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Abstract. In this paper, we propose a deep Convolutional Neural Net-
work (CNN) for counting the number of people across a line-of-interest
(LOI) in surveillance videos. It is a challenging problem and has many
potential applications. Observing the limitations of temporal slices used
by state-of-the-art LOI crowd counting methods, our proposed CNN di-
rectly estimates the crowd counts with pairs of video frames as inputs
and is trained with pixel-level supervision maps. Such rich supervision
information helps our CNN learn more discriminative feature represen-
tations. A two-phase training scheme is adopted, which decomposes the
original counting problem into two easier sub-problems, estimating crowd
density map and estimating crowd velocity map. Learning to solve the
sub-problems provides a good initial point for our CNN model, which is
then fine-tuned to solve the original counting problem. A new dataset
with pedestrian trajectory annotations is introduced for evaluating LOI
crowd counting methods and has more annotations than any existing
one. Our extensive experiments show that our proposed method is ro-
bust to variations of crowd density, crowd velocity, and directions of the
LOI, and outperforms state-of-the-art LOI counting methods.
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1 Introduction

Automatically counting crowds in surveillance scenes with large population den-
sity, such as train stations, shopping malls; and tourist attractions, has escalating
demands in intelligent surveillance industry. It has drawn increasing attention
from the computer vision community in recent years and can provide vital in-
formation for the management departments of public spaces to make crucial
decisions. Nearly all major stampedes resulted from the failure of controlling
crowd density and traffic flow in public spaces. Such problems could be effectively
mitigated by intelligent surveillance systems with crowd counting capabilities.
Whenever the crowd number of a public space exceeds an alarming threshold,
the management departments can be automatically alerted to control crowd
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Fig.1. (a) The problem of counting people crossing a line-of-interest (red) in both
directions. (b) Temporal slices generated from (a), which are used by state-of-the-
art LOI counting methods. (Row 1) When the scene is not crowded and pedestrians’
walking speed is not too slow, people could be distinguished from the temporal slices.
(Row 2) The temporal slices are heavily degenerated when the scenes are very crowded.
(c) Our proposed Convolutional Neural Network (CNN) is trained to solve the crossing-
line people counting problem with rich pixel-level supervision maps in two phases. In
the first phase, the CNN learns to predict the crowd density map and crowd velocity
map. In the second phase, the CNN learns to predict crowd counting map in an end-
to-end manner.

density by either opening new exits, closing entrances, or sending extra staffs to
guide the crowd traffic flows. However, the crowd counting problem is challeng-
ing, especially for scenes with high crowd density and low viewing angles. The
pedestrians might heavily occlude each other, which prevent pedestrian tracking
methods from being used to solve this problem.

The existing crowd counting algorithms either count the number of people
in a region-of-interest (ROI) or count the number of people crossing a line-of-
interest (LOI) (see Fig. 1(a)). Although most algorithms focus on the former ROI
counting problem, solving the latter LOI counting problem has more practical
uses. For instance, in order to count the number of people in a public space
by ROI counting algorithms, all locations of the space should be monitored by
cameras, which might not be practical for places like large squares and metro
stations. In the contrary, the LOI counting systems only need to monitor the
entrances and exits of a space. By counting the number of people across the lines
of interest, the total number of people within the space can be easily inferred.

State-of-the-art methods for solving the crossing-line crowd counting problem
require generating 2D temporal slices by temporally concatenating video frame
lines at the LOI (see Fig. 1(b) for examples). The number of people across
the line is then estimated based on the temporal slices. When the scene is not
crowded and pedestrians walks in normal speed (Fig. 1(b, row 1)), people can
be well recognized in the temporal slices. However, we observe that temporal
slices are not robust to scenes with high crowd density, slow walking speed, and
low camera viewing angles. In Fig. 1(b, row2), the temporal slice shows excess
jitters and people in it are no longer recognizable.

