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Abstract

In far-field visual surveillance, one of the key tasks is to monitor activities in the scene.
Through learning motion patterns of objects, computers can help people understand
typical activities, detect abnormal activities, and learn the models of semantically
meaningful scene structures, such as paths commonly taken by objects. In medical
imaging, some issues similar to learning motion patterns arise. Diffusion Tensor
Magnetic Resonance Imaging (DT-MRI) is one of the first methods to visualize and
quantify the organization of white matter in the brain in vivo. Using methods of
tractography segmentation, one can connect local diffusion measurements to create
global fiber trajectories, which can then be clustered into anatomically meaningful
bundles. This is similar to clustering trajectories of objects in visual surveillance. In
this thesis, we develop several unsupervised frameworks to learn motion patterns from
complicated and large scale data sets using hierarchical Bayesian models. We explore
their applications to activity analysis in far-field visual surveillance and tractography
segmentation in medical imaging.

Many existing activity analysis approaches in visual surveillance are ad hoc, re-
lying on predefined rules or simple probabilistic models, which prohibits them from
modeling complicated activities. Our hierarchical Bayesian models can structure de-
pendency among a large number of variables to model complicated activities. Various
constraints and knowledge can be nicely added into a Bayesian framework as pri-
ors. When the number of clusters is not well defined in advance, our nonparametric
Bayesian models can learn it driven by data with Dirichlet Processes priors. In this
work, several hierarchical Bayesian models are proposed considering different types
of scenes and different settings of cameras. If the scenes are crowded, it is difficult to
track objects because of frequent occlusions and difficult to separate different types
of co-occurring activities. We jointly model simple activities and complicated global
behaviors at different hierarchical levels directly from moving pixels without tracking
objects. If the scene is sparse and there is only a single camera view, we first track
objects and then cluster trajectories into different activity categories. In the mean-
while, we learn the models of paths commonly taken by objects. Under the Bayesian
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framework, using the models of activities learned from historical data as priors, the
models of activities can be dynamically updated over time. When multiple camera
views are used to monitor a large area, by adding a smoothness constraint as a prior,
our hierarchical Bayesian model clusters trajectories in multiple camera views with-
out tracking objects across camera views. The topology of multiple camera views is
assumed to be unknown and arbitrary. In tractography segmentation, our approach
can cluster much larger scale data sets than existing approaches and automatically
learn the number of bundles from data. We demonstrate the effectiveness of our
approaches on multiple visual surveillance and medical imaging data sets.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering
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Chapter 1

Introduction

1.1 Visual Surveillance

Visual surveillance has been one of the most active research topics in computer vision

in recent years. The goal of visual surveillance is to detect, track and recognize objects

of interest, understand and describe the behaviors of objects, and efficiently extract

useful information for users from a huge amount of video data collected by monitoring

cameras. Visual surveillance has a wide variety of applications in both public and

private environments, such as homeland security [42, 26, 13, 159, 27, 119], crime

prevention [54, 8, 31, 28, 164, 158], traffic control [123, 146, 83, 72, 80], accident

prediction and detection [73, 58, 5, 6, 121], and monitoring patients, elderly and

children at home [100, 89]. Comprehensive surveys can be found in [56, 102]. These

applications require monitoring indoor and outdoor scenes of airports, train stations,

highways, parking lots, stores, shopping malls and offices. There is a growing interest

in visual surveillance due to the growing availability of cheap sensors and processors,

and also a growing need from the public for safety and security.

Currently there may be tens of thousands of cameras in a city collecting a huge

amount of data on a daily basis. Researchers are urged to develop intelligent systems

to efficiently extract information from a huge amount of data. Because of the large

number of cameras, it is also essential for visual surveillance systems to self-adapt to

a variety of scenes with minimum human intervention. The focus of visual surveil-

17



Figure 1-1: Example of a traffic scene. There are many single-agent activities (e.g.
cars turn left), multi-agent interactions (e.g. a vehicle comes to stop waiting for
pedestrians to cross the street), and global behaviors (e.g. different traffic modes)
happening in this scene.

lance research is moving from processing only one video stream with a single camera

view from sparse and simple scenes to monitoring crowded and busy scenes with a

distributed network of cameras. Intelligence, distribution, adaptability and tolerance

are the most important characteristics of modern visual surveillance systems [115].

1.1.1 Activity Analysis

Activity analysis has long been one of the foci of research in visual surveillance. Over

the past decade, significant work has been reported on this topic. A literature review

can be found in Chapter 2. As an example, Figure 1-1 shows a traffic scene with many

different types of activities happening. People expect visual surveillance systems to

• discover typical types of single-agent activities (e.g. a car turns left), multi-agent

interactions (e.g. a vehicle stops waiting for pedestrians to cross the street) and

global behaviors (e.g. different traffic modes) in these scenes, and provide a

summary of them;

• detect/classify activities, interactions and global behaviors;

• detect abnormalities (e.g. pedestrians cross the street outside the crosswalk);

• describe scene evolution in natural language;

18



• obtain various statistics of activities (e.g. how the frequencies of different types

activities vary over time); and

• support query of activities and interactions in a flexible way.

Ideally, a system would learn models of activities to answer such questions in an

unsupervised way with as little human labeling effort as possible. we will do activity

analysis under different scenarios. It depends on the number of camera views and

how crowded the scene is. More concretely, these scenarios include crowded scenes

with a single camera views, sparse scenes with a single camera view and sparse scenes

with multiple camera views.

1.1.2 Learning Scene Structures

Activities are closely related to the structures of the scenes, such as paths, or entry

and exit points, since they regularize the motion of objects. On the one hand, these

structures can be identified from the moving patterns of objects related to particular

activities [68, 38, 96, 97, 71, 153, 57, 70]. On the other hand, the knowledge of scene

structures helps to classify moving patterns into activities, since it provides prior

information on activities happening in a scene. In this thesis work the two related

problems of activity analysis and scene modeling will be jointly solved. The knowledge

of the learnt scene structures is very useful in many surveillance tasks. It supports

both high-level activity interpretation and low-level object tracking and classification.

It can support activity descriptions with spatial context [119], such as “a car moving

off the road” and “a person waiting at a bus stop”. It also can improve low-level

tracking and classification [11, 49, 75, 55]. For example, if an object disappears, but

not at an exit point, then this event is likely to be a tracking failure instead of a true

exit. Through learning the lane marker positions on a highway, cast shadows that fall

over a lane line can be removed [55]. In classification, people can leverage the fact

that vehicles are much more likely than pedestrians to move on the road.
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(a) (b)

Figure 1-2: Tractography in DT-MRI. (a) In DT-MRI, a local diffusion tensor D,
which is a 3 × 3 symmetric matrix, is used to characterize the motion of water in
all directions. The eigenvectors (e1, e2 and e3) of a tensor are computed, and the
tensor is visualized with an ellipsoid. (b) Tractography is a technique to extract a
fiber trajectory by connecting local diffusion measurements.

1.2 Tractography Segmentation

Some techniques developed in visual surveillance can also be applied to medical imag-

ing where similar issues of of tracking, clustering, abnormality detection and similarity

retrieval arise. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an MRI

modality that has gained tremendous popularity over the past five years and is one

of the first methods that made it possible to visualize and quantify the organization

of white matter in the human brain in vivo. As shown in Figure 1-2, DT-MRI mea-

sures local diffusivity of a water molecule within the tissue. It provides information

about the orientation of white matter fiber tracts. Extracting connectivity informa-

tion from DT-MRI, termed “tractography”, is an especially active area of research,

as it promises to model the pathways of white matter tracts in the brain, by connect-

ing local diffusion measurements into global fiber trajectories. As shown in Figure

1-3, in tractography segmentation, fiber trajectories are clustered into bundles which

help to identify anatomical structures in the brain. Experts compare the anatomical

structures of different subjects to tell whether they are normal. Some examples are

shown in Figure 1-4.
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(a) (b)

Figure 1-3: Tractography segmentation is a technique to cluster fiber trajectroeis
generated from DT-MRI into bundles which correspond to anatomical structures. (a)
Full brain tractography segmentation result. Colors represent different bundles. (b)
Anatomical labels of some bundles.

Figure 1-4: Bundles of two different subjects. By comparing anatomical structures
across subjects, experts can tell whether they are normal.

1.3 Motion Patterns

In this work a motion pattern means the pathway of an object moving from one loca-

tion to another. Locations and moving directions are the most important features to

describe motion patterns. This thesis focuses on activity analysis in far-field visual

surveillance. In far-field settings, objects are small in size and the captured videos

are of low resolution and poor quality. It is difficult to compute more complicated

features, such as poses, gestures, and appearance of objects. The activities of ob-

jects are mainly distinguished by their moving patterns. In comparison, in near-field
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surveillance, other features may play a more important role in explaining activities.

A motion pattern has several different representations. As shown in Figure 1-5, it

can be represented by a trajectory when an object is tracked in a single camera view.

It can be represented by several trajectories when an object is tracked in multiple

camera views. Without tracking objects, it can be represented by a set of moving

pixels. Through clustering motion patterns, the models of activities and semantically

meaningful scene structures can be learnt.

If the scene is sparse and there is only a single camera view, visual surveillance

systems typically first detect and track objects, and treat the activity of an object

as sequential movements along its trajectory. Through tracking, an activity executed

by a single object can be separated from other co-occurring activities, and features

related to the activity can be integrated as a track. Trajectories are clustered or

classified into different activity categories. The paths commonly taken by objects are

learned from the clusters of trajectories.

The view of a single camera is finite and limited by the structures of scenes. In

order to monitor activities in a wide area, video streams from multiple cameras have

to be used. A typical way of doing multi-camera surveillance is to first infer the

topology of camera views, then track objects across camera views, and finally cluster

trajectories observed in different camera views. However both inferring the topology

of camera views and tracking objects across camera views are notoriously difficult

especially when the number of cameras is large and the topology of the camera views

is arbitrary.

Many scenes, such as airports, train stations, street intersections and shopping

malls, are very crowded. It is difficult to track objects in these scenes because of

frequent occlusions. Alternatively, moving pixels instead of trajectories can be used

as features to model activities. Existing approaches typically treat a video clip as an

integral entity and compute a motion feature vector from the moving pixels detected in

the whole video clip. The whole video clip is labeled as one of the activity categories,

and flagged as normal or abnormal. However, when there are many different types

of activities happening in a busy scene simultaneously, it is difficult to separate a
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(a) (b) (c)

Figure 1-5: Motion patterns have different representations. A motion pattern can be
represented by (a) a trajectory when an object is tracked in a single camera view, (b)
several trajectories when an object is tracked in multiple camera views independently
or (c) a set of moving pixels without tracking objects.

particular activity from other co-occurring activities without relying on detection

and tracking. Activity analysis in crowded and complicated scenes is still a very

challenging problem not well solved yet.

Extracting fiber trajectories by tractography from DT-MRI has some similarity

with tracking objects in visual surveillance. Tractography segmentation aims to clus-

ter fiber trajectories into anatomically meaningful bundles. This is like clustering

trajectories of objects. Thus similar trajectory analysis approaches can be applied in

both fields [153, 107]. Through clustering trajectories, anatomical structures can be

identified in the brain from DT-MRI and semantically meaningful scene structures

can be found in far-field visual surveillance. In this work, we study the problem of

learning motion patterns with applications to both visual surveillance and tractogra-

phy segmentation.

1.4 Contributions and Summary of Approaches

This thesis work focuses on learning motion patterns with its applications to activ-

ity analysis in far-field visual surveillance and tractography segmentation in medical

imaging. In visual surveillance, we will do activity analysis under different scenar-

ios. It depends on the number of camera views and how crowded the scene is. The

contributions of this work are summarized as four-fold. First, we apply nonpara-

metric hierarchical Bayesian models to learn motion patterns in visual surveillance

and tractography segmentation. Second, we proposed an unsupervised framework to
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jointly model simple activities, complicated interactions and global behaviors and to

separate co-occurring activities in crowded scenes without tracking objects. Third,

when existing approaches analyze activities in multiple camera views, they require

tracking objects across camera views and knowing the topology of camera views. We

propose a novel approach for activity analysis from multiple camera views without

tracking objects across camera views and without knowing the topology of camera

views. Fourth, we proposed a novel dynamic nonparametric method to update models

of activities over time. Our approaches can also be used to solve clustering problems

on other data sets.

There are many advantages of using nonparametric hierarchical Bayesian models

for activity analysis and tractography segmentation.

(1) Many existing activity analysis approaches in visual surveillance are ad hoc,

relying on predefined rules or simple probabilistic models. They have difficulty mod-

eling complicated activities. Under a Bayesian framework, visual surveillance tasks

are formulated in a principled way. In this framework, abnormality has a probabilis-

tic explanation. Hierarchical Bayesian models can structure dependency among a

large number of variables to model complicated activities. Various constraints and

knowledge can be nicely added into a Bayesian model as priors. For example, using

the models of activities learned from historical data as priors, the models of activities

can be dynamically updated over time. By adding a smoothness constraint on the

distributions of trajectories over activities as a prior, our hierarchical Bayesian model

clusters trajectories in multiple camera views without tracking objects across camera

views.

(2) In our dynamic hierarchical Bayesian approach, the models of activities are

updated over time and thus can better explain activities at different times. For

example, some activities which are abnormal at a particular time may become normal

at a different time.

(3) When analyzing activities in multiple camera views, our approach assumes

that the topology of camera views is arbitrary. The camera views can have large

overlap, small overlap, or even no overlap.
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(4) Many existing approaches have difficulty deciding the numbers of clusters of

moving pixels, video clips and trajectories. Nonparametric Bayesian models can learn

the numbers of clusters driven by data. This provides a solution when the number of

clusters is not well defined in advance.

(5) While many existing approaches need expensive human effort to adjust pa-

rameters or label data, our approaches are unsupervised with little human labeling

effort.

(6) Our approaches have lower space complexity and can cluster larger scale data

sets than many existing approaches.

Our approaches developed in four applications are summarized in the following

subsections.

1.4.1 Crowded and Complicated Scenes

Many scenes, such as street intersections, train stations, airports, and shopping malls

(see Figure 1-6), of great interest for security purpose are very crowded. It is difficult

to detect and track objects because of frequent occlusions. Most of the tracking based

activity analysis approaches are expected to fail in these scenes. Although many

approaches were proposed for activity analysis directly using motion feature vectors

without tracking objects, they assumed that there was only one type of activity

happening in each short video clip. The whole video clip was labeled as one of the

activity categories, and flagged as normal or abnormal. They held this assumption at

least at the training stage. In these crowded and complicated scenes, many different

types of activities happen simultaneously. It is difficult for existing approaches to

separate co-occurring activities without supervision. A detailed literature review can

be found in Section 2.1.

We proposed an unsupervised framework using a nonparametric hierarchical Bayesian

model, Dual Hierarchical Dirichlet Processes (Dual-HDP), to jointly model simple ac-

tivities, such as cars turning right and pedestrians crossing the street, which are called

atomic activities, and global behaviors, such as different traffic modes, in the scene

directly from moving pixels without tracking objects. Global behavior is defined as
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(a) (b)

(c) (d)

Figure 1-6: Examples of crowded and complicated scenes, such as traffic scenes, train
stations and shopping malls. In these scenes, it is difficult to track objects because
of frequent occlusions among objects and it is difficult to separate different types of
activities which happen at the same time.

a combination of different types of co-occurring atomic activities in the scene. After

the models of atomic activities are learned, they can be used as units to detect inter-

actions between objects such as jay-walking (when a pedestrian is crossing the street,

a vehicle is simultaneously approaching).

Our system diagram is shown in Figure 1-7. We compute local motions (loca-

tions and moving directions of moving pixels) as our low-level visual features. This

avoids the difficult tracking problem in crowded scenes. We do not use global motion

features ([164, 161]) because, in these complicated scenes, multiple different types of

activities often occur simultaneously and we want to separate them. Each moving

pixel has a feature value which includes location and direction of motion. An ob-

served long video sequence is uniformly divided into many short video clips. Global

behavior is a combination of atomic activities occurring in the same video clip. Thus,

there exist two hierarchical structures in both the data set (long video sequence →

short video clips → moving pixels) and visual surveillance tasks (global behaviors →

atomic activities). So, it is natural to employ a hierarchical Bayesian approach to
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Figure 1-7: Diagram of the system for activity analysis in crowded and complicated
scenes. Our framework connects low-level motion features, middle-level atomic ac-
tivities and high-level global behaviors. (a) The observed long video sequence is
uniformly divided into short clips as documents. In each video clip, moving pixels
are detected and quantized into visual words based on their locations and motion
directions. The four quantized directions are represented by four colors. Each video
clip has a distribution over visual words. (b) Atomic activities (e.g. pedestrians cross
the road) are discovered and modeled as distributions over visual words. Moving
pixels are clustered into atomic activities. (c) Video clips are clustered into global
behaviors, which are modeled as distributions over atomic activities.

27



connect three elements in visual surveillance: low-level motion features, middle-level

atomic activities, and high-level global behaviors. Atomic activities are modeled as

distributions over low-level visual features and global behaviors are modeled as dis-

tributions over atomic activities. Moving pixels are clustered into atomic activities

and video clips are clustered into global behaviors. Abnormal video clips and moving

pixels are detected as those with low data likelihood under the learned hierarchical

Bayesian model. As explained in [44], a hierarchical Bayesian model learned from a

data set with hierarchical structure has the advantage of using enough parameters to

fit the data well while avoiding overfitting problems since it is able to use a population

distribution to structure some dependence into the parameters. In our case, the same

types of atomic activities repeatedly occur in different video clips. By sharing a com-

mon set of atomic activity models across different video clips, the models of atomic

activities can be well learned from enough data. On the other hand, atomic activities

are used as components to further model more complicated global behaviors, which

are clusters of video clips. This is a much more compact representation than di-

rectly clustering high dimensional motion feature vectors computed from video clips.

Under hierarchical Bayesian models, surveillance tasks such as motion segmentation,

video segmentation, activity detection, and abnormality detection are formulated in

a transparent, clean, and probabilistic way compared with the ad hoc nature of many

existing approaches.

Dual-HDP advances the existing language processing model, Hierarchical Dirichlet

Processes (HDP) [140]. HDP is a nonparametric Bayesian model. It clusters words

often co-occurring in the same documents into one topic and learns the number of

topics from data. Dual-HDP co-clusters both words and documents. Documents

containing similar sets of topics of words are clustered. It automatically decides the

numbers of both word topics and document clusters. Directly using HDP to solve

this problem, HDP can only cluster moving pixels into atomic activities. Since video

clips have different combinations of atomic activities, Dual-HDP has an extra layer

of hierarchical Dirichlet processes to model the clusters of video clips on the top of

atomic activities. Dual-HDP is similar to the nonparametric model, called Nested
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Figure 1-8: Learning motion patterns from temporal co-occurrence of feature values.
An atomic activity generates continuous motions in time. Two features have strong
temporal correlation if they are related to the same atomic activity. The models of
atomic activities can be learned from the temporal co-occurrence of feature values.
(a) Moving pixels in a short video clip. They are colored into different atomic activity
category. (b) The spatial distribution of an atomic activity. The two locations marked
by yellow boxes are on the pathway of vehicles. When a car is passing by, we observed
moving pixels at these two locations around the same time. The atomic activity model
has large distribution on both locations with temporal correlation.

Dirichlet Process, proposed by Rodriguez et al. [117] independently applied to health

care quality analysis. It is also closely related to the Transformed Dirichlet Process

proposed by Sudderth et al. [137] applied to object recognition.

Under our framework, video clips are treated as documents and moving pixels are

treated as words. An atomic activity generates temporally continuous motions. Thus

local motions caused by the same atomic activity often co-occur in the same short

video clips. This is called temporal co-occurrence. As an example shown in Figure

1-8, the models of atomic activities are learned from the temporal co-occurrence of

feature values. Video clips containing similar sets of atomic activities are clustered

into the same global behavior. Our model holds the “bag-of-words” assumption. It

does not capture complicated temporal logic in activity, such as two people meet

each other, walk together, and then separate. This part of thesis work was previously

published in [151, 152].

1.4.2 Sparse Scenes with a Single Camera View

If there is only a single camera view and the scene is sparse, we first detect and track

objects, and then cluster trajectories of objects into different activity categories based
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on their spatial distributions and moving directions. In the meanwhile the models of

paths commonly taken by objects are learned. Abnormal trajectories are detected as

those with low data likelihood under the learned hierarchical Bayesian models.

We now briefly explain several basic concepts and assumptions held in our pro-

posed framework under this setting. There are paths in the physical world. Paths

may have spatial overlap. The intersections of paths are called semantic regions. A

path is composed of several semantic regions. Objects on the same paths have similar

moving patterns, which is called an activity. Some examples of paths and trajectories

can be found in Figure 1-9. Although some paths, such as roads of vehicles can be

recognized by their physical features, some paths cannot be. For example, pedestrians

may take a short cut on a grass field. A trajectory, which only records the positions

of an object, is a history of the movement of an object in a camera view. The points

on trajectories are called observations.

The scene of a camera view is quantized into small cells. When an object moves,

it connects two cells far apart in a camera view by its trajectory. This is called

identity co-occurrence as explained in Figure 1-10. Our probabilistic model is based

on some simple, general assumptions on the spatial and temporal features related to

activities. (1) Cells located in the same semantic region are likely to be connected

by trajectories. (2) trajectories passing through the same path (a set of semantic

regions) belong to the same activity.

We propose an unsupervised framework using Dual-HDP for trajectory analysis.

Under our framework, trajectories are treated as documents and the observations

(positions and moving directions of objects) on the trajectories are treated as words.

Topics are semantic regions. Observations are clustered into semantic regions based

on identity co-occurrence and trajectories passing through the same set of semantic

regions are clustered into the same activity (path). This part of the thesis work was

previously published in [150].

Dual-HDP is a static model. We further extend Dual-HDP to a dynamic Dual-

HDP model which can online update the models of activities over time. A dynamically

updated model can better explain activities at the current time. For example, some
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Figure 1-9: Examples of paths and trajectories in a parking lot scene. We can track
objects in sparse scenes. (a) Examples of paths in the parking lot scene. (b) Trajec-
tories collected from the parking lot scene within one week. Random colors are used
to distinguish individual trajectories.

activities which are abnormal at one particular time may become normal at a different

time. We can analyze how the models of activities and paths change over time. Under

dynamic Dual-HDP, the data is divided into subsets in temporal order. Dynamic

Dual-HDP has a much lower complexity than Dual-HDP, since it clusters subsets of

trajectories incrementally and does not keep any historical data in memory. This

property is very useful if people need to cluster a huge data set collected from several

months or years. Dynamic Dual-HDP is related to the dynamic topic model proposed

by Blei et al. [16], which was a parametric model assuming that the number of topics

are fixed.

