole frequency axis. While we can obviously not enforce
this constraint everywhere because is -periodic and

is not, we make sure that it is satisfied around the origin.
In effect, our localization method is akin to using the bilinear
transform to convert a continuous-time filter into a discrete one.

We conjecture that Theorem 3 still holds true when (17) is
not finite, at least under wide conditions on . Our proof,
however, can hardly be extended since, in that case, is no
longer a function, which makes the product with highly
questionable.

Note that by construction, is boundedly differentiable
at 0 and has singularities of order at for

. This implies that if , decreases at least
like when (an elaborate proof of a similar claim
can be found in [34, App. B]).

The multiple zeros of at the origin [or, equivalently,
the singularities of ] have another desirable effect. They
will endow the scaling function with a corresponding order
of approximation , which may even be noninteger

[34]. This also means that the scaling function will reproduce all
polynomials of degree and that the corresponding
wavelet will have vanishing moments [35].

Contrary to its inverse, the filter in Theorem 3 is not nec-
essarily causal; this means that the localized function might not
be one-sided. However, when has only a finite number of
poles outside the unit circle, it is possible to choose

as an alternative localization
filter; the advantage is that is causal and, thus, that is
one sided.

G. Refinement Filter and Perfect Reconstruction Filterbank

Once the localization filter has been specified, we
may obtain the Fourier transform of refinement filterin (12)
by evaluating the ratio between and . With the hy-
potheses of Theorem 3 [finite sum representation in (17)], this
simplifies to

(22)

A corresponding (highpass) wavelet filter can then be
determined by using any of the standard design techniques. For
a complete specification of the wavelet transform algorithm,
we also need the complementary analysis filters and

. These are determined by imposing the perfect recon-
struction conditions in the Fourier domain.

Since the underlying filters are not necessarily compactly
supported, the best way to implement this kind of wavelet trans-
form is to perform the computation in the frequency domain. For
this purpose, we may use the fast FFT-based implementation2

of the wavelet transform described in [35] and [36].

H. Example 1: Fractional Splines

As a first example within our general class of self-similar
functions, we consider the first term ( ) of (17): with

(cf. Fig. 3). The Fourier transform of this one-sided
power function is given by the first term in (33). The application
of Theorem 3 [cf. (35)] leads to the localization filter

which is essentially a fractional iterate of the finite difference
operator . Interestingly, this localization
process yields the fractional B-splines of degree

which is a recently proposed extension of the polynomial
B-splines for noninteger degrees [34]. As can be seen in
Fig. 4, these functions provide a smooth transition between
the conventional B-splines. Each of them generates a valid
Riesz basis and satisfies the partition of unity, provided that

(cf. [34]) or, equivalently, , which is a
necessary condition for Theorem 2.

2MATLAB and Java sources are available at http://bigwww.epfl.ch/blu/fract-
splinewavelets/.
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Fig. 3. Central basis functions� (x) = x of the fractional B-splines (see
[37]) shown in Fig. 4.

Next, we apply (22) to determine the corresponding refine-
ment filter

(23)

which happens to be the generalized version of the celebrated
binomial filter. This clearly shows that the fractional B-splines
are valid scaling functions. They have led to interesting gen-
eralizations of the traditional spline wavelets—including the
Battle–Lemarie orthogonal splines [35], [36]. The remarkable
feature here is that these wavelets are indexed by a continu-
ously-varying order parameter ( ), as opposed to an integer,
as is usually the case in wavelet theory.

I. Example 2: Harmonic Splines

The second type of elementary component in (17) is of the
form

These are essentially modulated versions of the power functions
with the period of the harmonic component increasing logarith-
mically. We can combine two complex conjuguate components
with index and to obtain a real-valued central basis func-
tion. These are the generating functions of what we define as
harmonic splines.

Fig. 5 illustrates the result of the localization of the function

The Fourier transform of the corresponding localization filter,
as given by Theorem 3, is

Fig. 4. Fractional B-splines� (x) with � � 0. These functions interpolate
the conventional B-splines that are represented using a thicker line. The
noninteger degree splines are not compactly supported, although they decrease
like jxj .