In this paper, we propose a deep Convolutional Neural Network (CNN) for
counting the number of people across the line of interest by directly using video
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frames as input. Deep learning models usually learn better if rich supervision in-
formation is provided. We therefore generate rich pixel-level supervision from an-
notated pedestrian trajectories for training our CNN. Three types of supervision
maps are generated, crowd density maps, crowd velocity maps, and crossing-line
crowd counting maps. Based on the new learning objectives, a two-phase train-
ing scheme is designed (Fig. 1(c)). Our network is first trained to simultaneously
estimate the crowd density map and crowd velocity map, where the two tasks
share the same bottom neural layers. As shown by our experiments, sharing the
same bottom neural layers helps learn more effective feature representations for
each of the tasks. The estimated crowd density and crowd velocity maps are
then elementwisely multiplied to generate the crowd counting maps and trained
with only the supervision crowd counting maps in an end-to-end manner.

In comparison, existing methods utilize only the number of crossing-line peo-
ple as ground truth for training. Much spatial information is ignored and the
mapping from features to final counts is treated as a black box. In contrast,
the three types of our supervision are all of pixel-level and help better train the
deep model. Each of our two learning phases has specific physical meanings: the
first step is to learn pixel-level crowd density and crowd velocity, and the sec-
ond step is to learn pixel-level crossing-line crowd counts. Such a strategy can
be viewed as decomposing the original crowd counting problem to two easier
sub-problems and optimizing our model to solve them first. This strategy avoids
directly recovering complex and highly non-linear relations between video frames
and final per-pixel crowd counts. In addition, by learning to estimate pixel-level
crossing-line counting maps for different scenes, our proposed model is robust to
the variations of scene appearances.

The contribution of this paper is three-fold. 1) Observing the limitations
of temporal slices used by state-of-the-art methods, we propose training a CNN
model that directly estimates crossing-line crowd counts from video frames. Since
CNN models generally learns better with rich supervision signals, pixel-level su-
pervision maps are designed for training. 2) A two-phase optimization scheme
is proposed to first train the CNN model on the two easier sub-problems of
crowd density estimation and crowd velocity estimation. It is then optimized to
solve crossing-line crowd counting task based on the results of the sub-problems
in an end-to-end manner. 3) We contribute a large-scale dataset for evaluat-
ing crossing-line crowd counting algorithms, which includes 5 different scenes,
3,100 annotated frames and 5,900 annotated pedestrians. Compared with exist-
ing datasets, our dataset has more scenes and provides trajectory annotations
for each pedestrian instead of crowd counts of fixed lines. Counting ground truth
at different LOIs could be easily obtained for our dataset.

2 Related work

The learning-based crowd counting algorithms can be generally categorized into
two types: the first type of methods focus on counting the number of people in
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a region-of-interest (ROI), and the second type of methods learn to count the
number of people across a line-of-interest (LOT).

ROI Counting. Most existing ROI counting methods extract features from
the ROI and learn a regression function to predict the number of people within
it. Chan et al. [3] identified pedestrian foreground by motion segmentation. A
Gaussian process regression function is trained to predict the counts based on the
shape, edge, and texture features of the pedestrian foreground. In [4], the same
features as those in [3] were used, but a Bayesian Poisson regression function
is trained to predict the crowd counts. In [13], linear regression functions are
learned to predict the number of people in small blobs with low-level features,
and the overall number is obtained by summing up the numbers of all small
blobs.

There were also methods that learn to estimate pixel-level density maps for
a ROI instead of just predicting a single count number. The counting number
could be obtained by integrating over the estimated density values in the ROI.
Lempitsky and Zisserman [3] proposed to generate ground truth density maps
with Gaussian functions and learn linear regression functions for estimating per-
pixel density with a specially designed loss function. Zhang et al. [18] proposed
a CNN for cross-scene crowd counting, which is trained alternatively to learn
the crowd density map and the crowd counting numbers.