Most of the existing trajectory analysis approaches cluster trajectories and detect

abnormal trajectories by defining the pairwise distances/similarities between trajecto-

ries. A detailed review can be found in Section 2.2. This framework has several draw-

backs. First, there is no global probabilistic framework to model activities happening

in the scene. They have an ad hoc nature especially on the definition of distance

measures. Abnormal trajectories are usually detected as those with a larger distance

to other trajectories. Their abnormality detection lacks a probabilistic explanation.

Second, they usually do not provide a solution to the number of clusters and require

that the cluster number is known in advance. Third, some approaches required that
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Figure 1-10: Learning motion patterns from identity co-occurrence. Identity co-
occurrence means that two feature values are on the same trajectories and are related
to the same object. (a) Two locations marked by yellow boxes are on the same
trajectory. (b) Two locations marked by yellow boxes are in the same semantic region
and thus they co-exist on many trajectories. Based on the identity co-occurrence
information, a semantic region model with large distribution on both two locations
can be learned.

two trajectories were temporally aligned in order to compute their distance. Thus

they are sensitive to misdetection and tracking errors. Fourth, calculating the dis-

tances/similarities between all pairs of samples is computationally inefficient, with a

complexity of O(N2) in both time and space, where N is the number of trajectories.

Our framework differs from previous trajectory analysis and scene modeling ap-

proaches in the following aspects.

• Different from existing distance-based clustering approaches, it clusters trajec-

tories using a generative model. There is a natural probabilistic explanation for

the detection of abnormal trajectories.

• Using Dirichlet Processes, the number of activity categories and semantic re-

gions are automatically learnt from data instead of being manually specified.

• It does not require that trajectories are temporally aligned while many existing

approaches do. So it is more robust to tracking errors.

• The space complexity of Dual-HDP is O(N) instead of O(N2) in the number of

trajectories. We use collapsed Gibbs sampling is to do inference. The time com-

plexity of each collapsed Gibbs sampling iteration is O(N). However, there is

no theoretical justification on the convergence of the collapsed Gibbs sampling.
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• Dynamic Dual-HDP online updates the models of activities, while existing ap-

proaches are static and run in a batch mode. Dynamic Dual-HDP clusters

trajectories incrementally. It has much lower space and time complexities than

Dual-HDP and existing approaches.

• Our approach clusters trajectories based on identity co-occurrence, different

from distance based methods which cluster trajectories close in space. Con-

sidering the case when vehicles move on two side-by-side lanes in the same

direction, distance-based methods will group trajectories of these vehicles into

one cluster while our approach will learn the two lanes as different semantic

regions and separate trajectories into two clusters since there are few vehicles

crossing lanes to connect locations in different lanes.

1.4.3 Sparse Scenes with Multiple Camera Views

In order to monitor activities in a wide area, video streams from multiple cameras

have to be used. We first track objects in each camera view independently, and

then group trajectories, which belong to the same activity category but are observed

in different camera views, into one cluster. The distributions of a path in multiple

camera views are jointly modeled. This is more challenging than activity analysis in a

single camera view since it is difficult to track objects across camera views. Examples

of activities observed in multiple camera views can be found in Figure 1-11.

Many systems [61, 23, 78, 85, 25, 79, 74, 64, 136, 98, 113, 126, 65, 125, 143, 48,

145, 128, 39] using multiple camera views for visual surveillance were proposed in

past years. They were based on various assumptions on the number of cameras, the

topology and geometry of camera views, and the calibration of cameras. A detailed

review of related work can be found in Section 2.3. Most of these approaches focused

on tracking objects across camera views. In general, this is a very difficult problem.

Because of the structures of the scenes, the distribution and configuration of cameras

could be quite arbitrary and unknown. The camera views may have any combination

of large, small, or even no overlap. The objects in camera views may move on one
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Figure 1-11: Simulated examples of activities observed in multiple camera views.
Trajectories of different activity categories are marked by different colors. Trajectories
are obtained from simulation. The purpose of our activity analysis in multiple camera
view is to group trajectories which belong to the same activity category but are
observed in different camera views, into one cluster. (a) Activities observed in a single
giant camera view, which is usually unavailable in real life. (b) The same activities
as in (a) are observed in four different camera views, which are similar to the camera
views available in real life. (c) The fields covered by four camera views. They are
marked by polygons in colors: red (camera 1), blue (camera 2), cyan (camera 3) and
black (camera 4).

or multiple ground planes. Analyzing activities over such a multi-camera network is

quite challenging. A natural way of doing multi-camera surveillance is to first infer

the topology of camera views [98, 113], solve the correspondence problem [61, 85,

25, 136, 79, 64, 113, 125, 65, 126, 48, 128], stitching trajectories of the same object

observed in different camera views into a complete trajectory, and then analyze the

stitched trajectories using the same approaches developed for a single camera view.

However both inferring the topology of camera views and solving the correspondence

problem are notoriously difficult especially when the number of cameras is large and

the topology of camera views is arbitrary.

The ultimate goal of some surveillance systems is activity analysis instead of solv-

ing correspondence. In this thesis, we propose an unsupervised hierarchical Bayesian

model for activity analysis in multiple camera views without doing inference on the

topology of camera views and without solving the correspondence problem. Further

more, even though correspondence is not a prerequisite, after the models of activities

have been learnt, they can help to solve the correspondence problem, since if two
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Camera 1 Camera 2 Camera 3 Camera 4

Topology

(a) Parking lot scene

Camera 1 Camera 2 Camera 3 Camera 4 Topology

(b) Street scene

Figure 1-12: Examples of multiple camera views and their topology in two data sets,
a parking lot scene and a street scene. When the topology of camera views is plotted,
the fields of camera views are represented by different colors: blue (camera 1), red
(camera 2), green (camera 3), yellow (camera 4). However, our approach does not
require knowledge of the topology of the cameras in advance.

trajectories observed in different camera views belong to the same activity, they are

likely to correspond to the same object.

We assume that the topology of camera views is unknown and quite arbitrary.

The camera setting in our approach is as follows.

• The cameras are static and synchronized but not calibrated.

• The fields covered by these camera views may have no overlap or any amount

of overlap. However we assume that when an object exits a camera view, it is

already in or will enter one of the other camera views within a predefined time

threshold T unless it moves out of range of the entire set.

• Objects may move on different ground planes.

Examples of multi-camera settings are shown in Figure 1-12.

This framework is an extension of the framework of clustering trajectories in a

single camera view as described in Section 1.4.2. Using only identity co-occurrence,

trajectories within a single camera view can be clustered, but we cannot cluster
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trajectories across camera views since we do not track objects across camera views.

In this framework, we assume that the trajectories of the same object observed in

different camera views have temporal correlation. If two trajectories are observed in

two camera views around the same time, they are more likely to be the same object

and thus belong to be same activity category. A smoothness constraint is added into

the Bayesian model as prior to cluster trajectories across camera views based on both

identity co-occurrence and temporal co-occurrence information.

A network is first built by connecting with an edge trajectories that are observed

in different camera views and whose temporal extents are close. Then a probabilistic

model, in which a path has joint distribution in all the camera views, is built. If two

trajectories are connected by an edge in the network, the prior of the smoothness

constraint requires that they have similar distributions over paths. This part of the

thesis work was previously published in [154, 155].

1.4.4 Tractography Segmentation

We use a technology similar to clustering trajectories of objects in a single camera

views to cluster fiber trajectories into anatomically meaningful bundles. Existing

tractography segmentation approaches had difficulty clustering very large scale data

sets. Full brain tractography typically generates 10 thousand to 100 thousand fibers

for each subject. Sometimes fibers from multiple subjects need to be clustered to-

gether. Existing approaches only cluster fibers from a subregion, or sample a small

subset, such as five thousand fibers, from the large data set and learn the models of

bundles from this subset. Thus important information from the full data set is lost.

Many of these methods have difficulty deciding the number of clusters. It was shown

that clustering performance of these approaches changed dramatically when different

numbers of clusters were chosen [101]. A detailed review of existing approaches can

be found in 2.5.

We use Dual-HDP to cluster fibers and learn the models of bundles from a training

set without supervision. The 3D space of the brain is quantized into voxels. If two

voxels are connected by many fibers, both of the voxels have large weights in the
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Figure 1-13: An example of multiscale clustering. Multiscale clustering makes it easy
for experts to identify anatomical structures across different scales. The spatial range
of the whole brain is 200 × 200 × 200. (a): The clustering result when the space is
quantized into voxels of size 11× 11× 11. The bundles correspond to structures at a
large scale. (b): One bundle from (a). (c): The space is quantized into voxels of size
3×3×3 and the bundle in (b) is further clustered into smaller bundles corresponding
to structures at a finer scale.

model of the same bundle, which means that they are on the same pathway of white

matter tracts. Our approach can cluster a large data set without sampling it and can

learn the number of clustering driven by data. If we need to analyze a new subject, we

use Dynamic Dual-HDP to cluster fibers from new subjects. The models of bundles

learnt from training data are used as priors, and models are adapted to new data.

Instead of fixing the number of clusters, our approach can create new clusters for

structures which are observed in the new data but not in the training data.

Our framework can be extended to multiscale clustering. First we cluster fibers

using a large size of voxels and bundles correspond to structures at a large scale.

Then each bundle can be further clustered using a smaller size of voxels, leading to

structures at a finer scale. An example is shown in Figure 1-13. Multiscale clustering

makes it easier for experts to identify white matter structures across different scales.

1.4.5 Summary

All these proposed frameworks learn motion patterns from the co-occurrence of fea-

ture values (locations and moving directions) using hierarchical Bayesian models.

Temporal co-occurrence is used to cluster moving pixels and learn the models of

atomic activities in crowded scenes. Identity co-occurrence is used to cluster tra-
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jectories and learn the models of paths in a single camera views. Both these two

kinds of co-occurrence are used to cluster trajectories across camera views. These

approaches are applicable to different types of scenes and have different limitations.

If all types of activities most of the time happen together in the scene, which means

that all the video clips have similar combinations of atomic activities, then temporal

co-occurrence is not enough to separate co-occurring atomic activities and to learn

their models. In that case, the approach described in Section 1.4.1 will not work

well. This problem becomes more serious when the field covered by the camera view

is larger and thus activities in the scene have more temporal overlap. The approach

proposed in Section 1.4.2 only works well in sparse scenes where objects are trackable

and the identity co-occurrence information can be reliably obtained.

Hierarchical Bayesian models allow us to jointly model simple and complicated

motion patterns at different levels. Various knowledge and constraints can be nicely

added into Bayesian frameworks as priors. Thus we can better solve problems which

are difficult for nonBayesian approaches, such as modeling activities in multiple views,

dynamically updating the models of activities, and clustering data of new subjects in

tractography segmentation.

One commonality of these hierarchical Bayesian models proposed in this work

is that they extract and quantize low-level features, and explore the co-occurrence

of features at different hierarchical levels. These models can be applied to other

fields such as language processing, object recognition and scene categorization where

co-clustering problems arise. For example, our models can co-cluster words and doc-

uments in language processing. They can jointly cluster images into scene categories

and cluster image patches into object classes at two different levels. These applica-

tions are interesting research directions in the future work.

1.5 Thesis Road Map

The remaining part of this thesis is organized as follows. Chapter 2 reviews related

work on activity analysis in visual surveillance, tractography segmentation, hierarchi-
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cal Bayesian models and nonparametric Bayesian approaches. Details of hierarchical

Bayesian models developed in each of the four applications and experimental results

are presented in Chapter 3 - 6. Chapter 3 first reviews two existing language pro-

cessing models LDA and HDP. Then LDA mixture model, HDP mixture model, and

Dual-HDP model are proposed. They advance LDA and HDP. Dual-HDP is applied

to activity analysis in crowded scenes without tracking objects. Experimental results

on a traffic scene are presented. In Chapter 4, Dual-HDP is applied to trajectory

analysis in a single camera view and a dynamic Dual-HDP model is proposed to up-

date the models of activities over time. Experimental results on radar tracks collected

from a sea port and trajectories collected from a parking lot scene are presented. In

Chapter 5, a trajectory network based hierarchical Bayesian model is proposed to

cluster trajectories in multiple camera views. This approach is evaluated on a street

scene and a parking lot scene. In Chapter 6, Dual-HDP and dynamic Dual-HDP are

used for tractography segmentation and evaluated on multiple DT-MRI data sets. In

Chapter 7, we discuss the limitations of this work and point out future directions we

are interested in investigating. Finally contributions of this work are reiterated in

Chapter 8.
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Chapter 2

Literature Review

2.1 Activity Analysis Without Tracking Objects

Many approaches [164, 161, 132, 29, 158, 156] directly used motion feature vectors to

describe video clips without tracking objects. For example, Zelnik-Manor and Irani

[161] modeled and clustered video clips using multi-resolution histograms. Zhong et

al. [164] also computed global motion histograms and did word-document analysis on

videos. Their words were frames instead of moving pixels. They clustered video clips

through the partition of a bipartite graph. Without object detection and tracking, a

particular activity cannot be separated from other activities simultaneously occurring

in the same clip, as is common in crowded scenes. These approaches treated a video

clip as an integral entity and flagged the whole clip as normal or abnormal. They were

often applied to simple data sets where there was only one kind of activity in a video

clip. It is difficult for these approaches to model both single-agent activities and

more complicated global behaviors. Although there were actions/events modeling

approaches [114, 15, 105, 127, 84], which allowed one to detect and separate co-

occurring activities, they were usually supervised. For example, Ke [76] proposed a

supervised approach to detect human action in crowded scenes. At the training stage,

they required manually isolating activities or a training video clip only contained one

kind of activity. It is difficult for these approaches to separate co-occurring activities

without supervision.
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Ali and Shah [2] proposed an approach for motion segmentation at every frame in

crowded videos based the spatial and temporal smoothness of motion flows. However,

they did not have activity models shared by the entire video sequence and did not

model global behaviors in the scene.

Our approach uses hierarchical Bayesian models to jointly model single-agent ac-

tivities and more complicated global behaviors at different levels. It can separate

co-occurring activities without supervision. Activity models are shared by the en-

tire video sequence. Following our thesis work described in Section 1.4.1 and 3 and

[151, 152], Li et al. [86, 63] used topic models for activity analysis scene segmentation

based on moving pixels.

2.2 Trajectory Analysis and Scene Modeling with

a Single Camera View

Many of existing trajectory analysis approaches cluster trajectories and detect abnor-

mal trajectories by defining the pairwise similarities/distances between trajectories.

The proposed trajectory similarities/distances include Euclidean distance [41], Haus-

dorff distance and its variations [71, 153], hidden Markov model [112], and Dynamic

Time Warping (DTW) [77]. Some approaches required that two trajectories are tem-

porally aligned when computing their distance. An alignment method, long common

subsequence (LCSS) analysis was proposed [147, 22]. Instead of matching all points

on a trajectory, it disregarded some outlier points. Similarly, Piciarelli and Foresti

[110] defined a distance measure only matching part of the trajectory. A compar-

ison of different similarity/distance measures can be found in [163]. Based on the

computed similarity matrix, some standard clustering algorithms such as spectral

clustering [104], graph-cuts [129], agglomerative and divisive hierarchical clustering

[12, 87], and fuzzy c-means [57, 59] were used to group trajectories into different activ-

ity categories. These similarity/distance-based approaches have several drawbacks.

First, there is no global probabilistic framework to model activities happening in the
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scene. They have an ad hoc nature especially on the definitions of distance measures.

Abnormal trajectories are usually detected as those with a larger distance to other

trajectories. Their abnormality detection lacks a probabilistic explanation. Second,

they usually do not provide a solution to the number of clusters. They often require

that the cluster number is known in advance. Third, some approaches required tem-

poral alignment of trajectories, which is sensitive to misdetection and tracking errors.

Fourth, calculating the similarities between all pairs of samples is computationally

inefficient, with a complexity of O(M2) in both time and space, where M is the num-

ber of trajectories. Some clustering algorithms such as spectral clustering need to

compute the eigenvectors and eigenvalues of the similarity matrix and their computa-

tional cost is even higher. The complexity of labeling a new trajectory as one of the

activity categories or as an abnormality is O(M), since similarity-based approaches

require computing the similarity between the new trajectory and each of the trajec-

tories in the training set. Visual surveillance systems often require processing data

collected over weeks or even months. These approaches have difficulty clustering very

large data sets. If we monitor a parking lot for a month, there may be half million

trajectories collected. It is even impossible to load such a huge similarity matrix into

memory. Our approach uses a nonparametric Bayesian model for trajectory analysis.

Under this framework, abnormality detection has a probabilistic explanation. The

number of clusters of trajectories is learned driven by data with Dirichlet processes

as priors. It does not require the computation of the similarity matrix. The space

complexity of clustering trajectories is O(M) instead of O(M2). The complexity of

labeling a new trajectory as one of the activity categories or as abnormality is O(K)

where K is the number of clusters.

Another kind of approaches used features vectors from trajectories for clustering

instead of computing pairwise distances. Because trajectories have variable length,

it is difficult to directly use them as features for clustering. Subsampling may be

required to let all the trajectory have the same length [96, 11, 88, 59]. Alternatively,

some approaches projected trajectories into features spaces where feature vectors of

fixed size were computed for clustering purpose. For example, the coefficients of least
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squares polynomials [99, 160], Chebyshev polynomials [99], Haar transform [90], and

discrete Fourier transform (DFT) [103] were used as features. Johnson and Hogg

[68] first quantized the flow vectors of observations and then treated the pdf of a

trajectory on the quantized flow vectors as a feature vector. Porikli [111] used HMM to

characterize trajectories. Subspace methods such as PCA [10] and ICA [12] were used

to construct a new space of lower dimensionality to improve clustering. A trajectory

was summarized by the hidden state parameters and the transition matrix. Saleemi

et al. [120] represented a trajectory with spatio-temporal variables (start location,

destrination location and transition times). Basharat et al. [9] used the transitions

of the state (destination location and size) of an object on a trajectory as features.

The feature vectors of trajectories were clustered using algorithms such as k-means,

self-organization map [68, 139], and fuzzy self-organizing neural network [60]. Kernel

density estimation [120] and Gaussian mixture model [9] were used to estimated the

probability distribution of trajectories in the feature space. Many of these approaches

were sensitive to tracking errors. For example, the coefficients of DFT may change

significantly if a trajectory is broken in the middle. Our approach does not compute

the feature vectors of trajectories and it is more robust to tracking errors.

One way to decide the number of clusters is to minimize or maximize some ob-

jective criteria. Clustering is performed a number of times by varying the number

of clusters. Hu et al. [57, 59] proposed a tightness and separation criterion, which

measured how close trajectories in clusters were compared to the distance between

clusters. Similar criteria were used in [111, 7] for spectral clustering. The Bayesian

information criterion (BIC) was used in [67].

Trajectory clustering is also related to the problem of modeling scene structures.

It takes a lot of effort to manually input these structures, and they cannot be reliably

detected based on the appearance of the scene. In some cases, e.g. detecting shipping

fairways on the sea, there is no appearance cue available at all. It is of interest

to detect these structures by trajectory analysis. Usually paths were detected by

modeling the spatial extents of trajectory clusters [38, 97, 71, 153]. Semantic regions

were detected as intersections of paths [97, 110]. Entry and exit points were detected
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at the ends of paths [134, 153].

2.3 Activity Analysis in Multiple Camera Views

Considerable work has been done to solve the challenging correspondence problem of

trajectories observed in multiple camera views. One way is to manually label salient

points in the scene and record their coordinates in the 3D world. After mapping 2D

image planes to the 3D world [144, 52], objects can be tracked in multiple camera

views. When the camera views overlap, static features can be selected to compute

an assumed homography between two camera views [20] and camera views are cal-

ibrated to a single global ground plane. Trajectories in different camera views can

be stitched based on their spatial proximity on the common ground plane. In gen-

eral, automatically finding correspondence of static features between different views

is difficult.

Lee et al. [85], Sheikh and Shah [128], and Stauffer and Tieu [136] calibrated

multiple camera views using tracking data from moving objects. They also assumed

that camera views had significant overlap and that objects moved on the same ground

plane. Lee et al. [85] and Sheikh and Sheikh [128] assumed that the topological

arrangement of camera views was known. Stauffer and Tieu [136] could automatically

infer it, but with high complexity (O(N2) where N is the number of camera views).

When the camera views are disjointed or their overlap is small, automatic calibra-

tion is difficult and the appearance of objects is often used as a cue to correspondence

[64, 65, 125, 48, 148]. This is a very challenging problem and not well solved yet.

The appearance of objects may significantly change because of different cameras set-

tings and different poses of objects. Many objects, such as cars and pedestrians, have

similar appearance, confusing correspondence. In far-field settings, objects may only

cover a few pixels, making matching difficult. Other approaches [98, 143] inferred the

topology of disjoint camera views using the transition time between cameras.

Even given similarities between trajectories observed in different camera views,

solving the correspondence problem is still difficult because of the large search space,
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especially when there are many trajectories and cameras. It requires searching in

the solution space of N-partite graphs, where N is the number of cameras [128]. In

general, if there are more than two cameras, the problem is NP hard in the number

of trajectories [43]. It has solution in polynomial time only with some particular

topologies of camera views and the topology has to be known [64].

In summary, all these trajectory correspondence approaches had various assump-

tions on the topology and geometry of camera views, and they faced difficulties of

camera calibration, appearance matching, inference on the topology of camera views,

and high computational cost to search for the optimal solution. Given a general set-

ting of a camera network, solving the correspondence problem is difficult. One of the

contributions of this thesis is that we directly cluster trajectories into activities and

model distributions of paths over a multi-camera network without solving the corre-

spondence problem. So our method has less restriction on the topology of camera

views, the structures of the scene and the number of cameras.

2.4 Probabilistic Approaches in Visual Surveillance

Probabilistic approaches were widely applied to object detection, tracking and event

detection in visual surveillance [14, 108, 40, 54, 45, 106, 109]. Nillius et al. [106] used a

Bayesian network to associate the identities of isolated tracks. Oliver et al. [108] used

Coupled HMM to model the interaction between two objects. However, there are few

studies on using graphical models to cluster tracks of objects into motion patterns.

Pang et al. [109] proposed a Bayesian filtering framework to group targets which are

moving together in similar directions and are close in space. It was evaluated on a

very small data set only including four trajectories. This approach did not cluster

whole trajectories since the group identities of targets might change dynamically. It

only grouped targets moving at the same time, which means that trajectories were

temporally aligned. In order to group targets observed at different time using this

approach, trajectories have to be first aligned, which is one of the major difficulties in

clustering trajectories since targets might be misdetected during some time windows
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and trajectories might be broken or associated incorrectly because of tracking errors.

Our models of clustering trajectories do not require the alignment of trajectories.