Note that by construction, . Obviously, even
if its integral does not vanish [in fact, ], this
scaling function has a bandpass character that is rather unusual
for a scaling function. It can also yield wavelet bases. In fact, we
used the reconstruction part of a wavelet transform algorithm to
graph the function in Fig. 5.

IV. FROM WAVELETS TO CENTRAL BASIS FUNCTIONS

We will now show that one can also follow the reverse path
and uncover the central basis function(s) that lies hidden behind
any scaling function . To this end, we need to assume that

is one sided. This includes all compactly supported scaling
functions but excludes those that are supported on the whole
real line.

A. Finding the Central Basis Function

Theorem 4: Let be an admissible scaling function with
corresponding causal refinement filter
with . Then, there exists a unique self-similar one-sided
(i.e., supported in ) central basis function that
generates the same multiresolution analysis. The self-similarity
parameter defined by (16) is simply .

This central basis function can be expressed as

(24)

where the coefficient sequence satisfies

(25)

Proof: Because is a causal filter, is one-sided, i.e.,
its support is contained in . We now dilate the function
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Fig. 5. Top: Central basis function� (x) and its localized version'(x) (harmonic spline). Bottom: Fourier transforms�̂ (!) and'̂(!). See Section III-I for
more details.

, as defined by (24), and apply the two-scale equation (12) to
show that it is self-similar.

[using (12)]

[using (25)]

Note that we need not have technical convergence conditions
for interverting sum signs here; this is because the summation
in (24) is finite for fixed . Thus, we have span
span .

Conversely, as shown later, (24) can be inverted exactly to
yield as a linear combination of shifted versions of.
This shows that span span . In fact,
we even have for , which shows that

is unique since a self-similar function is uniquely defined by
its value in .

Corollary 1: Let be a symmetric compactly supported
scaling function with corresponding refinement filter .

Then, there exist a radial basis function that generates
the same multiresolution analysis

(26)

where is given by (24).

B. One-Sided Localization Filter

In the present case, is given a priori, which means that
the localization filter is specified implicitly. To get its explicit
form, we consider the matrix form of (24)

...

...
.. .

. . .
...

. . .

...

(27)

where the infinite matrix is Toeplitz upper triangular. To de-
termine such that , we simply need
to evaluate the inverse of, which turns out to be Toeplitz upper



BLU AND UNSER: WAVELETS, FRACTALS, AND RADIAL BASIS FUNCTIONS 551

Fig. 6. Scaling function' (dotted line) and self-similar central basis function
� (solid line) corresponding to Daubechies minimum phase wavelets of order
2. Note that� and' coincide over[0; 1].

triangular as well. By solving this triangular system of equa-
tions, we find that

(28)

Note that this localization is not necessarily the same as the
one described in Theorem 3, which may yield another scaling
function in .

C. Example 1: Daubechies

Daubechies scaling functions [38] are compactly supported
and can thus be expressed using a unique self-similar one-sided
central basis function. To illustrate our theory, we have eval-
uated the sequence using (25) for a Daubechies filter of
length 4, which corresponds to a wavelet of order 2. The cor-
responding functions are plotted in Fig. 6. Note that, which
is clearly fractal, also corresponds to the self-similar extrapola-
tion of , i.e., the restriction of to , with

.

D. Example 2: Polynomial Splines

The same kind of exercise can be performed for the causal
B-splines (15) to recover the one-sided power functions.
Here, instead of using (25), we will determine the sequence
as the inverse of the localization operatorto illustrate the link
in Section II-A.

The -transform of the localization operator for the B-spline
of degree is

(29)

Formally, is obtained by taking the convolution inverse of
. Using the Taylor development of (which

is given, e.g., in [28]), this yields

(30)

One can check that the results for are compatible with
(7); therefore, we have gone full circle.

E. Time-Domain Parametrization of Scaling Functions

Theorem 4 allows us to state the utmost result of this paper,
i.e., a full parametrization of one-sided dyadic scaling functions.

Corollary 2: Let be an admissible one-sided or compactly
supported scaling function. Then, there exist a real number

, a complex sequence , and a real sequence
such that

(31)

Conversely, any function described by (31) satisfies a
two-scale difference equation but is not necessarily compactly
supported.