LOI counting. To the best of our knowledge, all state-of-the-art methods [7],
[10], [2] only use the numbers of crossing-line pedestrians as supervision. Where
and how fast a pedestrian has crossed the LOI are ignored. In addition, all the
methods require to create temporal slices before counting, which are created by
temporally concatenating the intensity values on the LOI. The limitations of
such temporal slices are illustrated in Fig. 1(b). When creating temporal slices,
the flow mosaicking method [5] assigns different thickness at different locations
of the LOI based on the traffic flow velocity. Pedestrians with different velocities
could be “normalized” to generate images of similar appearance. A quadratic
regression function is then trained to predict the final crossing-line counts. How-
ever, the major limitation of flow mosaicking is that the flow velocity at LOI
might not be reliably obtained for complex scenes. Ma and Chan [10] proposed
an integer programming method for estimating crossing-line crowd counts. Lo-
cal HOG features are extracted from moving foreground regions of the temporal
slices to train a Gaussian process regression function. In [2], deep learning mod-
els are trained for the LOI counting problem. Given the image temporal slices
and optical flow temporal slices, three CNNs are trained to estimate the num-
ber of people in a temporal slice, the type of a temporal slice, and the ratio of
the numbers of people crossing the LOI in the two directions, respectively. By
combining the results of the three CNNs, the number of pedestrians across the
LOI in both directions can be obtained.

Multi-person tracking. The crowd counting problem might also be solved
by multi-person tracking methods, such as [1], [12], [11], if the scene is not
crowded and people do not heavily occlude each other. The number of people
across a LOI in both directions can be easily obtained by counting the number of
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pedestrian trajectories that crossed the LOI. However, such pedestrian tracking
methods do not work well when the scene is crowded. Pedestrian-to-pedestrian
occlusions severely affected the tracking performance and led to poor counting
results.

Deep learning. Deep convolutional neural networks have achieved great
success on image classification [14] and object detection [15]. For surveillance
applications, various deep learning methods were proposed for tasks including
person re-identification [9], pedestrian detection [16] and object tracking [17].
The only deep learning method for LOI crowd counting [2] is based on temporal
slices and is therefore unreliable when the scene is too crowded or the camera
has a too low viewing angle. The FlowNet [6] was proposed to estimate optical
flow from pairs of images, which is used as the base model for our proposed CNN
model.

3 Method

3.1 Pixel-level supervision maps

Deep Convolutional Neural Networks (CNN) learn more discriminative features
when rich supervision information is provided. For instance, pre-training a CNN
for 1,000-class image classification on the ImageNet dataset is able to boost the
performance of 200-class object detection task by a large margin [7].

Unlike exiting LOI counting methods that utilize single crossing-line counting
numbers on an LOI as training supervision signals, the learning goal for our
CNN is designed as pixel-level crossing-line crowd counting map C; at each time
t, where each location of the map records a two-dimensional vector representing
how many people pass this location along x and y directions respectively between
t and t+ 1 (see Fig. 2(b) for illustration). Note that the values of each entry are
generally smaller than 1, which denotes that a fraction of a person have passed
this location at time ¢. When an LOI is provided, the crossing-line crowd counts
at each time t could be obtained by first transforming each location’s z- and y-
directional crowd counts to the normal direction of the LOI and then integrating
the normalized values on the LOI as the final count.

However, raw crowd counting map directly obtained from pedestrian annota-
tions (Fig. 2(a)) would not be suitable for training the CNN because of its high
annotation sparsity. We therefore model the crossing-line crowd counting map
as elementwise multiplication of a crowd density map D; and a crowd velocity
map V4, i.e. Cy = D; ® V;. This decomposition assumes that pedestrians’ veloc-
ity and density on the LOI remain constant between time ¢ and ¢ 4 1. Since our
proposed algorithm works on videos of frame rate greater than 25 fps, the time
interval is small enough for generating accurate crowd counting map with such
crowd density and crowd velocity maps.