2.5 Tractography Segmentation

Automatically clustering fibers from DT-MRI has drawn a lot of attention in recent

years. A typical framework is to first define a pairwise similarity/distance between

fibers and then to input the similarity matrix to standard clustering algorithms.

Various distances between fibers were proposed. Brun et al. [21] proposed a 9-D

fiber shape descriptor, and computed the Euclidean distances between descriptors.

Jonasson et al. [69] measured the similarity between two fibers by counting the

number of points sharing the same voxel. Gerig et al. [46] proposed three measures

related to Hausdorff distance: closest point distance, mean of closest distances and

Hausdorff distance. Various clustering algorithms, such as hierarchical clustering

(single-link and complete-link) [46, 157], fuzzy c-means [130], k-nearest neighbors

[34], normalized cuts [21] and spectral clustering [69, 107] were used. Mean of closest

distances and spectral clustering were popular among possible choices [107, 69].

These clustering algorithms required manually specifying the number of clusters

or a threshold for deciding when to stop merging/splitting clusters, both of which are

difficult to know especially when the data sets are complicated and noisy. Moberts

et al. [101] showed that the performance of clustering varied dramatically when

different numbers of clusters were chosen. To avoid this difficulty, O’Donnell and

Westin [107] first chose a large cluster number, such as 200, for spectral clustering

and then manually merged clusters to obtain models for white matter structures.

Another drawback of this framework is the high space and time complexities of

computing pairwise distances between fibers when the data set is large. Whole brain

tractography produces between 10, 000 and 100, 000 fibers per subject. It is difficult

to compute a 100, 000 × 100, 000 similarity matrix or even to store it in memory.

Some clustering algorithms, such as normalized cuts and spectral clustering, need

to compute the eigenvectors and eigenvalues of this huge similarity matrix. This
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problem becomes more serious when clustering fibers of multiple subjects. The current

solutions are to cluster only a small portion (such as 5, 000 fibers) of the whole data

set after subsampling or to do some numerical approximation based on the sampled

subset [107]. However, important information from the full data set may be lost after

subsampling.

Maddah et al. [94, 93, 95] proposed a probabilistic approach to cluster fibers

without computing pairwise distances. They used a Dirichlet distribution as a prior

to incorporate anatomical information. It was a parametric model, assuming that the

number of clusters was known and required manual initialization of cluster centers.

[95] required establishing point correspondence which was difficult, while our approach

does not.

2.6 Hierarchical Bayesian Models in Computer Vi-

sion Applications

In computer vision, hierarchical Bayesian models have been applied to scene catego-

rization [36], object recognition [131, 118, 138, 137, 149], and human action recogni-

tion [105]. References [36, 138, 137, 105] were supervised learning frameworks in the

sense that they needed to manually label the documents. The video clip in [105] usu-

ally contained a single activity and [105] did not model interactions among multiple

objects. References [131] and [118], which directly applied language processing mod-

els, probabilistic latent semantic analysis [53] and latent Dirichlet allocation (LDA)

[18], were unsupervised frameworks assuming a document contains only one major

topic. When we apply Dual-HDP to model trajectories and video clips, we assume

that a document has multiple major topics. In our previous work [149], a novel hier-

archical Bayesian model, Spatial Latent Dirichlet Allocation (SLDA), was proposed

to learn models of object classes from image collections without requiring labeled

data. SLDA improved LDA by modeling spatial and temporal structures among

visual words, which are essential for solving many computer vision problems.
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2.7 Nonparametric Bayesian Approaches

There has been a lot work [35, 50, 24, 165] on time dependent Dirichlet Process

(DP) models published in recent years. Griffin et al. [50] proposed a framework,

called Order-Based Dependent Dirichlet Processes (DDP), to model time series data.

Caron et al. introduced a class of time-varying DP mixture models using a generated

polya urn scheme. These works modeled time dependency of DP mixtures without

more complicated hierarchical structures (such as hierarchical Dirichlet processes).

Our dynamic Dual-HDP model is most relevant to [116] and [133]. Ren et al. [116]

proposed a Dynamic Hierarchical Dirichlet Process model which was applied to music

segmentation and analysis and gene expression data. In [116] the data of different

time interval all shared the same set of topics, which did not change over time. It

only modeled the dynamic change of the mixture weights of topics. Srebro et al.

[133] integrated Ordered-Based DDP [50] into hierarchical topic models. They also

assumed that topics were fixed over time. However, in our problem it is important

for our dynamic Dual-HDP to model the dynamic change of topics, which reveals

the change of the spatial distribution of semantic regions over time. Furthermore,

dynamic Dual-HDP has a more complicated hierarchical structure with two layers of

hierarchical Dirichlet processes.

In visual surveillance related tasks, Fox and Willsky et al. [40] used Dirichlet pro-

cess to solve the problem of data association for multi-target tracking in the presence

of an unknown number of targets.

Bayesian models involving Dirichlet process mixtures (DPM) are at the heart of

the modern nonparametric Bayesian movement. DPM was applied to medical image

analysis in recent years because of its capability to learn the number of clusters and

its flexibility to adapt to a wide variety of data. Adelino [1] used a DPM model for

brain MRI tissue classification. In [81, 142] DPM models were used to model spatial

brain activation patterns in functional magnetic resonance imaging. In [66], Jbabdi

et al. modeled the connectivity profiles of a brain region as an infinite mixture of

multivariate Gaussian distributions with a Dirichlet Process prior. To the best of our
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knowledge, our work is the first to use hierarchical Dirichlet process mixture models

for tractography segmentation to automatically learn the number of clusters from

data.
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Chapter 3

Activity Analysis in Crowded and

Complicated Scenes

This chapter presents hierarchical Bayesian models and experimental results on ac-

tivity analysis in crowded and complicated scenes without tracking objects. Section

1.4.1 briefly summarizes our approach and Section 2.1 reviews related work.

There are some hierarchical Bayesian models for language processing, such as

LDA [18] and HDP [140], from which we can borrow. Under LDA and HDP models,

words, such as “professor” and “university”, often co-existing in the same documents

are clustered into the same topic, such as “education”. HDP is a nonparametric model

and automatically learns the number of topics from data while LDA requires knowing

that in advance. We perform word-document analysis on video sequences. Moving

pixels are quantized into visual words and short video clips are treated as documents.

Directly applying LDA and HDP to our problem, atomic activities (corresponding

to topics) can be discovered and modeled, however modeling global behaviors in the

scene is not straightforward, since these models cannot cluster documents. Although

LDA and HDP allow inclusion of more hierarchical levels corresponding to groups of

documents, they require first manually labeling documents into groups. For example,

[140] modeled multiple corpora but required knowing to which corpus each document

belonged; [36] used LDA for scene categorization, but had to label each image in the

training set into different categories. These were supervised frameworks. We propose
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three novel hierarchical Bayesian models, LDA mixture model, HDP mixture model

and Dual-HDP model. They co-cluster words and documents in an unsupervised way.

In the case of visual surveillance, this means we can learn atomic activities as well as

global behaviors without supervision. In fact, the problems of clustering moving pix-

els into atomic activities and of clustering video clips into global behaviors are closely

related. The global behavior category of a video clip provides a prior for possible

activities happening in that clip. It helps to cluster moving pixels into atomic activi-

ties. On the other hand, first clustering moving pixels into atomic activities provides

an efficient representation for modeling interactions since it dramatically reduces the

data dimensionality. Thus video clips can be clustered into global behaviors efficiently

and effectively. We jointly solve these two problems together under a co-clustering

framework. LDA mixture model assumes that the number of different types of atomic

activities and global behaviors happening in the scene is known. HDP mixture model

learns the number of categories of atomic activities driven by data. Dual-HDP learns

the numbers of categories of both atomic activities and global behaviors.

The following sections explain the computation of motion features (Section 3.1),

hierarchical Bayesian models (Section 3.2), and show the results in the application

area of visual surveillance (Section 3.3).

3.1 Low-Level Motion Features

Our data is a video sequence from a far-field scene (a traffic scene as shown in Figure

1-6 (a) is used for our experiments) recorded by a fixed camera. There are myriads of

activities and interactions in the video. It also involves many challenging problems,

such as lighting changes, occlusions, a variety of object types, object view changes

and environmental effects.

We compute local motions as our low-level features. Moving pixels are detected

in each frame as follows. We compute the intensity difference between two successive

frames, on a pixel basis. If the difference at a pixel is above a threshold, that pixel is

detected as a moving pixel. The motion direction at each moving pixel is obtained by
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Figure 3-1: Diagram of the system for activity analysis in crowded and complicated
scenes. Our framework connects low-level motion features, middle-level atomic ac-
tivities and high-level global behaviors. (a) The observed long video sequence is
uniformly divided into short clips as documents. In each video clip, moving pixels
are detected and quantized into visual words based on their locations and motion
directions. The four quantized directions are represented by four colors. Each video
clip has a distribution over visual words. (b) Atomic activities (e.g. pedestrians cross
the road) are discovered and modeled as distributions over visual words. Moving
pixels are clustered into atomic activities. (c) Video clips are clustered into global
behaviors, which are modeled as distributions over atomic activities.
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computing optical flow [91]. The moving pixels are quantized according to a feature

codebook, as follows. Each moving pixel has two features: position and direction of

motion. To quantize position, the scene (in the size of 480× 720 in our experiments)

is uniformly divided into cells of size 10 by 10. The motion of a moving pixel is

quantized into four directions as shown in Figure 3-1(a). Hence the size of the feature

codebook is 48 × 72 × 4, and thus each detected moving pixel is assigned a word

from the codebook based on rough position and motion direction. Deciding the

size of the codebook is a balance between the descriptive capability and complexity

of the model. The whole video sequence is uniformly divided into non-overlapping

short clips, each 10 seconds in length. In our framework, video clips are treated as

documents and moving pixels are treated as words for word-document analysis as

described in Section 3.2.

3.2 Hierarchical Bayesian Models

LDA [18] and HDP [140] were originally proposed as hierarchical Bayesian models

for language processing. In these models, words that often co-exist in the same

documents are clustered into the same topic. We extend these models by enabling

clustering of both documents and words, thus finding co-occurring words (topics)

and co-occurring topics (global behaviors). For far-field surveillance videos, words

are quantized local motions of pixels; moving pixels that tend to co-occur in clips (or

documents) are modeled as topics. Our goal is to infer the set of atomic activities

(or topics) from video by learning the distributions of features that co-occur, and to

learn distributions of atomic activities that co-occur, thus finding global behaviors.

Three new hierarchical Bayesian models are proposed in this section: LDA mixture

model, HDP mixture model, and Dual-HDP model.

3.2.1 LDA

Figure 3-2(a) shows the LDA model of [18]. Suppose the corpus has M documents.

Each document is modeled as a mixture of K topics, where K is assumed known.
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Figure 3-2: (a) LDA model proposed in [18]; (b) our LDA mixture model.

Each topic k is modeled as a multinomial distribution βk = [βk1, . . . , βkW ] over a

codebook of size W . β = {βk}. α = [α1, . . . , αK ] is a Dirichlet prior on the corpus.

For each document j, a parameter πj = [πj1, . . . , πjK ] of a multinomial distribution

over the K topics is drawn from Dirichlet distribution Dir(πj|α),

p(πj|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

πα1−1
j1 · · · παK−1

jK ,

where Γ(·) is a gamma function. For each word i in document j, a topic label zji = k

is drawn with probability πjk, and word xji is drawn from a discrete distribution given

by βzji
. πj and zji are hidden variables. α and β are hyperparameters to be optimized.

Given α and β, the joint distribution of topic mixture πj, topics zj = {zji}, and words

xj = {xji} is:

p(xj, zj, πj|α, β) =p(πj|α)

Nj∏
i=1

p(zji|πj)p(xji|zji, β)

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

πα1−1
j1 · · · παK−1

jK

Nj∏
i=1

πjzji
βzjixji

(3.1)
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where Nj is the number of words in document j. Unfortunately, the marginal likeli-

hood p(xj|α, β) and thus the posterior distribution p(πj, zj|α, β) are intractable for

exact inference. Thus in [18], a Variational Bayes (VB) inference algorithm used a

family of variational distributions:

q(πj, zj|γj, φj) = q(πj|γj)
Nj∏
i=1

q(zji|φji) (3.2)

to approximate p(πj, zj|α, β), where the Dirichlet parameter γj and multinomial pa-

rameters {φji} are free variational parameters. The optimal (γj, φj) is computed by

finding a tight lower bound on log p(xj|α, β).

3.2.2 LDA Mixture Model

This LDA model in [18] does not cluster documents. All the documents share the

same Dirichlet prior α. In activity analysis, we assume that video clips (documents)

of the same type of global behavior would include a similar set of atomic activities

(topics), so they could be grouped into the same cluster and share the same prior over

topics. Our LDA mixture model is shown in Figure 3-2(b). The M documents in the

corpus will be grouped into L clusters. Each cluster c has its own Dirichlet prior αc.

For a document j, the cluster label cj is first drawn from discrete distribution η, and

πj is drawn from Dir(πj|αcj ). Given {αc}, β, and η, the joint distribution of hidden

variables cj, πj, zj and observed words xj is

p(xj, zj, πj, cj|{αc}, β, η) = p(cj|η)p(πj|αcj )
N∏
i=1

p(zji|πj)p(xji|zji, β) (3.3)

The marginal log likelihood of document j is:

log p(xj|{αc}, β, η) = log
L∑

cj=1

p(cj|η)p(xj|αcj , β) (3.4)
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Our LDA mixture model is relevant to the model proposed in [36]. However, the

hidden variable cj in our model was observed in [36]. So [36] required manually label-

ing documents in the training set, while our framework is totally unsupervised. This

causes a different inference algorithm to be proposed for our model. Using VB [18],

log p(xj|αcj , β) can be approximated by a tight lower bound L1(γjcj , φjcj ;αcj , β),

log p(xj|αcj , β) = log

∫
πj

∑
zj

p(πj, zj,xj|αcj , β)dπj

= log

∫
πj

∑
zj

p(πj, zj,xj|αcj , β)q(zj, πj|γjcj , φjcj )
q(zj, πj|γjcj , φjcj )

dπj

≥
∫
πj

∑
zj

q(zj, πj|γjcj , φjcj ) log p(xj, zj, πj|αcj , β)dπj

−
∫
πj

∑
zj

q(zj, πj|γjcj , φjcj ) log q(zj, πj|γjcj , φjcj )dπj

= L1(γjcj , φjcj ;αcj , β). (3.5)

However because of the marginalization over cj, hyperparameters are still coupled

even using VB. So we use both Expectation-Maximization (EM) [30] and VB to esti-

mate hyperparameters. After using VB to compute the lower bound of log p(xj|αcj , β),

an averaging distribution q(cj|γjcj , φjcj ) can provide a further lower bound on the log

likelihood,

log p(xj|{αc}, β, η) ≥ log
L∑

cj=1

p(cj|η)eL1(γjcj
,φjcj

;αcj ,β)

= log
L∑

cj=1

q(cj|γjcj , φjcj )
p(cj|η)eL1(γjcj

,φjcj
;αcj ,β)

q(cj|γjcj , αjcj )

≥
L∑

cj=1

q(cj|γjcj , φjcj )
[
log p(cj|η) + L1(γjcj , φjcj ;αcj , β)

]
−

L∑
cj=1

q(cj|γjcj , φjcj ) log q(cj|γjcj , φjcj )

= L2(q(cj|γjcj , φjcj ), {αc}, β, η) (3.6)
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L2 is maximized when choosing

q(cj|γjcj , φjcj ) =
p(cj|η)eL1(γjcj

,φjcj
;αcj ,β)∑

cj
p(cj|η)eL1(γjcj

,φjcj
;αcj ,β)

. (3.7)

Our EM algorithm for hyperparameters estimation is:

1. For each document j and cluster cj, find the optimal values of the variational

parameters {γ∗j,cj , φ
∗
j,cj

: j = 1, . . . ,M ; cj = 1, . . . , L} to maximize L1 (using

VB [18]).

2. Compute q(cj|γ∗jcj , φ
∗
jcj

) using (3.7) to maximize L2.

3. Maximize L2 with respect to {αc}, β, and η. β and η are optimized by setting

the first derivative to zero,

ηc ∝
M∑
j=1

q(cj = c|γ∗jc, φ∗jc) (3.8)

βkw ∝
M∑
j=1

L∑
cj=1

q(cj|γ∗jcj , φ
∗
jcj

)

[
N∑
i=1

φ∗jcjikx
w
ji

]
(3.9)

where xwji = 1 if xji = w, otherwise it is 0. The {αc} are optimized using a

Newton-Raphson algorithm. The first and second derivatives are:

∂L2

∂αck
=

M∑
j=1

q(cj = c|γjc, φjc)[Ψ(
K∑
k=1

αck)−Ψ(αck) + Ψ(γjck)−Ψ(
k∑
j=1

γjck)]

(3.10)

∂2L2

∂αck1αck2

=
M∑
j=1

q(cj = c|γjc, φjc)[Ψ′(
K∑
k=1

αck)− δ(k1, k2)Ψ′(αck1)] (3.11)

where Ψ is the first derivative of log Gamma function.

L2 monotonously increases after each iteration.
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3.2.3 Dirichlet Process

Both LDA and LDA mixture are parametric Bayesian models. They require that the

numbers of topics and clusters of documents are manually specified. Using Dirichlet

Process (DP) [37] as prior, they can be extended to nonparametric Bayesian models

which learn the number of clusters driven by data.

DP is used as a prior to sample probability measures. It is defined by a con-

centration parameter γ, which is a positive scalar, and a base probability measure

H. A probability measure G randomly drawn from DP (γ,H) is always a discrete

distribution,

G =
∞∑
k=1

πkδφk
, (3.12)

which can be obtained from a stick-breaking construction [124]. In Eq (3.12), φk is a

parameter vector sampled from H, δφk
is a Dirac delta function centered at φk, and

πk (
∑∞

k=1 πk = 1) is a non-negative scalar constructed by

πk = π′k

k−1∏
l=1

(1− π′l),

π′k ∼ Beta(1, γ).

G can be used as a prior of infinite mixture models. Let {xi} be a set of observed

data points. xi is sampled from a density function p(·|θi) parameterized by θi, and

θi (which is one of the φks in Eq (3.12)) is sampled from G. Data points sharing the

same parameter vector φk are clustered together under this mixture model. Given

parameter vectors θ1, . . . , θN of N data points, the parameter vector θN+1 of data

point xN+1 can be sampled from a prior by integrating out G,

θN+1|θ1, . . . , θN , γ,H ∼
K∑
k=1

nk
N + γ

δθ∗k +
γ

N + γ
H. (3.13)

There are K distinct parameter vectors {θ∗k}Kk=1 (identifying K components) among

θ1, . . . , θN . nk is the number of points with parameter vector θ∗k. θN+1 can be assigned
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Figure 3-3: (a) HDP model proposed in [140]; (b) our HDP mixture model.

as one of the existing components (xN+1 is assigned to one of the existing clusters)

or can sample a new component from H (a new cluster is created for xN+1). The

posterior of θN+1 is

p(θN+1|xN+1, θ1, . . . , θN , γ,H) ∝ p(xN+1|θN+1)p(θN+1|θ1, . . . , θN , γ,H). (3.14)

It is likely for the infinite mixture model with DP prior to create a new component if

existing components cannot well explain the data. There is no limit to the number of

components. These properties make DP ideal for modeling data clustering problems

when the number of clusters is not well-defined in advance.

3.2.4 HDP

HDP proposed by Teh et al. [140] is a nonparametric hierarchical Bayesian model and

its corresponding parametric model is LDA. HDP automatically learns the number

of topics driven by data. The graphical model of HDP is shown in 3-3. In HDP,

a prior distribution G0 over the whole corpus is sampled from a Dirichlet process,
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G0 ∼ DP (γ,H). G0 =
∑∞

k=1 π0kδφk
. φk is the parameter of a topic, which is modeled

as a multinomial distribution over the codebook. φk is sampled from Dirichlet priorH.

All the words in the corpus are sampled from some topics {φk}. {π0k} are mixture

weights over topics. For each document j, a random measure Gd
j is drawn from

a Dirichlet process with concentration parameter α and base probability measure

G0: Gd
j |α,G0 ∼ DP (α,G0). Each Gd

j has support at the same locations {φk}∞k=1

as G0, i.e. all the documents share the same set of topics, and can be written as

Gd
j =

∑∞
k=1 πjkδφk

. Gd
j is a prior distribution of all the words in document j. For each

word i in document j, a parameter vector θji of a topic is drawn fromGd
j (θji is sampled

as one of the φk’s). Word xji is drawn from discrete distribution Discrete(θji),

p(xji|θji) = θjixji
,

where θji = (θji1, . . . , θjiW ). In [140], Gibbs sampling schemes were used to do infer-

ence under an HDP model.

3.2.5 HDP Mixture Model

In our HDP mixture model, as shown in Figure 3-3 (b), clusters of documents are

modeled and each cluster c has a random probability measure Gc. Gc is drawn from

Dirichlet process DP (ρ,G0). For each document j, a cluster label cj is first drawn

from discrete distribution p(cj|η). Document j chooses Gcj as the base probability

measure and draws its own Gd
j from Dirichlet process Gd

j ∼ DP (α,Gcj ). We also

use Gibbs sampling for inference. In our HDP mixture model, there are two kinds of

hidden variables to be sampled: (1) variables z = {zij} assigning words to topics, base

distributions G0 and {Gc}; and (2) cluster label cj. The key issue to be solved in this

thesis is how to sample cj. Given cj is fixed, the first kind of variables can be sampled

using the same scheme described in [140]. We will not repeat the details here. We

focus on the step of sampling cj, which is the new part of our model compared with

HDP in [140].

At some sampling iteration, suppose that there have been K topics, {φk}Kk=1,
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generated and assigned to the words in the corpus (K is variable during the sampling

procedure). G0, Gc, and Gd
j can be expressed as,

G0 =
K∑
k=1

π0kδφk
+ π0uG0u,

Gc =
K∑
k=1

πckδφk
+ πcuGcu,

Gd
j =

K∑
k=1

ωjkδφk
+ ωjuG

d
ju,

where G0u, Gcu, and Gd
ju are distributed as Dirichlet process DP (γ,H). Note that

the prior over the corpus (G0), a cluster of documents (Gc) and a document Gd
j share

the same set of topics {φk}. However, they have different mixtures over topics.

