image

A. M.-C. So

The ubiquity of big datasets and the desire to extract information and knowledge from them have motivated the development of a wide array of data analytics tools in recent years. Many of these tools aim at identifying the most informative features in a dataset according to some criteria. As such, they often require the algorithmic solution of certain (intractable)optimization problems. In this project, we will develop efficient algorithmic implementations of various optimization-based data analytics tools and rigorously establish their performance guarantees (such as convergence rate, approximation quality and statistical properties). This will contribute to both the theory and practice of big data optimization. We will also test our results on various applications, such as recommender systems and systems biology.

Department of Systems Engineering and Engineering Management, CUHK