Given dot pedestrian annotations P; = {P},--- , P} at time t (Fig. 2(a)),
the crowd density map D; (Fig. 2(c)) can be generated by applying a kernel
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(a) Dot annotations (b) Counting map  (c) Density map (d) Velocity map

Fig. 2. (a) Dot annotations on pedestrians. (b) Illustration of the crossing-line crowd
counting map, where each entry stores how many people pass this location along x and
y directions. (c) The supervision crowd density map generated based on (a). Hotter
color denotes higher crowd density. (d) The supervision crowd velocity map generated
based on (a).

density estimation function based on the annotated pedestrian locations as

Dt(p) = Z N(pv Pa O—%‘)a (1)

PcP,

where Dy(p) denotes the density value at location p, N (p; P, U%,) denotes a nor-
malized 2D Gaussian kernel evaluated at p, with a mean value at location P and
a bandwidth op. For each scene, a perspective map could be obtained following
[3]. The bandwidth op is perspectively normalized based on the dot location
P to represent objects at different distances to the camera. The sum of such
density values in any region would be the same as counting the crowd within it.
The generated crowd density map is similar to those in [3], [18].

To generate the crowd velocity maps V; (Fig. 2(d)) from dot pedestrian an-
notations P; and P;_1, we first calculate the z- and y-displacements between
corresponding pedestrian annotations v}’ "= P{ — P} . The crowd velocity map
V; is then created as

Vilp) = > K(p; Pyrp) -/, (2)
PeP,

where V;(p) stores the crowd velocity at location p along z and y directions.
K(p; P,rp) is a disk-shape masking function with a perspectively normalized
radius threshold rp that assigns each dot annotation’s displacement values vf

to the small neighborhood around it.
K(piPrp)=1(p<|P—rp|?), (3)

where 1(-) represents the indicator function. Note that our crowd velocity map
is different from the general optical flow maps and only has non-zero flow values
at pedestrian locations.

To obtain a crowd counting map for training our CNN, one could first gener-
ate the crowd density map and crowd velocity map as (2) and (3) based on the
ground truth dot annotations. The crowd counting map can then be obtained
as the elementwise multiplication of the density and velocity maps. In Section



Crossing-line Crowd Counting with Two-phase Deep Neural Networks 7

counting VRS
map loss

deconva,
128x4x4.

maxpool1 | , | convz | | |maxpooiz| | conva | | | maxpooi3| , |conva 1| | [conva 2| | [maxpoola| | |convs 1| | fconvs 2| | |maxpoois| |, |conve 1
2x2+2(s) [ |128x5x5 [ | 2x2+2(5) [ 256x5%5 [ ] 2x2+2(s) || 26x3x3[ | s12x3x3 [ | 2x2+2(5) [ 512x3x3 [ |512x3x3[ | 2x2+2(s) [ [512x3:3

Fig. 3. Illustration of our proposed CNN model for crossing-line crowd counting.
“conv”, “maxpool”, “deconv”, and “concat” represent convolution, max pooling, de-
convolutional, and channel-wise concatenation layers, respectively. “c x k x k + m(s)”
denotes that a layer has c kernels of size k x k with a stride m. The output of each
convolution layer is activated by a Rectified Linear Unit (ReLU) function. In the first
phase, the learning supervisions for our CNN model are the crowd density map and
crowd velocity map introduced in Section 3.1. In the second phase, the learning supervi-
sion is the final crowd counting map. The dashed arrows represent training supervision
signals.

deconve,
512x4x4.
2

4.3, we show that the supervision counting map obtained in this way is accu-
rate. Therefore, we choose to use those pixel-level maps as supervision signals
for training our CNN model.

3.2 Deep Convolutional Neural Network for LOI crowd counting

CNN models have shown great capabilities on learning discriminative feature
representations for various computer vision tasks. An overview of our LOI crowd
counting CNN model is shown in Fig. 3, which consists of convolutional layers,
max pooling layers and deconvolutional layers. The network structure is similar
to that of the FlowNetSimple network in [6] but with max pooling layers. The
input of the CNN is pairs of consecutive video frames to take necessary temporal
information into account. As shown by the lower part of Fig. 3, the bottom layers
of our CNN are conventional CNN layers that extract spatio-temporal visual
features for describing the contents of the pair of frames. Since the max pooling
layers decrease spatial resolutions of the input, learnable deconvolutional layers
“deconv4”-“deconv6” are added to “upsample” the feature maps of decreased
resolutions. In the topmost part of the network, a convolution layer with 1 x 1
kernels (“conv_0”) act as a regressor to output the estimated density, flow, or
counting values. Similar to the GoogLeNet [15], two loss short-cuts are added
to “convb_s” and “conv6_s” for directly providing training supervision to lower
layers. The upper part of Fig. 3 shows the proposed learning supervision of two
different training phases, which will be introduced in the following paragraphs.