Using the sampling schemes in [140], topic mixtures π0 = {π01, . . . , π0K , π0u}, πc =

{πc1, . . . , πcK , πcu} are sampled, while {φk}, G0u, Gcu, G
d
ju, and ωdj = {ωj1, . . . , ωjK , ωju}

can be integrated out without sampling. In order to sample the cluster label cj of doc-

ument j, the posterior p(cj = c|(mj1, . . . ,mjK), π0, {πc}) has to be computed where

mjk is the number of words assigned to topic k in document j and is computable from

z:

p(cj = c|(mj1, . . . ,mjK), π0, {πc})

∝p(mj1, . . . ,mjK |πc)p(cj = c)

=ηc

∫
p(mj1, . . . ,mjK |ωdj )p(ωdj |πc)dωdj .

p(mj1, . . . ,mjK |ωdj ) is a multinomial distribution. Since Gd
j is drawn from DP (α,Gc),
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p(ωdj |πc) is a Dirichlet distribution Dir(ωdj |α · πc). Thus we have

p(cj = c|(mj1, . . . ,mjK), π0, {πc})

∝ηc
∫

Γ(απcu + α
∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)
ωαπcu−1
ju

K∏
k=1

ω
απck+mjk−1

jk dωdj

∝Γ(απcu + α
∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)

Γ(απcu)
∏K

k=1 Γ(απck +mjk)

Γ(απcu +
∑K

k=1(απck +mjk))

=ηc
Γ(α)

Γ(α +Nj)

∏K
k=1 Γ(α · πck +mjk)∏K

k=1 Γ(α · πck)
∝ ηc

∏K
k=1 Γ(α · πck +mjk)∏K

k=1 Γ(α · πck)
. (3.15)

where Γ is the Gamma function.

So the Gibbs sampling procedure repeats the following two steps alternatively at

every iteration:

1. given {cj}, sample z, π0, and {πc} using the schemes in [140];

2. given z, π0, and {πc}, sample cluster labels {cj} using posterior Eq 3.15.

In this section, we assume that the concentration parameters γ, ρ, and α are fixed.

In actual implementation, we give them a vague gamma prior and sample them using

the scheme proposed in [140]. Thus these concentration parameters are sampled

from a broad distribution instead of being fixed at a particular point.

3.2.6 Dual-HDP

In this section, we propose a Dual-HDP model which automatically learns both the

number of word topics and the number of document clusters. In addition to the

hierarchical Dirichlet processes which model the word topics, there is another layer

of hierarchical Dirichlet processes modeling the clusters of documents. Hence we call

this a Dual-HDP model. The graphical model of Dual-HDP is shown in Figure 3-4.

In the HDP mixture model, each document j has a prior Gcj drawn from a finite

mixture {Gc}Lc=1. In Dual-HDP, Gcj is drawn from an infinite mixture,

Q =
∞∑
c=1

εcδGc (3.16)
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Figure 3-4: The graphical model of Dual-HDP.

Notice that Gc itself is a random distribution with infinite parameters. When a Dirich-

let process was first developed by Ferguson [37], the location parameters (such as φk

in Eq. 3.12) could only be scalars or vectors. MacEachern [92] made an important

generalization and proposed the Dependent Dirichlet Processes (DDP). DDP replaces

the locations in the stick-breaking representation with stochastic processes and in-

troduces dependence in a collection of distributions. The parameters {(πck, φck)}∞k=1

of Gc can be treated as a stochastic process with index k. Q can be treated as a set

of dependent distributions, Q = {Qk =
∑∞

c=1 εcδ(πck,φck)}∞k=1. So we can generate Q

through DDP.

As shown in Figure 3-4, Q is sampled from DDP (µ, ρ,G0). In Eq (3.16), εc =

ε′c
∏c−1

l=1 (1 − ε′l), ε′c ∼ Beta(1, µ), and Gc ∼ DP (ρ,G0). Similar to the HDP mixture

model in Figure 3-3 (b), G0 ∼ DP (λ,H) is the prior over the whole corpus and

generates topics shared by all of the words. {Gc}∞c=1 all have the same topics in G0,

i.e. φck = φk. However they have different mixtures {πck}∞k=1 over these topics.

Each document j samples a probability measure Gcj from Q as its prior. Dif-

ferent documents may choose the same prior Gc, thus they form one cluster. So in

Dual-HDP, the two infinite mixtures Q and G0 model the clusters of documents and

words respectively. The following generative procedure is the same as HDP mixture

model. Document j generates its own probability measure Gd
j from Gd

j ∼ DP (α,Gcj ).
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Word i in document j samples topic φk from Gd
j and samples its word value from

Discrete(φk).

Gibbs sampling was also used for inference and learning on Dual-HDP. The Gibbs

sampling procedure can be divided into two steps:

1. given the cluster assignment {cj} of documents is fixed, sample the word topic

assignment z, masses π0 and πc on topics using the schemes in [140];

2. given z, masses π0 and πc, sample the cluster assignment {cj} of documents. cj

can be assigned to one of the existing clusters or to a new cluster. We use the

Chinese restaurant franchise for sampling. See details in the Appendix A.

3.2.7 Discussion on the co-clustering framework

We propose three words-documents co-clustering models. Readers may ask why we

need a co-clustering framework? Can we first cluster words into topics and then

cluster documents based on their distributions over topics, or solve the two problems

separately? In visual surveillance applications, the issue is about simultaneously

modeling atomic activities and global behaviors. In the language processing literature,

there has been considerable work dealing with word clustering [53, 18, 140] and

document clustering [122, 33, 162] separately. Dhillon [32] showed the duality

of words and documents clustering: “word clustering induces document clustering

while document clustering induces words clustering”. Information on the category of

documents helps to solve the ambiguity of word meaning and vice versus. Thus a

co-clustering framework can solve the two closely related problems in a better way.

Dhillon [32] co-clustered words and documents by partitioning a bipartite spectral

graph with words and documents as vertices. However, one cluster of documents

only corresponded to one cluster of words. [53, 18] showed that one document may

contain several topics. In a visual surveillance data set, one video clip may contain

several atomic activities. Our co-clustering algorithms based on hierarchical Bayesian

models can better solve these problems.
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Figure 3-5: Experimental comparison of HDP and Dual-HDP on a toy example. (a)
There are ten topics with distributions along horizontal bars and vertical bars. A
synthetic document can be generated in one of the two ways. It randomly combines
several vertical bar topics and sample words from them or randomly combines several
horizontal bar topics. (b) The simulated documents. (c) Topic distributions learnt
by HDP. (d) Topics distributions learnt by Dual-HDP. Documents are grouped into
two clusters shown in (e) and (f). (g) Topic mixtures of two clusters π1 and π2.

3.2.8 Example of synthetic data

We use an example of synthetic data to demonstrate the strength of our hierarchical

Bayesian models (see Figure 3-5). The toy data is similar as that used in [51]. The

word vocabulary is a set of 5 × 5 cells. There are 10 topics with distributions over

horizontal bars and vertical bars (Figure 3-5 (a)), i.e., words tend to co-occur along

the same row or column, but not arbitrarily. The document is represented by a image

with 25 pixels in a 5 × 5 grid. Each pixel is a word and the intensity of a pixel is

the frequency of the word. If we generate documents by randomly choosing several

topics from the ten, adding noise to the bar distributions, and sampling words from

these bars, there are only two levels of structures (topics and words) in the data

and the HDP model in [140] can perfectly discover the 10 topics. However, in our

experiments in Figure 3-5, we add one more level, clusters of documents, to the data.

Documents are from two clusters: a vertical-bars cluster and a horizontal-bars cluster.
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If a document is from the vertical-bars cluster, it randomly combines several vertical

bar topics and sample words from them, otherwise, it randomly combines horizontal

bar topics. As seen in Figure 3-5 (c), HDP has much worse performance on this data.

There are two kinds of correlation among words: if words are on the same bar, they

often co-exist in the same documents; if words are all on horizontal bars or vertical

bars, they are also likely to be in the same documents. It is improper to use a two-

level HDP to model data with a three-level structure. 15 topics are discovered and

many of the topics include more than one bar as shown in Figure 3-5 (c). Using our

HDP mixture model and Dual-HDP model to co-cluster words and documents, the

10 topics are discovered nearly perfectly as shown in Figure 3-5(d). In the meanwhile,

the documents are grouped into two clusters as shown in Figure 3-5 (e) and (f). The

topic mixtures π1 and π2 of these two clusters are shown in Figure 3-5 (g). π1 only

has large weights on horizontal bar topics while π2 only has large weights on vertical

bar topics. Thus our approach recovers common topics (i.e. words that co-occur)

and common documents (i.e. topics that co-occur). For Dual-HDP, as initialization

all the words are in one topic and all the documents are in one cluster.

3.3 Visual Surveillance Applications and Experi-

mental Results

After computing the low-level visual features as described in Section 3.1, we divide

our video sequence into 10 seconds long clips, each treated as a document, and feed

these documents to the hierarchical Bayesian models described in Section 3.2. In

this section, we explain how to use the results from hierarchical Bayesian models

for activity analysis. We will mainly show results from Dual-HDP, since it auto-

matically decides the number of word topics and the number of document clusters,

while LDA mixture model and HDP mixture model need to know those in advance.

However, if the number of word topics and the number of document clusters are

properly set in LDA mixture model and HDP mixture model, they provide very
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similar results. Experimental results are from a traffic scene. The video sequence

lasts 90 minutes. Some video examples of our results can be found from our website

(http://groups.csail.mit.edu/vision/app/research/HBM.html).

3.3.1 Discover Atomic Activities

In visual surveillance, people often ask “what are the typical activities and global

behaviors in this scene?” The parameters estimated by our hierarchical Bayesian

models provide a good answer to this question.

As explained in Section 1.4.1, an atomic activity usually causes temporally con-

tinuous motions and does not stop in the middle. So the motion features caused by

the same kind of atomic activity often co-occur in the same video clips. Since the

moving pixels are treated as words in our hierarchical Bayesian models, the topics of

words are actually a summary of typical atomic activities in the scene. Each topic

has a multinomial distribution over the motion feature codebook, specified by β in

LDA mixture model and {φk} in Dual-HDP. (φk can be easily estimated given the

words assigned to topic k after sampling).

Our Dual-HDP model automatically discovers 29 atomic activities in the traffic

scene. In Figure 3-6, we show the distributions of these atomic activities over locations

and moving directions. The atomic activities are sorted by size (the number of moving

pixels assigned to the atomic activity) from large to small. The numbers of moving

pixels assigned to atomic activities are shown in Figure 3-7. Atomic activity 2 is

“vehicles make a right turn”. Atomic activities 5, 14, and 20 are “vehicles make left

turns”. Atomic activities 6 and 9 are “vehicles cross road d, but along different lanes”.

Atomic activities 1 and 4 are “vehicles pass road d from left to right”. This activity

is broken into two atomic activities because when vehicles from g make a right turn

(see atomic activity 2) or vehicles from road e make a left turn (see atomic activity

14), they also share the motion pattern in atomic activity 4. Atomic activities 10 and

19 are “vehicles come to stop behind the stop lines”. Atomic activities 13, 17 and 21

are “pedestrians walk on crosswalks”. When people pass the crosswalk a, they often

stop at the divider between roads e and f waiting for vehicles to pass by. So this
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Figure 3-6: Distributions of 29 atomic activities (topics) discovered by our Dual-HDP
models. Colors represent four quantized moving directions: red (→), magenta (↑),
cyan (←), and green (↓). The intensity represents the density of distributions. The
atomic activities are sorted according to how many moving pixels in the data set
are assigned to them (from large to small). For convenience, we label roads and
crosswalks as a, b, . . . in the first image. From these distributions, we can guess some
activities happening in this scene, such as vehicles turning left (atomic activity 5 and
20), pedestrians crossing streets (atomic activity 13, 17, 21, 22 and 23), and vehicles
crossing the intersection (atomic activity 6 and 9).
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Figure 3-7: Histogram of moving pixels assigned to 29 atomic activities in Figure 3-6.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14)

Figure 3-8: Distributions of atomic activities learned by the LDA mixture model
when the number of atomic activities is fixed as 14.

activity breaks into two atomic activities 17 and 21.

When the number of atomic activities is set as 29, the LDA mixture model provides

similar result as Dual-HDP. In Figure 3-8, we show the results from the LDA mixture

model when choosing 14 instead of 29 as the number of atomic activities. Several

atomic activities discovered by Dual-HDP merge into one atomic activity in the LDA

mixture model. For example, as shown in Figure 3-9 (a), atomic activities 17, 21, 23,

24, 25, 26, and 27 related to pedestrian walking learned by Dual-HDP as shown in

Figure 3-6 merge into a single atomic activity 4 learned by the LDA mixture model

shown in Figure 3-8. As shown in Figure 3-9 (b), atomic activities 8, 16 and 19 in

Figure 3-6 merge into atomic activitiy 10 in Figure 3-8.
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Figure 3-9: Some atomic activities learned by Dual-HDP merger into one atomic
activity learned by the LDA mixture model. (a) When the number of atomic activities
is set as 14 in the LDA mixture model, Atomic activities 17, 21, 23, 24, 25, 26, and 27
related to pedestrian walking learned by Dual-HDP merge into one atomic activity
learned by the LDA mixture model. (b) When the number of atomic activities is set
as 14 in the LDA mixture model, Atomic activities 8, 16 and 19 related to pedestrian
walking learned by Dual-HDP merge into one atomic activity learned by the LDA
mixture model.
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3.3.2 Discover Global Behaviors

Global behavior in the scene can be explained as a combination of co-occurring atomic

activities, or equivalently, topics, under our framework. In our hierarchical Bayesian

models, the video clips are automatically clustered into different global behaviors. The

topics mixtures ({αc} in the LDA mixture model and {πc} in Dual-HDP) as priors

of clusters of video clips provide a good summary of global behaviors. Figure 3-10

plots the mixture weights πc of five global behaviors on atomic activities learned by

Dual-HDP. They are different traffic modes. Global behavior 1 explains traffic moving

in a vertical direction. Vehicles from road e and g move vertically, crossing road d

and crosswalk a. 3, 6, 7, 9 and 11 are major atomic activities in this traffic mode,

while the weights on other atomic activities related to horizontal traffic (1, 4, 5, 8,

16 and 20), and pedestrians walking on crosswalk a and b (13, 17, 21 and 23), are

very low. Global behavior 2 explains “vehicles from road g make a right turn to

road a while there is not much other traffic”. In this traffic mode, vertical traffic is

forbidden because of the red light while there are no vehicles traveling horizontally

on road d, so these vehicles from g can make a right turn. Global behavior 3 is

“pedestrians walk on the crosswalks while there is not much traffic”. In this traffic

mode, several atomic activities (21, 13, 17) related to pedestrian walking have much

higher weights than their average distribution on the whole video sequence. Atomic

activities 10 and 15 also have large weights in this global behavior and they explain

that vehicles on road e come to stop behind the stop line when pedestrians walk on

the crosswalk. Global behavior 4 is “vehicles on road d make a left turn to road f”.

Atomic activities 5, 11, and 12 related to vehicles turning left have large weights.

Atomic activities 1 and 4 also have large weights since horizontal traffic from left to

right is allowed at this time. However atomic activities 8, 16 and 20 have very low

weights, because traffic from right to left conflicts with this left turn activity. Global

behavior 5 is horizontal traffic. In this traffic mode, atomic activities 13, 17 and 21

have relatively high weights, since pedestrians are allowed to walk on a. In the second

row of Figure 3-10, we show an example video clip for each type of global behavior.
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Figure 3-10: Distributions of global behaviors over atomic activities learned by Dual-
HDP in a traffic scene. Video clips are clustered into five global behaviors. In (a1)-
(a5), we plot the mixture weights {πc} over 29 atomic activities as prior of each global
behavior represented by blue bars. For comparison, the red curve in each plot is the
average mixture weights over atomic activities on the whole data set. The x-axis is
the index of atomic activities. The y-axis is the mixture weight over atomic activities.
In (b1)-(b5), we show a video clip as an example for each type of global behavior and
mark the motion distributions of the five largest atomic activities in that vide clip.
Notice that colors distinguish different atomic activities in the same video (the same
color may correspond to different atomic activities in different video clips) instead of
representing motion directions as in Figure 3-6.
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Figure 3-11: Results of segmenting a long video sequence into different global bahav-
iors. (a) The snapshot of our video segmentation result; (b) the confusion matrix;
(c) the segmentation result of the 90 minutes long video sequence; (d) zoom in of the
segmentation result of the last 20 minutes of video. In (c) and (d), the x-axis is the
index of video clips in temporal order, and the y-axis is the label of the five global
behaviors shown in Figure 3-10.

In each video clip, we choose the five largest atomic activities and plot their motion

distributions by different colors.

3.3.3 Video Segmentation

Given a long video sequence, we can segment it based on different types of global

behaviors. Our models provide a natural way to complete this task in an unsupervised

manner since video clips are automatically separated into clusters (global behaviors)

in our model. To evaluate the clustering performance, we create a ground truth

by manually labeling the 540 video clips into five typical interactions in this scene

as described in Section 3.3.2. The confusion matrix between our clustering result

and the ground truth is shown in Figure 3-11 (b). The average accuracy of video

segmentation is 85.74%. Figure 3-11 shows the labels of video clips in the entire one

and half hours of video and in the last 20 minutes. Note the periodicity of the labels

assigned. We can observe that each traffic cycle lasts around 85 seconds.
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3.3.4 Activity Detection

We also want to localize atomic activities happening in the video. Since in our hier-

archical Bayesian models, each moving pixel is labeled as one of the atomic activities,

activity detection becomes straightforward. In Figure 3-12, we choose five ten sec-

onds long video clips as examples of the five different global behaviors, and show the

activity detection results on them. Since our motion detection method is very simple,

the detected moving pixels are quite noisy. They are not smooth in space and time.

However, they are well labeled into different activity categories, because the activity

models are shared by all the video clips and they are well learned from a huge amount

of moving pixels.

As an extension of activity detection, we can detect vehicles and pedestrians based

on motions. It is observed that the vehicle motions and pedestrian motions are well

separated among atomic activities. However, the user first needs to label each of the

discovered atomic activities as being related to vehicles or pedestrians. Then we can

classify the moving pixels into vehicles and pedestrians based on their atomic activity

labels. Figure 3-13 shows some detection results. This approach cannot detect static

vehicles and pedestrians. Most existing object detectors are based on the appearance

of objects. However, our approach is based on motions and activity models. It is

complementary to appearance based vehicle and pedestrian detectors. Further more,

it does not require labeling training examples.

3.3.5 Abnormality Detection

In visual surveillance, detecting abnormal video clips and localizing abnormal activ-

ities in the video clip are of great interest. Under the Bayesian models, abnormality

detection has a nice probabilistic explanation by the data likelihood of every video

clip and every moving pixel rather than by comparing similarity between samples.

Computing the likelihood of documents and words under the LDA mixture model has

been described in Section 3.2.2 (see Eq 3.5). Computing the data likelihood under

the HDP mixture model and Dual-HDP model is not straightforward. We need to
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(1) (2) (3)

(4) (5)

Figure 3-12: Activity detection. Five video clips are chosen as examples of the five
global behaviors shown in Figure 3-10. We show one key frame of each video clip.
The motions are clustered into different activities marked by different colors. However
since there are so many atomic activities, we cannot use a uniform color scheme to
represent all of them. In this Figure, the same color in different video clips may
indicate different activities. Clip 1 has atomic activities 1 (green), 3 (cyan) and
6 (blue) (see these atomic activities in Figure 3-6). Clip 2 has atomic activities 2
(cyan) and 13 (blue). Clip 3 has atomic activities 15 (cyan), 7 (blue) and 21 (red).
Clip 4 has atomic activities 1 (red), 5 (blue), 7(green), 12 (cyan) and 15 (yellow).
Clip 5 has atomic activities 8 (red), 16 (cyan), 17 (magenta) and 20 (green).

Figure 3-13: Vehicle and pedestrian detection based on motions. Vehicle motions are
marked by red color and pedestrian motions are marked by green color.
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compute the likelihood of document j given other documents, p(xj|x−j), where x−j

represents the whole corpus excluding document j. For example, in the HDP mix-

ture model, since we have already drawn M samples {z−j(m), {π(m)
c }, π(m)

0 }Mm=1 from

p(z−j, {πc}, π0|x) which is very close to p(z−j, {πc}, π0|x−j), we approximate p(xj|x−j)

as

p(xj|x−j) =
1

M

∑
m

∑
cj

∫
ωj

∑
zj

∑
i

p(xji|zji, z−j(m),x−j)p(zj|ωj)p(ωj|π(m)
cj

)ηcjdωj

(3.17)

p(ωj|π(m)
cj ) is a Dirichlet distribution. If (u1, . . . , uT ) is the Dirichlet prior on φk,

p(xji|zji, z−j(m),x−j) = (uxji
+ nxji

)/(
T∑
t=1

(ut + nt))

is a multinomial distribution, where nt is the number of words in x−j with value t

assigned to topic zji (see [140]). The computation of

∫
ωj

∑
zj

p(xji|zji, z−j(m),x−j)p(zj|ωj)p(ωj|π(m)
cj

)

is intractable, but can be approximated with a variational inference algorithm as

in [18]. The likelihood computation in Dual-HDP model is very similar to that in the

HDP mixture model. The only difference is to replace ηcj with ε
(m)
cj in Eq 3.17.

Figure 3-14 shows the top five detected abnormal video clips. Red color highlights

the regions with abnormal motions in the video clips. There are two abnormal activ-

ities in the first video. A vehicle is making a right-turn from road d to road f. This is

uncommon in this scene because of the layout of the city. Actually there is no topic

explaining this kind of activity in our data (topics are summaries of typical activi-

ties). A person is simultaneously approaching road f, causing abnormal motions. In

the successive video clip, we find that the person is actually crossing road f outside

the crosswalk region. This video clip ranked fourth in abnormality. In the second

and third videos, bicycles are crossing the road abnormally. The fifth video is another

example of a pedestrian crossing the road outside the crosswalk.
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1st 4th 2nd

3rd 5th

Figure 3-14: Results of abnormality detection. We show the top five video clips
with the highest abnormality (lowest likelihood). In each video clip, we highlight the
regions with moving pixels with high abnormality.