As far as we know, this is the first time that an explicit time
domain formula is given for scaling functions. Equation (31) is
interesting because it explains the fractal nature of scaling func-
tions and wavelets. The expansion can also be interpreted as an
infinite sum of harmonic splines. This points to a new funda-
mental aspect of splines as elementary constituents of scaling
functions.

Note that the exponent in (31) has a very special role.
Whenever the sum over is finite, it is tightly linked to four
important wavelet properties:

i) the Hölder regularity, which is ;
ii) the Solobev regularity, which is ;
iii) the order of approximation, which is ;
iv) the polynomial degree reconstruction, which is .

We remark that except for the case of splines, there is a whole
range of such wavelets that has not yet been explored.

We should mention, however, that the meaning of
is not as transparent for the traditional

wavelets such as Daubechies whose harmonic decomposition
involves an infinite number of terms. This leaves us with the
following interrogation: The Hölder regularity of the minimum
phase Daubechies wavelets turns out to be (cf.
[39]–[41]). Is this fact coincidental or not?

F. Borderline Cases

We have established a full equivalence between self-similar
central functions and scaling functions only for the one-sided
case. It is likely that a similar equivalence holds for most scaling
functions that are not one-sided as well, but we also have evi-
dence that this will not always be the case.

An interesting counterexample is provided by the sym-
metric fractional splines whose generating function is

, where is some integer. We have shown
recently that this classical radial basis function could be local-
ized to yield the symmetric fractional B-spline , which is
a perfectly valid scaling function [34]. Yet, the corresponding

is not strictly self-similar; it is only self-similar up to
a polynomial term: .
However, the span of these radial basis functions is still a
multiresolution space because belongs to it.
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V. CONCLUSION

We have presented new results that make the connection be-
tween radial basis functions and wavelets very explicit.

The fact that we can move from radial basis functions to
wavelets enables us to control some of their key mathemat-
ical properties: regularity and order of approximation. It also
yields wavelets that have an explicit analytical form, the frac-
tional splines being a notable example.

The existence of a link in the reverse direction—from
wavelets to central basis functions—is especially interesting
conceptually. It leads to an alternative interpretation of mul-
tiresolution. Basis functions are simply removed (resp. added)
instead of being dilated (resp. contracted), as is usually the
case. This opens up the door to many possible extensions, such
as wavelets on nonuniform grids.

This study has also brought out the fundamental role of
splines and their harmonic extensions that are the elementary
constituents of wavelets. The decomposition in terms of har-
monic splines leads to an explicit formula for scaling functions
and wavelets in the continuous-time domain. It also provides a
clear understanding of their fractal properties.

APPENDIX A
FOURIER TRANSFORM OF AONE-SIDED SELF-SIMILAR

CENTRAL BASIS FUNCTION

It turns out that the Fourier transform of the tempered distri-
bution is known in the general case where .
It is given by (see [42])

if

if

Thus, in the sense of distributions, we have

if

if (32)

APPENDIX B
PROOF OFTHEOREM 3

Proof: Here, we assume thatcan be expressed as in (17)
with a finite sum. From Appendix A, we also have its Fourier
transform in the sense of distributions:

(33)

if is not an integer power of two. In the case where for
some , has to be added to this expression.

We now use (20) to derive the filter contribution associated
with a single component of the form , making the complex
change of variable3

(34)

By summing over all components, we get the explicit form of
the inverse of the localization filter

(35)

Because , it is clear that is
equivalent to in the neighborhood of [except for the
potential correction in the few cases where ].
Clearly, the localization filter will be well defined and
bounded provided that over . Under those
conditions, we can state that is bounded
over due to the fact that is bounded away from .
The same argument holds for because then,

and because . Now, we claim that
is in . This is because

sign

Constant

which implies that Constant away
from . Thus, is integrable over ,
provided that . Since is also bounded, it is
obviously integrable over . By Plancherel identity, we
conclude that .

If is symmetric, we decompose it as and
proceed similarly to show that is bounded
and square integrable, which proves thatis square integrable.
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