We propose to train the CNN in two phases. In the first training phase, the
network is trained to predict the crowd density map D; and the crowd veloc-
ity map V; simultaneously. These two tasks are easier than directly predicting



8 Zhuoyi Zhao, Hongsheng Li, Rui Zhao, Xiaogang Wang

Density and velocity Density Velocity
perfectly match estimation  estimation
o
(a) (b)

Fig. 4. (a) In an ideal case, the estimated crowd density and crowd velocity should be
spatially matched. (d) Illustration of spatial mismatching between the estimated crowd
density region (red) and estimated crowd velocity region (yellow).

crossing-line crowd counting map and can therefore be better trained. The loss
functions for the two tasks are designed as the Lo distances between the es-
timated crowd density map D; and crowd velocity map V;, and their ground
truth,

Lo =Y [Do) - Do) @

L =Y [ - v o)

and the overall loss function for the first phase is then defined as
Lyirst = Lp + Ly. (6)

The joint learning of the crowd density and crowd velocity maps is illustrated
by the red and blue boxes in Fig. 3. Because learning the two maps are related
tasks, we let them share the feature representations by the same bottom layers.
By simultaneously learning the two related task, each of the two tasks can be
better trained with much fewer parameters (see experiments in Section 4.4).

Although we could directly multiply the estimated crowd density and crowd
velocity map to predict the crossing-line crowd counting map, there might be
spatial mis-matches between the two maps. The multiplication of them might
deviate from the desired counting map. Illustration of density and velocity mis-
matching is shown in Fig. 4. The reason is that there is no term to regularize
the interactions between the two maps during training. In addition, we observe
that the crowd counting map instead of the density and velocity maps is closer
to our true objectives.

We therefore further fine-tune the trained network in the second phase with
supervision of the crossing-line crowd counting map Cy, which is generated by
multiplying the supervision maps of crowd density and crowd velocity respec-
tively. As shown by the “®” symbol in Fig. 3, the estimated density map and
velocity map are multiplied to predict the crowd counting map (illustrated as
the red box in Fig. 3), while the supervision signals used in the first phase are
discarded. The network is then fine-tuned in an end-to-end manner by minimiz-
ing the Ly distance between the estimated crossing-line crowd counting map CY
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and the corresponding ground truth Cy,
~ 2
Lsecond = Z Hct(p) - Ct<p)H . (7)
P

The proposed two-phase training scheme can be viewed as first dividing
the original counting problem into two easier sub-problems with clear semantic
meanings, i.e. estimating crowd density and estimating crowd velocity. Although
there is no way to regularize the pairwise relations between the estimated den-
sity map and velocity map in the first phase, the trained network could serve
as a good initial point for training towards the crowd counting map in the sec-
ond phase, which is our desired results. In the second phase, the two maps are
elementwisely multiplied and the adaptation between them are automatically
optimized. Our experiments in Section 4.4 demonstrate that such a two-phase
training strategy outperform directly learning the counting map in an end-to-end
manner.