3.3.6 Query Interactions

Under our framework, it is convenient to use atomic activities as units to query

interactions of interest. For example, suppose we want to detect the interaction

of jay-walking. We simply pick two atomic activities involved in this interaction,

i.e. “pedestrians walk on crosswalk a from right to left (atomic activity 13) while

vehicles are approaching in vertical direction (atomic activity 6)”, and specify a query

distribution q (q(6) = q(13) = 0.5 and the weights on other atomic activities are

zeros). Each video clip j has a distribution pj over atomic activities. We match {pj}

with the query distribution using relative entropy between q and pj,

D(q||pj) =
K∑
k=1

q(k)log
q(k)

pj(k)
(3.18)

Figure 3-15 (d) shows the result of querying examples of “pedestrians walk on

crosswalk a from right to left while vehicles are approaching in vertical direction”. All

the video clips are sorted by matching similarity. There are 18 jay-walking instances

in this data set, and they are all found among the top 37 examples out of the 540

clips in the whole video sequence. The top 12 retrieval results are all correct.
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Figure 3-15: Query result of interaction jay-walking. (a) Two atomic activities 6 and
13 involved in the interaction jay-working. (b) A query distribution is drawn with
large weights on atomic activities 6 and 13 and zeros weights on other topics. (c) An
example of jay-walk retrieval. (d) Precision and recall with the number of video clips
retrieved. There are totally 18 jay-walking instances according to labeling. They are
all found among the top 37 video clips out of the total 540 clips in the data set.
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3.3.7 Comparison with Other Methods

Another option to model interactions is to first use the original LDA (a) or HDP

(b) as a feature reduction step. A distribution pj over topics or a posterior Dirichlet

parameter (γj in Eq 3.2) is associated with each document. Then one can cluster

documents based on {pj} or {γj} as feature vectors. [18] used this strategy for

classification. K-means on {pj} only has 55.6% accuracy of video segmentation on

this data set (KL divergence is the distance measure), while the accuracy of our Dual-

HDP model is 85.74%. It is hard to define a proper distance for Dirichlet parameters.

We cannot get meaningful clusters using {γj}.

We also evaluate the algorithm proposed in [164], which used global motion to

describe each frame, on this data set. [164] also adopted word-document analysis and

used spectral graph partitioning. However, it did not model local atomic activities

and the interactions or activities were directly modeled as a distribution over global

motion instead of atomic activities. Although their method worked well on simple

data sets in [164], where usually there was only one kind of activity in each video

clip, it failed on our complicated scene with many activities co-occurring. We did not

find meaningful interactions from the discovered clusters using their approach on our

data. The formation of clusters is dominated by the amount of traffic flow instead of

the types of traffic. The detected abnormal examples are videos with relatively small

amounts of motion and do not really include interesting activities.

3.3.8 Discussion

The space complexities of the three proposed models are all O(KW ) + O(KL) +

O(KM) + O(N), where K is the number of topics, W is the size of the codebook,

L is the number of document clusters, M is the number of documents and N is the

total number of words. Using EM and VB, the time complexity of the learning and

inference of the LDA mixture model is O(ML) + O(NK) + O(LK2). Running on

a computer with 3GHz CPU, it takes less than one hour to process an 1.5 hours

video sequence. The Gibbs sampling inference of HDP mixture model and Dual-
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HDP model is much slower. The time complexity of each Gibbs sampling iteration

is O(NK) +O(ML). It is difficult to provide theoretical analysis on the convergence

of Gibbs sampling. It takes around 12 hours to process an 1.5 hours video sequence.

In recent years, variational inference was proposed for HDP [141] and it is faster

than Gibbs sampling. A possible extension of this work is to explore variational

inference algorithms under HDP mixture model and Dual-HDP model. Currently our

algorithm is running in a batch mode. However, once the model has been learnt from

a training video sequence and fixed, it can be used to do motion/video segmentation

and abnormality detection on new video stream in an online mode.
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Chapter 4

Trajectory Analysis in A Single

Camera View

Having explained activity analysis in crowded scenes in Chapter 3, we will consider

the scenario when the scenes are sparse and we can track objects in this chapter. We

will presents the results of using Dual-HDP and dynamic Dual-HDP for trajectory

analysis in a single camera view. Objects are first tracked in a single camera view.

Trajectories of objects are clustered into different activity categories and the models

of paths commonly taken by objects are learned. Dual-HDP assumes the models of

activities do not change over time. Dynamic Dual-HDP online dynamically updates

models of activities.

4.1 Modeling Trajectories Using Dual-HDP

We treat a trajectory as a document and the observations on the trajectory as words.

The positions and moving directions of observations on a trajectory are computed

as features which are quantized according to a codebook. The codebook uniformly

quantizes the space of the scene into small cells and the velocity of objects into

several directions. A trajectory is modeled as a bag of quantized observations without

temporal order.

In the physical world, objects move along some paths. We refer to the intersections
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Figure 4-1: An example to explain the modeling of semantic regions and activities.
Semantic regions are the overlap regions of paths. There are three semantic regions
(indicated by different colors) which form two paths. Both trajectories A and C pass
through regions 1 and 2, so they are clustered into the same activity. Trajectory B
passes through regions 1 and 3, so it is clustered into a different activity.

of paths as semantic regions, i.e. two paths may share one semantic region as shown

in Figure 4-1. When Dual-HDP is used to model trajectories, topics reveal semantic

regions shared by trajectories, i.e. many trajectories pass through one semantic region

with common directions of motion. A semantic region is modeled as a multinomial

distribution over the space of the scene and moving directions. If two trajectories

pass through the same set of semantic regions, they are on the same path and thus

they are clustered into the same activity. In our Dual-HDP model, each cluster of

documents (trajectories) has a prior distribution over topics (semantic regions). It is

learnt in an unsupervised way. All the trajectories clustered into the same activity

share the same prior distribution. Using Dirichlet Processes, Dual-HDP can learn the

number of semantic regions and the number of activity categories from data.

In Figure 4-1, an example is shown to explain the modeling. There are three se-

mantic regions (indicated by different colors) which form two paths. Both trajectories

A and C pass through regions 1 and 2, so they are clustered into the same activity.

Trajectory B passes through regions 1 and 3, so it is clustered into a different activity.

With the “bag-of-words” assumption, our approach does model the first order

temporal information among observations since the codebook encodes the moving di-

rections. It can distinguish some activities related to temporal features. For example,

if objects visit several regions in opposite temporal order, they must pass through the

same region in opposite directions. In our model, that region splits into two topics
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because of the velocity difference. So these two activities can be distinguished by our

model, since they have different topics.

4.2 Dynamic Dual-HDP

Under Dual-HDP, when the models of activities and semantic regions are learnt

and fixed, classifying unseen trajectories into existing activity categories and detect-

ing abnormal trajectories can be done in an online mode. However, there are still

some reasons to extend the Dual-HDP model to a dynamic Dual-HDP model. First,

people have interest in the dynamic change of models of activities over time. For

example, exploring when a new mode of activity appears, when an old mode of activ-

ity disappears, and when a particular kind of activity becomes more dominant than

other activities in the scene is of interest in surveillance applications. Abnormality

detection may also change over time. An activity may be detected as an abnormality

when it first appears in the scene. However, when more and more instances occur,

it becomes typical. Similarly, a typical activity at an earlier time may becomes ab-

normal when it rarely happens later. Second, when a surveillance system monitors

an area over months or even years, it is difficult to load all the huge amount of data

once into memory and process it. Dynamic Dual-HDP learns the models of activities

incrementally over time and does not have to keep old data.

In order to learn models of activities dynamically, one option is to divide the entire

data set into subsets according to the temporal order and learn the activity models of

each subset independently using Dual-HDP. This has two problems. First, the activity

models learnt in different subsets are not aligned. Without manually permuting the

activity models properly, people cannot observe how these models change over time.

Second, since different subsets do not share information, if there is not enough data

in a subset, the activity models cannot be well learnt from it. Blei et al. [16] proposed

a model which allowed the topics to be dynamically updated. However, it assumed

that the number of topics was fixed. Allowing the addition of new emerging activity
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Figure 4-2: Graphical model of dynamic Dual-HDP

models over time is of considerable interest in surveillance applications.

The graphical model of the dynamic Dual-HDP is shown in Figure 4-2. The data

is divided into subsets based on temporal intervals (e.g. a subset includes trajectories

happening within one hour). The key difference is that Gt−1
0 , which is the infinite

mixture of topics of words learnt at time interval t − 1, is used as prior to predict

Gt
0, which is the mixture of topics learnt at the next time interval t. Assume that

Kt−1 topics have been generated from the data up to time t − 1. Then Gt−1
0 can be

represented as

Gt−1
0 =

Kt−1∑
k=1

πt−1
0k δφt−1

k
+ πt−1

0u G
t−1
0u (4.1)

where the first Kt−1 topics have been assigned to the data up to time t − 1, and

πt−1
0u G

t−1
0u =

∑∞
k=Kt−1+1 π

t−1
0k φ

t−1
k is the remaining part of the infinite mixture of topics,

none of which is assigned to any data up to time t − 1 [140]. Both {πt−1
0k }K

t−1

k=1 and

{φt−1
k }K

t−1

k=1 can be sampled from the data up to t−1. We assume that they are learnt
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and fixed before predicting Gt
0.

In order to use the mixture of topics learnt up to t− 1 as the prior of Gt
0, we first

normalize {πt−1
0k }K

t−1

k=1 to {π̂t−1
0k }K

t−1

k=1

π̂t−1
0k =

πt−1
0k∑Kt−1

k′=1 π
t−1
0k′

.

Then a base probability measure F t is constructed for Gt
0,

F t = ωt
Kt−1∑
k=1

π̂t−1
0k δφt

k
+ (1− ωt)H, (4.2)

where

φtk ∼ Dir(ξtk · φt−1
k +H), (4.3)

H is the same Dirichlet distribution as in Section 3.2.6 without changing over time,

ωt is a scalar between 0 and 1, and ξtk is a positive scalar. Gt
0 is sampled from a

Dirichlet process,

Gt
0 ∼ DP (γt, F t), (4.4)

where γt is a positive scalar. We will give more details about ωt, ξtk, and γt later.

From Eq 4.2 and 4.4, we observe that the random measure Gt
0 at time t includes the

Kt−1 topics generated before t and new topics never seen before. The weights πt0 over

topics change over time. In Eq 4.3, when a topic φtk at t was observed before and

thus has a corresponding topic model φt−1
k at t − 1, φtk is sampled from a Dirichlet

distribution including φt−1
k as prior knowledge. Thus dynamic Dual-HDP also models

the dynamic change of models of topics {φtk} instead of assuming that they are fixed

over time as in [116] and [133]. In the following, we explain the inference by Gibbs

sampling.

Suppose that at a sampling step there are Kt topics assigned to the data up to t

(Kt changes during Gibbs sampling on the subset of t). Then an explicit construction
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Algorithm 1 Inference under the dynamic Dual-HDP

1: Input trajectories (documents) collected from T time slices, {wtji}, t = 1, . . . , T.
2: Output models of activities and semantic regions and cluster labels of trajectories

at different times.
3: Initialization K0 = 0, n0

k = 0, s0 = 0.
4: for t = 1 to T do
5: repeat
6: given other variables, sample the topic assignment {zji} of the words {wtji}

observed at time t, and sample the topic mixtures {π̃ck} of trajectory clusters
using the Chinese restaurant franchise sampling scheme proposed in [140].

7: given other variables, sample the cluster labels cj of trajectories (documents)
observed at time t, and sample the mixtures {εc} of trajectory clusters in 3.16
using the Chinese restaurant franchise sampling proposed in Appendix A.

8: given other variables, sample topic models {φtk} and mixtures {πt0k} from the
models {φt−1

k } and {πt−1
0k } learnt at time t− 1 and the data observed at time

t using Eq 4.19 and 4.20.
9: until converge

10: update ntk and st using Eq 4.17 and 4.18.
11: end for

for Gt
0 is given as,

Gt
0 =

Kt−1∑
k=1

πt0kδφt
k

+
Kt∑

k=Kt−1+1

πt0kδφt
k

+ πt0uG
t
0u. (4.5)

{φtk}K
t−1

k=1 are the topics existing before t. They will be updated using the data ob-

served at t. They are the same variables as in Eq 4.2. {φk}K
t

k=Kt−1+1 are the new

topics assigned to the data observed at t. πt0uG
t
0u =

∑∞
k=Kt+1 π

t
0kφ

t
k is the remaining

part of the infinite mixture of topics, none of which is signed to any data up to time

t. From Eq 4.2 and 4.4, Gt
0u ∼ DP (γt(1 − ωt), H). πt

0 = (πt01, . . . , π
t
0Kt , πt0u) and

{φtk}K
t

k=1 are the variables to be sampled. Given πt
0 and {φtk}, the sampling of other

variables is the same as Dual-HDP. We focus on sampling πt
0 and {φtk} given other

variables. Suppose the topic assignments to words at t are given. In the Chinese

Restaurant Franchise sampling used by HDP and Dual-HDP, let nkw be the number

of words with value w assigned to topic k, nk be the total number of words assigned

to topic k, sj be the number of big tables serving dish (topic) k, and s be the total
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number of big tables 1. nkw, nk, sk, s are all statistics from the data subset of time

t. Since Gt−1
0 provides prior of Gt

0 as shown in Eq 4.2, 4.3 and 4.4,

p(πt
0|{π̂t−1

0k }
Kt−1

k=1 ) = Dir(γtωtπ̂t−1
01 , . . . , γtωtπ̂t−1

0Kt−1 , 0, . . . , 0, γ
t(1− ωt)). (4.6)

When 1 ≤ k ≤ Kt−1,

p(φtk|φt−1
k ) = Dir(ξtk · φt−1

k +H), (4.7)

and when Kt−1 < k ≤ Kt,

p(φtk) = Dir(H). (4.8)

The data likelihoods are

p(nk1, . . . , nkW |nk, φtk) = Multinomial(nk, φ
t
k), (4.9)

where W is the size of the codebook, and

p(s1, . . . , sKt|s,πt
0) = Multinomial(s,πt

0). (4.10)

So πt
0 and φtk can be sampled from posteriors,

πt
0|{sk}K

t

k=1, {π̂t−1
0k }

Kt−1

k=1

∼Dir(s1 + γtωtπ̂t−1
01 , . . . , sKt−1 + γtωtπ̂t−1

0Kt−1 , sKt−1+1, . . . , sKt , γt(1− ωt)), (4.11)

when 1 ≤ k ≤ Kt−1,

φtk|{nkw}Ww=1, φ
t−1
k ∼ Dir(nk1 + ξtk · φt−1

k1 + u1, . . . , nkW + ξtk · φt−1
kW + uW ), (4.12)

where H = (u1, . . . , uW ). When Kt−1 < k ≤ Kt,

φtk ∼ Dir(nk1 + u1, . . . , nkW + uW ). (4.13)

1The meanings of big tables and dishes in Chinese Restaurant Franchise are defined in [140] and
Appendix A.
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Properly choosing ωt, γt and ξtk, we can control how much the old data up to t−1

influences the inference of models of the current time t. In this work, we choose

ωt =
r · st−1

r · st−1 + γ
, (4.14)

γt = r · st−1, (4.15)

ξtk = r · nt−1
k . (4.16)

r is a scalar between 0 and 1 controlling how fast the influence of old data decrease.

ntk and st are the accumulated effective numbers of words assigned to topic k and big

tables. They are updated over time,

ntk = r · nt−1
k + nk, (4.17)

st = r · st−1 + s. (4.18)

Remind that nk and s are the statistics obtained from the subset of t. At initialization

n0
k = 0 and s0 = 0. Then Eq 4.11 and 4.12 become

πt
0|{sk}K

t

k=1, {π̂t−1
0k }

Kt−1

k=1

∼Dir(s1 + rst−1π̂t−1
01 , . . . , sKt−1 + rst−1π̂t−1

0Kt−1 , sKt−1+1, . . . , sKt , γ), (4.19)

φtk|{nkw}Ww=1, φ
t−1
k ∼ Dir(nk1 + rnt−1

k φt−1
k1 + u1, . . . , nkW + rnt−1

k φt−1
kW + uW ). (4.20)

When the data becomes older, its influence on the current models is weaker. The

decreasing rate is r. The inference under dynamic Dual-HDP is summarized in Algo-

rithm 1.

In our problem, dynamic Dual-HDP is applied to online learning of activity mod-

els and online abnormality detection, where we assume that data in the future is

unknown. Thus in Eq 4.11 and 4.12, πt0 and φtk are sampled from the posteriors given

π̂t−1
0 and φt−1

k without knowing π̂t+1
0 and φt+1

k . If we assume that data both in the

past and in the future is known, the posteriors are more complicated than Eq 4.11
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and 4.12, and the Gibbs sampling inference may require keeping all data collected

from the whole period in the memory. In the current sampling algorithm, we only

need to keep the data observed at the current time slice for inference. All the old data

can be removed, as its information has been included in the activity models {πt−1
0k }

and φt−1
k and sufficient statistics nt−1

k and st−1.

4.3 Experimental Results

4.3.1 Trajectory Analysis without Dynamic Modeling

Our nonparametric hierarchical Bayesian models are evaluated on radar tracks col-

lected from a maritime port, visual tracks collected from a parking lot, and simulated

data. The results of Dual-HDP without dynamic modeling will be presented first.

The results of Dynamic Dual-HDP will be reported in 4.3.2.

Results on Radar Tracks

In this section, experiments are done on a relatively small data set which has 577

radar tracks collected from a maritime port data set. They were acquired by multiple

collaborating radars along the shore and recorded the locations of ships on the sea.

Many existing approaches were evaluated on data sets with similar sizes as this one.

According to the feedback of an expert who is familiar with the sea port, the semantic

regions and clusters learned by our approaches make intuitive sense.

23 semantic regions are discovered by our model. In Figure 4-3, we display the

distributions of semantic regions (sorted by the number of observations assigned to

semantic regions) over space and moving directions. As shown in Figure 4-3, the 1st,

4th, 6th, 8th and 15th semantic regions are five side by side shipping fairways, where

ships move in two opposite directions. For comparison, we segment the five fairways

using a threshold on the density, and overlay them in Figure 4-3 (c) in different

colors, green (1st), red (4th), black (6th), yellow (8th), and blue (15th). Since they

are so close in space, they cannot be separated using spatial distance based trajectory
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8th 1th 6th 15th

4th 2nd 3rd 5th

7th 9th 11th 13th

14th 12th 10th 16th

17th 18th 19th 20th

21th 22th 23th

(a) (b) (c) (d)

Figure 4-3: Semantic regions at a maritime port learnt from the radar tracks. Dis-
tributions of semantic regions over space and moving directions are shown (for easier
comparison, they are not shown in order). Colors represent different moving direc-
tions: → (red), ← (cyan), ↑ (magenta), and ↓ (blue). (a) Histogram of observations
assigned to different semantic regions. (b) All of the radar tracks. (c) Compare the
1st, 4th, 6th, 8th, and 15th semantic regions. They are five by five shipping lanes.
(d) Compare the 7th, 11th, and 13th semantic regions. Ships first move along the
7th semantic region and then diverge along the 11th and 13th semantic regions.
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clustering approaches. In Figure 4-3 (d), we compare the 7th, 11th, and 13th semantic

regions also by overlaying the segmented regions in red, green, and black colors. This

explains the fact that ships first move along the 7th semantic region and then diverge

along the 11th and 13th semantic regions.

Our approach groups trajectories into 16 clusters. In Figure 4-4, we plot the eight

largest clusters and some smaller clusters. Clusters 1, 4, 6 and 7 are close in space but

occupy different regions. Clusters 3 and 5 occupy the same region, but ships in the

two clusters moves in opposite directions. Clusters 2 and 5 partially overlap in space.

As shown in Figure 4-3(d), ships first move along the same way and then diverge in

different directions. Clusters 2 and 5 share the same semantic region. Only modeling

semantic regions using HDP cannot separate these two clusters. For comparison, in

the last two sub-figures of Figure 4-4 we also show two clusters of the result using

Euclidean distance and spectral clustering [41] and setting the number of clusters

as 16. In this approach a similarity matrix is computed by comparing the distance

between each pair of trajectories. Then spectral clustering is used to compute an

embedded space. Trajectories are projected to the embedded space and clustered by

k-means. Some fine structures of shipping fairways cannot be separated using a spatial

distance based clustering method. One of the advantages of our approach is that it

learns the number of clusters from data. When spatial distance based clustering

methods are evaluated on this data set, choosing an improper cluster number, say 8

or 25, causes the clustering performance to significantly deteriorate.

In Figure 4-5, we display the top 20 abnormal trajectories based on their nor-

malized log-likelihoods log(p(wj|w−j))/Nj. There are two possible reasons for the

abnormality. (1) The trajectory does not fit any major semantic regions. Many ex-

amples can be found in Figure 4-5. (2) The trajectory fits more than one semantic

region, but the combination of the semantic regions is uncommon. The red trajec-

tory in Figure 4-5 (a), and the red and green trajectories in Figure 4-5 (b) are such

examples.
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cluster 1 cluster 2 cluster 3 cluster 4

cluster 5 cluster 6 cluster 7 cluster 8

cluster 9 cluster 10 cluster 11 cluster 12

cluster 13 cluster 14 cluster 15 cluster 16

(a)

cluster 1 (Euclidean distance) cluster 2 (Euclidean distance)
(b)

Figure 4-4: Clusters of radar tracks from a maritime port. Random colors are used to
distinguish individual trajectories. For comparison the last two sub-figures show some
trajectory clusters of the result using Euclidean distance and spectral clustering [41].
Some clusters in (a) merge into one cluster in (b).
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(a) Top 1− 10

(b) Top 11− 20

Figure 4-5: Top 20 abnormal radar tracks are plotted in different colors. Other
trajectories are plotted in cyan color. These abnormal trajectories do not fit any
major semantic region or fit more than semantic regions whose combinations are
uncommon.

Results on tracks from a parking lot

There are N = 40, 453 trajectories in the parking lot data set collected over one

week. They are plotted in Figure 4-6. Because of the large number of samples,

similarity based clustering methods require both large amounts of space (6GB) to

store the 40, 453× 40, 453 similarity matrix and high computational cost to compute

the similarities of around 800, 000, 000 pairs of trajectories. If spectral clustering is

used, it is quite challenging to compute the eigenvectors of such a huge matrix. It

is difficult for many existing approaches to work on this large data set. The space

complexity of our nonparametric Bayesian approach is O(N) instead of O(N2). The

time complexity of each Gibbs sampling iteration is O(N). It is difficult to provide

theoretical analysis on the convergence of Gibbs sampling. However, we can gather
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Figure 4-6: Trajectories collected from a parking lot scene within one week. Random
colors are used to distinguish individual trajectories.

empirical observations by plotting the likelihoods of data sets over Gibbs sampling

iterations. On the smaller radar data set, the likelihood curve converges after 1, 000

iterations. This takes around 1.5 minutes running on a computer with 3GHz CPU.

On the parking lot data set, which is 70 times large than the radar data set in the

number of trajectories, the likelihood curve converges after 6, 000 iterations. It takes

around 6 hours. In our experiments, the time complexity of our approach is much

smaller that O(N2)

30 semantic regions and 22 clusters of trajectories are learnt from this data set.

Some of them are shown in Figures 4-7 and 4-8. The first and third semantic regions

explain vehicles entering and exiting the parking lot. Most other semantic regions are

related to pedestrian activities. Because of opposite moving directions, some regions

split into two semantic regions, such as semantic regions 2 and 7, 9 and 12, 5 and

14. Similarly objects on trajectories (see Figure 4-8) in clusters 2 and 3, 5 and 11 are

moving in opposite directions. Many outlier trajectories are in small clusters, such as

clusters 20, 21 and 22. The top 100 abnormal trajectories are shown in Figure 4-9.

Most of these trajectories detected as abnormal are pedestrians walking on the grass

field and and pedestrians crossing the parking lot over empty parking spaces.
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1st 2nd 3rd 4th

5th 6th 7th 8th

9th 10th 11th 12th

13th 14th 15th 16th

17th 18th 19th 20th

Figure 4-7: Some semantic regions learnt from a parking lot scene. The meaning of
colors is the same as Figure 4-3.
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cluster 1 cluster 2 cluster 3 cluster 4

cluster 5 cluster 6 cluster 7 cluster 8

cluster 9 cluster 10 cluster 11 cluster 12

cluster 13 cluster 14 cluster 15 cluster 18

cluster 19 cluster 20 cluster 21 cluster 22

Figure 4-8: Some clusters of trajectories from a parking lot scene. In cluster 1, objects
enter the parking lot and make U-turn. Cluster 2 and 3 occupy the same region but
their trajectories move in opposite directions. In cluster 6, objects come out from a
build and leave the parking lot. In cluster 9 and 10, objects cross the grass field.
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Top 1− 20 Top 21− 40 Top 41− 60

Top 61− 80 Top 81− 100

Figure 4-9: Top 100 abnormal trajectories in the parking lot scene. Many of them
are pedestrians walking on the grass field.

Evaluation on Simulated Data

In this section, we simulate trajectories to evaluate how robust our model is to tracking

errors. As shown in Figure 4-10 (a), eight paths are manually drawn on a scene. Some

paths share the same semantic regions. A trajectory is randomly assigned to one of the

eight predefined activities. A trajectory samples the location of its starting point from

a Gaussian distribution centered at the starting point of its path with variance σ1 = 5.

It samples the remaining points sequentially following the direction specified by the

path, with additive Gaussian noise of variance σ2 = 2. The simulated trajectories are

shown in Figure 4-10 (b). In reality, some trajectories are broken because of occlusions

and scene clutter during tracking. In our simulation, we decide whether a trajectory is

broken in a random way with probability r (0 ≤ r ≤ 1). If a trajectory is broken, the

breaking point is uniformly sampled along the trajectory. A larger r simulates the case

when there are more tracking errors. There are other types of tracking errors, such as

wrong associations, not simulated in this experiment. However, breaking is one of the

most common tracking errors, since some other tracking errors can be transferred to

breaking errors by simply stopping tracking when the tracker is confused or there is
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(a) (b)

Figure 4-10: Simulate trajectories of different activities. (a) The central lines of eight
paths manually drawn in the scene. They are distinguished by different colors. (b)
Trajectories simulated from the eight paths. They are also displayed in the eight
colors.

not enough evidence to support the hypothesis. After the trajectories are clustered by

our algorithm, we manually specify each of the eight clusters as an activity category,

so each trajectory is assigned an activity label by our algorithm. By comparing with

the ground truth, the accuracy of activity classification is computed. Figure 4-11

plots the activity classification accuracies with different r. It is observed that the

performance does not significant drop when tracking errors increase. This shows

that our algorithm is robust to tracking errors to some extent. We also compare our

algorithm with two distance-based methods which use Euclidean distance [41] and

modified Hausdorff distance [153] to compute distance between two trajectories. The

modified Hausdorff distance compares both spatial distance and velocity difference

of observations on the trajectories. The method using Euclidean distance requires

that trajectories are temporally aligned. The performance of these two distance-

based methods, especially when using Euclidean distance, drops significantly when

the trajectory data set has tracking errors.

4.3.2 Trajectory Analysis with Dynamic Modeling

In this section, the results of the dynamic Dual-HDP model will be presented.
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Figure 4-11: Activity classification accuracies of Dual-HDP and two distance-based
methods (Euclidean distance [41] and modified Hausdorff distance [153]) when the
simulated trajectories are broken with different probabilities from 0 to 1. The mod-
ified Hausdorff distance compares both spatial distance and velocity difference of
observations on the trajectories.

Results on Radar Tracks

In this section we conduct experiments on a much larger data set than that used in

Section 4.3.1. It includes 8, 478 radar tracks collected from 304 hours. The trajectories

are divided into T = 304 slices by hours. In Figure 4-12, 4-13, 4-14, 4-15, and 4-16,

we show the semantic regions learnt at different time slices. The model of a semantic

region learned at a previous time slice is used as a prior to update the model of

the semantic region at the next time slice. Thus we can observe how the models

of semantic regions change over time. The first subfigure shows when this semantic

region first appears as a new mode under Dual-HDP. Figure 4-12 shows the dynamic

change of semantic region 1. Semantic region 1 first appears at the 35th hour and

its shape changes over time. As shown in Figure 4-13, the topic related to semantic

region 2 first appears at the 47th hour. However, it appears noisy in the first few

time slices. Its shape forms after the 112nd hour. This mode gradually disappears

after 244 hours. Semantic region 3 and 4 are first coupled in the same topic at the

early stage (see the first two subfigures in Figure 4-15). They are well separated when

more data is observed later on.
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the 35th hour the 69th hour the 91st hour the 121st hour

the 129th hour the 171st hour the 275th hour the 305th hour

Figure 4-12: Dynamic change of semantic region 1 over time learnt from the radar
tracks. In the first subfigure, we show when the semantic region first appears, i.e.
semantic region 1 first appears as a new mode learnt by the Dual-HDP model at the
35th hour. Figure 4-13, 4-14, 4-15, and 4-16 follow the same convention.

Figure 4-17 shows the abnormal radar tracks detected at different time. Since

the activity models and semantic regions change over time, the detected abnormal

trajectories are also different depending on the time context. Trajectories detected

as abnormal at some time slices may become normal when they appear at other time

slices. For example, as shown in Figure 4-17, some abnormal trajectories detected

at the 7th hour and the 9th hour actually pass through semantic regions 2, 3, 4,

and 5. However, these modes are learnt later. In the first few hours, only a few

trajectories passing through these semantic regions are observed. So they are detected

as abnormal. When more trajectories of the same activities are observed and the

activity models are well learnt later, they will not be detected as abnormal any more.
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the 47th hour the 91st hour the 113rd hour the 156th hour

the 179th hour the 201st hour the 245th hour the 305th hour

Figure 4-13: Dynamic change of semantic region 2 over time learnt from the radar
tracks. This semantic region first appears at the 47th hour. However, it appears
noisy in the first few time slices. Its shape forms after the 112nd hour. This mode
gradually disappears after 244 hours.

the 25th hour the 69th hour the 91st hour the 135th hour

the 179th hour the 223rd hour the 267th hour the 305th hour

Figure 4-14: Dynamic change of semantic region 3 over time learnt from the radar
tracks.

the 25th hour the 157th hour the 267th hour the 305th hour

Figure 4-15: Dynamic change of semantic region 4 over time learnt from the radar
tracks. Semantic region 3 and 4 are first coupled in the same topic at the early stage
(see the first two subfigures). They are well separated when more data is observed
later on.
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the 15th hour the 93rd hour the 221st hour the 305th hour

Figure 4-16: Dynamic change of semantic region 5 over time learnt from the radar
tracks.

the 7th hour the 9th hour

the 115th hour the 299th hour

Figure 4-17: Abnormal radar tracks detected at different time slices. The same
threshold of data likelihood is used for all the time slices. Some abnormal trajectories
detected at the 7th hour and the 9th hour actually pass through semantic regions
2, 3, 4, and 5. However, these modes are learnt later. In the first few hours, only
a few trajectories passing through these semantic regions are observed. So they are
detected as abnormal. When more trajectories of the same activities are observed
and the activity models are well learnt later, they will not be detected as abnormal
any more.
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Results on Tracks from a Park Lot

The 40, 453 trajectories of the parking lot data set are collected from one week.

We divide them into time slices by hours. Figure 4-19, 4-18, and 4-20 show the

dynamic change of semantic regions over time. We can observe some cyclic change

of the distributions of semantic regions. There are fewer activities happening around

midnight and early in the morning. The distributions of semantic regions are sparser

compared with those in the afternoon and in the evening. Also, because there are few

cars parking at night and early in the mornign, pedestrians can cross the parking lot

over empty parking spaces. In Figure 4-18, the shape of the semantic region at time

slice between 13 o’clock and 14 o’clock on May 16 changes, because there are more

people from the top entering the parking lot and exiting from left at the particular

time interval. In Figure 4-20, the shape of semantic region 3 also changes over time.

People may exit the parking lot from the left of the scene or from a gate in the middle

area of the scene (somewhere between two rows of trees).
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02-03, May 15 07-08, May 15 13-14, May 15 19-20, May 15

02-03, May 16 07-08, May 16 13-14, May 16 19-20, May 16

02-03, May 17 07-08, May 17 13-14, May 17 19-20, May 17

02-03, May 18 07-08, May 18 13-14, May 18 19-20, May 18

02-03, May 19 07-08, May 19 13-14, May 19 19-20, May 19

Figure 4-18: The dynamic change of semantic region 1 over time learnt from the
trajectories collected from a parking lot. The same background image is used for all
time slices. The background image is not representative of each time slice (i.e. there
are not this many cars parked there late at night). There are fewer activities in the
parking lot around midnight, so the distributions are sparser. Also there are few cars
parking there and pedestrians can cross the parking lot over empty parking spaces.
There are more activities in the afternoon and in the evening. So the distributions
are denser at that time. The shape of the semantic region can change.
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02-03, May 15 07-08, May 15 13-14, May 15 19-20, May 15

02-03, May 16 07-08, May 16 13-14, May 16 19-20, May 16

02-03, May 17 07-08, May 17 13-14, May 17 19-20, May 17

Figure 4-19: The dynamic change of semantic region 2 over time learnt from the
trajectories collected from a parking lot.

06-07, May 16 10-11, May 16 14-15, May 16 19-20, May 16

06-07, May 17 10-11, May 17 14-15, May 17 19-20, May 17

06-07, May 18 10-11, May 18 14-15, May 18 19-20, May 18

Figure 4-20: The dynamic change of semantic region 3 over time learnt from the
trajectories collected from a parking lot.
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Figure 4-21 shows the abnormal trajectories detected at different time. Between 7

o’clock and 8 o’clock in the morning everyday, many trajectories passing through the

bottom right corner of the scene are detected as abnormal. As shown in Figure 4-19,

there are not many trajectories of this activity happening in the morning. When they

start to appear in a large number between 8 o’clock and 9 o’clock, they are detected

as abnormal. In contrast, these kinds of trajectories are not detected as abnormal

between 14 o’clock and 15 o’clock in the afternoon. Many trajectories detected as

abnormal are those passing through the grass field. An interesting example occurred

between 13 o’clock and 15 o’clock on May 16th. A worker was mowing the grass

around this time. Many trajectories moving back and forth horizontally on the grass

field are detected as an abnormality between 13 o’clock and 14 o’clock. However, after

the model of this activity has been well learnt at this time slice, similar trajectories

are not detected as abnormal in the next hour.

4.4 Summary

In this chapter, Dual-HDP and dynamic Dual-HDP are used to learn models of seman-

tic regions and cluster trajectories. Dual-HDP assumes that the models of semantic

regions and activities are static, while dynamic Dual-HDP updates the models of

semantic regions and activities over time. Dynamic Dual-HDP cluster trajectoris in-

crementally and thus it can process a huge set of trajectories collected from a very

long period with low computational complexities. Both these two approaches are

evaluated on radar tracks and trajectories collected from a parking lot. Their re-

sults make intuitive sense. Dual-HDP is quantitively compared with other clustering

methods on a simulated data set and it achieves much better performance especially

when there are significant tracking errors. However, a quatitive evaluation on real

data sets is difficult because it is not easy to find the ground truth. One possible way

is to compare with user study. However, different people have different judgement on

clustering and abnormality detection. Further more, the subjects need to observe a

large set of trajectories in order to well understand the scene happening in the scene.
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08-09, May 15 08-09, May 16 08-09, May 17 08-09, May 18

14-15, May 15 14-15, May 16 14-15, May 17 14-15, May 18

13-14, May 19 14-15, May 19

Figure 4-21: Abnormal trajectories in the parking lot scene detected at different time
slices. The same threshold of data likelihood is used for all the slices. Between 7
o’clock and 8 o’clock in the morning everyday, many trajectories passing through
the bottom right corner of the scene are detected as abnormal. There are not many
trajectories of this activity happening in the morning. When they start to appear
in a large number between 8 o’clock and 9 o’clock, they are detected as abnormal.
Between 13 o’clock and 15 o’clock on May 16th, a worker was mowing the grass
around this time. Many trajectories moving back and forth horizontally on the grass
field are detected as an abnormality between 13 o’clock and 14 o’clock. However, after
the model of this activity has been well learnt at this time slice, similar trajectories
are not detected as abnormal in the next hour.

This makes user study time comsuming. Quantitive evaluation of trajectory analysis

on real data sets is an important research direction as future work.
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Chapter 5

Correspondence-Free Activity

Analysis in Multiple Camera Views

Chapter 4 assumes a single camera view. If we need to monitor activities in a large

area, video streams from multiple camera views have to be used. This chapter presents

a hierarchical Bayesian model of clustering trajectories in multiple camera views. We

group trajectories, which belong to the same activity category but are observed in

different camera views, into one cluster. The distributions of a path in multiple

camera views are jointly modeled. It is more challenging than activity analysis in a

single camera view since we do not track objects across camera views.

5.1 Feature Space

Objects are tracked in each of the camera views independently using the Stauffer-

Grimson tracker [135]. Similar to Section 4, a trajectory is treated as a document.

The locations and moving directions of observations of an object are computed as

features and quantized to visual words according to a codebook of its camera view.

However, the codebook is built from multiple camera views. In each camera view, the

space of the view is uniformly quantized into small cells and the velocity of objects is

quantized into several directions. A global codebook concatenates the codebooks of all

the camera views. Thus the word value of an observation i is indexed by (ci, xi, yi, di)
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in the global codebook. ci is the camera view in which i is observed. (xi, yi) and di

are the quantized coordinates and moving direction of observation i in camera ci.

5.2 Trajectory Network

A network is built connecting trajectories observed in multiple camera views based

on their temporal extents. Each trajectory is a node on the network. Let tsi and tei

be the starting and ending time of trajectory i. T is a positive temporal threshold. It

is roughly the maximum transition time of objects moving between adjacent camera

views. If trajectories a and b are observed in different camera views and their temporal

extents are close,

(tsa ≤ tsb ≤ tea + T ) ∨ (tsb ≤ tsa ≤ teb + T ), (5.1)

then a and b will be connected by an edge on the network. This means that a and b

may be the same object since they are observed by cameras around the same time.

There is no edge between two trajectories observed in the same camera view. An

example can be found in Figure 5-1. As shown in (a), the views of cameras 1 and 2

overlap and are disjoint with the view of camera 3. Trajectories 1 and 2 observed by

cameras 1 and 2 correspond to the same object moving across camera views. Their

temporal extents overlap as shown in (b), so they are connected by an edge in the

network as shown in (d). Trajectories 3 and 4 observed by cameras 1 and 3 correspond

to an object crossing disjoint views. Their temporal extents have no overlap but the

gap is smaller than T as shown in (c), so they are also connected. Trajectories 3

and 6, 5 and 7 do not correspond to the same objects, but their temporal extents

are close, so they are also connected in the network. A single trajectory 3 can be

connected to two trajectories (4 and 6) in other camera views. An edge in the network

indicates a possible correspondence candidate only based on the temporal information

of trajectories. But we do not really solve the correspondence problem when building

the trajectory network, since many edges are actually false correspondences. The
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Figure 5-1: An example of building a network connecting trajectories in multiple
camera views. (a) Trajectories in three camera views. (b) The temporal extents
of trajectories 1 and 2. (c) The temporal extents of trajectories 3 and 4. (d) The
network connecting trajectories. Trajectories 1 and 2 observed by cameras 1 and 2
correspond to the same object moving across camera views. Their temporal extents
overlap, so they are connected by an edge in the network. Trajectories 3 and 4
observed by cameras 1 and 3 correspond to an object crossing disjoint views. Their
temporal extents have no overlap but the gap is smaller than T , so they are also
connected. Trajectories 3 and 6, 5 and 7 do not correspond to the same objects, but
their temporal extents are close, so they are also connected in the network. A single
trajectory 3 can be connected to two trajectories (4 and 6) in other camera views.

network simply keeps all of the possible candidates.

5.3 Probabilistic Model

In this section, we describe our probabilistic model which clusters trajectories in dif-

ferent camera views into activities and models paths across camera views. Documents

are trajectories, words are observations, and topics are activities (paths). Each activ-

ity has a distribution over locations and moving directions in different camera views,

and corresponds to a path. In previous topic models, documents are generated in-

dependently. However, we assume that if two trajectories in different camera views

are connected by an edge in the network, which means that they may correspond to

the same object since they are observed by cameras around the same time, they tend

to have similar distributions over activities. Thus the distributions of an activity (a

path of objects) in different camera views can be jointly modeled. In Figure 5-2, we

use an example to describe the high level picture of our model. Trajectories a and b
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Figure 5-2: An example to describe the high level picture of our model. Trajectories
a and b are observed in different camera views and are connected by an edge in the
trajectory network. Points on trajectories are assigned to activity categories by fitting
activity models. Thus both a and b have distributions over activities. The smoothness
constraint requires that their distributions over activities are similar in order to have
small penalty. In this example, both trajectory a and b have a larger distribution on
activity 1, so the models of activity 1 in two different camera views can be related to
the same activity.

are observed in different camera views and are connected by an edge in the trajectory

network. Points on trajectories are assigned to activity categories by fitting activ-

ity models. Thus both a and b have distributions over activities. The smoothness

constraint requires that their distributions over activities are similar in order to have

small penalty. In this example, both trajectory a and b have a larger distribution on

activity 1, so the models of activity 1 in two different camera views can be related to

the same activity.

Let M be the number of trajectories. Each trajectory j has Nj observations. Each

observation i on trajectory j has a visual word value xji which is an index of the

global codebook. Observations will be clustered to one of the K activity categories.
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Let zji be the activity label of observation i on trajectory j. Each activity k has a

multinomial distribution φk over the global codebook. So an activity is modeled as a

distribution over space and moving directions in all the camera views. φk is sampled

from a Dirichlet prior

p(φk|β) = Dir(φk; β), (5.2)

where Dir(·; ·) is Dirichlet distribution and β is a flat hyperparameter. If a visual

word xji has activity label zji, its data likelihood is

p(xji|zji, {φk}) = φzjixji
. (5.3)

Eq 5.2 and 5.3 are the same as modeled in LDA.

Each trajectory has a random variable θj which is the parameter of a multinomial

distribution over K activities. Activity labels {zji} of observations are sampled from

θj. If two trajectories j1 and j2 are connected by an edge on the network, they are

neighbors and the smoothness constraint requires that θj1 and θj2 are similar and the

distributions of {zj1i} and {zj2i} are similar. The joint distribution of {θj} and {zji}

are modeled as,

p({θj}, {zji}|α, γ)

∝
M∏
j=1

K∏
k=1

(θjk)
α−1

∏
{j1,j2}∈E

K∏
k=1

(θj1k)
γ·nj2k(θj2k)

γ·nj1k

M∏
j=1

Nj∏
i=1

θjzji

=
M∏
j=1

K∏
k=1

θ
α−1+γ

∑
j′∈Ωj

nj′k

jk

M∏
j=1

Nj∏
i=1

θjzji

=
M∏
j=1

[ ∏K
k=1 Γ(α + γ

∑
j′∈Ωj

nj′k)

Γ(K · α + γ
∑

j′∈Ωj

∑K
k=1 nj′k)

Dir(θj;α + γ
∑
j′∈Ωj

nj′1, . . . , α + γ
∑
j′∈Ωj

nj′K)

Nj∏
i=1

θjzji

]
(5.4)

Γ(·) is the Gamma function. njk is the number of observations assigned to activity k

on trajectory j. E is the set of pairs of neighboring trajectories which are connected.

Ωj is the set of trajectories connected with j. α is a flat Dirichlet prior as a hyperpa-
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rameter. (
∑

j′∈Ωj
nj′1, . . . ,

∑
j′∈Ωj

nj′K) is the histogram of observations assigned to

K activity categories on the neighboring trajectories of j. It is used as the Dirichlet

parameter for θj, after being weighted by a positive scalar γ and added to a flat prior

α. Let ρk = α + γ ·
∑

j′∈Ωj
nj′k. According to the properties of the Dirichlet distri-

bution, if θj ∼ Dir(ρ1, . . . , ρK), the expectation of θj is (ρ1/
∑
ρk, . . . , ρK/

∑
ρk) and

its variation is small if
∑
ρk is large. Notice that zji is sampled from θj and θj has

a constraint added by zj′i′ on its neighboring trajectories. So trajectory j tends to

have a similar distribution over activities as its neighboring trajectories, which means

that they are smooth. A larger γ puts a stronger smoothness constraint. If γ = 0,

Eq 5.4 is the same as in LDA where {θj} are sampled from a Dirichlet prior Dir(·;α)

independently.Given Eq 5.2, 5.3 and 5.4, finally the joint distribution of {φk}, {θj},

{zji} and {xji} is

p({φk}, {θj}, {zji}, {xji}|α, β, γ)

=p({θj}, {zji}|α, γ)
K∏
k=1

p({φk}|β)
M∏
j=1

Nj∏
i=1

p({xji}|{zji}, {φk})

=
M∏
j=1

[ ∏K
k=1 Γ(α + γ

∑
j′∈Ωj

nj′k)

Γ(K · α + γ
∑

j′∈Ωj

∑K
k=1 nj′k)

Dir(θj;α + γ
∑
j′∈Ωj

nj′1, . . . , α + γ
∑
j′∈Ωj

nj′K)

]
K∏
k=1

Dir(φk; β)
M∏
j=1

Nj∏
i=1

(
θjzji
· φzjixji

)
. (5.5)
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5.3.1 Learning and Inference

We do inference by Gibbs sampling. It turns out that {θj} and {φk} can be integrated

out during the Gibbs sampling procedure.

p({zji}, {xji}|α, β, γ)

=

∫
{φk}

∫
{θj}

p({θj}, {φk}, {zji}, {xji}|α, β, γ)d{θj}d{φk}

=

∫
{φk}

K∏
k=1

p(φk|β)
M∏
j=1

Nj∏
i=1

p({xji}|{zji}, {φk})d{φk}
∫
{θj}

p({θj}, {zji}|α, γ)d{θj}

∝
∫
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K∏
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W∏
w=1

φβ−1
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M∏
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Nj∏
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d{φk}

∫
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∑
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=

∫
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∑
j′∈Ωj

nj′k−1
d{θj}

=
∏
k

∏
w Γ(β +mkw)

Γ(W · β +mk·)

∏
j

∏
k Γ
(
α + njk + γ ·

∑
j′∈Ωj

nj′k

)
Γ
(
K · α + nj· + γ ·

∑
j′∈Ωj

nj′·

) , (5.6)

whereW is the size of the global codebook, mkw is the number of observations assigned

to activity k with value w, mk· is the total number of observations assigned to activity

k, njk is the number of observations assigned to activity k on trajectory j, and nj· is

the total number of observations on trajectory j. Then the conditional distribution

of zji given all the other activity labels z−ji is

p(zji = k|z−ji, {xji}, α, β, γ) ∝
β +m−jik,xji

W · β +m−jik,·
·

α + n−jijk + γ
∑

j′∈Ωj
nj′k

K · α + n−jij· + γ
∑

j′∈Ωj
nj′·

, (5.7)

where m−jikxji
, m−jik· , n−jijk , and n−jij· are the same statistics as mkxji

, mk·, njk, and nj·

except that they have excluded observation i on trajectory j. To have a large posterior

in Eq 5.7, the first term requires that the value of observation i should fit the model

of activity k, and the second term requires that its activity label is consistent with

those of observations on the same trajectory and neighboring trajectories, with γ

controlling the weight of neighboring trajectories. The models of activities are not

117



explicitly learnt during the Gibbs sampling procedure, but they can be estimated

from any single sample of {zji},

φ̂kw =
β +mkw

W · β +mk·
(5.8)

5.3.2 Labeling Trajectories into Activities

A trajectory is labeled as activity k, if most of its observations are assigned to k. The

activity label of an observation can be obtained during the Gibbs sampling procedure

based on Eq 5.7. However, there may be an over smoothing effect, since in some cases

most of the trajectories being the neighbors of trajectory j do not correspond to the

same object as j. In this work, we adopt an alternative labeling approach which

actually achieves better performance in experiments. As shown by the experimental

results in Section 5.4, the activity models learnt from Gibbs sampling are distinctive

enough to label trajectories. After the activity models have been learnt and fixed

at the end of Gibbs sampling, which uses Eq 5.7 and 5.8, we ignore the smoothness

constraint among trajectories and label the observation as

zji = arg max
k
φ̂kxji

(5.9)

This is also used to label an unseen new trajectory.