3.3 From crowd counting map to LOI counts

After our CNN model is trained, an instantaneous crossing-line crowd counting
map can be predicted for every video frame by the trained counting CNN, where
each entry records the estimated numbers of people passing this location along
x and y directions respectively. Given an LOI, the z and y directional counting
values on the LOI could be projected to its normal direction. Integrating over all
the projected counting values on the LOI locations p leads to the instantaneous
LOI counting numbers c; ¢+ and ¢y in the two directions at time ¢,

= D\ Cup)? + Coylp)? - cosBy), (8)

{plcos(6,) >0}

ei= Y JCx)? + Coy(p)? - (— cos(By)), (9)

{plcos(6,)<0}

where 0, is the angle between the normal direction of the LOI and the crowd
counting vector (Ci . (p), Cty(p)) at each location p. For certain period of time
T, we can then integrate the instantaneous counting numbers to generate the
final crossing line counts within the period as,

c] = Z 14, C2= Z Ca - (10)

{t|teT} {t|teT}

4 Experiments

4.1 Datasets

We contribute a new dataset for evaluating LOI crowd counting algorithms,
which includes 5 different scenes, 5,900 annotated pedestrians (each one with an
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Dataset Proposed |[UCSD [3] LHI [5] TS-CNN* [2]
# of scenes 5 1 5 7
Data type video video video temporal slices
Annotation type|trajectory|trajectory none total counts
# of annotations| 5,900 153 0 n/a
Frame resolution|1280x720| 238 x 158 352x288 n/a

Table 1. Statistics of existing crossing-line crowd counting datasets. *This dataset is
not publicly available at the time of publication.

Scene 1: Street Scene 2: Alley Scene 3: Alley

Scene 4: Square Scene 5: Alley

Fig. 5. Illustration of the 5 scenes and the LOIs in our datasets.

ID specified), and 3,100 annotated frames. A comparison with existing datasets
can be seen in Table 1. As shown by the table, our dataset has more scenes and
more detailed annotations (pedestrian locations vs. single counting numbers)
than any existing dataset. Since we provide complete trajectory annotations for
each pedestrian in our dataset, we can generate ground truth counts for arbitrary
LOIs. We manually defined 1 LOI perpendicular to the traffic flow direction for
each scene. Some example frames and LOIs from the 5 scenes are shown in Fig.
5. The training set is created as the first 70% continuous frames of the 5 scenes,
and the remaining 30% frames are used as the test set. We also evaluate our
proposed CNN model on the UCSD crossing-line counting dataset [10].

4.2 Experimental setup

We compared our proposed method with the temporal-slice-based CNN model
in [2] and the integer programming based method [10]. For our proposed CNN
model, we randomly cropped video frame patches of size 224 x 224 as our train-
ing samples. Our CNN model was randomly initialized and trained with the
training set of our proposed dataset. The network parameters were optimized
by Stochastic Gradient Descent (SGD) with a batch size of 96. We gradually
decreased the learning rate until the training is converged. During testing, pairs
of whole video frames were input into our CNN to estimate the crowd counting
maps. On an NVIDIA TITAN GPU, our proposed CNN model achieves a near
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real-time processing speed of 10 frames per second. For the temporal-slice-based
CNN method [2], we generated training temporal slices of 12s from our dataset
at the pre-defined LOIs, which result in a total of more than 50,000 temporal
slices. We implemented their 3 networks following the description in [2].

To evaluate the accuracy of LOI crowd counting methods, we divided the
test frames into short video clips of 10s. The accuracy of crossing-line crowd
counting was then calculated as the Mean Windowed Relative Absolute Errors
(MWRAE) between the ground truth cumulative counts and the estimated cu-
mulative counts for all short clips:

N ~
1 ||uz — u,”
= — - 1
MWRAFE N } - " X 00}07 (11)

where u; and u; represent the ground truth and estimated cumulative crowd
counts of ith test video clip, and N is the total number of test clips. The reason
we chose this metric instead of the Mean Absolute Errors (MAE) and Mean Win-
dowed Absolute Errors (MWAE) in existing literatures [10] is because the MAE
would be sensitive to one single frame’s large error while the MWAE favors video
clips with fewer pedestrians. They are not comparable across different scenes and
provide no information on the difficulties of different scenes. Therefore, we ar-
gue the MWRAE is a more reasonable evaluation metric for crossing-line people
counting. However, when evaluating our proposed model’s performance on the
UCSD dataset [10], we still report the MAE and MWAE to make fair comparison
with existing methods.

In addition to the methods from existing literature, we also designed mul-
tiple baseline models for comparison, which investigate the effects of different
components of our proposed algorithm and other plausible solutions. 1) Phase
I: this baseline network has the same structure as our proposed one but is only
trained with phase I learning objectives, i.e., the crowd density map and crowd
velocity map. The crowd counting map is obtained by elementwisely multiply-
ing the estimated density and velocity maps. 2) Direct-training-A: instead of
training the proposed CNN using the proposed two-phase scheme with different
learning objectives at each stage, this CNN was directly trained towards the
crowd counting map. The short-cut loss signals were also modified so that they
back-propagate from the crowd counting map to “conv5_s” and “conv6.s”. 3)
Direct-training-B: this network is the same as Direct-training-A but “conv_o”
and “deconv_o” directly output the 2-channel crowd counting map without the
two elementwise multiplication branches. 4) Two-separate: two separated CNN
models of the same structure as our proposed one were trained for estimating
the crowd density map and the crowd velocity respectively. The counting map
is obtained by multiplying the results of the two CNNs.

4.3 Evaluation on the accuracy of supervision crowd counting maps

Since we generate the pixel-level crowd counting map by elementwisely multiply-
ing a crowd density map with Gaussian density functions and a crowd velocity
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Scene 1 | Scene 2 | Scene 3 | Scene 4 | Scene 5 All
Down/Up|Down/Up|Down/Up|Down/Up|Down/Up|Down/Up
0.82/1.03|2.68/2.36|1.67/2.31|2.49/2.90|4.16/3.00 | 2.47/2.25
Table 2. The MWRAE (%) between the ground truth crowd counts and the counts cal-
culated by performing count mapping in Section 3.3 on our supervision crowd counting
maps.

80} == Ground Truth
Counting-map Counts|

Cross-line Couts (Downward)

500 000 50 3 0 000
Time (Frame Number) Time (Frame Number)

(a) Scene 1 (b) Upward counts  (c) Downward counts

Fig. 6. (a) Scene 1 with its LOIL (b-c) The ground-truth LOI cumulative counts (red)
and the LOI cumulative counts from our supervision counting maps (green) for the
LOIin (a).

map, we evaluated if such supervision counting map provides accurate approxi-
mations for calculating the correct counting numbers with our proposed evalu-
ation metric (see Table 2). For each LOI in our dataset, the crowd counts from
our supervision counting maps are generated as introduced in Section 3.3. The
MWRAESs between the the ground truth counts and counts from our counting
map for all scenes are reported in Table 2. The small MWRAESs show the way of
generating crowd counting maps is able to obtain accurate enough crowd count-
ing numbers for different LOIs and the generated supervision maps are suitable
for training our CNN model. In Fig. 6, we show one example LOI’s ground truth
crowd counts and the counts from our supervision counting maps. The count
curves from our counting map closely follow those of the ground truth.

4.4 Results on the proposed dataset

For our proposed dataset, we evaluated the MWRAE of the cumulative counts
by our proposed CNN and other compared methods. The results are reported in
Table 3, which show that our proposed CNN achieves the lowest errors for most
scenes.

The TS-CNN [2] is based on temporal slices of both frames and optical flow
maps. Since our dataset has many crowded scenes, the temporal slices are heavily
degenerated (see Fig. 1(b) for examples). TS-CNN cannot output satisfactory
crowd counts based on these temporal slices. The IP-based method [10] performs
worst on this dataset, because it is based on hand-crafted features and cannot
effectively adapt to such complex scenes.