5.3.3 Detection of Abnormal Trajectories

When detecting abnormal trajectories, we also ignore the smoothness constraint and

fix the learnt activity models {φ̂k}. A trajectory is detected as an abnormality if it

does not fit any activity model well. Then abnormality detection is reduced to the

Latent Dirichlet Allocation model proposed in [18]. The likelihood of a trajectory j

under the learnt activity models {φ̂k} is

p(wj = {xji}|α, {φ̂k}) =

∫
p(θj|α)

 Nj∏
i=1

∑
zji

p(zji|θj)p(xji|φ̂zji
)

 , (5.10)
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where p(θj|α) is a Dirichlet distribution, and both p(zji|θj) and p(xji|φ̂zji
) are discrete

distributions. Since the computation of Eq 5.10 is intractable, in [18] a variational

approach was used to compute a lower bound of Eq 5.10. A trajectory is flagged as

abnormal if its lower bound is small.

5.3.4 Complexity

In order to simplify the notation, we assume that all the trajectories have the same

number of observations, which is a fixed constant. The spatial complexity of our

approach is O(WK) + O(MK), while that of similarity based approaches is at least

O(M2). The storage of similarity based approaches is unmanageable when M is

huge. W is the size of the codebook, K is the number of activity categories, and M

is the number of trajectories. In our approach, the time complexity of each Gibbs

sampling iteration is O(M), however it is difficult to provide theoretical analysis on

the convergence of Gibbs sampling. Similarity based approaches have to compute the

similarity of O(M2) pairs of trajectories and if spectral clustering is used, it is quite

challenging to compute the eigenvectors of a huge M ×M similarity matrix when M

is large. The time complexity of our approach to label a new trajectory into one of

the activity categories or detect a new trajectory as abnormal is O(K)1, while the

time complexity of similarity based approaches is at least O(M). So our approach is

much more efficient when the number of trajectories is huge.

5.4 Experimental Results

We evaluate our approach on two data sets, a parking lot scene and a street scene.

Each has four camera views. Each camera view is of size 320 × 240. To build the

codebook, each camera view is quantized into 64× 48 cells. Each cell is of size 5× 5.

The moving directions of moving pixels are quantized into four directions. There are

tracking errors in both of the two data sets. For example, a track may break into

1In abnormality detection, a variational approach [18] is used to compute a lower bound of the
data likelihood (Eq 5.10) in an iterative process. We assume the number of iterations is small.
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Camera 1 Camera 2 Camera 3 Camera 4

Topology

(a) Parking lot scene

Camera 1 Camera 2 Camera 3 Camera 4 Topology

(b) Street scene

Figure 5-3: Camera views and their topology in two data sets, a parking lot scene and
a street scene. When the topology of camera views is plotted, the fields of camera
views are represented by different colors: blue (camera 1), red (camera 2), green
(camera 3), yellow (camera 4). However, our approach does not require knowledge of
the topology of the cameras in advance.

fragments because of interactions among objects. In order to obtain more quantitative

evaluation, we simulate some trajectories whose activity categories are known as the

ground truth, and evaluate our approach on the simulated data.

5.4.1 Learning Activity Models and Clustering Trajectories

Parking Lot Scene

The parking lot data set has 22, 951 trajectories, collected from 10 hours during the

day time over 3 days. Inspection shows that it is a fairly busy scene. The topology of

its four camera views is shown in Figure 5-3 (a). The view of camera 1 has no overlap

with other camera views. However, the gap between the views of cameras 1 and 2 is

small. The views of cameras 2 and 3 have small overlap. The views of cameras 3 and

4 have large overlap. Our approach does not require the knowledge of the topology

of cameras. Fourteen different activities are learnt from this data set. They are

shown in Figure 5-4 - 5-7. For each activity, we plot its distribution over space and

moving directions in the four camera views and show the trajectories clustered into
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this activity. When visualizing activity models, moving directions are represented by

different colors, and the density of distributions over space and moving directions is

proportional to the brightness of colors (high brightness means high density). When

plotting trajectories, random colors are used to distinguish individual trajectories.

In Figure 5-4, activity 1 captures vehicles and pedestrians entering the parking lot.

It has a large extent in space and is observed by all four cameras. Activity 4 captures

vehicles and pedestrians leaving the parking lot. In activities 5 (Figure 5-5) and 7

(Figure 5-5), pedestrians are walking in the same direction but on different paths.

From the distributions of their models, it is observed that the two paths are side by

side but well separated in space. The path of activity 6 occupies almost the same

region as that of activity 5. However, pedestrians are moving in opposite directions

in these two activities, so the distributions of their models are plotted in different

colors. In activity 8 (Figure 5-5), pedestrians appear from behind the trees and a

building as observed by cameras 3 and 4 and disappear from a gate of the parking

lot in the view of camera 2.

Street Scene

The topology of the four cameras of the street scene is shown in Figure 5-3 (b).

Camera 1 has a distant view of the street. Camera 2 zooms in on the top-right part

in the view of camera 1. The view of camera 3 has overlap with the views of cameras

1 and 2. It extends the top-right part of the view in camera 1 along the street. The

view of camera 4 partially overlaps with the bottom region of the view in camera

1. There are 14, 985 trajectories in this data set, collected from 30 hours during day

time over four days. Sixteen activities are learnt in this scene. They are shown in

Figure 5-8 - 5-11.

Activity 1 (Figure 5-8) captures vehicles moving on the road. It is observed by all

of the four cameras. Vehicles first move from the top-right corner to the bottom-left

corner in the view of camera 4. Then they enter the bottom region in the view of

camera 1 and move upward. Some vehicles disappear at the exit points observed in

the views of cameras 2 and 3, and some move further beyond the view of camera 3.
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Activity 1 Activity 2

Activity 3 Activity 4

Figure 5-4: Distributions of activity models (1 − 4) and clusters of trajectories in a
parking lot scene. When plotting the distributions of activity models (in the four red
windows on the top), different colors are used to represent different moving directions:
→ (red), ← (cyan), ↑ (blue), ↓ (magenta). When plotting trajectories clustered into
different activities (in the four green windows at the bottom), random colors are used
to distinguish individual trajectories. 122



Activity 5 Activity 6

Activity 7 Activity 8

Figure 5-5: Distributions of activity models (5 − 8) and clusters of trajectories in a
parking lot scene.
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Activity 9 Activity 10

Activity 11 Activity 12

Figure 5-6: Distributions of activity models (9− 12) and clusters of trajectories in a
parking lot scene.
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Activity 13 Activity 14

Figure 5-7: Distributions of activity models (13 − 14) and clusters of trajectories in
a parking lot scene.
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Activity 1 Activity 2

Activity 3 Activity 4

Figure 5-8: Distributions of activity models (1− 4) and clusters of trajectories of the
street scene. The meaning of colors is the same as Figure 5-4.

126



Activity 5 Activity 6

Activity 7 Activity 8

Figure 5-9: Distributions of activity models (5− 8) and clusters of trajectories of the
street scene.
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Activity 9 Activity 10

Activity 11 Activity 12

Figure 5-10: Distributions of activity models (5 − 8) and clusters of trajectories of
the street scene.
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Activity 13 Activity 14

Activity 15 Activity 16

Figure 5-11: Distributions of activity models (13− 16) and clusters of trajectories of
the street scene.
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In activities 4 (Figure 5-8), 6 (Figure 5-9), and 7 (Figure 5-9), pedestrians first walk

along the sidewalk in the view of camera 1, and then cross the street as observed by

camera 4. The paths of activities 6 and 7 occupy similar regions in the view of camera

1, but their paths diverge in the view of camera 4. The paths of activities 3 and 4, 5

and 6 occupy the same regions but pedestrians are moving in opposite directions on

them.

As shown in Figure 5-4 - 5-11, the models of activities reveal some structures, such

as paths commonly taken by objects, and entrance and exit points in the scene. Some

paths are less related to the appearance of the scene. For example, some paths cross

the street outside the crosswalk in the street scene. Usually paths have spatial extents

in multiple camera views. These regions can be detected by simply thresholding the

density of the distributions of activities (φk in Eq 5.5). As observed, in these two very

large data sets there are many outlier trajectories, which do not fit any activity model

well, such as those crossing the grass fields in the parking lot scene. They are finally

assigned some activity at random or because part of the trajectory fits a particular

activity.

Negative log likelihood on testing data

Since clustering trajectories into activities is unsupervised learning, we compute the

negative log likelihood on testing data to evaluate its performance. This is the log

of perplexity in proportion to the number of bits required to encode the testing

data. It measures how unseen testing data fits the model learnt from training data.

Two hundred trajectories randomly sampled from each camera serve as the test set;

the remaining trajectories are used for training. To compare models with different

trajectory networks, the activity models {φk} are learnt with smoothness constraint

added by the trajectory network. Once {φk} are learnt and fixed, the negative log

likelihood is computed on the test data ignoring the smoothness constraint.

First, we compare our approach with two alternatives: (1) unconnected network;

(2) network with random correspondences2. The former completely abandons the

2First find correspondence candidates using Eq 5.1. Instead of fully connecting these candidates
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Table 5.1: Negative log likelihood under our approach and two alternative trajectory
networks.

Our approach Unconnected Random
Parking Lot 130.3 200.3 176.8
Street 85.7 228.8 135.2

Table 5.2: Negative log likelihood with models trained on a variable number of cam-
eras. The test data is 200 trajectories from a single camera. The activity models in
that camera are jointly learnt with different number of cameras (from 1 to 4). The
last column is a baseline model trained on data whose cluster labels of trajectories
are randomly assigned.

1 2 3 4 Random
Parking Lot 120.9 121.3 122.8 123.3 425
Street 40.0 41.5 44.9 42.2 168

smoothing constraint, so it cannot jointly model the distributions of a single activity

in multiple camera views. The latter simulates the case when correspondence is poor.

Both alternatives result in higher negative log likelihood as shown in Table 5.1.

We also compare against models learned with trajectories from a single to all of

the cameras. Models learned from a subset of the cameras will necessarily have lower

negative log likelihood for trajectories within those cameras; however, they are limited

to modeling joint activities only in a subset of the camera views. Our model captures

joint activities in all cameras simultaneously, and only exhibits a small increase in

the negative log likelihood as shown in Table 5.2.

Temporal Threshold

The temporal threshold T in Eq 5.1 determines the connectivity on the trajectory

network. If a camera view A is disjoint from other views and it takes objects more

than T seconds to cross the smallest gap between A and other views, then there is

no way to extend a path in A to other views. If T is large and the scene is busy, the

network will have too many “noisy” edges which connect two trajectories actually

as in our model, a trajectory is randomly connected with only one of the candidates in a different
camera view.

131



Figure 5-12: Activity models learnt in an unsupervised way help to solve the corre-
spondence problem. We pick a query trajectory from one of the camera views and
mark it using green color and a star. All the trajectories in other camera views
satisfying Eq 5.1 are plotted in random colors. The red color and red stars mark
the trajectories with the same activity category as the query trajectory. They are
likely to correspond to the same object. So the information on activity category can
dramatically reduce the search space when solving the correspondence problem.

corresponding to different objects. Under-smoothing could lead to the same activity

separated into different clusters, while over-smoothing could lead to different activities

joining into the same cluster. Empirically, we achieved similar results with a wide

range of values for T : for the street scene data set, good results are achieved when

T varies between 0 and 30 seconds; for the parking lot data set, the range of good

values of T is roughly from 3 to 15 seconds because the parking lot scene is busier

and the view of camera 1 is disjoint from other camera views. There is quantitative

evaluation of T on a simulated data set in Section 5.4.5.

5.4.2 Correspondence

Although our activity analysis approach does not require correspondence among tra-

jectories in different camera views, after the models of activities have been learnt in

an unsupervised way, they can help to solve the correspondence problem, since if two
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trajectories belong to the same activity and are connected by an edge, they are likely

to correspond to the same object. For example, see Figure 5-12. We pick a query

trajectory from one of the camera views and mark it using green color and a star.

All the trajectories in other camera views satisfying Eq 5.1 are plotted in random

colors. The red color and red stars mark the trajectories with the same activity cat-

egory as the query trajectory. They are likely to correspond to the same object. So

the information on activity category can dramatically reduce the search space when

solving the correspondence problem.

When there are more than two cameras views, the correspondence problem is NP

hard in the number of trajectories. Finding an approximate solution to this NP hard

problem is not the focus of this thesis. So we demonstrate the capability of our activity

models by doing correspondence among trajectories in two camera views. Given the

distances between trajectories, correspondence of trajectories in two cameras views

can be solved by the Hungarian algorithm [82] in polynomial time. The distance

D(a, b) between two trajectories a and b which are in different views is defined as

follows. Each point on a trajectory is assigned to one of the activities according to

Eq 5.9. Thus each trajectory j has a distribution pj over activities. If trajectories a

and b satisfy the temporal constraint Eq 5.1, then the distance between them is

D(a, b) =
K∑
k=1

pa(k)log

(
pa(k)

pb(k)

)
+

K∑
k=1

pb(k)log

(
pb(k)

pa(k)

)
, (5.11)

which is Jensen-Shannon divergence; otherwise D(a, b) =∞.

We manually label 200 trajectories observed in camera view 1 and 4 in the street

scene as ground truth. Our approaches achieves 93.2% correspondence accuracy on

this data set. As comparison, an appearance based correspondence approach proposed

in [148] only has an accuracy of 79.8% on this data set.

5.4.3 Abnormality Detection

In Figure 5-13 and 5-14 we plot some trajectories with low data likelihoods, which

have been normalized by the length of trajectories, and are detected as abnormality
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Figure 5-13: Some trajectories with low likelihoods from a parking lot scene. Random
colors are used to distinguish individual trajectories. In order to indicate the moving
direction of a trajectory, the starting and ending points of a trajectory is marked by
+ in red and cyan colors. Many of them are pedestrians walking on the grass field.

from the parking lot scene and the street scene. All of the trajectories are sorted

by abnormality and the top 30 are shown. Some very short trajectories most likely

caused by tracking errors are not shown here. In the parking lot scene, most of

the detected abnormal trajectories are pedestrians walking on the grass field. In

the street scene, abnormal activities include pedestrians walking on the grass fields,

pedestrians crossing the street, pedestrians walking in the middle of the street, and

vehicles moving along a wrong lane.

5.4.4 Computational Cost

Running on a computer with 2GHz CPU, it takes about two hours to learn the activity

models from 22, 951 trajectories of the parking lot data set and 40 minutes to learn

the activity models from 14, 985 trajectories from the street scene. When the activity

models are learnt and fixed, it takes less than 0.03 second to compute the likelihood

of a trajectory in order to detect abnormality, and it is much faster to label a new

trajectory as some activity category.
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Figure 5-14: Some trajectories with low likelihoods from a street scene. Random
colors are used to distinguish individual trajectories. In order to indicate the moving
direction of a trajectory, the starting and ending points of a trajectory is marked by
+ in red and cyan colors. Abnormal activities include pedestrians walking on the
grass fields, pedestrians crossing the street, pedestrians walking in the middle of the
street, and vehicles moving along a wrong lane.
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5.4.5 Simulated Data

In order to quantitatively evaluate our algorithm, we simulate data used as the ground

truth. As shown in Figure 5-15 (a), we choose a scene which covers almost the

same area of the street scene we used in Section 5.4.1. On a satellite image, we

manually draw the fields covered by four camera views. The fields are convex four-

sided polygons. These fields are converted to a standard camera view in size of

240 × 360 through projective transformation. The views observed by four cameras

are shown in Figure 5-15 (b). We manually draw the central lines of eight paths

on the satellite image (Figure 5-16 (a)) and simulate 8000 trajectories. We assume

trajectories have almost the same speed, since speed does not play an important role

in our algorithm. The starting points of trajectories are generated sequentially as

follows.

ts(i+1) = tsi + ∆ti+1, (5.12)

∆ti+1 ∼ Exponential(λ). (5.13)

tsi is the starting time of the ith trajectory. The temporal difference ∆ti+1 = ts(i+1)−

tsi between two successive trajectories is sampled from a exponential distribution with

mean λ. A trajectory i is randomly assigned to one of the eight predefined activities,

k. Trajectory i samples the location of its starting point from a Gaussian distribution

centered at the starting point of path k with variance σ1 (σ1 = 5 in this simulation).

Then i samples the remaining points sequentially with the velocity specified by path

k and being added to Gaussian noise with variance σ2 (σ = 2 in this simulation).

The simulated trajectories in the global views and each of the four camera views are

shown in Figure 5-16 (b) and (c).

Learning activity models and clustering trajectories

λ is the parameter controlling how busy the scene is. When λ is smaller, more objects

co-exist in the scene at the same time, which means that there are more edges on

the trajectory network and it is harder for our algorithm to jointly learn the models

of activities in different camera views. In our experiments, we change the value of

136



(a) (b)

Figure 5-15: (a) The global view of the scene where the data is simulated and the
fields covered by four camera views. The fields are marked by polygons. Colors are
used to distinguish cameras. (b) The views observed by cameras after projective
transformation.

(a) (b) (c)

Figure 5-16: (a) The central lines of eight paths manually drawn in the scene. They
are distinguished by colors: 1 (red), 2 (blue), 3 (dark green), 4 (magenta), 5 (black),
6 (cyan), 7 (yellow), and 8 (orange). (b) Trajectories generated from the eight paths.
(c) Trajectories observed in four cameras.
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Figure 5-17: The accuracies of classifying trajectories into different activities when λ
takes different values and T is fixed as 0. Our approach achieves good performance
when the scene is fairly busy.

λ from 5 seconds to 40 seconds. Based on the speed set for this experiment, the

time an object spent to pass through a path varies from 170 seconds to 410 seconds.

It depends on the length of the path. When λ takes values from 5 seconds to 40

seconds, the averaged number of objects co-existing in the scene varies from 57.5

to 7.1 (see Figure 5-17). After the trajectories are clustered by our algorithm, we

manually specify each of the eight clusters as an activity category, so each trajectory

is assigned an activity label by our algorithm. By comparing with the ground truth,

the accuracy of activity classification is computed. The accuracies when choosing

different λ values are shown Figure 5-17. The accuracy is high (> 97.8%) when

λ ≥ 30 seconds. The models of activities in a single global view and four camera

views learnt from the simulated data when λ = 30 seconds are shown in Figure 5-18

and 5-19. Notice that when λ = 30 seconds, if we randomly sample a time point,

there are around 9.6 objects co-existing in the scene on average. Each trajectory is

connected to 12.4 trajectories by edges on the network on average. When λ decreases,

some trajectories of different activities merge into one cluster. When λ = 5 seconds,

the scene is very busy (there are 57.5 objects co-existing in the scene on average),

all of the trajectories are merged into one cluster and our algorithm cannot learn

any useful activity models from this data set. Each trajectory is connected to 73.0

trajectories by edges on the network on average.
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We further look into the structure of the trajectory network constructed according

to the temporal extents of trajectories in the data set when λ = 30 seconds. Figure 5-

20 shows the number of edges which are related to different combinations of activities

and camera views according to the ground truth. The entry of (k1, k2) on the table

of camera views i1 and i2 are the number of edges connecting two trajectories, one

of which is in camera view i1 and belongs to activity k1, and the other of which is in

camera view i2 and belongs to activity k2. There are six 8 × 8 tables. As we men-

tioned earlier, the edges on the trajectory network indicate possible correspondence

candidates based on the temporal extents of trajectories. If the correspondence can

be solved just using temporal information, all of the nonzero numbers in the table

will be on the diagonal. Actually many off diagonal entries have nonzero numbers,

which indicate false correspondences, whose ambiguity cannot be solved by only using

temporal information. The ratio between the numbers of edges on diagonal and off

diagonal is 0.2732. This ratio can be understood as a signal-to-noise ratio in some

sense. There are many more false correspondences than true correspondences. How-

ever, these false correspondences almost uniformly distribute among different combi-

nations of activities and work as background noise. So if a trajectory of activity k1 is

connected with another trajectory of activity k2, k2 is more likely to be the same as k1

than any one of the other activties. When the scene is busier, the signal-to-noise ratio

is lower. When λ = 5, the ratio is 0.1692 and our algorithm fails. Notice that the

signal-to-noise ratio is 1/7 = 0.1429, if trajectories are randomly connected without

using any temporal information.