For the baseline deep CNN models, the 1) Phase I model was trained only
with phase I learning objective and was not finetuned with the final crowd count-
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Method Proposed |TS-CNN [2][IP-based [10]|| Phase I | Direct-A | Direct-B | Two-separate
Down/Up | Down/Up Down/Up [[Down/Up|Down/Up|Down/Up| Down/Up
Scene 1(4.01/5.59| 55.9/53.2 479/895 5.17/6.99]5.11/10.1 [ 12.4/22.6 | 4.84/8.06
Scene 2|7.21/14.6| 17.9/31.6 398/569 10.3/18.5| 7.75/13.9 [7.39/13.4 11.5/19.1
Scene 3|4.82/5.82| 19.4/23.3 505/471 6.19/9.36 | 13.3/8.57 [ 6.25/7.83| 6.58/10.8
Scene 4| 13.4/15.1 | 20.3/33.5 | 254/362 ||18.5/14.9(11.8/12.4|12.9/ 14.6| 20.2/16.6
Scene 5/20.7/18.7| 17.8/28.0 518/646 24.4/16.7|22.5/19.3 | 22.7/17.7| 27.4/21.7
All 11.2/10.7| 29.5/36.0 454/648 14.0/13.0( 13.0/13.7 | 14.0/17.7 15.3/15.3

Table 3. MWRAE (%) by our proposed method and other compared ones on the
proposed dataset.

Left Right
MAE MWAE| MAE MWAE
Proposed CNN|1.1833| 0.5964 |0.6285| 0.4719
IP-based [10] [0.6040| 0.7231 [0.6883| 0.5105
Table 4. The results on the UCSD dataset by our proposed method and the IP-based
method [10].

Method

ing map. This model has lower accuracy than our CNN model trained with the
proposed two-phase training scheme, which demonstrates the necessity of fine-
tuning our CNN with the phase II objective. The 2) Direct-training-A model
learns to directly output the two-channel crowd counting map by training with
only the phase II learning objectives. The network structure remains the same
as that of the proposed network. The accuracy of this training scheme is lower
than that of our two-phase training strategy. Since our strategy decomposes the
original problem into two easier sub-problems with clear semantic meanings, the
bottom layers can learn more powerful feature representations. The 3) Direct-
training-B model also directly outputs the two-channel crowd counting map but
without the elementwise multiplication layer in the top layer. It actually gener-
ates better result than the Direct-training-A model, which demonstrates that it
is our proposed two-phase training strategy instead of the elementwise multipli-
cation operation that contributes to the increase of the counting accuracy. For
the 4) Two-separate model that learns two independent networks for predicting
crowd density and crowd velocity separately, we compare it with our Phase [
model, which shows that the jointly learning crowd density and crowd velocity
is able to assist the learning of both tasks and results in accurate results. Note
that the Two-separate model has twice the parameters compared with Phase [
model and is also twice slower for evaluation.

4.5 Results on the UCSD dataset

We also evaluated our proposed method on the UCSD dataset [3], which con-
tains only 1 video, and the results are reported in Table 4. The IP-based method
[10] based on temporal slices has very good performance on this dataset because
the video has relatively low crowd density (Fig. 7), and the training and testing
samples are all from the same video. Because of the small number of the training
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Fig. 7. (a) Example frame of the UCSD dataset and the pre-defined LOI for the dataset.
(b) Example temporal slice generated from the LOI. The shape and appearance of
pedestrians could be well recognized because of the low crowd density of the dataset.

frames in the dataset, our proposed CNN model was first trained with our pro-
posed dataset and then fine-tuned on the UCSD dataset. The size of the video
in the dataset is four times smaller than the ones in our training set. We enlarge
the video frames and then input into our network for evaluation. Although with
such difficulties, our proposed CNN show better accuracy compared with the
integer-programming-based method in [10].

5 Conclusion

The problem of counting people crossing a line-of-interest is of great interest
to the intelligent surveillance industry. In this paper, we present a deep Con-
volutional Neural Network for solving this problem. We observe that temporal
slices used by state-of-the-art methods are sensitive to high crowd density, slow
walking speed and different orientations of the LOI. A CNN model is there-
fore proposed to directly process pairs of video frames and predict pixel-level
crossing-line crowd counting map. The proposed CNN model is trained with
counting maps with rich supervision information and a novel two-phase training
scheme. Such a training scheme decomposes the original problem into two easier
ones with clear semantic meanings, which helps the CNN learn more discrimi-
native feature representations. A new dataset for evaluating crossing-line crowd
counting is proposed and would benefit related research along this direction.
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