Figure 5-21 plots the classification accuracies when λ is fixed as 40 seconds and

the temporal threshold T in Eq 5.1 changes from 0 seconds to 300 seconds. The

results stay at a high accuracy when T varies in a large range between 0 second and

40 seconds. There is some interesting correlation between Figure 5-17 and Figure 5-

21. The performance of our algorithm drops if there are too many edges on the

trajectory network, which means that the “signal-to-noise” ratio is low. The number

of edges increases if λ decreases, which means that the scene is busier and there are

more objects co-existing in the scene, or T increases. From Figure 5-17, when T is

139



Activity 1 Activity 2 Activity 3 Activity 4

Activity 5 Activity 6 Activity 7 Activity 8

Figure 5-18: Distributions of activity models in a single global views learnt from the
simulated data. The meaning of colors is the same as Figure 5-4.

fixed at 0 second, λ = 30 seconds seems to be a turning point on the accuracy curve.

On average, there are around two more objects co-occurring when λ = 30 seconds

compared with λ = 40 seconds. From Figure 5-21, when λ is fixed at 40 seconds,

T = 40 seconds seems to be a turning point on the accuracy curve. Compared with

T = 0 second, the temporal window in Eq 5.1 extends for 2 × T = 80 seconds. In

80 seconds, there are around two more objects appearing on average when λ = 40

seconds. So there are approximately the same number of edges under two settings.

For (λ = 30, T = 0), on average each trajectory is connected to 12.4 trajectories by

edges on the network, and for (λ = 40, T = 40) this number is 13.0.

Using activity models to solve the correspondence problem

As mentioned in Section 5.4.2, the learnt activity models can help to solve the corre-

spondence problem. We evaluate the performance on simulated data.

We choose camera views 1 and 4 which are shown in Figure 5-15. 1000 trajecto-
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Activity 1 Activity 2

Activity 3 Activity 4

Activity 5 Activity 6

Activity 7 Activity 8

Figure 5-19: Distribution of activity models in four camera views learnt from the
simulated data. The meaning of colors is the same as Figure 5-4.
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Figure 5-20: The number of pairs of simulated trajectories, which are in different
camera views, belong to activities i and j (i, j = 1, . . . , 8), and whose temporal
extents are close. Here, λ = 6 and T = 0.

Figure 5-21: The accuracies of classifying trajectories into different activities when
the temporal threshold T change from 0 to 300 seconds. Here, λ = 40 seconds.
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Figure 5-22: Accuracies of correspondence on the simulated data. Solve the corre-
spondence problem of trajectories observed in the views of camera 1 and camera 4.
λ varies from 5 seconds to 40 seconds.

ries are simulated and they are not in the data set of 8000 trajectories used to learn

the activity models. 1000 trajectories are observed in camera view 1 and around

880 trajectories are observed in camera view 4. Some trajectories of activity 7 (see

Figure 5-16) observed in camera view 1 have no corresponding trajectories in cam-

era view 4. We simulate different sets of data by changing the parameter λ. The

accuracies of correspondence are plotted in Figure 5-22. It achieves very good corre-

spondence accuracy (higher than 97%) when λ ≥ 30. The accuracy drops when the

scene is busier because of two reasons: (1) the activity models are not well learnt;

(2) some objects of the same activity exist around the same time so they cannot be

distinguished by activity categories and temporal extents.

5.5 Discussion

The performance of our algorithm depends on the number of edges in the trajectory

network. If on average a trajectory is connected to a large number of other trajecto-

ries, which means that there are many false correspondence candidates, the models

of activities cannot be well learnt. The number of edges increases because of two

reasons: the scene is busy or the temporal threshold T is large. A large T allows a

large transition gap between camera views. So if a scene is busy, the transition gaps

between cameras has to be small, which limits the topology of camera views in some
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sense. In this work, only temporal information is used to build the trajectory network.

That is why the algorithm is sensitive to how busy the scene is. Some other features,

such as appearance, can also be used to eliminate some edges. If two objects observed

in different camera views are poorly matched by appearance, their trajectories are

not connected by an edge even though their temporal extents are close. Thus activity

models may be well learnt even in a busy scene. However, in this case the problem

of matching appearance across camera views has to be addressed. It is a direction of

our future study.

In our clustering method, the number of clusters K has to be manually chosen.

Some nonparametric models such as Hierarchical Dirichlet Processes [140] can learn

the number of clusters from data. They could be used to improve our clustering

method in the future work.
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Chapter 6

Tractography Segmentation

Having explored applications to activity analysis in far-field visual surveillance, we

will present how the technology of learning motion patterns can also be applied to

tractography segmentation from DT-MRI in this chapter. As explained in Section

1.2, DT-MRI is used to visualize and quantify the organization of white matter in

the human brain in vivo. Tractography connect local diffusion measurements into

global fiber trajectories. In neurological studies of white matter using tractography it

is often important to anatomically cluster fiber trajectories into meaningful bundles.

This technology is called tractography segmentation. Clustering fiber trajectories has

some similarity with clustering trajectories of objects in visual surveillance. So our

approach developed for trajectory analysis in a single camera view can also be applied

to tractography segmentation.

We use Dual-HDP to cluster fibers and learn the models of bundles from a training

set without supervision. A fiber is treated as a document. The points on a fiber

trajectory are treated as words. The 3D space of the brain is quantized into voxels. If

we need to analyze a new subject, we use Dynamic Dual-HDP to cluster fibers from

new subjects. The models of bundles learnt from training data are used as priors,

and models are adapted to new data. Optionally, if the symmetry across hemispheres

is considered, we can do bilateral clustering as in [107]. Let uji = (xji, yji, zji) be the

3D coordinate of point i on fiber j. Assuming that the brain is aligned and x = 0 is

the midsagittal plane, we set observed 3D coordinates as ~uji = (|xji|, yji, zji) ignoring
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(a) (b) (c)

(d) (e)

Figure 6-1: Compare the results of two clustering approaches with the ground truth
on a data set with 3, 152 fibers. Two views are plotted for each result. (a) Ground
truth. (b) Our approach. (c) Spectral clustering when the number of clusters is 6. (d)
Spectral clustering when number of clusters is 7. (e) The accuracies of completeness
and correctness of spectral clustering and our approach (HDPM).

the signs of x coordinates. Thus, learnt models of bundles are symmetric to the

midsagittal reflection.

6.1 Experimental Results

We evaluate our approach on multiple data sets. The spatial range of the whole

brain is roughly 200× 200× 200. The size of voxels is 11× 11× 11. We do bilateral

clustering. Running on a computer with 3GHz CPU, it takes around one minute to

cluster 1, 000 fibers and around four hours to cluster 60, 000 fibers.

The first data set has 3, 152 fibers with ground truth. They are manually labeled

to six anatomical structures. Figure 6-1 (a)-(d) plots the clustering results of our
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Figure 6-2: Compare results of our approach and the approach proposed in [107],
in which experts manually merged the clusters from spectral clustering to obtain
anatomical structures. (a) Clustering all the fibers using our approach. (b1)-(f1) show
the obtained anatomical structures by merging clusters from our approach (totally 27
clusters). (b2)-(f2) show the obtained anatomical structures by merging clusters from
spectral clustering (totally 200 clusters). Colors are used to distinguish clusters. (g)
plots the frequency of the numbers of clusters learnt by our approach when running
50 trials of Gibbs sampling with random initializations.

approach and a spectral clustering approach, compared with the ground truth. Colors

are used to distinguish clusters. Since clusters may be permuted in different results,

the meaning of colors is not consistent across different results. The spectral clustering

approach uses the mean of closest distances as the distance measure, which was found

the most effective in previous studies [101, 107]. The clustering result of our approach

is close to the ground truth. Although the correct number of clusters has been set, two

anatomical structures are merged in the result of the spectral clustering approach. A

few outlier fibers form a small cluster. As the number of clusters increases to 7, the

two anatomical structures still cannot be separated, instead, another structure splits

into two clusters.
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There are two important aspects, called correctness and completeness, to be con-

sidered when comparing a clustering result with the ground truth [101]. Correctness

implies that fibers of different anatomical structures are not clustered together. Com-

pleteness means that fibers of the same anatomical structures are clustered together.

Putting all the fibers into the same cluster results in 100% completeness and 0%

correctness. Putting every fiber into a singleton cluster results in 100% correctness

and 0% completeness. To measure correctness, we randomly sample 5, 000 pairs of

fibers which are in different anatomical structures according to the ground truth and

calculate the accuracy (rcorrect) that they are also in different clusters according to the

clustering result. To measure completeness, we randomly sample 5, 000 pairs of fibers

which are in the same anatomical structures and calculate the accuracy (rcomplete)

that they are also in the same clusters. raverage = (rcorrect + rcomplete)/2 is also com-

puted. The accuracies of our approach and spectral clustering are plotted in Figure

6-1 (e). As we increase the number of clusters from 2 to 25, the correctness of spectral

clustering increases and its completeness decreases. Its best raverage is found when

the number of clusters is five, which is close to the ground truth, and it is lower than

raverage of our approach. The correctness of our approach is almost consistently better

than spectral clustering until spectral clustering chooses more than 20 clusters. The

completeness of our approach is significantly better than spectral clustering when the

number of clusters of spectral clustering is larger than 5.

We compare our approach with the approach proposed in [107] on a larger data set

with 12, 420 fibers. In [107], fibers were first grouped into a large number of clusters

(200) and then experts merged these clusters to obtain anatomical structures. In this

data set there are 10 anatomical structures. Our approach clusters these fibers to 27

clusters. We also manually merge them to these 10 anatomical structures, however

its takes much less effort than [107] since the number of clusters is smaller. Figure

6-2 shows some of the anatomical structures obtained by the two approaches. 83.2%

fibers have consistent anatomical labels according to the two results. To evaluate how

our approach is sensitive to initialization, we run 50 trials of Gibbs sampling with

random initializations. Figure 6-2 (g) plots the frequency of the numbers of clusters
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Training data

Testing data

Figure 6-3: Cluster fibers across multiple subjects.

learnt from data.

Figure 6-3 shows the results of clustering fibers across multiple subjects. The

training data has 63, 751 fibers of two subjects. The models of bundles are learnt

from all these fibers. The testing data has 61, 572 fibers of two subjects.
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Chapter 7

Limitations and Future Work

Previous chapters show that our approaches achieve promising results on activity anal-

ysis in far-field visual surveillance and tractography segmentation in medical imaging.

This chapter discusses the limitations of this thesis work and future directions we are

interested in investigating.

7.1 Low-level features

For activity analysis in visual surveillance, we use the locations and moving directions

of motions as low-level visual features since they are more reliable and easier to

compute in far-field settings. While we have demonstrated the effectiveness of our

models in a variety of visual surveillance tasks, including more complicated features

is expected to further boost the discrimination power of our models. For example,

if a pedestrian is walking along the path of vehicles, just based on positions and

moving detections his motions cannot be distinguished from those of vehicles and

this activity will not be detected as abnormality. If a car drives extremely fast, it will

not be detected as abnormal either. Other features, such as appearance and speed,

are useful in these scenarios. However, the size of the codebook will increase as more

features are included and thus the computational cost will increase.
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7.2 Design of “Documents” for Activity Analysis

in Crowded Scenes

In Chapter 3, the information on the co-occurrence of moving pixels is critical for our

methods to separate atomic activities. One moving pixel tends to be labeled as the

same atomic activity as other moving pixels happening around the same time. This

information is encoded into the design of video clips as documents. We uniformly

divide the long video sequence into short video clips. This “hard” division may cause

some problems. The moving pixels happening in two successive frames might be

divided into two different documents. By intuition, one moving pixel should receive

more influence from those moving pixels closer in time. However, in our models,

moving pixels that fall into the same video clip are treated in the same way, no matter

how close they are. In [149], we proposed a model allowing random assignment of

words to documents according to some prior which encodes temporal information. If

two moving pixels are temporally closer in space, they have a higher probability to

be assigned to the same documents.

7.3 Temporal Logic

In this work, we do not model activities, interactions and global behaviors with com-

plicated temporal logic. However the atomic activities and global behaviors learnt by

our framework can be used as units to model more complicated activities, interac-

tions and global behaviors considering temporal logic using HMM [108, 19], dynamic

Bayesian network [62], Petri nets [47] and temporal interval logic [3].

7.4 Jointly Model Activities and Appearance in

Multiple Camera Views

As explain in Chapter 5, to the best of our knowledge, we are the first to use activity

models to do correspondence. Actually there are some potential benefits if we jointly
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model activities and appearance under a hierarchical Bayesian model. Under our

current model, the trajectories on the network are connected simply based on tem-

poral information. If on average a trajectory is connected to a large number of other

trajectories, which means that there are many false correspondence candidates, the

models of activities cannot be well learnt. Some edges on the trajectory network can

be removed through matching the appearance of objects. This can make the network

sparser and learning easier. On the other hand, objects have different appearance in

different camera views. We want to learn an appearance transform function across

camera views [65]. Activity models can provide some training examples to learn this

transform function through solving the correspondence problem. It will be very inter-

esting to jointly model activities and the appearance transformation functions under

a more complicated hierarchical Bayesian model.

7.5 Guide Tractography Segmentation

Our tractography segmentation approach is unsupervised. However, our Bayesian

models are very flexible to include knowledge from experts as priors. In future work,

we plan to incorporate anatomical information in the model to guide tractography seg-

mentation. For example, experts first label some regions as initialization of anatomical

structures and then our Bayesian models expand the regions through clustering fiber

trajectories.

7.6 Inference

In this work, Gibbs sampling is used to do inference on hierarchical Bayesian models.

Although the efficiency of Gibbs sampling has been improved by integrating out

some hidden variables, the inference is still slow for some applications and it lacks

theoretical justification on the convergence of Gibbs sampling. For example, under

Dual-HDP it takes 12 hours to cluster moving pixels and video clips within an 1.5

hours video sequence and it takes 6 hours to cluster 40, 453 trajectories of objects
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collected over one week. Recently some more efficient inference approaches, such as

variational inference [17], and parallel sampling [4], have been proposed and applied

to Dirichlet process mixture models and HDP. In the future work, we will study how

to improve the inference of our models using these schemes.
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Chapter 8

Conclusion

In this thesis, we use hierarchical Bayesian models to learn motion patterns in visual

surveillance and medical imaging based on the co-occurrence of feature values. Differ-

ent approaches are proposed for activity analysis under different scenarios. It depends

on the number of camera views and crowdedness of scenes. Some technology of learn-

ing motion patterns developed in visual surveillance can also be used to tractography

segmentation which clusters fibers generated from DT-MRI into anatomically mean-

ingful bundles. Three hierarchical Bayesian models, Dual-HDP, dynamic Dual-HDP

and a trajectory network based hierarchical Bayesian model, are proposed for activity

analysis in crowded scenes without tracking objects, trajectory analysis in a single

camera view and in multiple camera views, and tractography segmentation. Dual-

HDP is used to jointly model atomic activities and global behaviors in crowded scenes,

to cluster trajectories in a single camera view, and to cluster fibers in tractography

segmentation. Dynamic Dual-HDP is used to update the models of activities over

time and cluster fibers of new subjects. The trajectory network based hierarchical

Bayesian model is used to cluster trajectories in multiple camera views.

Under a Bayesian framework, activity analysis and tractography segmentation

tasks are formulated in a principled way. While many existing activity analysis ap-

proaches relied on predefined rules or simple probabilistic models and had difficulty

modeling complicated activities, our hierarchical Bayesian models structure depen-

dency among a large number of variables to model complicated activities in crowded
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and sparse scenes with a single camera view and with multiple camera views. Various

knowledge and constraints can be nicely added into a Bayesian framework as priors.

As examples, by adding a smoothness constraint as a prior, our model can cluster

trajectories in multiple cameras. Using activities models learned from historical data

as priors, we can dynamically update the models of activities over time. These tasks

are difficult to nonBayesian approaches. Our nonparametric Bayesian models auto-

matically learn the numbers of clusters of moving pixels, video clips and trajectories

driven by data instead of manually specifying them as many existing approaches did.

All our approaches are unsupervised requiring less human labeling effort.

If the scene is crowded and it is difficult to track objects, we model activities

directly from moving pixels without tracking objects. Atomic activities and com-

plicated global behaviors are jointly modeled at different hierarchical levels using

Dual-HDP based on the temporal co-occurrence of feature values. It has a better

performance than modeling atomic activities and global behaviors separately or se-

quentially. Co-occurring activities can be separated without supervision. Moving

pixels are clustered into atomic activities and a long video sequence is segmented

into different types of global behaviors. With atomic activities as middle-level rep-

resentations, we can query interactions of interest between object in an easy way.

Abnormal video clips and moving pixels are detected with probabilistic explanation.

This approach has the limitation that it does not work well if all the video clips have

similar combinations of atomic activities especially when the monitored area is large

and activities in the scene have more temporal overlap.

If the scene is sparse, we first track objects and then cluster trajectories of objects

into activity categories and learn the models of paths using Dual-HDP based on the

identity co-occurrence of feature values. Daul-HDP has low space complexity than

many distance based trajectory clustering methods since it does not require computing

the similarity matrix. The time complexity of our approach can be further improved

by using variational inference and parallel computing in the future work. It is more

robust to tracking errors. Dynamic Dual-HDP uses the models learnt from historical

data as priors to update the models of activities over time. It can better explain
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activities at different time. It clusters trajectories incrementally and does not have to

keep old data in the memory. So it has lower space and time complexities than Dual-

HDP. It property is very important if we need to cluster a huge visual surveillance

data set collected over months or even years. These approaches does not work well

when the scene are crowded with many occlusions and the identity co-occurrence

information cannot be reliably obtained.

In order to monitor activity in a large area, video streams from multiple camera

views have to be used. By adding a smoothness constraint on the distributions

of trajectories over activities as a prior, our hierarchical Bayesian model clusters

trajectories in multiple camera views without tracking objects across camera views.

It uses both temporal co-occurrence and identity co-occurrence of feature values. It

does not require inference on the topology of camera views and does not require

solving the challenging correspondence problems. It assumes that the topology of

camera views is arbitrary. The camera views can have overlap or no overlap. After

the models of activities have been learned without supervision, they can be used to

match trajectories of the same object observed in different camera views.

Some of these techniques developed in visual surveillance can be applied to med-

ical imaging where some issues related to learning motion patterns arise. As an

example, Dual-HDP and dynamic Dual-HDP are used to cluster fiber trajectories in

tractography segmentation. Under dynamic Dual-HDP, models of bundles learned

from training data are used as priors to cluster fibers from new subjects. Compar-

ing with existing approaches, our approach has advantages that it can cluster larger

scale data sets without subsampling them and automatically decides that number of

bundles.

Our approaches are evaluated on multiple large scale visual surveillance and med-

ical imaging data sets. They achieve promising results compared with existing ap-

proaches.

These hierarchical Bayesian models exploring co-occurrence of low-level features

at multiple levels can also be applied to other fields such as language processing,

object recognition and scene categorization.
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Appendix A

Gibbs Sampling for Dual-HDP

In the appendix, we will explain how to do Gibbs sampling in the Dual-HDP model

as described in Section 3.2.6. The sampling procedure is implemented in two steps.

In the first step, given the cluster assignment {cj} of documents is fixed, we sample

the word topic assignment z, mixtures π0 and πc on topics. It follows the Chinese

Restaurant Process (CRP) Gibbs sampling scheme as described in [140], but adding

more hierarchical levels. In CPR, restaurants are documents, customers are words,

and dishes are topics. All the restaurants share a common menu. The process can be

briefly described as following (see more details in [140]).

• When a customer i comes to restaurant j, he sits at one of the existing tables

t, and eats the dishes served on table t, or takes a new table tnew.

• If a new table tnew is added to restaurant j, it orders a dish from the menu.

Since we are modeling clusters of documents, we introduce “big restaurants”,

which are clusters of documents. The label of document cluster cj associates restau-

rant j to big restaurant cj. The CRP is modified as following.

• If a new table tnew needs to be added in restaurant j, we go to the big restaurant

cj and choose one of the existing big tables r in cj. tnew is associated with r,

and serves the same dish as r.
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• Alternatively, the new table tnew may take a new big table rnew in the big

restaurant cj. If that happens, rnew orders a dish from the menu. This dish will

be served on both rnew and tnew.

Following this modified CRP, given {cj}, k, π0 and {πc} can be sampled. It is a

straightforward extension of the sampling scheme in [140] to more hierarchical levels.

In order to sample {cj} and generate the clusters of documents, given z, π0, and

{πc}, we add an extra process.

• When a new restaurant j is built, it needs to be associated with one of the

existing big restaurants or a new big restaurant needs to be built and associated

with j. It is assumed that we already know how many tables in restaurant j

and dishes served at every table.

Let mt
jk be the number of tables in restaurant j serving dish z and mt

j· be the

number of tables in restaurant j. To sample cj, we need to compute the posterior,

p(cj|{mt
jk}, c−j, {πc}, π0) ∝ p({mt

jk}|cj, c−j, {πc}, π0)p(cj|c−j, {πc}, π0) (A.1)

where c−j is the cluster labels of documents excluding document j. cj could be one

of the existing clusters generated at the current stage, i.e. cj ∈ cold. In this case,

p(mt
jk|cj, c−j, {πc}, π0) = p(mt

jk|πcj ) =

(
mt

j·

mt
j1 · · ·mt

jK

)∏K
k=1 π

mt
jk

cjk
(A.2)

where K is the number of word topics allocated at the current stage. And,

p(cj|{πc}, c−j, π0) =
ncj

M − 1 + µ
(A.3)

where ncj is the number of documents assigned to cluster cj.

cj could also be a new cluster, i.e. cj = cnew. In this case,
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p({mt
jk}|cj = cnew, c−j, {πc}, π0) =

∫
p({mt

jk}|πnew)p(πnew|π0)dππnew

=

(
mt

j·

mt
j1 · · ·mt

jK

)∫ K∏
k=1

π
mt

jk

new,k

Γ(π0u +
∑K

k=1 π0k)

π0u

∏K
k=1 π0k

ππ0,u−1
new,u

K∏
k=1

π
π0k−1

new,kdπnew

=

(
mt

j·

mt
j1 · · ·mt

jK

)
Γ(α)∏K

k=1 Γ(α · π0k)
·
∏K

k=1 Γ(α · π0k +mt
jk)

Γ(α +mt
j·)

(A.4)

And,

p(cj = cnew|{πc}, c−j, π0) =
µ

M − 1 + µ
(A.5)

So we have,

p(cj = c|{mt
jk}, c−j, {πl}, π0)

∝ uc
u· + µ

K∏
k=1

π
mt

jk

ck , c ∈ cold

µ

u· + µ

Γ(α)∏K
k=1 Γ(α · π0k)

·
∏K

k=1 Γ(α · π0k +mt
jk)

Γ(α +mt
j·)

, c = cnew (A.6)
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